Supporting Information

for

Electrochemical deconstruction of alkyl substituted boron clusters

to produce alkyl boronate esters

Huanhuan Xie,^{a†} Xinyin Gao,^{a†} Beibei Dong,^a Haoyang Wang,^c Alexander M. Spokoyny,^{*b} Xin Mu,^{*a}

 ^a Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China Universi-ty of Science and Technology, 130 Meilong Road, 200237, Shanghai, China. <u>xinmu@ecust.edu.cn</u>
 ^bDepartment of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los
 Angeles, California 90095, United States; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los
 Angeles, California 90095, United States. <u>spokoyny@chem.ucla.edu</u>

^cLaboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China. <u>haoyang@sioc.ac.cn</u>

Materials and Methods

1.	General information	3
2.	Preparation of <i>closo</i> -hexaborate anion 1 precursor	. 4
3.	Optimization of reaction conditions for alkylation of <i>closo</i> -hexaborate anion	. 7
4.	Optimization of reaction conditions for the bulk electrolysis	. 8
5.	Preparation of alkyl halides and alkyl pseudohalides	10
6.	Preparation of chiral alkyl pseudohalides	13
7.	Reaction procedures for the nucleophilic substitutions and electrochemical deconstructi	on
of a	lkyl substituted hexaborate clusters, and product characterization data	30
8.	Substitutions of chiral electrophiles, electrochemical deconstruction procedures a	ınd
chai	racterization data	70
9.	Intramolecular nucleophilic borylation of unactivated alkyl chloride	94
10.	Investigations of the boron-containing fragments after the bulk electrolysis	98
11.	References and notes 1	00
12.	NMR spectra of chiral alkyl pseudohalides 1	01
13.	NMR spectra of borylation products	09

1. General information

General considerations

Reactions were performed using standard Schlenk techniques under N₂ atmosphere. DME, 1,4dioxane and toluene were distilled over sodium in the presence of benzophenone and stored in a Straus flask. Acetonitrile was distilled over calcium hydride under N₂ atmosphere and stored in a Straus flask. Anhydrous diglyme, TCE, BF₃•Et₂O were prepared by distilling over calcium hydride under the reduced pressure. K₃PO₄, *t*-BuOLi, NaHMDS and KHMDS were purchased from J&K Scientific and used without further purification. Et₃N was purchased from BOER. LiHMDS and DABCO were purchased from Energy Chemical. *t*-BuOK was purchased from TCI. *t*-BuONa was purchased from TCI and Energy Chemical. NaBH₄ was purchased from Alfa Aesar and Acros. Substrates were purchased from Bidepharm and Adamas-beta. TBAPF₆ was purchased from Leyan and recrystallized in 200 proof ethanol three times before use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and Energy Chemical. All other reagents were purchased from commercial vendors and used without further purification.

Instrumentations

¹H, ¹³C{¹H}, ¹¹B{¹H}, ¹¹B and ¹⁹F{¹H} NMR spectra were recorded on a AVANCE III 400 and Ascend 600v spectrometers. MestReNova (Version 14.2.1 Build 27684 x64) software was used to process the NMR data. ¹H and ¹³C{¹H} spectra were referenced to residual solvent resonances in deuterated solvents (CDCl₃: ¹H, δ 7.26; ¹³C, δ 77.00; note: due to humidity, residual H₂O signals are often present). Mass spectrometry data was acquired using GCT Premier and Xevo G2 TOF mass spectrometer by direct injection. Agilent high-resolution mass spectrometry was used to collect mass data for the final products. Both IKA ElectraSyn 2.0 and customized electrochemical cells with DC power supply were used for the bulk electrolysis experiments described.

