Supplementary Information (SI) for ChemComm.
This journal is © The Royal Society of Chemistry 2024

Supporting Information

Streamlining Si-O Bond Formation Through Cobalt-Catalyzed Dehydrocoupling

Ewelina Szafoni, Dariusz Lewandowski, Marcin Gruszczyński, Konstancja Broniarz, Hanna Stachowiak-Dłużyńska, Krzysztof Kuciński and Grzegorz Hreczycho

CONTENT:

GENERAL INFORMATION	5
OPTIMIZATION OF REACTION CONDITIONS	6
GENERAL SYNTHETIC PROCEDURES	7
CHARACTERISATION DATA FOR ALL PRODUCTS	11
1-(Tert-butyl)-1,1-dimethyl-3-phenyldisiloxane 3a	11
1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3-phenyldisiloxane 3b	11
1,1,1-Triisopropyl-3-phenyldisiloxane 3c	12
1,1,1-Triisobutyl-3-phenyldisiloxane 3d	12
1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4a	12
1,1,1,5,5,5-Hexamethyl-3-phenyltrisiloxane 4b	13
1,1,1,5,5,5-Hexaethyl-3-phenyltrisiloxane 4c	13
1,5-Diethyl-1,1,5,5-tetraisopropyl-3-phenyltrisiloxane 4d	14
1,1,1,5,5,5-Hexabutyl-3-phenyltrisiloxane 4e	14
1,1,1,5,5,5-Hexaisobutyl-3-phenyltrisiloxane 4f	14
1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4g	15
1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-(p-tolyl)trisiloxane 4h	15
1,1,1,5,5,5-Hexaethyl-3-(p-tolyl)trisiloxane 4i	16
3-Hexyl-1,1,1,5,5,5-hexamethyltrisiloxane 4j	16
1,1,1-Trimethyl-3,3-diphenyldisiloxane 5a	17
1,1,1-Triethyl-3,3-diphenyldisiloxane 5b	17
1-(Tert-butyl)-1,1-dimethyl-3,3-diphenyldisiloxane 5c	17
1,1,1-Triisobutyl-3,3-diphenyldisiloxane 5d	18
1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3,3-diphenyldisiloxane 5e	18
1-Ethyl-1,1-diisopropyl-3,3-diphenyldisiloxane 5f	19
1,1-Dimethyl-1,3,3-triphenyldisiloxane 5g	19
1,1,1-Tributyl-3,3-diphenyldisiloxane 5h	20
1,1,1-Triisopropyl-3,3-diphenyldisiloxane 5i	20
1,1,1,3-Tetramethyl-3-phenyldisiloxane 5j	20
1,1,1-Triethyl-3-methyl-3-phenyldisiloxane 5k	21
Bis((3-methylpentan-3-yl)oxy)(phenyl)silane 6a	21
Bis(cyclohexyloxy)(phenyl)silane 6b	22
Triethoxy(phenyl)silane 6c	22
((3-Methylpentan-3-yl)oxy)diphenylsilane 6d	22
(Cyclohexyloxy)diphenylsilane 6e	23
Methyl((3-methylpentan-3-yl)oxy)(phenyl)silane 6f	23

(Cyclohexyloxy)(methyl)(phenyl)silane 6g	24
1,1'-(Phenylsilanediyl)dipiperidine 6h	24
4,4'-(Phenylsilanediyl)dimorpholine 6i	25
1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxan-3-ol 7a	25
1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyl-3-(vinyloxy)trisiloxane 7b	25
1,5-Di-tert-butyl-3-(2-(diethoxy(methyl)silyl)ethyl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane	7c26
3-(2-(Diethoxy(methyl)silyl)ethyl)-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7d	26
3-Decyl-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7e	27
1,1,1,5,5,5-Hexamethyl-3-(3-(oxiran-2-ylmethoxy)propyl)-3-phenyltrisiloxane 7f	27
SPECTRA FOR ALL PRODUCTS	28
1-(Tert-butyl)-1,1-dimethyl-3-phenyldisiloxane 3a	28
1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3-phenyldisiloxane 3b	30
1,1,1-Triisopropyl-3-phenyldisiloxane 3c	32
1,1,1-Triisobutyl-3-phenyldisiloxane 3d	34
1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4a	36
1,1,1,5,5,5-Hexamethyl-3-phenyltrisiloxane 4b	38
1,1,1,5,5,5-Hexaethyl-3-phenyltrisiloxane 4c	40
1,5-Diethyl-1,1,5,5-tetraisopropyl-3-phenyltrisiloxane 4d	42
1,1,1,5,5,5-Hexabutyl-3-phenyltrisiloxane 4e	44
1,1,1,5,5,5-Hexaisobutyl-3-phenyltrisiloxane 4f	46
1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4g	48
1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-(p-tolyl)trisiloxane 4h	50
1,1,1,5,5,5-Hexaethyl-3-(p-tolyl)trisiloxane 4i	52
3-Hexyl-1,1,1,5,5,5-hexamethyltrisiloxane 4j	54
1,1,1-Trimethyl-3,3-diphenyldisiloxane 5a	56
1,1,1-Triethyl-3,3-diphenyldisiloxane 5b	58
1-(Tert-butyl)-1,1-dimethyl-3,3-diphenyldisiloxane 5c	60
1,1,1-Triisobutyl-3,3-diphenyldisiloxane 5d	62
1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3,3-diphenyldisiloxane 5e	64
1-Ethyl-1,1-diisopropyl-3,3-diphenyldisiloxane 5f	66
1,1-Dimethyl-1,3,3-triphenyldisiloxane 5g	68
1,1,1-Tributyl-3,3-diphenyldisiloxane 5h	70
1,1,1-Triisopropyl-3,3-diphenyldisiloxane 5i	72
1,1,1,3-Tetramethyl-3-phenyldisiloxane 5j	74
1,1,1-Triethyl-3-methyl-3-phenyldisiloxane 5k	76
Bis((3-methylpentan-3-yl)oxy)(phenyl)silane 6a	78

	Bis(cyclohexyloxy)(phenyl)silane 6b	80
	Triethoxy(phenyl)silane 6c	82
	((3-Methylpentan-3-yl)oxy)diphenylsilane 6d	84
	(Cyclohexyloxy)diphenylsilane 6e	86
	Methyl((3-methylpentan-3-yl)oxy)(phenyl)silane 6f	88
	(Cyclohexyloxy)(methyl)(phenyl)silane 6g	90
	1,1'-(Phenylsilanediyl)dipiperidine 6h	92
	4,4'-(Phenylsilanediyl)dimorpholine 6i	94
	1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxan-3-ol 7a	96
	1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyl-3-(vinyloxy)trisiloxane 7b	98
	1,5-Di-tert-butyl-3-(2-(diethoxy(methyl)silyl)ethyl)-1,1,5,5-tetramethyl-3-phenyltrisiloxanec 7c	.100
	3-(2-(Diethoxy(methyl)silyl)ethyl)-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7d	102
	3-Decyl-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7e	104
	1,1,1,5,5,5-Hexamethyl-3-(3-(oxiran-2-ylmethoxy)propyl)-3-phenyltrisiloxane 7f	106
R	EFERENCES	108

GENERAL INFORMATION

Air- and moisture-sensitive reactions were carried out under an argon atmosphere using standard Schlenk techniques or a glove box. Solvents used for all experiments were purchased from Honeyweel or Sigma Aldrich (Merck), dried over calcium hydride (CaH₂) and purified by distillation. THF was additionally dried over sodium with a benzophenone system. Co-complexes were prepared following previously reported methods, using reagents purchased from Sigma Aldrich (Merck).[1] Commercially available hydrosilanes (e.g., phenylsilane, n-hexylsilane, methylphenylsilane, and diphenylsilane) as well as silanols (e.g., trimethylsilanol, triethylsilanol. dimethyl(phenyl)silanol, etc.) were purchased from Sigma Aldrich (Merck), ABCR GmBH, Ambeed, Apollo Scientific or Acros Organics, dried over calcium hydride and purified by distillation. Other hydrosilanes (e.g., methyl-p-tolylsilane) were synthesized from the corresponding chlorosilanes through reduction using a well-known procedure involving LiAlH₄ as reducing agent. The progress of reactions (conversion of silanols and hydrosilanes) was monitored by GC chromatography using Bruker Scion 460-GC and Agilent 5977B GC/MSD with Agilent 8860 GC System. The structures of products were determined by NMR spectroscopy and MS spectrometry. The ¹H NMR (400 or 600 MHz), ¹³C NMR (101 or 151 MHz) and ²⁹Si NMR (79 or 119 MHz) spectra were recorded on Bruker Avance III HD NanoBay spectrometer, using benzene-d₆ (C₆D₆) or chloroform-d (CDCl₃) as the solvents. Deuterated solvents were purchased from Sigma Aldrich (Merck).

OPTIMIZATION OF REACTION CONDITIONS

Table 1. Optimization of SiO-H silylation.[a]

Entry	Variation of standard condition	Conversion of 2a [%] [b]	Selectivity [3a] : [4a] [%] ^[d]
1	no change	100 (98) ^[c]	0 : 100
2	no catalyst	0	-
3	1 equiv. of 1a with C6	99	100 : 0
4	CoCl ₂ instead of C4	5	-
5	C1 instead of C4	82	12 : 88
6	C2 instead of C4	80	9 : 91
7	C3 instead of C4	84	10 : 90
8	C5 instead of C4	96	0 : 100
9	C6 instead of C4	98	0 : 100
10	0.25 mol% of C4	90	0 : 100
11	in 40°C	43	0 : 100
12	under air	34	0 :100
13	in tetrahydrofuran	98	0 : 100
14	in chlorobenzene	87	14 : 86
15	neat	89	0 : 100

[[]a] General reaction conditions: **1a** (4 mmol, 2 equiv.), **2a** 2 mmol, 1 equiv.), **C4** (0.5 mol%), under an argon atmosphere, 60°C, 20 h. [b] Conversion of **2a** determined by GC. [c] Isolated yield. [d] Selectivity of [mono]:[double] dehydrogenative coupling products determined by GC.

GENERAL SYNTHETIC PROCEDURES

The synthesis of compounds **3a-d**

To a 12mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C6** in toluene (0.5 mol%), phenylsilane (2 mmol, 1 equiv.), silanol (tert-butyldimethylsilanol, (2,3-dimethylbutan-2-yl)dimethylsilanol, triisopropylsilanol, and triisobutylsilanol; 3 mmol, 1.5 equiv.) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 2 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by ¹H, ¹³C, and ²⁹Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compounds 4a-j

To a 12 mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in toluene (0.5 mol%), hydrosilane (phenylsilane, n-hexylsilane, p-tolylsilane, (2 mmol, 1 equiv.), silanol (*e.g.*, tert-butyldimethylsilanol, trimethylsilanol, tributylsilanol, *etc.*; 4 mmol, 2 equiv.) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 2 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by ¹H, ¹³C, and ²⁹Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compounds 5a-k

To a 12 mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in toluene (0.5 mol%), hydrosilane (diphenylsilane and methylphenylsilane (2 mmol, 1 equiv.)), silanol (*e.g.*, tert-butyldimethylsilanol, trimethylsilanol, tributylsilanol, *etc.*; 2 mmol, 1 equiv.) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 2 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by ¹H, ¹³C, and ²⁹Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compounds 6a,b,d-g

To a 12 mL vial equipped with a magnetic stirring bar, 0.03 M solution of catalyst **C4** in toluene (0.5 mol%), hydrosilane (phenylsilane (2 mmol, 1 equiv.)), alcohol ((3-methyl-3-pentanol, cyclohexanol (4 mmol, 2 equiv.)) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with approximately 2 mL of

pentane and left for 15 min. to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by ¹H, ¹³C, and ²⁹Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compound 6c

To a 12mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in toluene (0.5 mol%), phenylsilane (2 mmol, 1 equiv.) and ethanol (6 mmol, 3 equiv.)) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with approximately 2 mL of pentane and left for 15 min to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by ¹H, ¹³C, and ²⁹Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compounds 6h-i

To a 12 mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in C_6D_6 (0.05 mol%), phenylsilane (2 mmol, 1 equiv.) and amine (piperidine and morpholine (4 mmol, 2 equiv.)) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, we added 1 equiv. of trimetoxybenzene as a chemical standard in a J-Young type NMR tube. Aminosilane conversions were measured by 1H , ^{13}C , and ^{29}Si NMR spectroscopy by integrating residual silane vs. product.

The synthesis of compound 7a

To a 50 mL Schlenk flask equipped with a magnetic stirring bar, 1 mol% palladium on carbon catalyst, THF, H_2O (5 equiv.) and **4a** (1 equiv.) were added under an inert gas atmosphere. Subsequently, the reaction mixture was stirred at 65°C for 24 hours. After this time, the reaction mixture was filtered and the volatile residues were evaporated to yield a pure product. The pure product was identified by 1H , ^{13}C and ^{29}Si NMR spectroscopies and mass spectrometry (MS).

The synthesis of compound 7b

To a 50 mL round-bottom flask, TCCA (0.4 equiv.) in 1,2-DCE was added, followed by the dropwise addition of silane (4a) (1 equiv.) in 1,2-DCE. The reaction mixture was stirred at room temperature for 4 hours. Afterwards, the solution was filtered from the resulting precipitate and rinsed with DCE (3×2 mL). The combined DCE fractions were concentrated under vacuum. Subsequently, vinylmagnesium bromide in THF (3 equiv.) was added and the mixture was stirred at room temperature for 7 days. Afterwards, water and hexane were added, and the residue organic phase was purified via silica

gel column chromatography using hexane as the eluent. The pure product was identified by ¹H and ¹³C NMR spectroscopies and mass spectrometry (MS).

The synthesis of compound 7c

To a 50 mL Schlenk flask equipped with a magnetic stirring bar, 0.03 mol% Karstedt catalyst, toluene, **4b** (1 mmol, 1 equiv.), diethoxy(methyl)(vinyl)silane (12 mmol, 1.2 equiv.) were added under an inert gas atmosphere. Subsequently, the reaction mixture was stirred at 60°C for 24 hours. After this time, the reaction mixture was rinsed with 3 x 2 mL of pentane. The solution was evaporated to yield a pure product. The pure product was identified by ¹H and ¹³C NMR spectroscopies and mass spectrometry (MS).

The synthesis of compounds 7d-f

To a 50 mL Schlenk flask equipped with a magnetic stirring bar, 0.06 mol% Karstedt catalyst, toluene, **4a** (1 mmol, 1 equiv.), diethoxy(methyl)(vinyl)silane, dec-1-ene or 2-((allyloxy)methyl)oxirane (15 mmol, 1.5 equiv.) were added under an inert gas atmosphere. Subsequently, the reaction mixture was stirred at 60°C for 24 hours. After this time, the reaction mixture was rinsed with 3x2 mL of pentane. The solution was evaporated to yield a pure product. The pure products were identified by ¹H and ¹³C NMR spectroscopies and mass spectrometry (MS).

Scaled-up synthesis of compound 4b

To a 50 mL vial equipped with a magnetic stirring bar, 0.03 M solution of catalyst **C4** in toluene (0.5 mol%), hydrosilane (phenylsilane 0.0055 mol, 1 equiv.), silanol (trimethylosilanol; 0.011 mol, 2 equiv.) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 10 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product (1.5339 g, 95%).

