Electronic Supplementary Information

Strong size sieving effect in a rigid oxalate-based metal-organic framework for selective lithium extraction

Wenhao Huang ^a, Zhonghang Chen ^a, Peng Cheng ^a and Wei Shi ^{a*}

^a Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy

Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power

Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

* Corresponding author. E-mail address: shiwei@nankai.edu.cn (W. Shi)

Summary of the supporting information: 28 pages, 20 Figures and 2 tables.

Content

1. Experimental Section	S3-S6
Synthesis	\$3
Characterization	\$3
DFT calculations	S4
Adsorption Experiments	S4-S5
2. Supporting Figures	S6-S25
3. Supporting Tables	S26-S27
4. Supplementary References	S28

Experimental section

Synthesis

Synthesis of single crystals of Eu-C₂O₄. Eu-C₂O₄ was synthesized via an optimized method.¹ A mixture containing Eu₂O₃ (35 mg, 2.0 mmol), H₂C₂O₄·2H₂O (19 mg, 0.15 mmol), NaHCO₃ (27 mg, 0.30 mmol) and H₂O (4.0 mL) was transferred to a 20 mL glass vial and sonicated for 3 minutes. The reagent bottle was sealed and then heated at 90 °C for 2 h. After cooling to room temperature, the resulting colorless crystals were harvested by filtration, washed with H₂O and ethanol, and then dried at 70 °C. Yield 71% based on Eu₂O₃. Elemental analysis (%) for EuC₂H₂O₆: C 8.76, H 0.73, found (%): C 8.83, H 1.08.

Gram-scaled synthesis of powder Eu-C₂O₄. A mixture containing Eu₂O₃ (0.70 g, 2 mmol), H₂C₂O₄·2H₂O (0.38 g, 3 mmol), NaHCO₃ (0.54 g, 6 mmol) and H₂O (100 mL) was transferred to a 250 mL round-bottom flask and sonicated for 3 min. The flask was stirred under reflux for 2 h. After cooling to room temperature, the resulting colorless powder were harvested by filtration, washed with H₂O and ethanol, and then dried at 70°C. Yield 79% based on Eu₂O₃. Elemental analysis (%) for EuC₂H₂O₆: C 8.76, H 0.73; found (%): C 8.68, H 0.93.

Synthesis of Li@Eu-C₂O₄. A mixture containing Eu(NO₃)₃·6H₂O (0.088 g, 0.20 mmol), H₂C₂O₄·2H₂O (0.019 g, 0.15 mmol), Li₂CO₃ (0.022 g, 0.30 mmol), LiOH (0.012 g, 0.50 mmol), H₂O (2.0 mL) and DMF (2.0 mL) was transferred to a 15 mL pressure bottle. The bottle was sealed and then heated at 120 °C for 12 h. After cooling to room temperature, the resulting colorless crystals were harvested by filtration, washed withH₂O and ethanol, and then dried at 70 °C. Yield 68% based on Eu(NO₃)₃·6H₂O. Elemental analysis (%) for Li₂EuC₂O₆: C 8.40, H 0; found (%): C 8.54, H 0.36.

Characterization

For single crystal X-ray diffraction, a single crystal was directly taken from the mother liquor and placed in paraffin oil. The crystal was mounted on a nylon loop and placed on the goniometer. Single-crystal data were collected using a Rigaku SuperNova or a Rigaku XtaLAB Mini II single-crystal diffractometer equipped with graphite-monochromatic Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 293(2) K during data collection. The structures were solved by SHELXS (direct methods) and refined by SHELXL (full matrix least-squares techniques) in the Olex2 package.^{2,3} All non-hydrogen atoms were refined anisotropically, while the hydrogen atoms were positioned geometrically and refined as riding atoms. PXRD measurements were performed using a Rigaku Smartlab SE X-ray diffractometer equipped with a Cu-tube and a graphite monochromator scanning over the range of 5–50° at the scan rate of 0.2° s⁻¹ at room temperature. Simulations of the PXRD patterns were carried out with the single-crystal data and diffraction crystal module of the Mercury program. The FTIR spectroscopy were carried out on a Bruker ALPHA spectrophotometer. TGA data were obtained on a TGA 2 STARe System of METTLER TOLEDO under nitrogen atmosphere with the heating rate of 10 °C min⁻¹. EA for C, H and N were carried out using a Vario EL cube elemental analyzer. The SEM images were obtained using Hitachi SU3500 scanning electron microscopy equipped. ICP-AES analyses were conducted using a Thermo IRIS Advantage instrument. XPS were acquired using PHI5000Versa probe equipped ESCALAB 250xi.