2. Preparation of *closo*-hexaborate anion 1 precursor

Synthesis of n-Bu₄N(B₆H₇) (1)¹

A 1 L round bottom, three-neck flask was charged with 15 g (397 mmol) of NaBH₄. The flask was tightly sealed by the rubber stoppers and was evaluated and backfilled with N₂ three times. 200 mL of dry diglyme were added to the reaction flask with stirring. The reaction mixture was then heated in an oil bath at 60 °C for 30 minutes. Holding the oil bath at 60 °C, BF₃·Et₂O (24 mL, 187 mmol based on BF₃, diluted with 25 mL dry diglyme) was then added dropwise over 60-90 minutes, resulting in bubbling and dissolution of any solids remaining in the reaction flask. After the addition of BF₃·Et₂O was complete, the reaction mixture was heated to 100 °C for 1 hr. and then heated to 185 °C for 36 hr. During the course of the reaction, Na₂B₆H₆ and other borates precipitated out of the diglyme solution. The reaction mixture was then allowed to cool to approximately room temperature before being filtered and washed with an additional 100 mL of diglyme to remove $Na_2B_{12}H_{12}$. The collected solids were then stirred with 150 mL of water for 30 min. to hydrolyze lower boranes. Precipitated borates were then removed by filtration and the water was removed by rotary evaporation under reduced pressure. Additional amounts of borates can be removed by concentrating the water solution and performing a second filtration. The dried Na₂B₆H₆ was then washed 3×20 mL with acetonitrile and then 3 \times 20 mL with acetone before being further dried *in vacuo* and gave 3.2580 g Na₂B₆H₆. A 200 mL round flask was charged with Na₂B₆H₆ (2.5499 g, 22 mmol) and H₂O (25 mL). Under stirring, an aqueous solution of *n*-Bu₄NBr (6.3491 g, 19.7 mmol) in 25 mL of H₂O was added. A large amount of white precipitate formed immediately. The reaction mixture was stirred for another two hours. The white precipitate was collected by filtration and washed with H_2O (3 × 10 mL), then the white solid was dried in vacuo to remove residual water. Recrystallization from hot EtOH/MeOH (1:1, v/v) gave white crystals (2.0213 g, 33%).

¹**H NMR (400 MHz, CDCl₃)** δ 3.23 – 3.19 (m, 8H), 1.68 – 1.58 (m, 8H), 1.44 (h, *J* = 7.3 Hz, 8H), 1.00 (t, *J* = 7.3 Hz, 12H), -5.29 (s, *facial proton*, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 59.02, 24.07, 19.68, 13.65.

¹¹**B** NMR (128 MHz, CDCl₃) -13.46 (d, J = 146.3 Hz, 6B).

¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -13.47.

Figure S2. ¹³C{¹H} NMR spectrum of n-Bu₄N(B₆H₇) in CDCl₃ at 298K

Figure S4. ¹¹B{¹H} NMR spectrum of n-Bu₄N(B₆H₇) in CDCl₃ at 298K

Optimization of reaction conditions for alkylation of *closo*-hexaborate anion 3.

General procedures for optimization of reaction conditions

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (31.2 mg, 0.1 mmol, 1 equiv), and t-BuONa (9.6 mg, 0.1 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N2 three times. Dry MeCN (0.5 mL) was added via syringe. Then the solution of benzyl bromide (17.1 mg, 0.1 mmol, 1 equiv) in dry MeCN (0.5 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. The flask was cooled to room temperature and aliquot sample was subjected to spectroscopic analysis. ¹¹B NMR spectroscopy was used to determine conversion.

	$ \begin{array}{c} $	вн
Entry	Deviation from standard reaction condition	conversion (%) ^a
1	None	85
2	K ₃ PO ₄ instead of <i>t</i> -BuONa	38
3	1.2 equiv of K ₃ PO ₄ instead of 1.0 equiv of <i>t</i> -BuONa	50
4	1.5 equiv of K ₃ PO ₄ instead of 1.0 equiv of <i>t</i> -BuONa	54
5	t-BuOK instead of t-BuONa	85
6	t-BuOLi instead of t-BuONa	13
7	LiHMDS instead of t-BuONa	53
8	NaHMDS instead of <i>t</i> -BuONa	trace
9	KHMDS instead of <i>t</i> -BuONa	44
10	DABCO instead of t-BuONa	trace
11	80 °C instead of 100 °C	85
12	120 °C instead of 100 °C	84
13	Toluene instead of MeCN	79
14	1,4-Dioxane instead of MeCN	83

Table S1 Optimization of reaction conditions for alkylation of closo-hexaborate anion

_ Ph∖

[a] ¹¹B NMR conversion

4. Optimization of reaction conditions for the bulk electrolysis

General procedures for optimization of reaction conditions

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (31.2 mg, 0.1 mmol, 1 equiv), and t-BuONa (9.6 mg, 0.1 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (0.5 mL) was added via syringe. Then the solution of benzyl bromide (17.1 mg, 0.1 mmol, 1 equiv) in dry MeCN (0.5 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature.