The synthesis of compound 4a with TEMPO

To a 12 mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in toluene (0.5 mol%), phenylsilane (2 mmol, 1 equiv.), tert-butyldimethylsilanol (4 mmol, 2 equiv.), and TEMPO (2 mmol, 1 equiv.) were added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 2 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was distilled using the trap-to-trap method yielding the pure product. The pure products were identified by mass spectrometry(MS).

The synthesis of compound 4a with Quadra-Pure TU

To a 12 mL vial equipped with a magnetic stirring bar, 0.03M solution of catalyst **C4** in toluene (0.5 mol%), phenylsilane (2 mmol, 1 equiv.), tert-butyldimethylsilanol (4 mmol, 2 equiv.), and Quadra-Pure TU was added under an inert gas atmosphere (glove box). Subsequently, the reaction mixture was stirred at 60°C for 20 hours. After this time, the reaction mixture was dosed with 2 mL of pentane and left for 15 minutes to precipitate the catalyst. The resulting mixture was checked by GC-MS. No product was observed in this case.

CHARACTERISATION DATA FOR ALL PRODUCTS

1-(Tert-butyl)-1,1-dimethyl-3-phenyldisiloxane 3a

1-(Tert-butyl)-1,1-dimethyl-3-phenyldisiloxane was obtained as a liquid in 77% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.55 (dq, J = 5.0, 2.7 Hz, 2H), 7.20 – 7.07 (m, 3H), 5.30 (s, 2H), 0.86 (s, 9H), 0.00 (s, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 134.8, 133.9, 130.2, 128.0, 25.4, 18.1, -3.7.

²⁹Si NMR: (79) Hz, Benzene- d_6) δ 15.3, -29.7.

EI-MS m/z (rel. int.): 195 (3%), 181 (100), 165 (10), 151 (7), 135 (8), 121 (6).

1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3-phenyldisiloxane 3b

1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3-phenyldisiloxane was obtained as a liquid in 94% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.68 – 7.62 (m, 2H), 7.22 – 7.17 (m, 3H), 5.38 (s, 2H), 1.61 (p, J = 6.9 Hz, 1H), 0.92 – 0.83 (m, 12H), 0.13 (s, 6H).

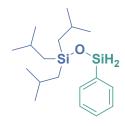
¹³C NMR: (101 MHz, Benzene- d_6) δ 134.8, 133.9, 130.1, 127.9, 34.0, 25.0, 19.9, 18.3, -1.6.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 16.0, -29.8.

EI-MS m/z (rel. int.): 195 (5%), 181 (100%), 151 (4), 121 (10), 107 (5), 84 (30).

1,1,1-Triisopropyl-3-phenyldisiloxane 3c

1,1,1-Triisopropyl-3-phenyldisiloxane was obtained as a liquid in 73% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6) δ 77.67 (dq, J = 5.7, 3.5, 2.5 Hz, 2H), 7.17 (m, 3H), 5.46 (s, 2H), 1.32 – 0.79 (m, 21H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 135.4, 134.3, 130.5, 128.3, 17.9, 12.9.

29Si NMR: (79 MHz, Benzene- d_6) δ 11.4, -29.0.

EI-MS m/z (rel. int.): 265 (41%), 244 (2), 209 (53), 167 (12), 153 (100).

1,1,1-Triisobutyl-3-phenyldisiloxane 3d

1,1,1-Triisobutyl-3-phenyldisiloxane was obtained as a liquid in 70% yield. The title compound was previously unknown.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.49 – 7.43 (m, 2H), 6.99 – 6.95 (m, 3H), 5.19 (s, 2H), 1.71 – 1.63 (m, 3H), 0.79 – 0.77 (m, 18H), 0.45 (d, J = 7.0 Hz, 6H).

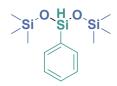
¹³C NMR: (101 MHz, Benzene- d_6) δ 134.9, 134.0, 133.2, 130.1, 27.0, 26.2, 24.3.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 10.2, -30.8.

EI-MS m/z (rel. int.): 237 (100%), 209 (30), 195 (16), 181 (47), 167 (51), 151 (20).

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4a

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxane was obtained as a liquid in 98% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.76 – 7.72 (m, 2H), 7.26 – 7.19 (m, 3H), 5.41 (s, 1H), 1.03 – 0.91 (m, 18H), 0.14 (d, J = 6.7 Hz, 12H).

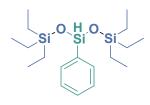
¹³C NMR: (101 MHz, Benzene- d_6) δ 137.4, 133.4, 130.5, 128.2, 25.8, 18.4, -2.8.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 13.8, -48.0.

EI-MS m/z (rel. int.): 311 (75%), 269 (54), 239 (21), 179 (20), 135 (100), 73 (46).

1,1,1,5,5,5-Hexamethyl-3-phenyltrisiloxane 4b

1,1,1,5,5,5-Hexamethyl-3-phenyltrisiloxane was obtained as a liquid in 90% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.77 – 7.72 (m, 2H), 7.24 – 7.20 (m, 3H), 5.40 (s, 1H), 0.17 (s, 18H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.3, 133.4, 130.5, 128.2, 1.8.

²⁹**Si NMR:** (79 MHz, MHz, Benzene- d_6)) δ 10.7, -49.3.

EI-MS m/z (rel. int.): 283 (8%), 269 (74), 251 (5), 191 (32), 135 (100), 127 (30).

1,1,1,5,5,5-Hexaethyl-3-phenyltrisiloxane 4c

1,1,1,5,5,5-Hexaethyl-3-phenyltrisiloxane was obtained as a liquid in 93% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.87 – 7.66 (m, 2H), 7.28 – 7.17 (m, 3H), 5.42 (s, 1H), 1.00 (t, J = 7.9 Hz, 18H), 0.62 (q, J = 7.8 Hz, 12H).

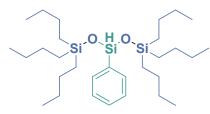
¹³C NMR: (101 MHz, Benzene- d_6) δ 137.4, 132.9, 130.1, 127.8, 6.6, 6.1.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 12.9, -48.8.

EI-MS m/z (rel. int.): 339 (100%), 311(10), 283 (5), 253 (2), 197 (4), 135 (15), 107 (18).

1,5-Diethyl-1,1,5,5-tetraisopropyl-3-phenyltrisiloxane 4d

1,5-Diethyl-1,1,5,5-tetraisopropyl-3-phenyltrisiloxane was obtained as a liquid in 86% yield. The title compound was previously unknown.


¹**H NMR:** (401 MHz, Benzene- d_6) δ 7.81 – 7.77 (m, 2H), 7.26 – 7.19 (m, 3H), 5.49 (d, J = 1.4 Hz, 1H), 1.13 – 0.98 (m, 34H), 0.70 – 0.63 (m, 4H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.8, 133.2, 130.4, 128.1, 17.6, 13.4, 7.4, 4.1.

29Si NMR: (79 MHz, MHz, Benzene-*d*₆)) δ δ 11.9, -48.5.

EI-MS m/z (rel. int.): 395 (8%), 381 (100), 353 (7), 339 (9), 237 (6), 141 (30), 121 (31).

1,1,1,5,5,5-Hexabutyl-3-phenyltrisiloxane 4e

1,1,1,5,5,5-Hexabutyl-3-phenyltrisiloxane was obtained as a liquid in 80% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹H NMR: (400 MHz, Benzene- d_6) δ 7.86 – 7.70 (m, 2H), 7.28 – 7.16 (m, 3H), 5.47 (s, 1H), 1.50 – 1.34 (m, 24H), 0.93 (t, J = 7.1 Hz, 18H), 0.76 – 0.69 (m, 12H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.5, 133.0, 130.1, 127.8, 26.6, 25.5, 15.3, 13.7.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 10.3, -48.9.

EI-MS m/z (rel. int.): 409 (100%), 367 (30), 325 (27), 283 (16), 241 (15), 199 (46), 106 (27).

1,1,1,5,5,5-Hexaisobutyl-3-phenyltrisiloxane 4f

1,1,1,5,5,5-Hexaisobutyl-3-phenyltrisiloxane was obtained as a liquid in 82% yield. The title compound was previously unknown.

¹**H NMR**: (401 MHz, Benzene- d_6) δ 7.83 – 7.74 (m, 2H), 7.26 – 7.19 (m, 3H), 5.46 (d, J = 0.4 Hz, 1H), 1.95 (dq, J = 13.3, 6.7 Hz, 6H), 1.05 (dd, J = 6.6, 0.5 Hz, 36H), 0.79 – 0.71 (m, 12H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.8, 133.4, 130.4, 128.1, 27.8, 26.7, 24.6.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ 8.1, -49.6.

EI-MS m/z (rel. int.): 479 (59%), 423 (44), 367 (40), 311 (40), 255 (37), 211 (39), 199 (100), 113 (45).

1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4g

1,5-Bis(2,3-Dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane was obtained as a liquid in 94% yield. The title compound was previously unknown.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.80 – 7.73 (m, 2H), 7.29 – 7.19 (m, 3H), 5.40 (d, J = 0.9 Hz, 1H), 1.66 (ddd, J = 13.7, 7.3, 6.5 Hz, 2H), 1.01 – 0.93 (m, 8H), 0.92 (dd, J = 3.6, 0.9 Hz, 16H), 0.27 – 0.14 (m, 12H).

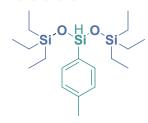
¹³C NMR: (101 MHz, Benzene- d_6) δ 137.5, 133.3, 130.4, 128.2, 34.3, 25.2, 20.3, 20.3, 18.8, -0.5.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 13.7, -48.3.

EI-MS m/z (rel. int.): 339 (29%), 297 (5), 269 (100), 255 (39), 239 (15), 193 (10), 135 (72).

1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-(p-tolyl)trisiloxane 4h

1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-(p-tolyl)trisiloxane was obtained as a liquid in 88% yield. The title compound was previously unknown.


¹H NMR: (600 MHz, Benzene- d_6) δ 7.68 – 7.64 (m, 2H), 7.09 – 7.05 (m, 2H), 5.39 (s, 1H), 2.11 – 2.09 (m, 3H), 1.71 – 1.63 (m, 2H), 0.98 – 0.90 (m, 24H), 0.26 – 0.18 (m, 12H).

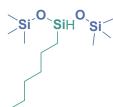
¹³C NMR: (151 MHz, Benzene- d_6) δ 140.1, 134.1, 133.5, 129.0, 34.4, 25.3, 21.5, 20.4, 18.8, -0.5.

²⁹**Si NMR:** (119 MHz, Benzene- d_6) δ 13.0, -48.3.

EI-MS m/z (rel. int.): 353 (24%), 311 (2), 283 (100), 269 (32), 253 (14), 194 (52), 121 (7).

1,1,1,5,5,5-Hexaethyl-3-(p-tolyl)trisiloxane 4i

1,1,1,5,5,5-Hexaethyl-3-(p-tolyl)trisiloxane was obtained as a liquid in 84% yield. The title compound was previously unknown.


¹**H NMR:** (600 MHz, Benzene- d_6) δ 7.72 – 7.69 (m, 2H), 7.10 – 7.07 (m, 2H), 5.46 (s, 1H), 2.10 – 2.09 (m, 3H), 1.07 – 0.99 (m, 18H), 0.69 – 0.63 (m, 12H).

¹³C NMR: (151 MHz, Benzene- d_6) δ 140.2, 134.3, 133.4, 129.0, 21.5, 7.0, 6.6.

²⁹**Si NMR:** (119 MHz, Benzene- d_6) δ 12.7, -48.3.

EI-MS m/z (rel. int.): 353 (100%), 323 (7), 267 (5), 162 (10), 149 (24), 134 (20), 121 (42).

3-Hexyl-1,1,1,5,5,5-hexamethyltrisiloxane 4j

3-Hexyl-1,1,1,5,5,5-hexamethyltrisiloxane was obtained as a liquid in 71% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

1H NMR: (400 MHz, Benzene- d_6) δ 4.98 (t, J = 1.2 Hz, 1H), 1.55 – 1.44 (m, 2H), 1.38 – 1.22 (m, 6H), 0.90 – 0.85 (m, 3H), 0.69 – 0.62 (m, 2H), 0.18 (s, 18H).

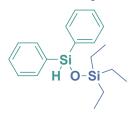
¹³C NMR: (101 MHz, Benzene- d_6) δ 32.6, 31.6, 22.6, 22.2, 17.5, 13.9, 1.4.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ 8.9, -36.0.

EI-MS m/z (rel. int.): 291 (6%), 277 (45), 207 (100), 193 (80), 133 (10), 73 (71).

1,1,1-Trimethyl-3,3-diphenyldisiloxane 5a

1,1,1-Trimethyl-3,3-diphenyldisiloxane was obtained as a liquid in 91% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.76 – 7.59 (m, 4H), 7.23 – 7.15 (m, 6H), 5.79 (s, 1H), 0.11 (s, 9H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 135.9, 134.2, 130.0, 127.9, 1.3.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 11.9, -22.4.

EI-MS m/z (rel. int.): 271 (3%), 257 (21), 241 (3), 194 (47), 179 (100), 135 (42).

1,1,1-Triethyl-3,3-diphenyldisiloxane 5b

1,1,1-Triethyl-3,3-diphenyldisiloxane was obtained as a liquid in 95% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.75 – 7.65 (m, 4H), 7.23 – 7.16 (m, 6H), 5.84 (s, 1H), 0.95 (t, J = 7.9 Hz, 9H), 0.58 (q, J = 7.8 Hz, 6H).

¹³**C NMR:** (101 MHz, Benzene- d_6) δ 136.2, 134.2, 130.0, 127.9, 6.6, 6.1.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 14.3, -22.1.

EI-MS m/z (rel. int.): 285 (100%), 257 (22), 229 (10), 207 (8), 183 (18), 151 (68).

1-(Tert-butyl)-1,1-dimethyl-3,3-diphenyldisiloxane 5c

1-(Tert-butyl)-1,1-dimethyl-3,3-diphenyldisiloxane was obtained as a liquid in 92% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.71 – 7.63 (m, 4H), 7.18 (ddt, J = 4.1, 3.3, 1.4 Hz, 6H), 5.81 (s, 1H), 0.93 (s, 9H), 0.08 (s, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 136.0, 134.2, 130.0, 127.9, 25.5, 18.2, -3.3.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 14.7, -21.8.

EI-MS m/z (rel. int.): 257 (100%), 241 (5), 195 (10), 179 (72), 165 (12) 135 (18).

1,1,1-Triisobutyl-3,3-diphenyldisiloxane 5d

1,1,1-Triisobutyl-3,3-diphenyldisiloxane was obtained as a liquid in 73% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.77 – 7.68 (m, 4H), 7.22 – 7.16 (m, 6H), 5.85 (s, 1H), 1.89 (dh, J = 13.3, 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 18H), 0.72 (d, J = 6.9 Hz, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 136.1, 134.3, 130.0, 127.9, 27.4, 26.3, 24.3.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ 9.7, -22.4.

EI-MS m/z (rel. int.): 341 (24%), 320 (6), 285 (82), 229 (100), 183 (10), 151 (50).

1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3,3-diphenyldisiloxane 5e

1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3,3-diphenyldisiloxane was obtained as a liquid in 83% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.71 – 7.65 (m, 4H), 7.21 – 7.16 (m, 6H), 5.81 (s, 1H), 1.62 (hept, J = 6.9 Hz, 1H), 0.94 – 0.83 (m, 12H), 0.14 (s, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 136.0, 134.3, 130.0, 127.9, 34.0, 25.1, 20.0, 18.4, -1.1.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 14.9, -22.0.