Activation of Eu-C₂O₄

Before conducting adsorption experiments, as-synthesized $Eu-C_2O_4$ needs to be activated. The activation method is as follows. The material needs to be soaked in a nitric acid solution (pH = 3) at 80 °C for 12 hours, and fresh nitric acid solution should be replaced three times during the process. After cooling to room temperature, filter, wash with water and ethanol and dry at 70 °C.

DFT calculations

Computations were performed using Gaussian 16^4 with B3LYP/genecp+empirical dispersion correction GD3BJ. The mixed basis set is 6-311G^{*} for H, C, O, Li, Na and SDD for Eu, respectively. Due to the limitations of the rigid framework, it can be assumed that structure of Na@Eu-C₂O₄ is the same as structure of Li@Eu-C₂O₄.

Kinetic adsorption studies

Kinetics experiments at 700 mg L⁻¹ Li⁺ by Eu-C₂O₄ were performed at 90 °C in 20 mL glass bottles. A Li⁺ solution (10 mL, 700 mg L⁻¹) was added to each bottle, and 50 mg Eu-C₂O₄ was added to each bottle to form the suspension. The suspension was constantly stirred until 2 mL samples were collected at predetermined times (1 h, 3 h, 6 h, 9 h, 12 h, 18 h, 24 h and 36 h). Centrifuge each sample and dilute 1mL of the supernatant 100 times. Further analyze the sub samples using ICP-OES.

The adsorption capacity of lithium ions by Eu-C₂O₄ was determined via Equation (1):

$$q_t = \frac{C_0 - C_t}{m} \times V \tag{1}$$

where C_0 (mg L⁻¹) and C_t (mg L⁻¹) are the concentrations of Li⁺ before and after adsorption; m (g) is adsorbent mass and V(L) is the solution volume.

The pseudo-first-order kinetic and pseudo-first-order kinetic models were nonlinearly fitted with the experimental data via Equation (2) and Equation (3):

$$\ln(q_e - q_t) = \ln q_e - \frac{k_1}{2.303} \times t$$
 (2)

where q_e (mg g⁻¹) and q_t (mg g⁻¹) are the adsorption capacity of Li⁺ at equilibrium and time t; t (h) is the adsorption time; k_1 (h⁻¹) is the pseudo-first-order kinetics adsorption rate constant.

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(3)

where q_e (mg g⁻¹) and q_t (mg g⁻¹) are the adsorption capacity of Li⁺ at equilibrium and time t; t (h) is the adsorption time; k_2 (g mg⁻¹ h⁻¹) is the pseudo-second-order kinetics adsorption rate constant.

Isotherm adsorption studies

Adsorption isotherms at 90 °C were obtained by stirring a suspension containing 50 mg of Eu-C₂O₄ and

10 mL of Li⁺ solution at pH 12 using a heating magnetic stirrer at 100 rpm. The initial concentrations of Li⁺ ranged from 100 to 700 mg L⁻¹. After stirring for 24 h, 2 mL samples were collected form each bottle and centrifuged. The concentrations of Li⁺ in the supernatant were measured by ICP-OES.