EI-MS m/z (rel. int.): 257 (100%), 241 (7), 195 (70), 155 (5), 135 (20), 121 (16).

1-Ethyl-1,1-diisopropyl-3,3-diphenyldisiloxane 5f

1-Ethyl-1,1-diisopropyl-3,3-diphenyldisiloxane was obtained as a liquid in 87% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.76 – 7.67 (m, 4H), 7.21 – 7.16 (m, 6H), 5.87 (s, 1H), 1.08 – 0.90 (m, 17H), 0.66 – 0.57 (m, 2H).

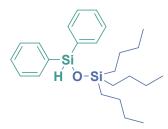
¹³C NMR: (101 MHz, Benzene- d_6) δ 136.3, 134.2, 130.0, 127.9, 17.3, 13.1, 7.09, 3.7.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ 12.6, -21.8.

EI-MS m/z (rel. int.): 299 (100%), 271 (15), 227 (8), 183 (12), 165 (41), 151 (37).

1,1-Dimethyl-1,3,3-triphenyldisiloxane 5g

1,1-Dimethyl-1,3,3-triphenyldisiloxane was obtained as a liquid in 94% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.67 – 7.51 (m, 6H), 7.20 – 7.14 (m, 9H), 5.85 (s, 1H), 0.33 (s, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 138.8, 135.7, 134.3, 133.1, 130.0, 129.4, 127.9, 127.8, -0.3.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 2.0, -21.4.

EI-MS m/z (rel. int.): 334 (2%), 319 (35), 256 (12), 241 (100), 197 (41), 178 (50).

1,1,1-Tributyl-3,3-diphenyldisiloxane 5h

1,1,1-tributyl-3,3-diphenyldisiloxane was obtained as a liquid in 76% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.73 – 7.67 (m, 4H), 7.25 – 7.16 (m, 6H), 5.86 (s, 1H), 1.44 – 1.27 (m, 12H), 0.87 (t, J = 7.1 Hz, 9H), 0.71 – 0.63 (m, 6H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 136.2, 134.3, 130.0, 127.9, 26.5, 25.4, 15.1, 13.6.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 11.8, -22.2.

EI-MS m/z (rel. int.): 313 (87%), 278 (10), 271 (67), 229 (100), 193 (5), 165 (10), 151 (73).

1,1,1-Triisopropyl-3,3-diphenyldisiloxane 5i

1,1,1-Triisopropyl-3,3-diphenyldisiloxane was obtained as a liquid in 85% yield. The title compound was known in the literature,³ and all spectroscopic data are in agreement.

¹**H NMR:** (600 MHz, Benzene- d_6) δ 7.77 – 7.68 (m, 4H), 7.23 – 7.18 (m, 6H), 5.91 (s, 1H), 1.09 – 1.06 (m, 18H).

¹³C NMR: (151 MHz, Benzene- d_6) δ 136.7, 134.6, 130.4, 128.3, 18.0, 13.1.

²⁹**Si NMR:** (119 MHz, Benzene- d_6) δ 10.6, -21.8.

EI-MS m/z (rel. int.): 313 (100%), 285 (10), 257 (11), 243 (17), 179 (52), 165 (49).

1,1,1,3-Tetramethyl-3-phenyldisiloxane 5j

1,1,1,3-Tetramethyl-3-phenyldisiloxane was obtained as a liquid in 92% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.62 – 7.58 (m, 2H), 7.24 – 7.18 (m, 3H), 5.37 (q, J = 2.9 Hz, 1H), 0.36 (d, J = 2.9 Hz, 3H), 0.10 (s, 9H).

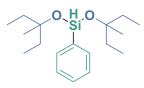
¹³C NMR: (101 MHz, Benzene- d_6) δ 137.7, 133.3, 129.7, 127.9, 1.37, 0.5.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ 10.6, -14.3.

EI-MS m/z (rel. int.): 210 (10%), 195 (100), 179 (15), 165 (7), 132 (47), 117 (6).

1,1,1-Triethyl-3-methyl-3-phenyldisiloxane 5k

1,1,1-Triethyl-3-methyl-3-phenyldisiloxane was obtained as a liquid in 81% yield. The title compound was known in the literature,² and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene- d_6 δ 7.70 – 7.54 (m, 2H), 7.27 – 7.17 (m, 3H), 5.41 (q, J = 2.8 Hz, 1H), 0.96 (t, J = 8.0 Hz, 9H), 0.56 (q, J = 8.0 Hz, 6H), 0.39 (d, J = 2.8 Hz, 3H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.9, 133.3, 129.7, 127.8, 6.6, 6.1, -0.3.

²⁹Si NMR: (79 MHz, Benzene-*d*₆) δ 13.0, -14.2.

EI-MS m/z (rel. int.): 223 (100%), 195 (39), 179 (7), 167 (46), 151 (7), 121 (30).

Bis((3-methylpentan-3-yl)oxy)(phenyl)silane 6a

Bis((3-methylpentan-3-yl)oxy)(phenyl)silane was obtained as a liquid in 90% yield The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.87 – 7.77 (m, 2H), 7.26 – 7.17 (m, 3H), 5.47 (s, 1H), 1.56 (p, J = 7.6 Hz, 8H), 1.23 (s, 6H), 0.88 (dt, J = 11.5, 7.5 Hz, 12H).

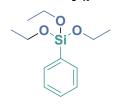
¹³C NMR: (101 MHz, Benzene- d_6) δ 138.1, 134.0, 133.6, 129.7, 78.0, 34.0, 26.1, 8.3.

²⁹Si NMR: (79 MHz, Benzene-d₆) δ -47.3.

EI-MS m/z (rel. int.): 293 (3%), 279 (41), 195 (40), 139 (90), 123 (100).

Bis(cyclohexyloxy)(phenyl)silane 6b

Bis(cyclohexyloxy)(phenyl)silane was obtained as a liquid in 90% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.


¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.95 – 7.78 (m, 2H), 7.32 – 7.17 (m, 3H), 5.39 (s, 1H), 3.99 (td, J = 9.0, 4.3 Hz, 2H), 2.03 – 1.83 (m, 4H), 1.76 – 1.45 (m, 8H), 1.33 (dtd, J = 10.7, 6.9, 5.9, 3.6 Hz, 2H), 1.13 (ddd, J = 10.3, 7.4, 3.0 Hz, 6H).

¹³C NMR: (101 MHz, Benzene-d₆) δ 135.0, 134.6, 130.6, 128.2, 72.0, 35.9, 25.8, 24.1.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ -34.5.

EI-MS m/z (rel. int.): 303 (7%), 261 (11), 226 (80), 179 (15), 139 (67), 123 (100).

Triethoxy(phenyl)silane 6c

Triethoxy(phenyl)silane was obtained as a liquid in 81% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.91 – 7.82 (m, 2H), 7.28 – 7.20 (m, 3H), 3.93 – 3.80 (m, 6H), 1.18 (tt, J = 7.0, 1.0 Hz, 9H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 135.2, 132.1, 130.5, 128.1, 58.9, 18.5.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ -57.8.

EI-MS m/z (rel. int.): 240 (31%), 225 (4), 195 (76), 181 (27), 162 (45), 147 (100), 119 (30).

((3-Methylpentan-3-yl)oxy)diphenylsilane 6d

((3-Methylpentan-3-yl)oxy)diphenylsilane was obtained as a liquid in 76% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.77 – 7.70 (m, 4H), 7.24 – 7.17 (m, 6H), 5.84 (s, 1H), 1.60 – 1.50 (m, 4H), 1.18 (s, 3H), 0.85 (t, J = 7.5 Hz, 6H).

¹³C NMR: (101 MHz, Benzene-d₆) δ 136.7, 130.2, 128.2, 78.3, 34.1, 26.2, 8.7.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ -23.4.

EI-MS m/z (rel. int.): 269 (3%), 255 (81), 199 (78), 183 (100), 155 (8), 122 (37).

(Cyclohexyloxy)diphenylsilane 6e

(Cyclohexyloxy)diphenylsilane was obtained as a liquid in 82% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.84 – 7.66 (m, 4H), 7.17 (s, 6H), 5.78 (s, 1H), 3.86 (tt, J = 8.6, 3.9 Hz, 1H), 1.85 (dq, J = 12.6, 3.6 Hz, 2H), 1.66 – 1.42 (m, 4H), 1.34 – 1.25 (m, 1H), 1.07 (qt, J = 10.8, 5.0 Hz, 3H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 135.3, 135.0, 130.4, 128.3, 72.9, 35.5, 25.8, 24.0.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ -15.0.

EI-MS m/z (rel. int.): 281 (5%), 239 (13), 204 (95), 199 (38), 183 (100), 161 (29), 123 (50).

Methyl((3-methylpentan-3-yl)oxy)(phenyl)silane 6f

Methyl((3-methylpentan-3-yl)oxy)(phenyl)silane was obtained as a liquid in 90% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.74 – 7.59 (m, 2H), 7.26 – 7.18 (m, 3H), 5.40 (q, J = 2.8 Hz, 1H), 1.48 (dddd, J = 13.1, 7.3, 5.5, 2.4 Hz, 4H), 1.12 (s, 3H), 0.83 (td, J = 7.5, 4.8 Hz, 6H), 0.39 (d, J = 2.9 Hz, 3H).

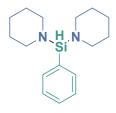
¹³C NMR: (101 MHz, Benzene-d₆) δ 138.1, 133.6, 129.5, 127.8, 77.2, 33.8, 25.6, 8.2, -0.3.

²⁹Si NMR: (79 MHz, Benzene-d₆) δ -15.9.

EI-MS m/z (rel. int.): 207 (3%), 193 (92), 137 (100), 129 (6), 121 (57), 105 (15).

(Cyclohexyloxy)(methyl)(phenyl)silane 6g

(Cyclohexyloxy)(methyl)(phenyl)silane was obtained as a liquid in 85% yield. The title compound was known in the literature,⁴ and all spectroscopic data are in agreement.

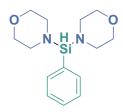

¹**H NMR:** (400 MHz, Benzene-d₆) δ 7.74 – 7.62 (m, 2H), 7.32 – 7.18 (m, 3H), 5.34 (qd, J = 2.9, 0.9 Hz, 1H), 3.71 (tt, J = 8.8, 3.9 Hz, 1H), 1.90 – 1.73 (m, 2H), 1.68 – 1.38 (m, 4H), 1.31 (tdd, J = 9.7, 5.0, 1.9 Hz, 1H), 1.15 – 0.95 (m, 3H), 0.40 (dd, J = 2.8, 0.9 Hz, 3H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 137.2, 134.1, 130.2, 128.2, 72.6, 35.6, 25.8, 24.1, -1.6.

²⁹Si NMR: (79 MHz, Benzene- d_6) δ -6.4.

EI-MS m/z (rel. int.): 219 (3%), 205 (8), 177 (30), 142 (100), 137 (48), 121 (99).

1,1'-(Phenylsilanediyl)dipiperidine 6h

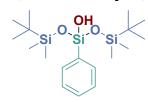

1,1'-(Phenylsilanediyl)dipiperidine was obtained in 99% yield. The title compound was known in the literature,⁵ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.72 – 7.67 (m, 2H), 7.30 – 7.19 (m, 3H), 5.03 (s, 1H), 2.94 (tt, J = 7.9, 4.0 Hz, 8H), 1.51 – 1.45 (m, 4H), 1.38 – 1.32 (m, 8H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 136.5, 134.6, 129.4, 127.8, 46.4, 27.7, 25.5.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ -20.0.

4,4'-(Phenylsilanediyl)dimorpholine 6i


4,4'-(Phenylsilanediyl)dimorpholine was obtained in 99% yield. The title compound was known in the literature,⁵ and all spectroscopic data are in agreement.

¹**H NMR:** (400 MHz, Benzene- d_6) δ 7.59 – 7.50 (m, 2H), 7.25 – 7.19 (m, 3H), 4.87 (s, 1H), 3.41 (t, J = 4.6 Hz, 9H), 2.79 (q, J = 3.5 Hz, 8H).

¹³C NMR: (101 MHz, Benzene- d_6) δ 134.7, 134.6, 129.9, 128.0, 68.0, 45.6.

²⁹**Si NMR:** (79 MHz, Benzene- d_6) δ -19.6.

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxan-3-ol 7a

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxan-3-ol was obtained as a liquid in 93% yield. The title compound was previously unknown.

¹**H NMR:** (600 MHz, Benzene-*d*6) δ 7.79 – 7.76 (m, 2H), 7.25 – 7.18 (m, 3H), 1.01 (s, 1H), 1.00 – 0.96 (m, 18H), 0.16 (t, J = 7.8 Hz, 12H).

¹³C NMR: (151 MHz, Benzene- d_6) δ 135.0, 134.4, 130.2, 128.0, 25.9, 18.3, -2.8.

²⁹Si NMR: (119 MHz, Benzene- d_6) δ 12.1, -69.2.

EI-MS m/z (rel. int.): 327 (27%), 269 (15), 252 (30), 238 (4), 207 (100), 193 (25), 132 (12).

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyl-3-(vinyloxy)trisiloxane 7b

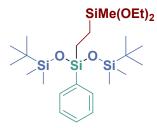
1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyl-3-(vinyloxy)trisiloxane was obtained as a liquid in 62% yield. The title compound was previously unknown.

¹**H NMR:** (600 MHz, Chloroform-*d*) δ 7.62 – 7.54 (m, 2H), 7.42 – 7.32 (m, 3H), 6.22 – 6.04 (m, 2H), 5.86 (dd, J = 19.6, 4.8 Hz, 1H), 0.88 (d, J = 4.3 Hz, 18H), 0.11 – 0.00 (m, 12H).

¹³**C NMR:** (151 MHz, Chloroform-*d*) δ 136.6, 135.6, 134.5, 133.9, 129.5, 127.5, 25.7, 18.1, -2.8.

EI-MS m/z (rel. int.): 337 (95%), 295 (100), 281 (80), 267 (64), 193 (43), 147 (52), 135 (97).

1,5-Di-tert-butyl-3-(2-(diethoxy(methyl)silyl)ethyl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane 7c

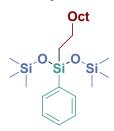

1,5-Di-tert-butyl-3-(2-(diethoxy(methyl)silyl)ethyl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane was obtained as a liquid in 92% yield. The title compound was previously unknown.

¹**H NMR:** (600 MHz, Chloroform-*d*) δ 7.61 – 7.53 (m, 2H), 7.39 – 7.31 (m, 3H), 3.74 (qd, J = 7.0, 0.4 Hz, 3H), 1.29 – 1.15 (m, 6H), 0.93 – 0.86 (m, 19H), 0.77 – 0.70 (m, 2H), 0.63 – 0.54 (m, 2H), 0.11 (s, 2H), 0.09 – 0.04 (m, 13H).

¹³**C NMR**: (151 MHz, Chloroform-*d*) δ 137.1, 133.6, 129.3, 127.5, 58.0, 25.7, 18.3, 18.1, 7.2, 5.1, -2.8, -5.6.

EI-MS m/z (rel. int.): 471 (67%), 397 (38), 279 (100), 205 (21), 135 (80), 73 (75).

$3\hbox{-}(2\hbox{-}(Diethoxy(methyl)silyl)ethyl)\hbox{-}1,1,1,5,5,5\hbox{-}hexamethyl\hbox{-}3\hbox{-}phenyltrisiloxane~7d$

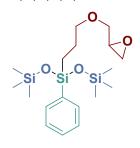

3-(2-(Diethoxy(methyl)silyl)ethyl)-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane was obtained as a liquid in 88% yield. The title compound was previously unknown.

¹**H NMR:** (600 MHz, Chloroform-*d*) δ 7.55 (d, J = 7.0 Hz, 2H), 7.36 (dt, J = 14.6, 7.1 Hz, 3H), 3.76 (dq, J = 21.0, 7.1 Hz, 4H), 1.21 (t, J = 7.1 Hz, 6H), 0.79 – 0.47 (m, 4H), 0.12 (d, J = 13.0 Hz, 21H).

¹³C NMR: (151 MHz, Chloroform-*d*) δ 137.16 133.5, 129.3, 127.5, 58.0, 18.3, 7.3, 4.8, 1.8, -5.7.

EI-MS m/z (rel. int.): 429 (5%), 283 (100), 267 (10), 253 (10), 193 (7), 135 (72).

3-Decyl-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7e


3-Decyl-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane was obtained as a liquid in 89% yield. The title compound was previously unknown.

¹**H NMR:** (600 MHz, Chloroform-*d*) δ 7.58 – 7.55 (m, 2H), 7.37 (q, J = 6.7, 5.6 Hz, 3H), 1.28 (d, J = 5.7 Hz, 12H), 0.91 (t, J = 6.9 Hz, 3H), 0.76 – 0.70 (m, 2H), 0.14 (s, 22H).

¹³**C NMR**: (151 MHz, Chloroform-*d*) δ 137.8, 133.4, 129.2, 127.4, 33.2, 31.8, 29.6, 29.5, 29.3, 29.2, 22.9, 22.6, 16.3, 14.0, 1.8.

EI-MS m/z (rel. int.): 409 (5%), 346 (3), 283 (100), 269 (10), 207 (4), 135 (42).

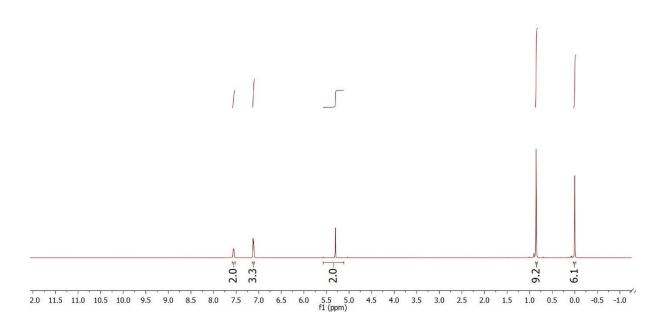
1,1,1,5,5,5-Hexamethyl-3-(3-(oxiran-2-ylmethoxy)propyl)-3-phenyltrisiloxane 7f

1,1,1,5,5,5-Hexamethyl-3-(3-(oxiran-2-ylmethoxy)propyl)-3-phenyltrisiloxane was obtained as a liquid in 97% yield. The title compound was previously unknown.

¹H NMR: (600 MHz, Chloroform-*d*) δ 7.57 – 7.52 (m, 2H), 7.39 – 7.32 (m, 3H), 3.65 (dd, J = 11.5, 3.2 Hz, 1H), 3.48 – 3.33 (m, 3H), 3.12 (ddt, J = 5.8, 4.2, 2.9 Hz, 1H), 2.78 (dd, J = 5.1, 4.1 Hz, 1H), 2.59 (dd, J = 5.1, 2.7 Hz, 1H), 1.69 – 1.58 (m, 2H), 0.75 – 0.67 (m, 2H), 0.15 – 0.11 (m, 18H).

¹³**C NMR:** (151 MHz, Chloroform-*d*) δ 137.2, 133.4 129.4, 127.5, 74.0, 71.3, 50.8, 44.3, 23.1, 12.3, 1.8.

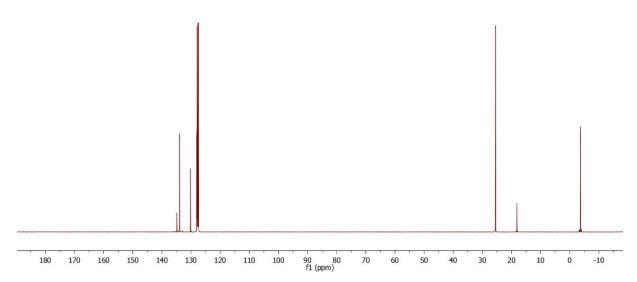
EI-MS m/z (rel. int.): 311 (5%), 283 (79), 253 (29), 207 (95), 193 (32), 135 (100).

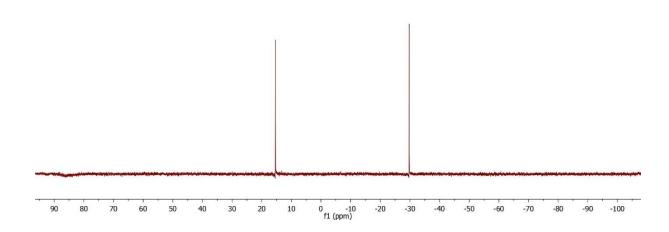

SPECTRA FOR ALL PRODUCTS

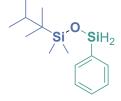
1-(Tert-butyl)-1,1-dimethyl-3-phenyldisiloxane 3a

¹H NMR

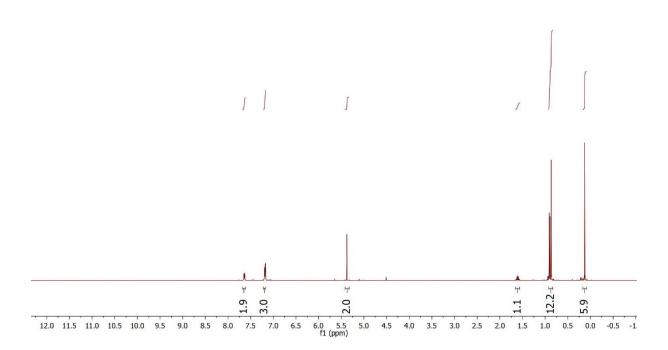
-7.13 C6D6

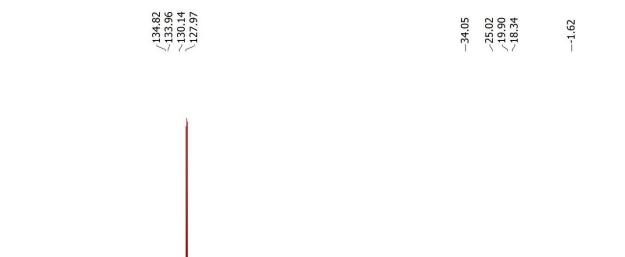






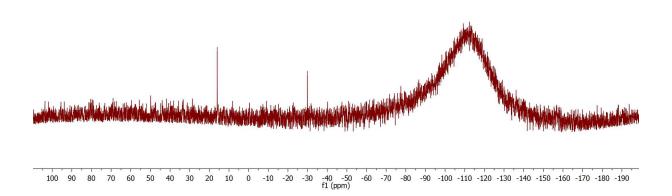
²⁹Si NMR



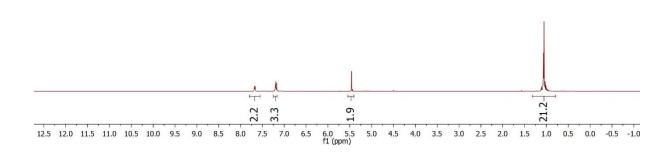


¹H NMR

7.17 C6D6

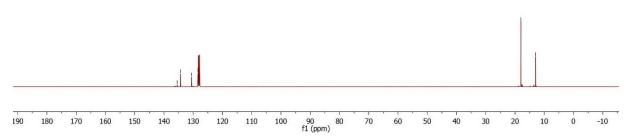


90 80 f1 (ppm) ²⁹Si NMR


-16.00

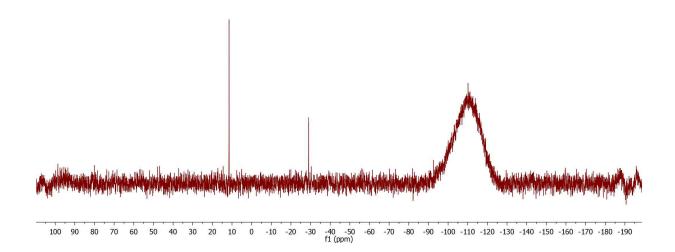
1,1,1-Triisopropyl-3-phenyldisiloxane 3c

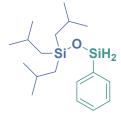
¹H NMR



¹³C NMR

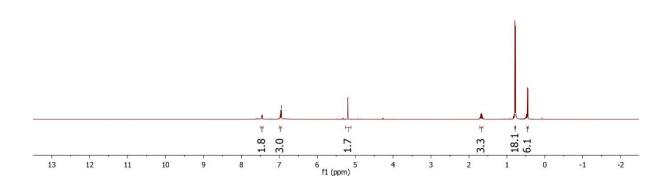
135.49 -134.32 -130.56 -128.39


-17.99

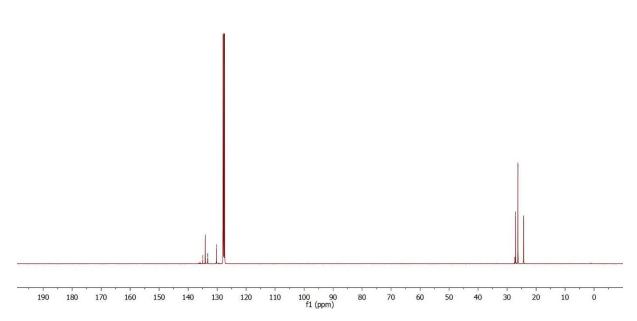

²⁹Si NMR

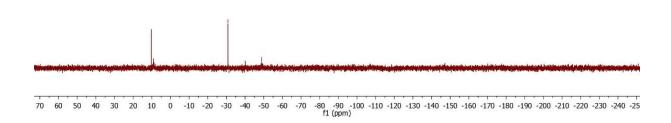
-11.48

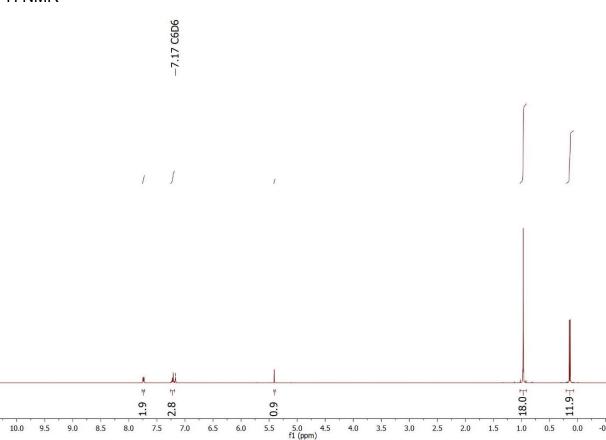
--29.02

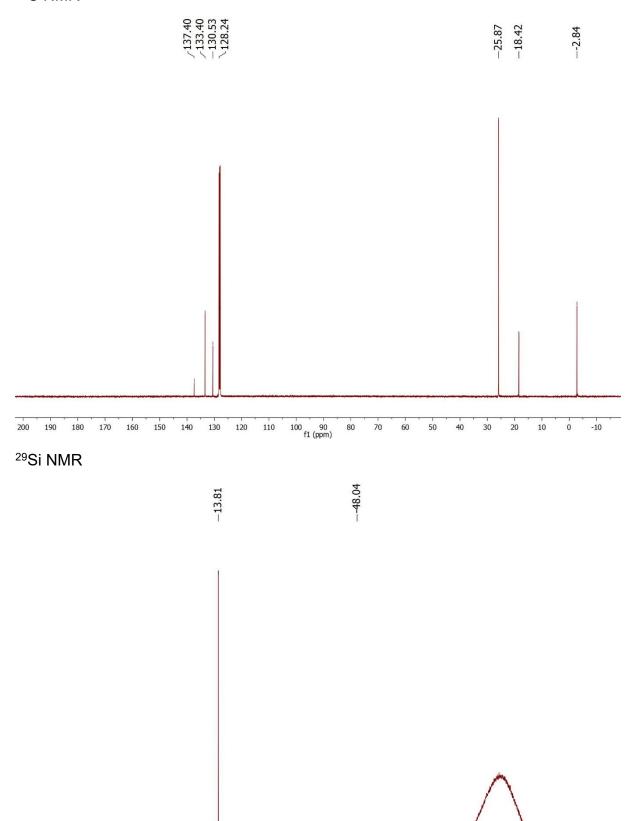


1,1,1-Triisobutyl-3-phenyldisiloxane 3d


¹H NMR

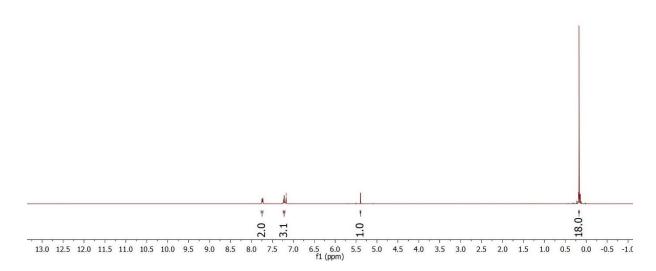



²⁹Si NMR



1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4a

¹H NMR



100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

1,1,1,5,5,5-Hexamethyl-3-phenyltrisiloxane 4b

137.38 133.46 -130.50 128.25

1.82

-90 -110 f1 (ppm) -150

-170

-210

-230

²⁹Si NMR

70

-10.72

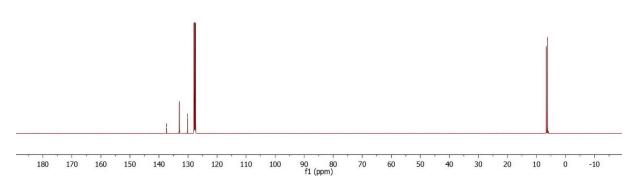
-10

-50

--49.37

-270

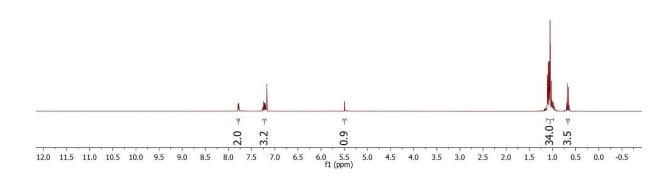
1,1,1,5,5,5-Hexaethyl-3-phenyltrisiloxane 4c