The Langmuir and Freundlich isotherm models were nonlinearly fitted with the experimental data via Equation (4) and Equation (5):

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{4}$$

where $q_e (mg g^{-1})$ is the amount of Li⁺ adsorption capacity at equilibrium; $C_e (mg L^{-1})$ is the residual concentration of Li⁺ at equilibrium; $q_m (mg g^{-1})$ is the maximum adsorption capacity of the adsorbent at equilibrium and $K_L (L mg^{-1})$ is the Langmuir affinity constant.

$$q_e = K_F C_e^{1/n} \tag{5}$$

where $q_e \text{ (mg g}^{-1)}$ is the amount of Li⁺ adsorption capacity at equilibrium; $C_e \text{ (mg L}^{-1)}$ is the residual concentration of Li⁺ at equilibrium; $K_F \text{ (mg g}^{-1)}(L \text{ mg}^{-1})^{1/n}$ is the Freundlich affinity constant.

Recyclability of adsorbents

The recyclability of the Eu-C₂O₄ was investigated by adsorption-desorption experiments repeated for several times (add 50 mg Eu-C₂O₄ into 10 mL Li⁺ solution, pH = 12, 90 °C, C₀ = 700 mg L⁻¹). After adsorption equilibrium, centrifuge the supernatant ,dilute and measure the Li⁺ concentration via ICP-OES, and the adsorbent is collected by filtration. The collected adsorbent was regenerated by acid treatment with HNO₃ (pH = 3) for 12 h and then washed with deionized water for reuse.

Adsorption selectivity

To determine the selectivity of the adsorbents, the mixed ion solution of Li⁺ and Na⁺ (Li⁺ 700 mg L⁻¹, Na⁺ 2300/6900/23000 mg L⁻¹, pH = 12, 90 °C) was used for competitive adsorption experiments. The ion concentrations were determined by ICP-OES and the ability of selective adsorption could be reflected by separation factors of different reference ions in a two-component system using Equation (6) and Equation (7):

$$K_d = \frac{(C_0 - C_e)V}{C_e m} \tag{6}$$

$$\alpha_{Na}^{Li} = \frac{K_{d,Li}}{K_{d,Na}} \tag{7}$$

where C₀ (mg L⁻¹) is the initial concentration of M⁺; C_e (mg L⁻¹) is the residual concentration of M⁺ at equilibrium; V (mL) is the volume of solution; m (mg) is the adsorbent mass; K_d is the parameter related to the adsorption capacity; and α_{Na}^{Li} is the parameter representing selectivity.

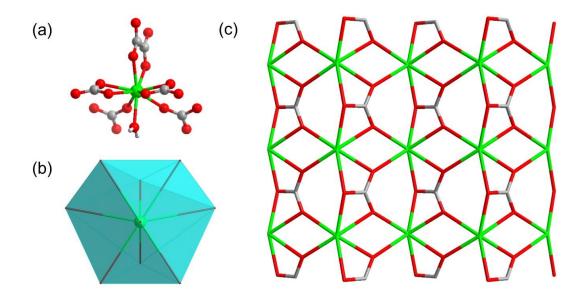


Fig. S1. (a) Coordination configuration, (b) coordination polyhedron and (c) 2D layer structure of $Eu-C_2O_4$.

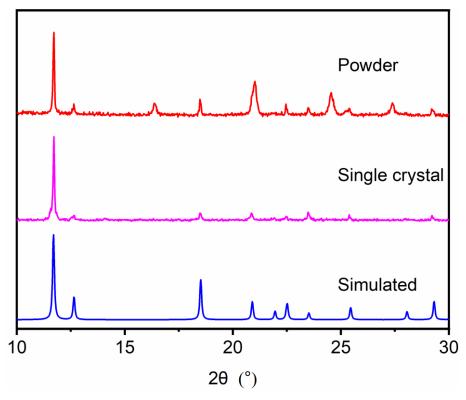


Fig. S2. PXRD patterns of Eu-C₂O₄.

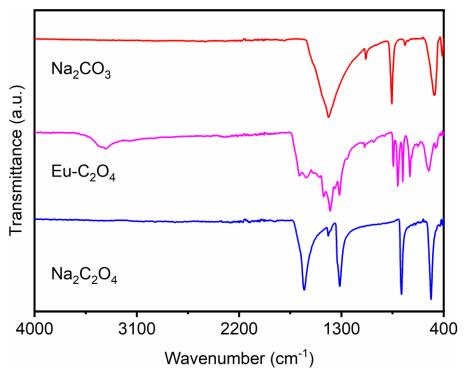
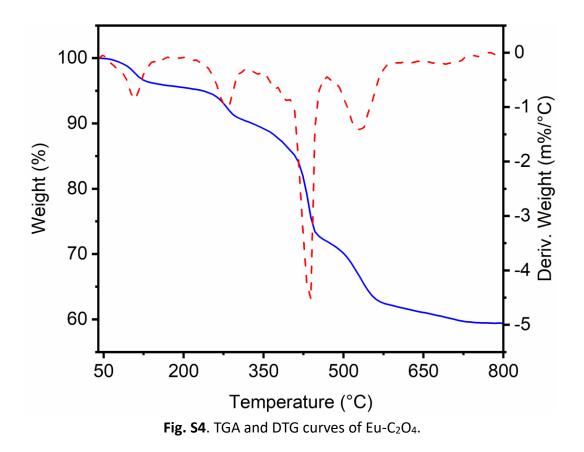



Fig. S3. IR spectra of $Eu-C_2O_4$, oxalate and carbonate.

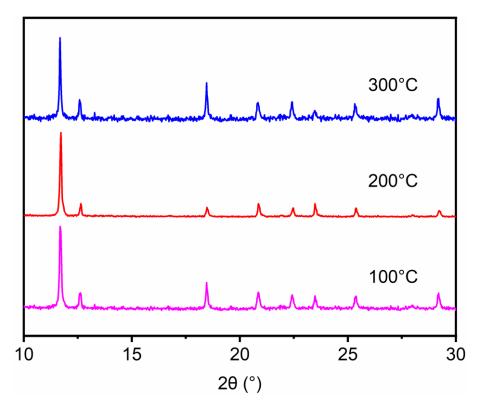
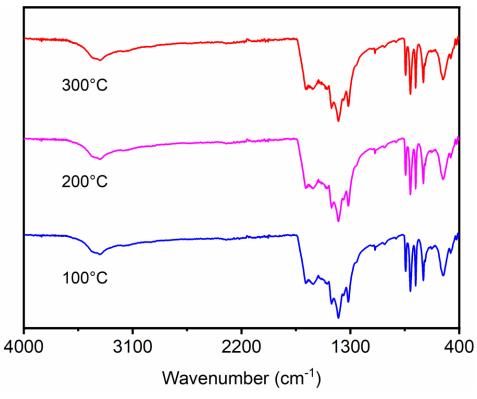



Fig. S5. Temperature-dependent PXRD patterns of Eu-C₂O₄.

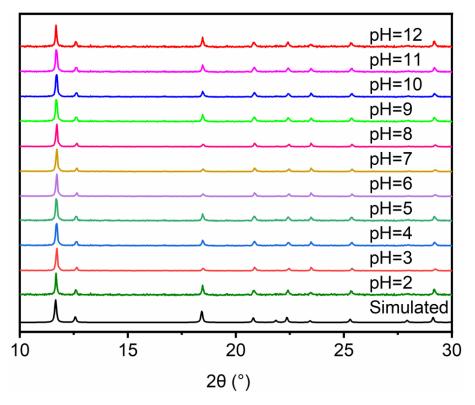


Fig. S7. PXRD patterns of $Eu-C_2O_4$ after 12 h in aqueous solutions with pH values ranging from 2 to 12.