 $^{13}\mathrm{C}\ \mathrm{NMR}$

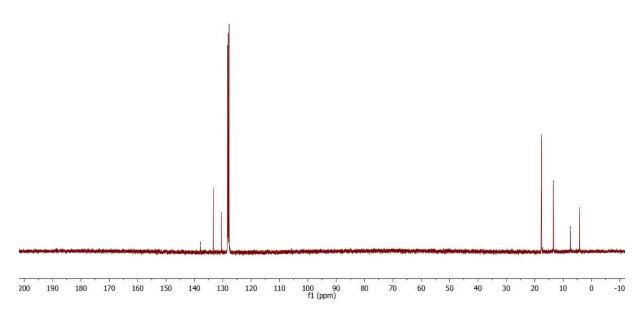
137.37 132.97 130.11 127.83

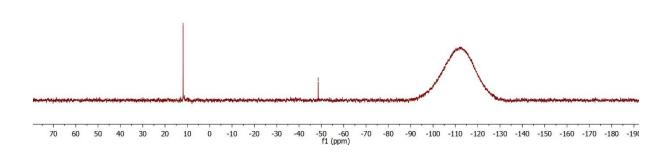
6.60

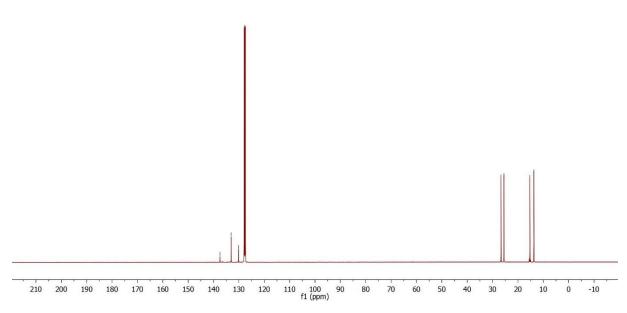

²⁹Si NMR

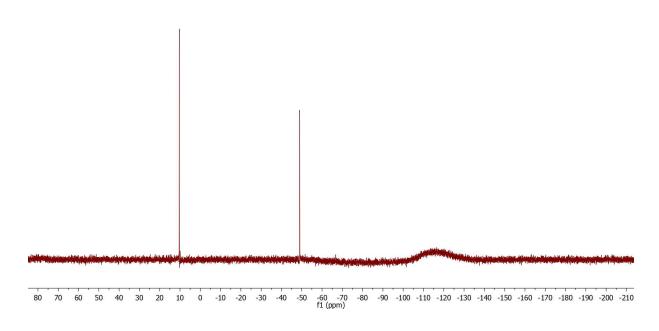
-12.93

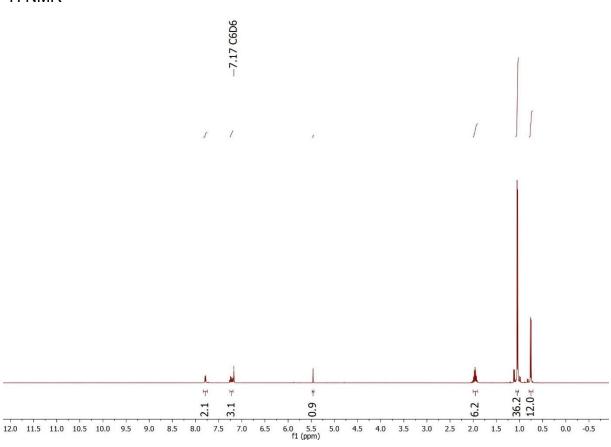
-48.84

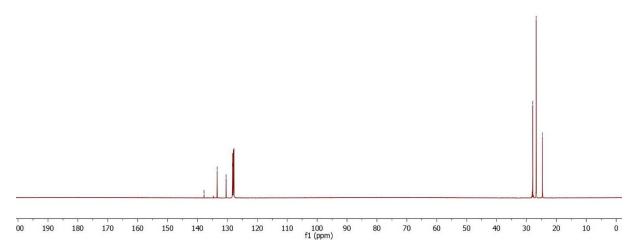

1,5-Diethyl-1,1,5,5-tetraisopropyl-3-phenyltrisiloxane 4d




1,1,1,5,5,5-Hexabutyl-3-phenyltrisiloxane 4e

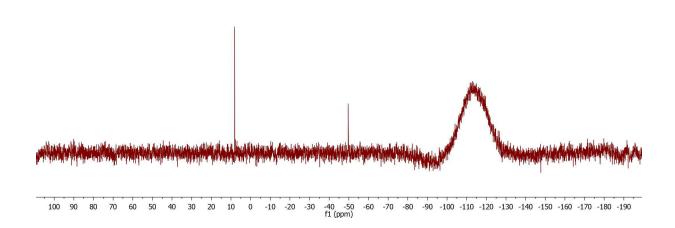


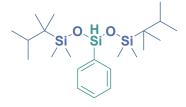




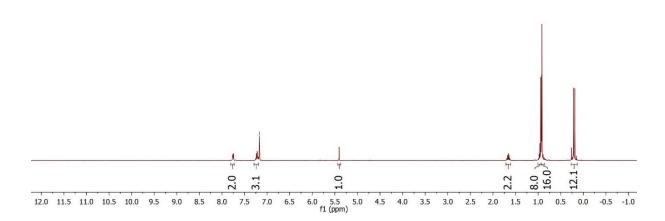
1,1,1,5,5,5-Hexaisobutyl-3-phenyltrisiloxane 4f

¹³C NMR

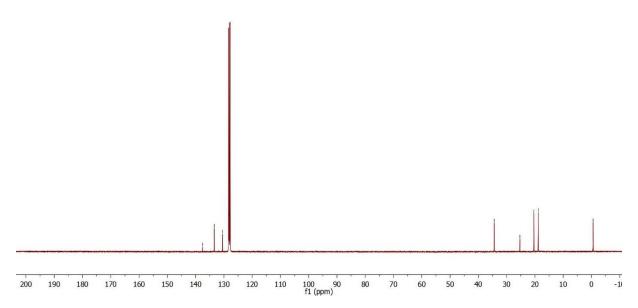

137.80 133.43 130.44 128.11 27.89 -26.74 -24.64


²⁹Si NMR

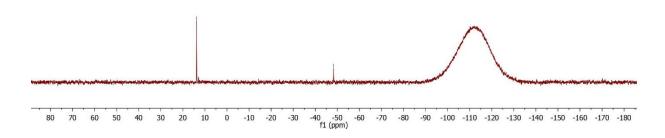
-8.15

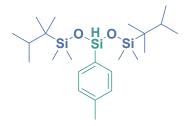

--49.68

1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-phenyltrisiloxane 4g

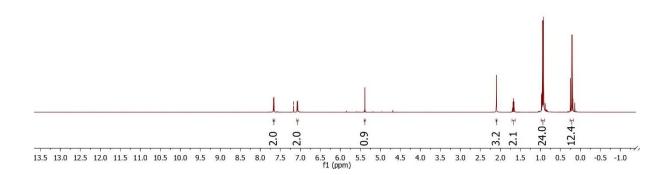






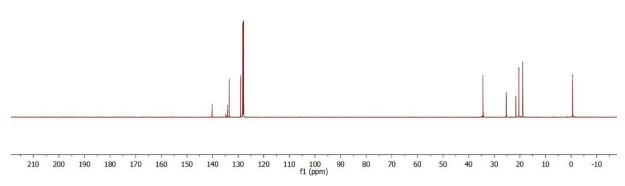


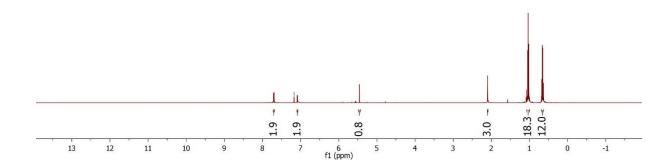



1,5-Bis(2,3-dimethylbutan-2-yl)-1,1,5,5-tetramethyl-3-(p-tolyl)trisiloxane 4h

¹H NMR

-7.17 C6D6

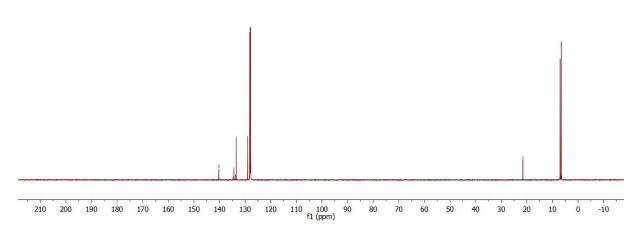




1,1,1,5,5,5-Hexaethyl-3-(p-tolyl)trisiloxane 4i

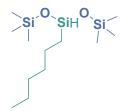
¹H NMR

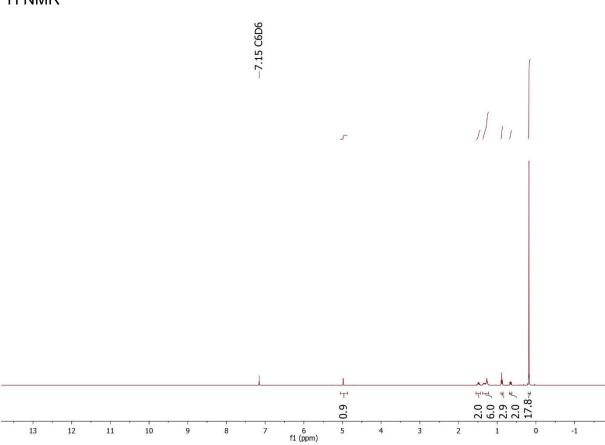
-7.17 C6D6



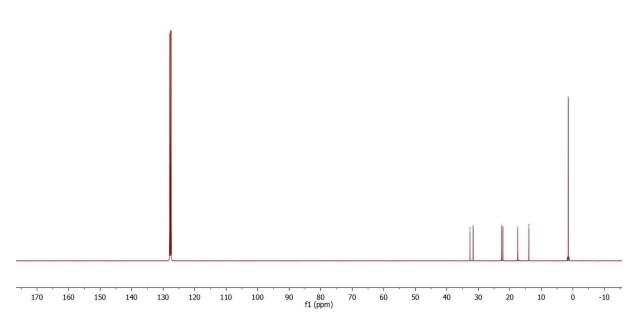
140.23 134.37 133.48

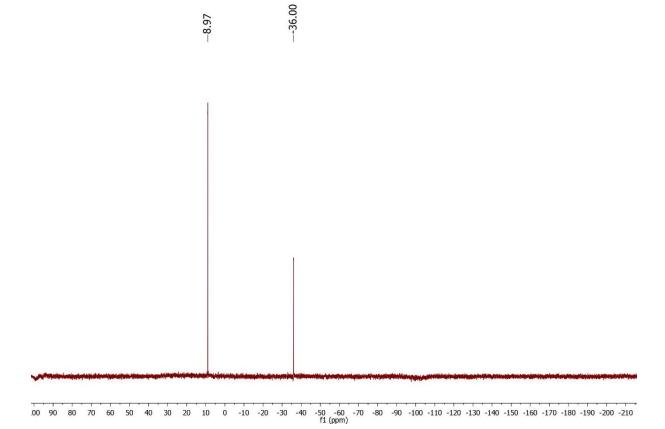
-21.53 -7.00 -6.60

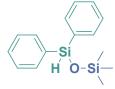

²⁹Si NMR

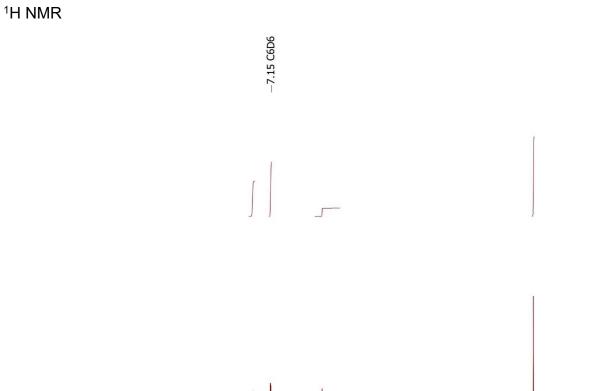

-12.70

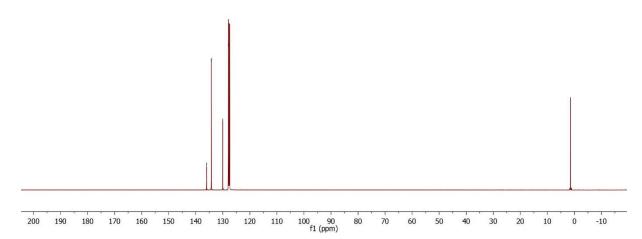
--48.31


3-Hexyl-1,1,1,5,5,5-hexamethyltrisiloxane 4j

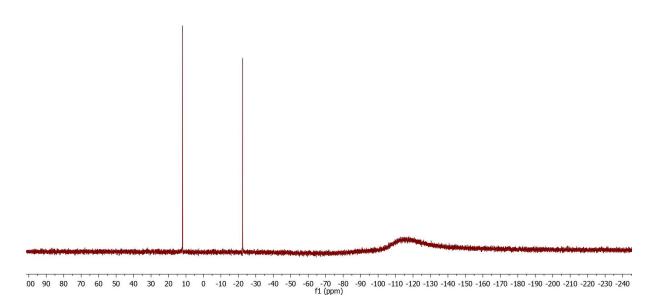


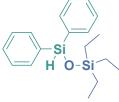


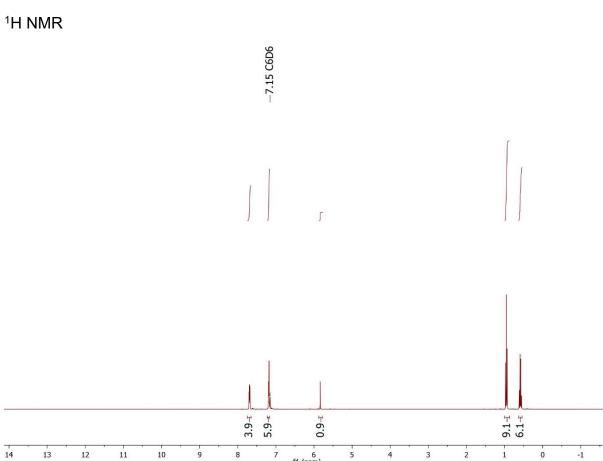




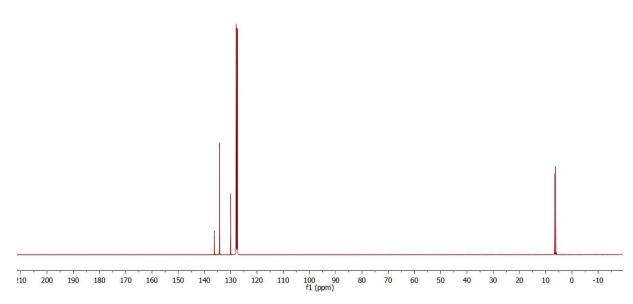
3.9∃

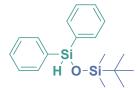

1.38


²⁹Si NMR

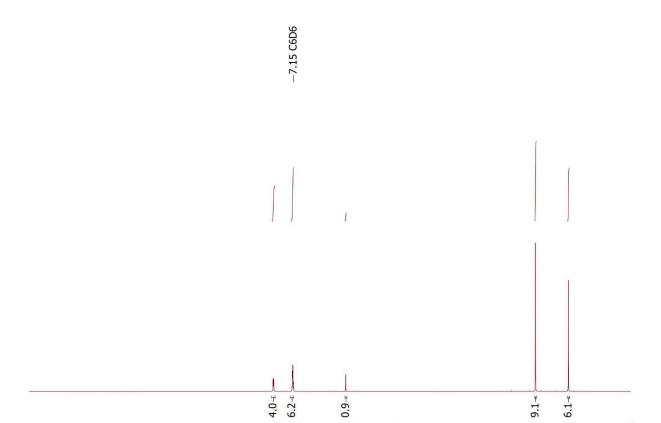

-11.95

--22.49





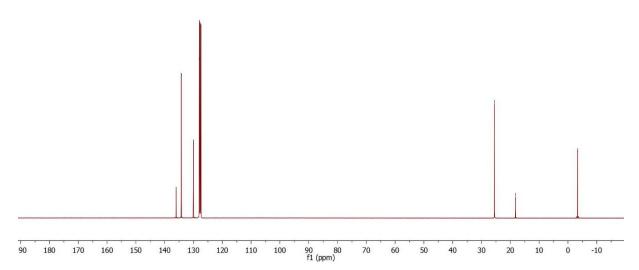
00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24 f1 (ppm)