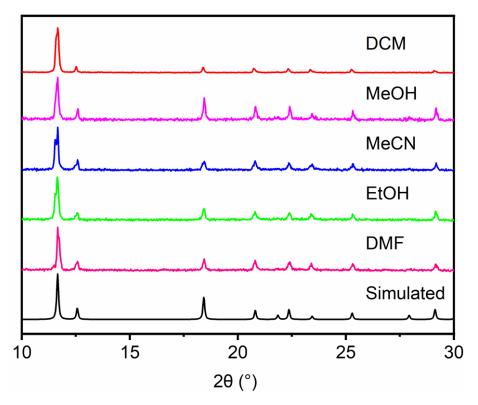


Fig. S8. PXRD patterns of Eu-C₂O₄ after 24 h in different organic solutions.

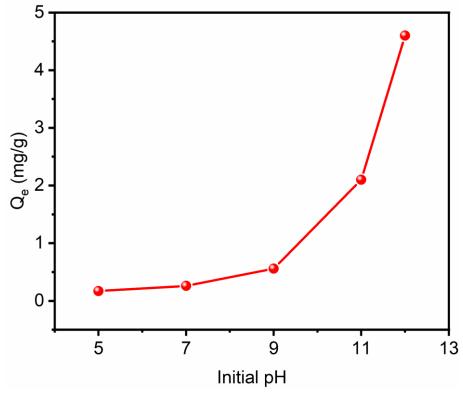


Fig. S9. The effect of initial pH on Li^+ adsorption capacity.

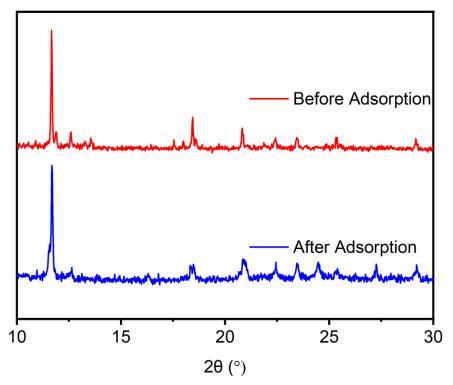


Fig. S10. PXRD patterns of $Eu-C_2O_4$ before and after adsorption of Li^+ ions.

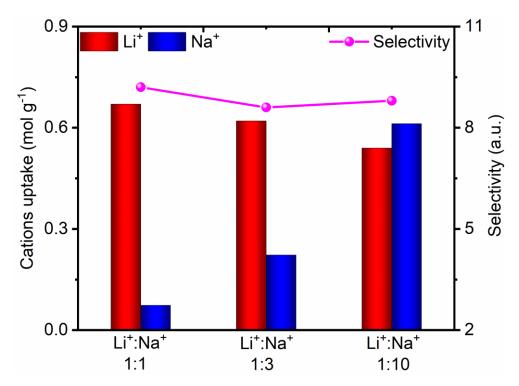


Fig. S11. Li $^+$ adsorption selectivity from the coexisting cations solution.

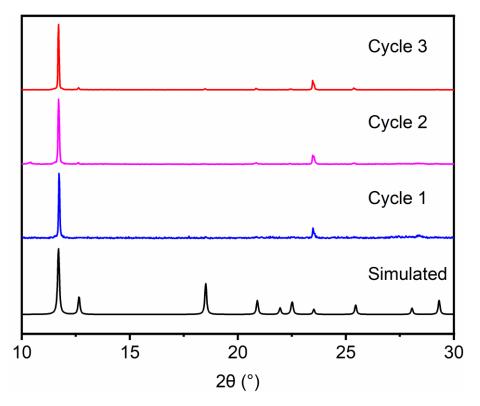


Fig. S12. PXRD patterns of $Eu-C_2O_4$ in regeneration cycle.

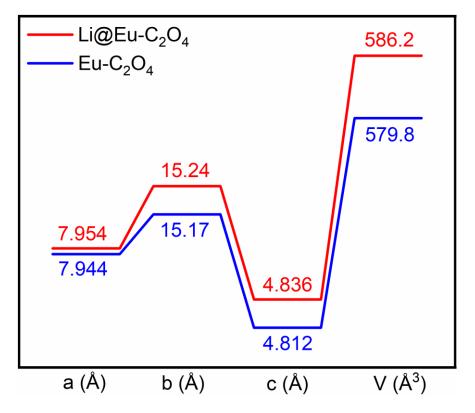
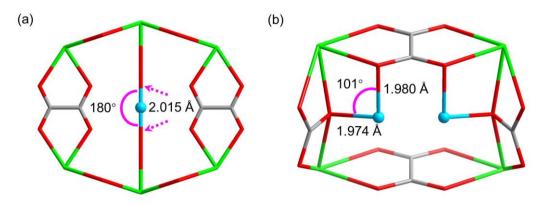
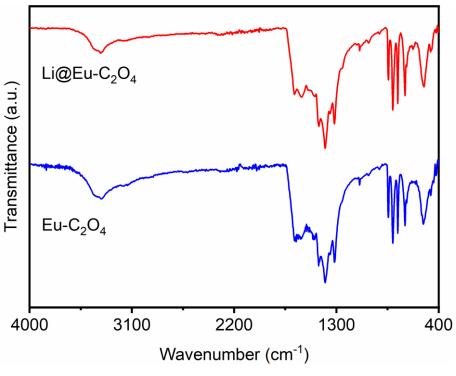


Fig. S13. Comparison of crystal cell parameters of Li@Eu-C₂O₄ and Eu-C₂O₄.

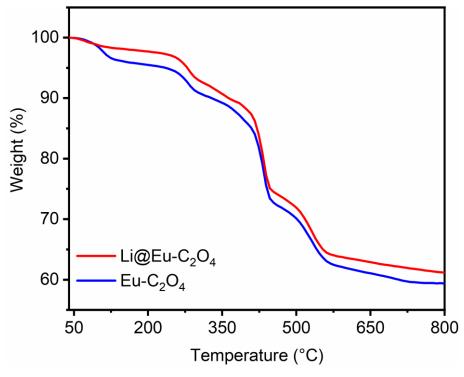


Fig. S14. Coordination configurations of Li^+ ions in $Li@Eu-C_2O_4$.

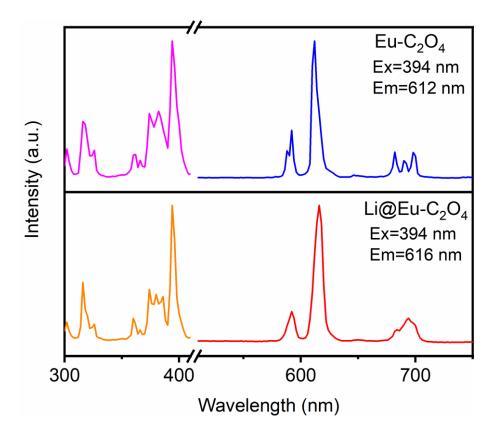


Fig. S17. Solid-state excitation and emission spectra of Li@Eu-C₂O₄ and Eu-C₂O₄.

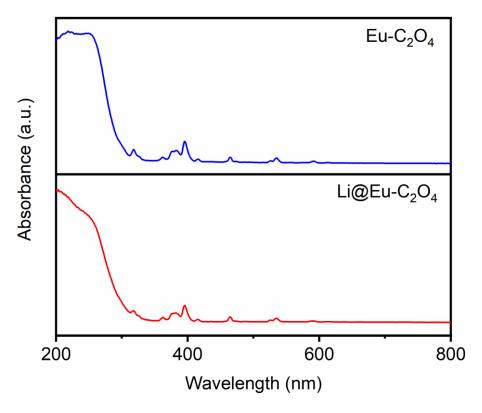


Fig. S18. Solid-state UV-vis spectra of $Li@Eu-C_2O_4$ and $Eu-C_2O_4$.