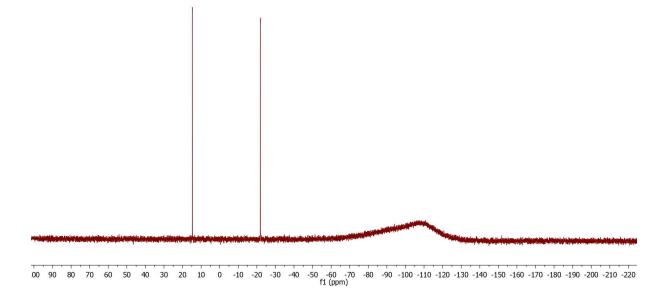


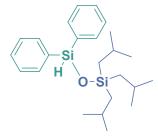
1-(Tert-butyl)-1,1-dimethyl-3,3-diphenyldisiloxane 5c

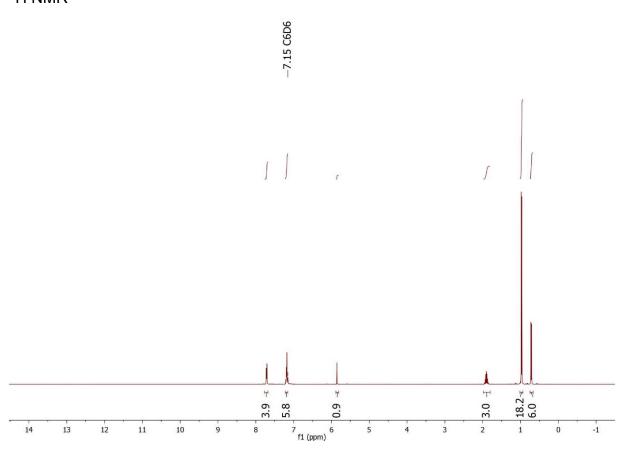
¹H NMR

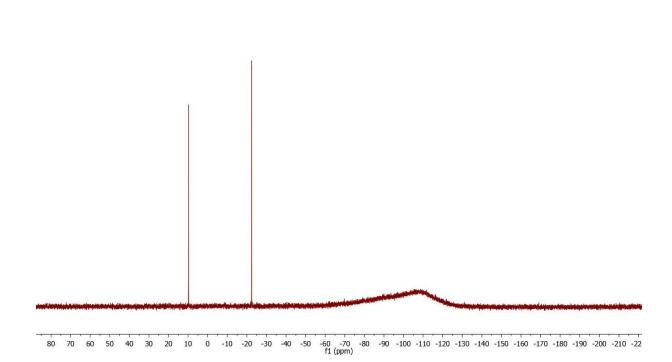
13

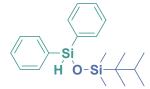


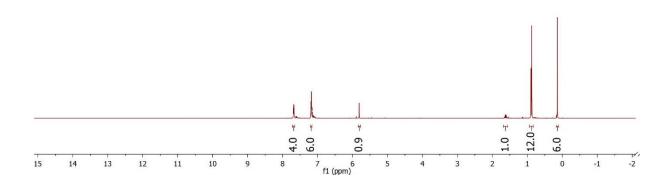




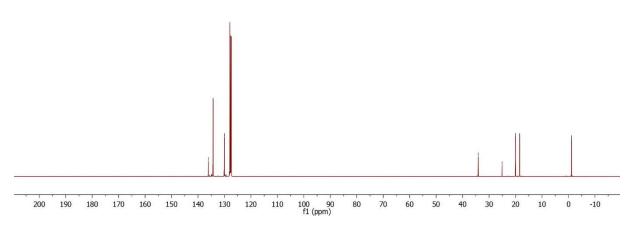



1,1,1-Triisobutyl-3,3-diphenyldisiloxane 5d



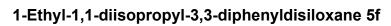


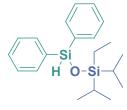
1-(2,3-Dimethylbutan-2-yl)-1,1-dimethyl-3,3-diphenyldisiloxane 5e



136.08 -134.31 -130.03

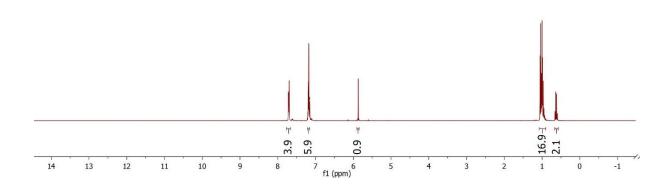
25.12 20.04 20.04 18.47 --1.11

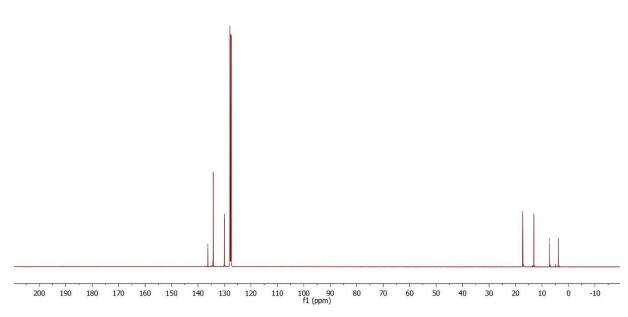


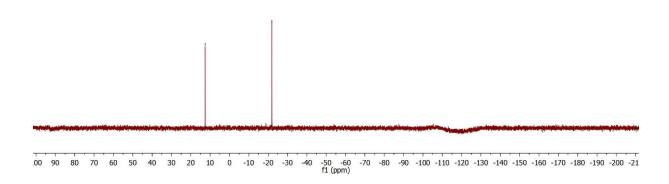

.00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

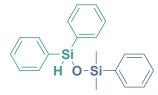
²⁹Si NMR

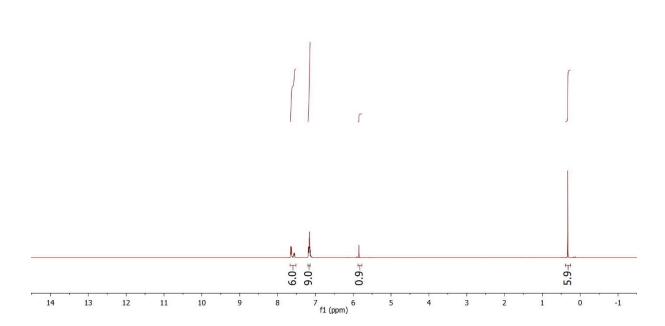
-14.92

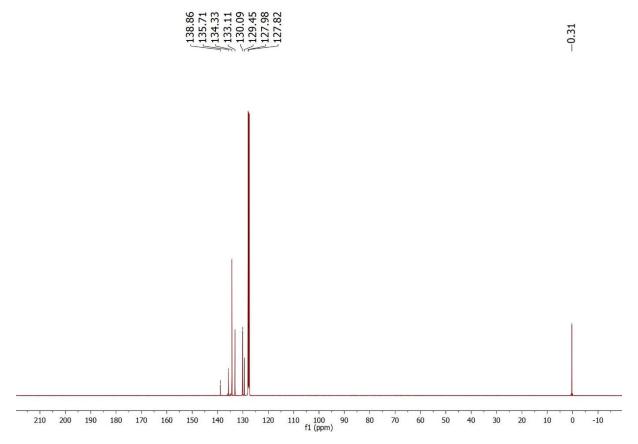

--22.03

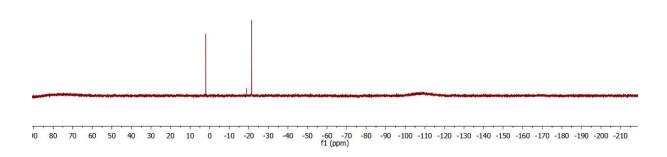


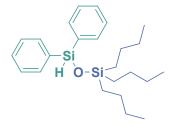


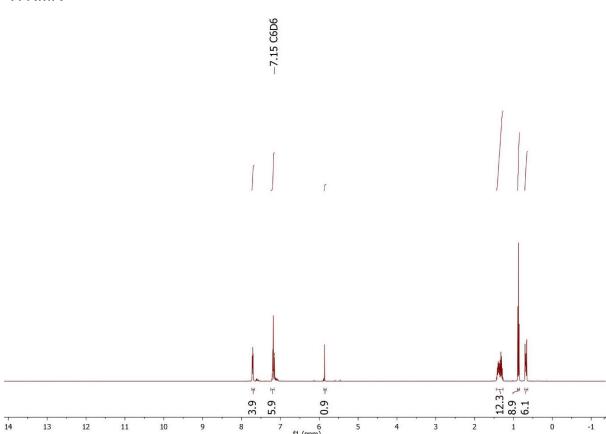

-17.37 -13.11 7.09 -3.79



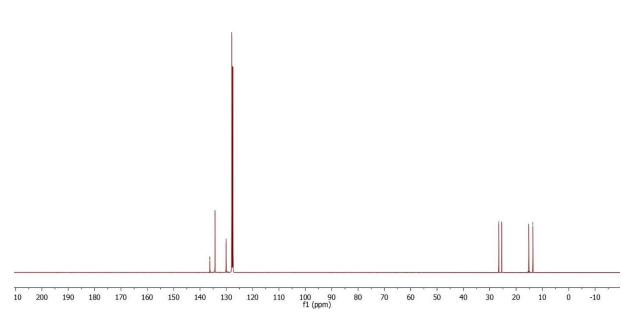

1,1-Dimethyl-1,3,3-triphenyldisiloxane 5g

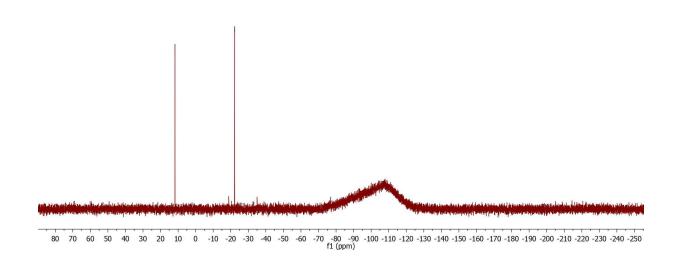


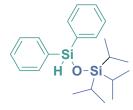


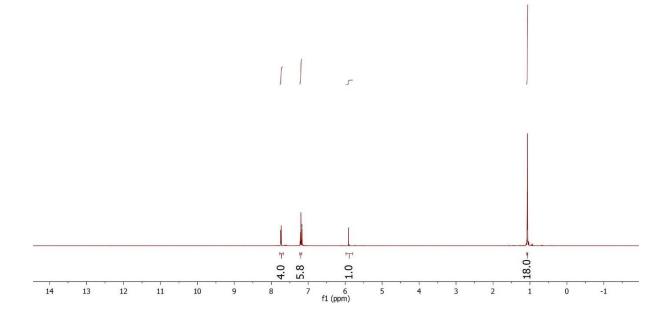


1,1,1-Tributyl-3,3-diphenyldisiloxane 5h

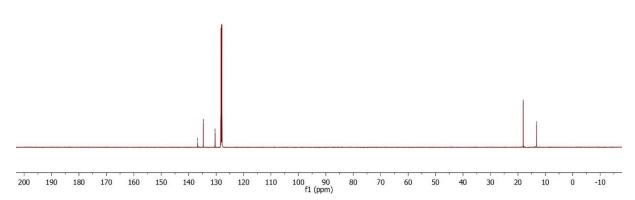


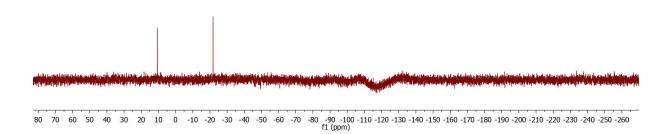




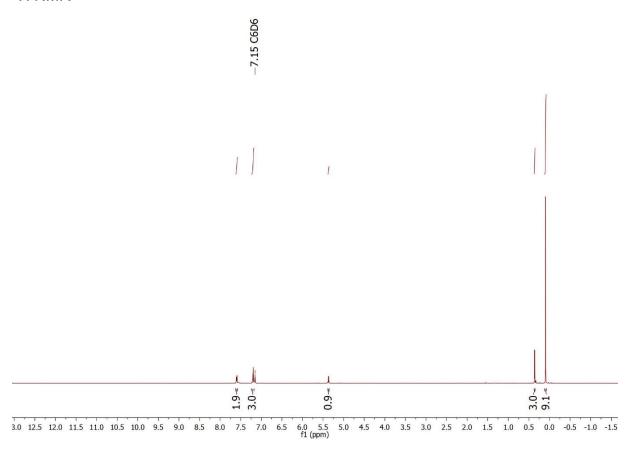

-11.82

1,1,1-Triisopropyl-3,3-diphenyldisiloxane 5i

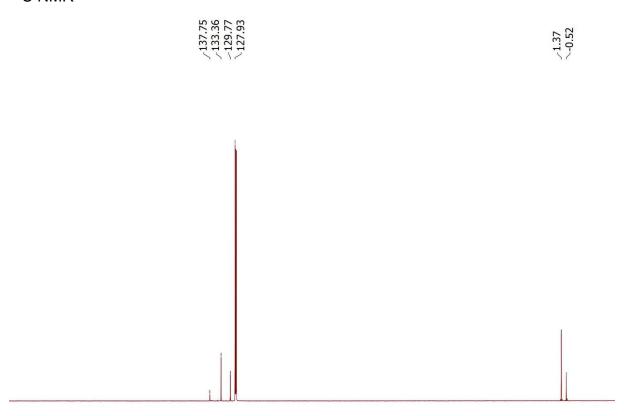



 $^{13}\mathrm{C}\ \mathrm{NMR}$

136.75 -134.64 -130.40 -18.08 -13.18



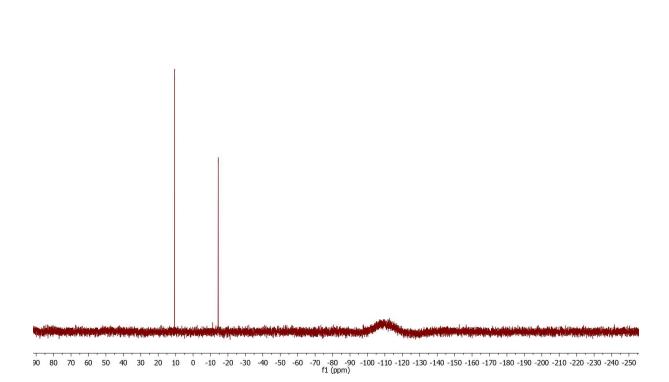
²⁹Si NMR


--10.66

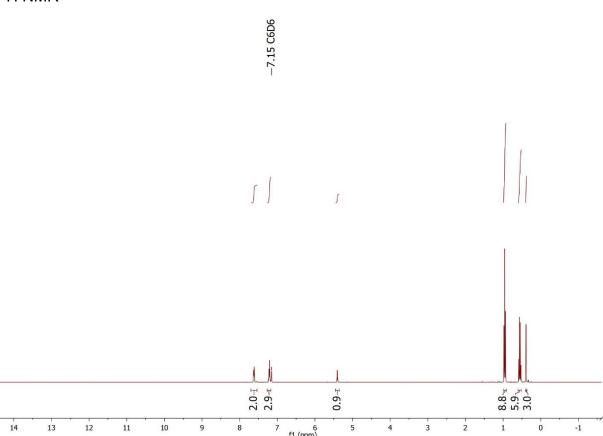
1,1,1,3-Tetramethyl-3-phenyldisiloxane 5j

30

10

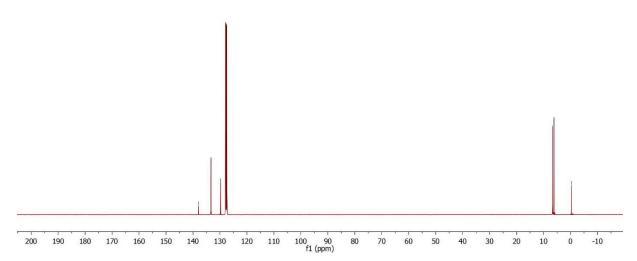

-10

150 140 130 120 110 100 90 f1 (ppm)

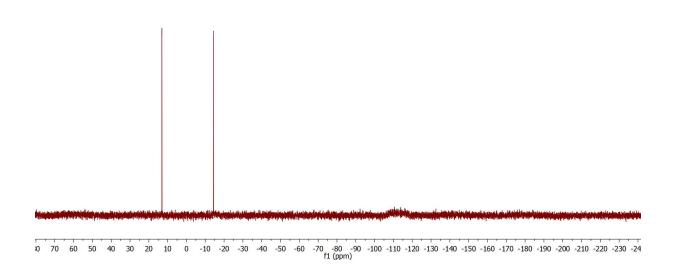

--14.38

²⁹Si NMR

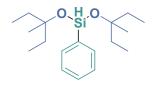
210 200 190 180 170 160


1,1,1-Triethyl-3-methyl-3-phenyldisiloxane 5k

 $^{13}\mathrm{C}\ \mathrm{NMR}$

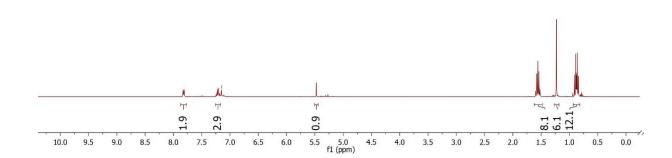

137.91 133.31 129.75 127.88

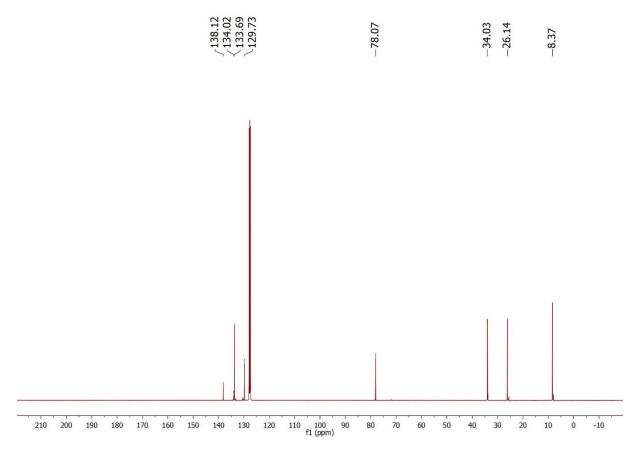
6.61

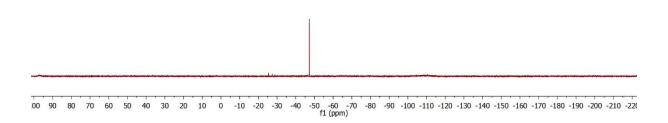


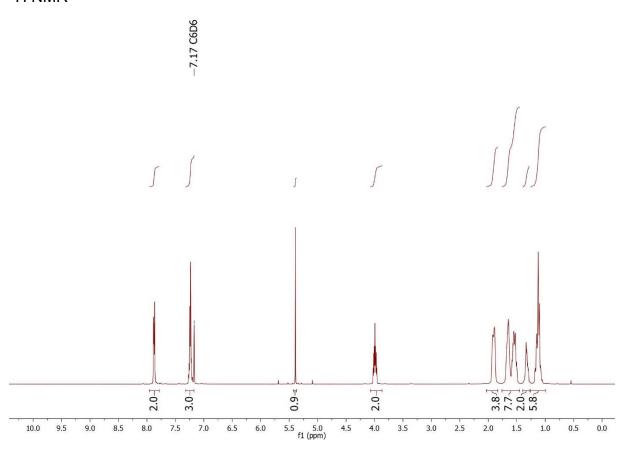
²⁹Si NMR

-13.02

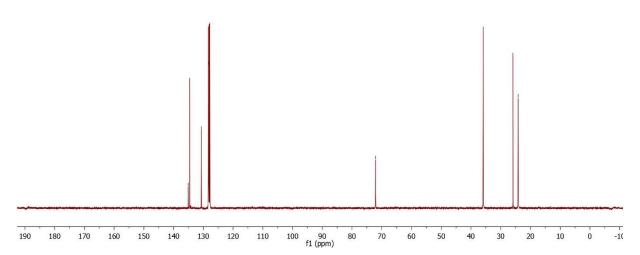

Bis((3-methylpentan-3-yl)oxy)(phenyl)silane 6a



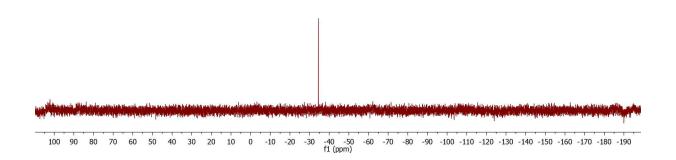




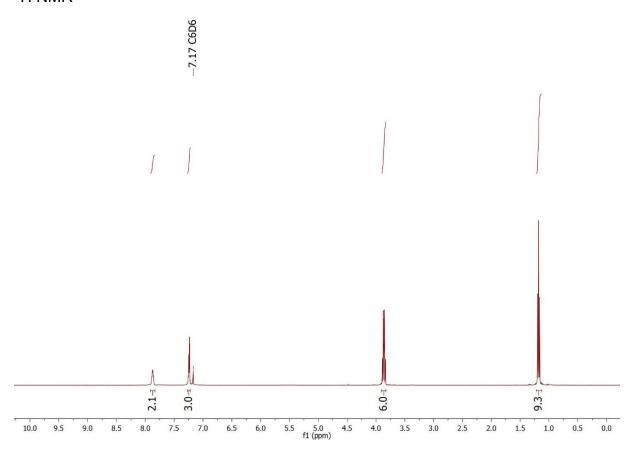
²⁹Si NMR



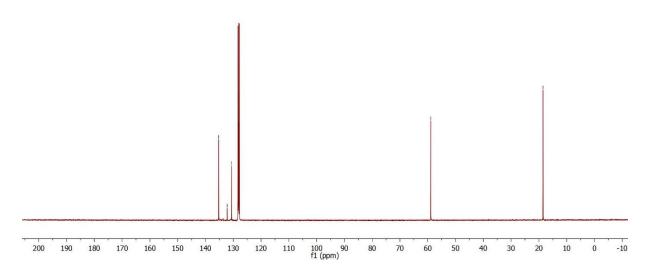
Bis(cyclohexyloxy)(phenyl)silane 6b

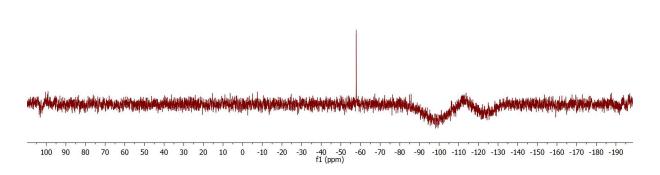


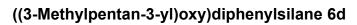
 $^{13}\mathrm{C}\ \mathrm{NMR}$

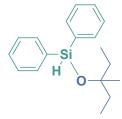

²⁹Si NMR

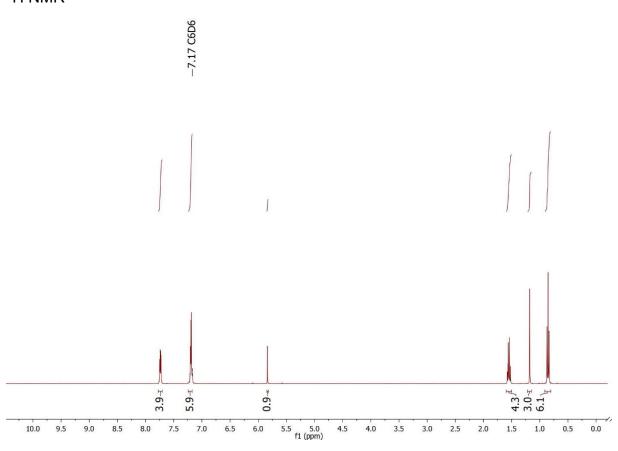
--34.52



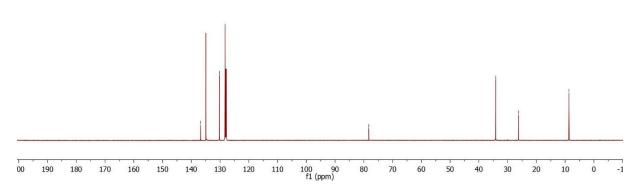


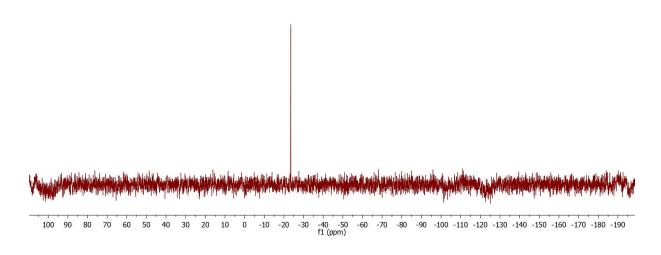




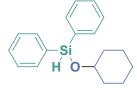

²⁹Si NMR

--57.80

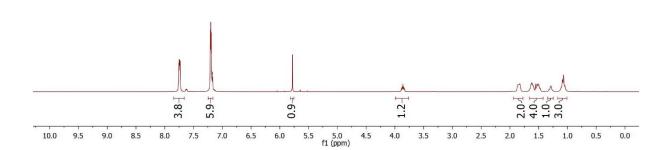



¹³C NMR

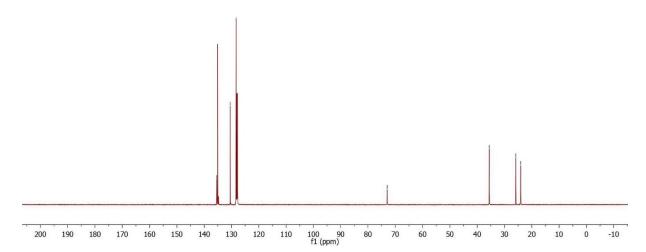
-136.78 -130.20 -128.25 -128.25 -34.16 -26.22

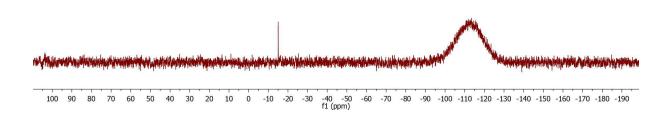


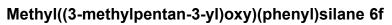

²⁹Si NMR

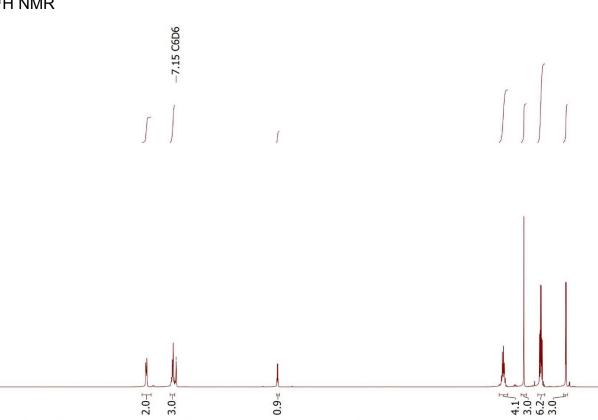

--23.48

(Cyclohexyloxy)diphenylsilane 6e

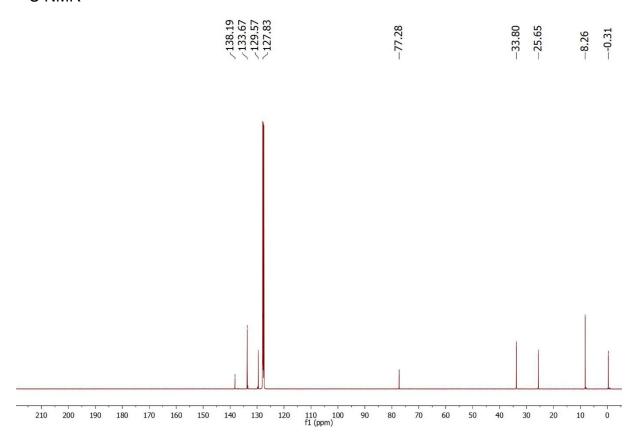



 $^{13}\mathrm{C}\ \mathrm{NMR}$

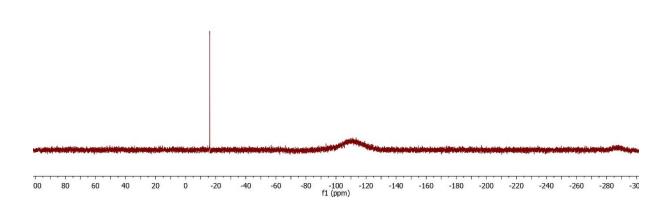

(135.39 (135.05 (130.47 (128.33 (128.33 (128.33 (128.33 (128.33 (128.33 (135.69 (135.6

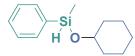

²⁹Si NMR

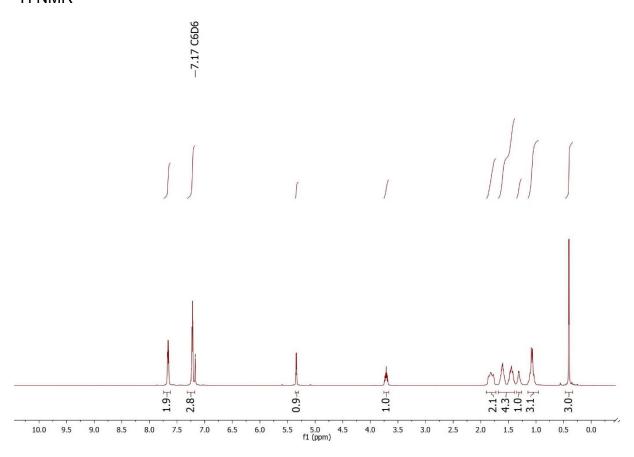
--15.03


¹H NMR

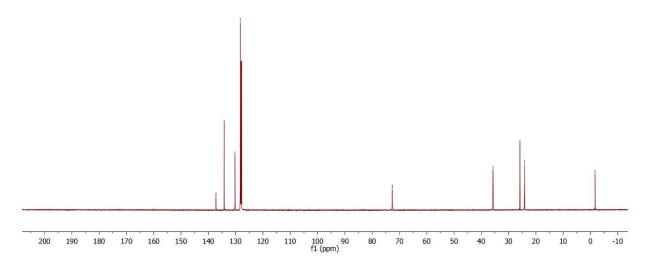
5.5 5.0 f1 (ppm)