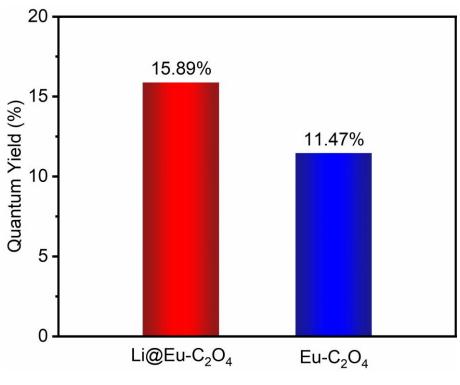


Fig. S19. Quantum yield of $Li@Eu-C_2O_4$ and $Eu-C_2O_4$.

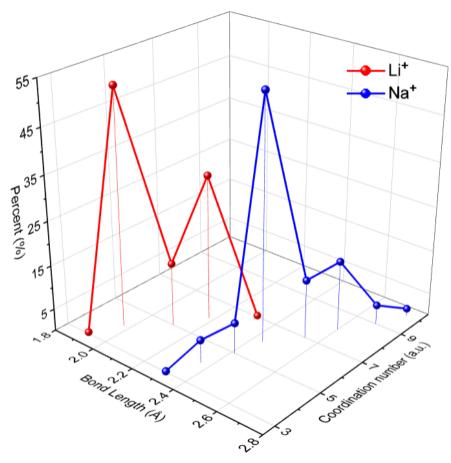


Fig. S20. Bond-length statistics for Li^+ and $Na^{+,5}$

	Eu-C ₂ O ₄	Li@Eu-C ₂ O ₄	
Formula	$EuC_2H_2O_6$	$Li_4Eu_2C_4O_{12}$	
Formula weight	273.99	285.86	
Crystal system	Orthorhombic	Orthorhombic	
Space group	Сттт	Сттт	
a / Å	7.9438(8)	7.9539(8)	
<i>b</i> / Å	15.1693(16)	15.2398(13)	
<i>c</i> / Å	4.8115(4)	4.8359(4)	
α / deg	90	90	
<i>β</i> / deg	90	90	
γ/deg	90	90	
<i>V</i> / Å ³	579.79(10)	586.19(9)	
Ζ	4	2	
$ ho_{calc}$ / g cm ⁻³	3.139	3.239	
μ / mm ⁻¹	10.776	10.66	
Reflections collected	1116	1184	
Independent reflections	375	379	
R(int)	0.0284	0.0383	
2ϑ range / deg	5.370 to 52.996	5.346 to 52.952	
F(000)	500.0	516.0	
GOF on F ²	1.082	1.138	
${}^{a}R_{1} / {}^{b}wR_{2}[I \ge 2\sigma (I)]$	0.0271/0.0617	0.0339 / 0.0903	
${}^{a}R_{1} / {}^{b}wR_{2}$ (all data)	0.0300 / 0.0625	0.0398 / 0.0948	
Largest diff. peak / hole / eÅ ⁻³	1.71/-1.66	1.46/-2.92	

Table S1. Crystal Data and Structure Refinement for Eu-C₂O₄ and Li@Eu-C₂O₄.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