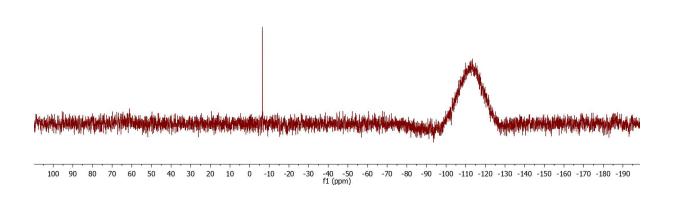

1.0



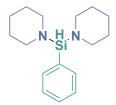

²⁹Si NMR

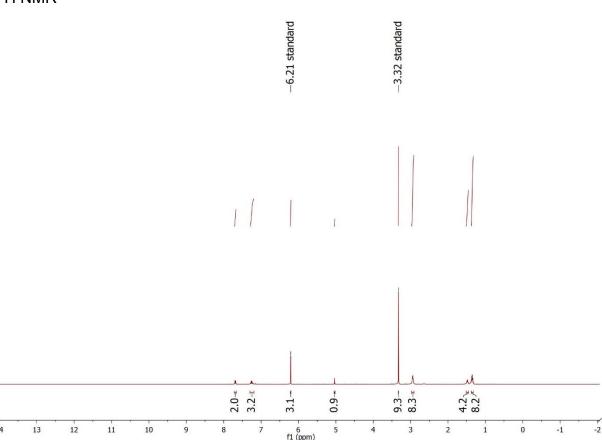
--15.96



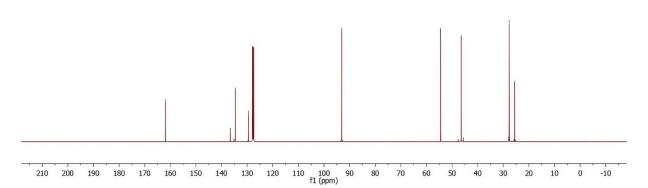


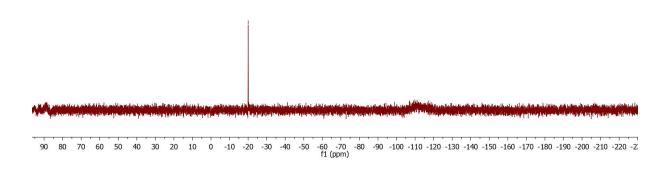
¹³C NMR

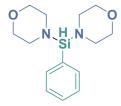


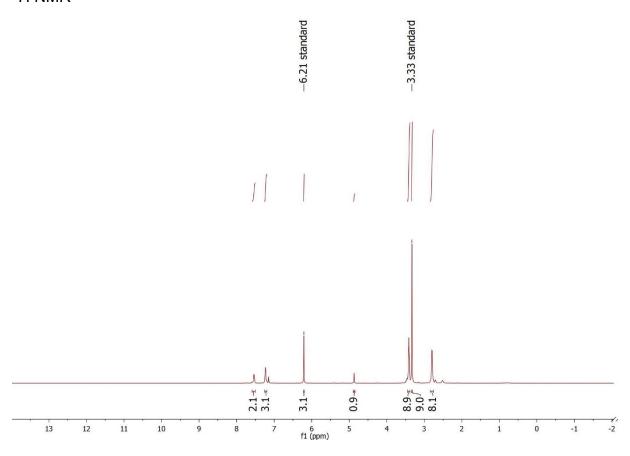

²⁹Si NMR

--6.47

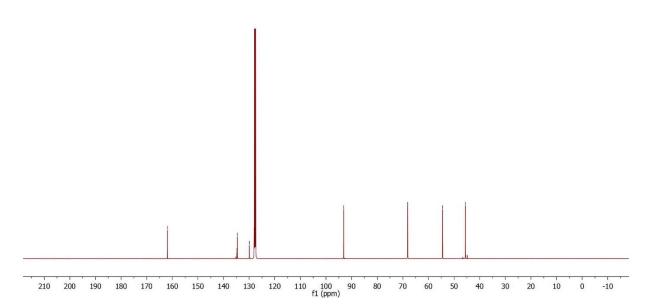


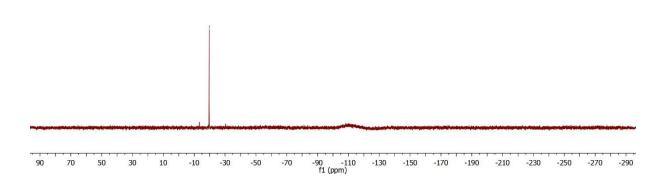

¹³C NMR

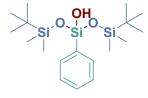


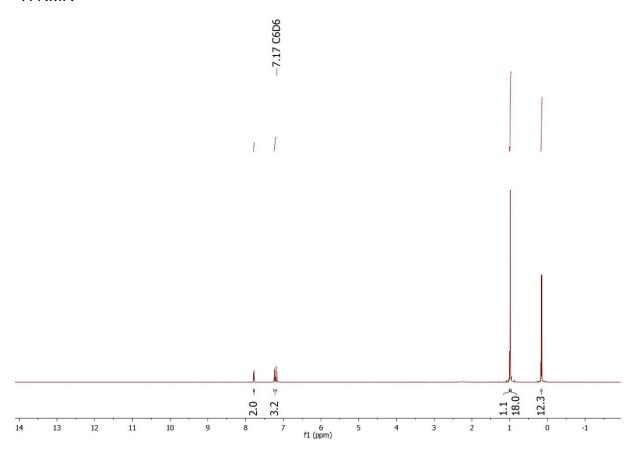

²⁹Si NMR

--20.03

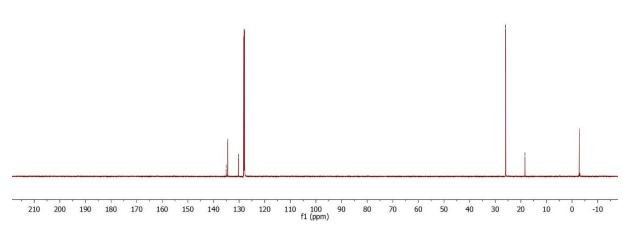

4,4'-(Phenylsilanediyl)dimorpholine 6i

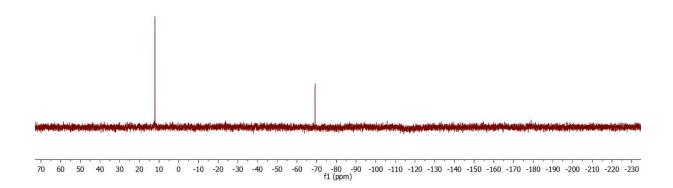




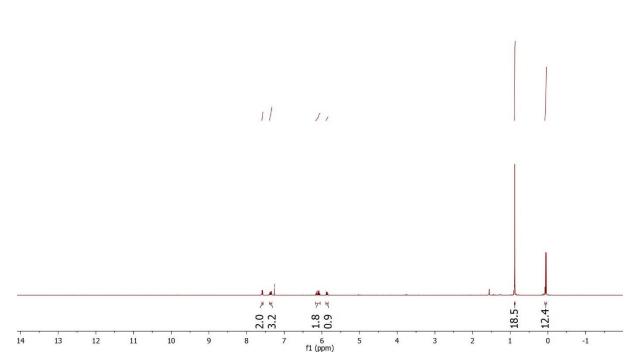

²⁹Si NMR

--19.66

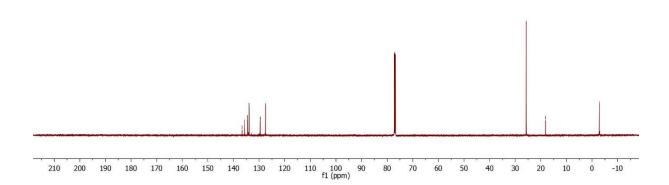

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyltrisiloxan-3-ol 7a

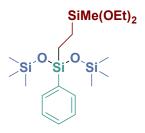

-25.93 -18.39 --2.81

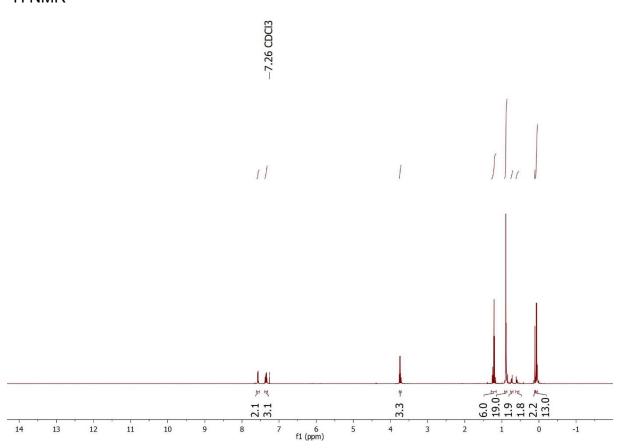
²⁹Si NMR

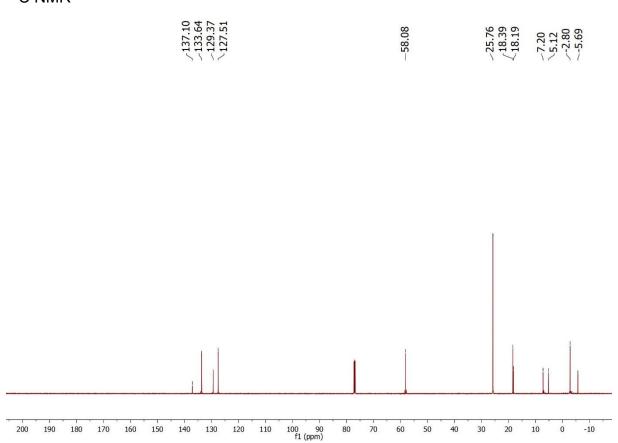

-12.16

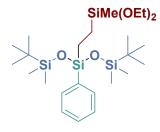
--69.22

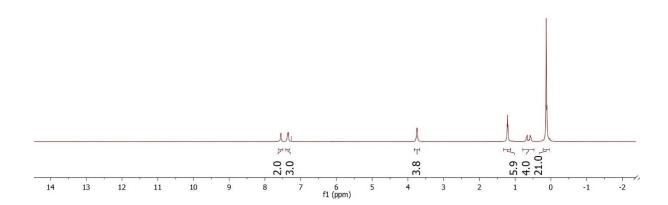

1,5-Di-tert-butyl-1,1,5,5-tetramethyl-3-phenyl-3-(vinyloxy)trisiloxane 7b



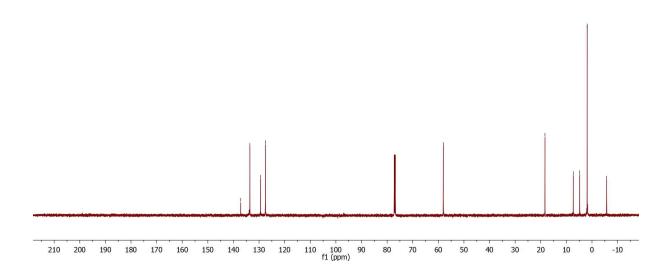

 $^{13}\mathrm{C}\ \mathrm{NMR}$

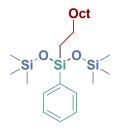

136.63 -134.52 -134.52 -133.92 -127.50 -25.72 -18.17 --2.85


1,5-Di-tert-butyl-3-(2-(diethoxy(methyl)silyl)ethyl)-1,1,5,5-tetramethyl-3-phenyltrisiloxanec 7c

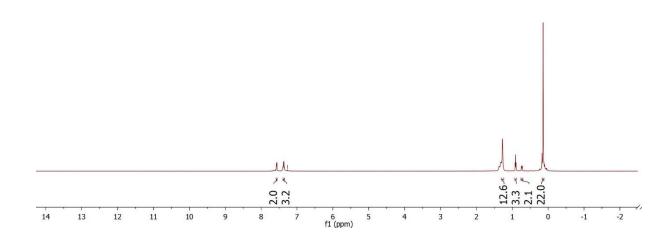


$3\hbox{-}(2\hbox{-}(Diethoxy(methyl)\hbox{silyl})\hbox{ethyl})\hbox{-}1,1,5,5,5}\hbox{-}hexamethyl\hbox{-}3\hbox{-}phenyltrisiloxane~7d$



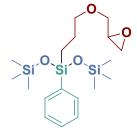


¹³C NMR

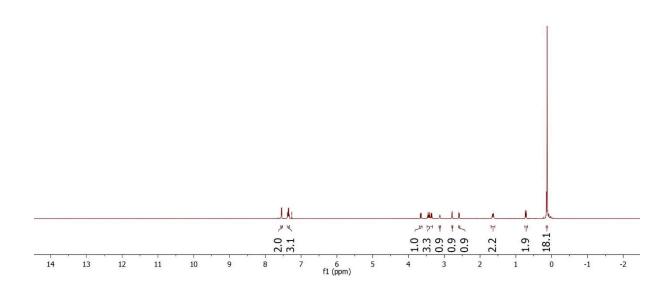

-58.05 -127.52 -127.52 -127.52 -127.52 -18.36 -7.30 -4.81 -1.89 -5.72

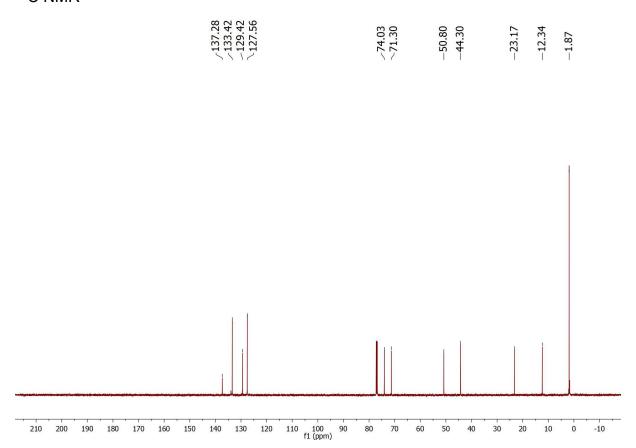
3-Decyl-1,1,1,5,5,5-hexamethyl-3-phenyltrisiloxane 7e





 $^{13}\mathrm{C}\ \mathrm{NMR}$


137.86 133.43 129.27 33.24 729.60 29.54 29.31 29.25 22.92 22.65 14.08 14.08



1,1,1,5,5,5-Hexamethyl-3-(3-(oxiran-2-ylmethoxy)propyl)-3-phenyltrisiloxane 7f

REFERENCES

- [1] Y. Seino, Y. Yamaguchi, A. Suzuki, M. Yamashita, Y. Kamei, F. Kamiyama, T. Yoshino, M. Kojima, and S. Matsunaga *Chem. Eur. J.* **2023**, 29, e202300804
- [2] E. Szafoni, K. Kuciński and G. Hreczycho, J. Catal. 2023, 423, 1-9.
- [3] S. Pattanaik, C. Gunanathan ACS Catal. 2019, 9 (6), 5552-5561.
- [4] E. Szafoni, K. Kuciński and G. Hreczycho, *Green Chem. Rev. Lett.* **2022**, *15*, 757-764.
- [5] E. Szafoni, K. Kuciński and G. Hreczycho, *ChemCatChem* **2024**, accepted article, e202400143