	ie 52. compe			ig materials	IOI EI IOIIS.	
Materials	Li⁺ uptake (mg g⁻¹)	Equilibratio n time (h)	pH and Li ⁺ Concentration	Li⁺ density (nm⁻³)	Selectivity of Li⁺/Na⁺	Refere nce
Eu-C ₂ O ₄	4.6	18	pH = 12, 700 mg L ⁻¹	3.41	9.1	This work
LMOF-321	7.5	24	pH = 7, 10 mg L ⁻¹	0.44	6.2	6
UIO-66-H ₂ /H ₄	39.5	1	pH = 6, 500 mg L ⁻¹	0.89	1.95	7
TJU-21	41	16	pH = 7, 1000 mg L ⁻¹	0.72	5.4	8
MIL-100(Fe)	46.3	24	pH = 7, 2000 mg L ⁻¹	0.92	3.3	9
PDMVBA-MIL- 121	1.4	24	pH = 7, 1000 mg L ⁻¹	2.73	2.1	10
WP@PSS@Cu- MOF	8.9	3	pH = 9, 150 mg L ⁻¹ ,	_	2.4	11
pNCE/MOF- 808	0.05	10	pH = 7, 700 mg L ⁻¹	_	0.05	12
H ₂ TiO ₃	28	1.5	pH = 12, 280 mg L ⁻¹	37.47	_	13
HTO-PVB	25	3	pH = 12, 200 mg L ⁻¹	_	93.5	14
H _{1.6} Mn _{1.6} O ₄	43.8	2	pH = 11, 150 mg L ⁻¹	11.47	_	15
HMZO	24.8	1.5	pH = 6, 130 mg L ⁻¹	_	47.6	15
HMZO-PVC	18.3	4	pH = 6, 35 mg L⁻¹	_	55.3	16
HAISi ₂ O ₆	29.6	24	pH = 12, 300 mg L ⁻¹	11.3	21.2	17

Table S2. Comparison of the selected adsorbing materials for Li⁺ ions.

Li⁺ Density refers the number of Li⁺ ions can be adsorbed per unit volume of adsorbent.

References

- 1. R. Takono, T. Ishida, B. Ay, *CrystEngComm*, 2022, **24**, 7786–7792.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 3. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
- 5. O. C. Gagné, F. C. Hawthorne, Acta Crystallogr., Sect. B: Struct. Sci., 2016, 72, 602–625.
- 6. N. D. Rudd, Y, Liu, K. Tan, F. Chen, Y. J. Chabal, J. Li, ACS Sustainable Chem. Eng., 2019, 7, 6561–6568.
- 7. X. Gao, R. Ding, H. Huang, B. Liu, X. Zhao, Chem. Commun., 2023, 59, 13183–13186.
- 8. X. Jiang, B. Wu, P. Bai, J. Lyu, X. Guo, ACS Appl. Mater. Interfaces, 2021, 13, 47793–47799.
- 9. B. Tong, G. Guo, X. Meng, P. Bai, J. Lyu, X. Guo, *Chem. Commun.*, 2022, **58**, 8866-8869.
- R. Ou, H. Zhang, J. Wei, S. Kim, L. Wan, N. S. Nguyen, Y. Hu, X. Zhang, G. P. Simon, H. Wang, *Adv. Mater.*, 2018, **30**, 1802767.
- 11. W. Bian, J. Chen, Y. Chen, W. Xu, J. Jia, *Cellulose*, 2021, **28**, 3041-3054.
- 12. S. Zhang, R. Ou, H. Ma, J. Lu, M. M. B. Holl, H. Wang, Chem. Eng. J., 2021, 405, 127037.
- 13. Y. Zhang, J. Liu, Y. Yang, S. Lin, P. Li, Sep. Purif. Technol., 2021, 267, 118613.
- 14. F. Qian, M. Guo, Z. Qian, Q. Li, Z. Wu, Z. Lin, Chem. Eur. J., 2019, 4, 10157–10163.
- 15. Wang, L.; Wang, J.; Wang, X. Sep. Purif. Technol., 2022, 303, 121933.
- 16. L. Wang, L. Wang, J. Wang, X. Wang, Sep. Purif. Technol., 2022, 303, 121933.
- 17. H. Hu, J. Guo, M. Liu, Y. Li, N. Wu, L. Xiong, S. Chen, B. Tian, L. Zhuang, *Hydrometallurgy*, 2022, **213**, 105929.