To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, pinacol (118.2 mg, 1 mmol, 10 equiv), MgSO₄ (144.4 mg, 1.2 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as both the anode and cathode and then backfilled with N₂ atmosphere. The mixture was pre-stirred for five minutes, and then subjected to the bulk electrolysis under constant current mode of 6 mA until passing 2.20 F/mol of total charge (1 hour) at room temperature. ¹H NMR spectroscopic yields were determined using 1,3,5-trimethoxybenzene as the internal standard, and isolated yields are based on the two-step protocol.

Table S2 Optimization of reaction conditions for electrolysis

Entry	Solvents	electrodes	Yield (%) ^[b]
1	MeCN	RVC(+) RVC(-)	29
3	MeCN:DCE = 1:1(v/v)	RVC(+) RVC(-)	73
4	MeCN:DCM = 1:1(v/v)	RVC(+) RVC(-)	74
5	MeCN:MeOH = 1:1(v/v)	RVC(+) RVC(-)	46
2	MeCN:TCE = 1:1(v/v)	RVC(+) RVC(-)	83
6	MeCN:TCE = 2:1(v/v)	RVC(+) RVC(-)	77
7	MeCN:TCE = $5:1(v/v)$	RVC(+) RVC(-)	80
8	MeCN:TCE = 1:1(v/v)	RVC(+) RVC(-)	69 ^[c]
9	MeCN:TCE = 1:1(v/v)	Glassy C; Glassy C	65
10	MeCN:TCE = 1:1(v/v)	GF(+) GF(-)	28
11	MeCN:TCE= $1:1(v/v)$	RVC(+) RVC(-)	79 ^[d]
12	MeCN:TCE= $1:1(v/v)$	RVC(+) RVC(-)	63 ^[e]

13	MeCN:TCE= $1:1(v/v)$	RVC(+) RVC(-)	trace ^[f]

[b] ¹H NMR yields were determined by using 1,3,5-trimethoxybenzene as the internal standard, yields are based on the two-step protocol. [c] 12 mA current. [d] 0.5 h electrolysis. [e] LiPF_6 as the electrolyte. [f] LiCl as the electrolyte.

5. Preparation of alkyl halides and alkyl pseudohalides

Majority of the benzyl and alkyl bromides used in the studies are commercially available and were used as received.

1-Naphthol (434.7 mg, 3 mmol, 1 equiv), potassium carbonate (626.3 mg, 4.5 mmol, 1.5 equiv) and a magnetic stir bar were added to a 50 mL three-neck bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DMF (10 mL) was added. The mixture was stirred for 5 min, then the solution of 1,4-dibromobutane (775.1 mg, 3.6 mmol, 1.2 equiv) in dry DMF (5 mL) was added. The reaction solution was stirred in a 40 °C oil bath for 6 hours. Full consumption of the starting material was confirmed by TLC. Water (20 mL) was added to the mixture and extracted with DCM (20 mL), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (332.0 mg, 40%) (Petroleum: EtOAc = 10:1, $R_f = 0.7$).

¹**H NMR (400 MHz, CDCl₃)** δ 8.29 – 8.26 (m, 1H), 7.84 – 7.79 (m, 1H), 7.53 – 7.47 (m, 2H), 7.45 – 7.36 (m, 2H), 6.81 (d, J = 7.47 Hz, 1H), 4.18 (t, J = 5.8 Hz, 2H), 3.56 (t, J = 6.5 Hz, 2H), 2.23 – 2.16 (m, 2H), 2.14 – 2.07 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.52, 134.44, 127.43, 126.35, 125.81, 125.57, 125.14, 121.88, 120.20, 104.47, 66.92, 33.53, 29.65, 27.85.

The NMR spectra are consistent with literature report.² CAS registry No. 87723-21-5

2-Naphthol (435.0 mg, 3 mmol, 1 equiv), potassium carbonate (625.1 mg, 4.5 mmol, 1.5 equiv) and a magnetic stir bar were added to a 50 mL three-neck bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DMF (10 mL) was added. The mixture was stirred for 5 min, then the solution of 1,4-dibromobutane (983.6 mg, 4.5 mmol, 1.5 equiv) in dry DMF (5 mL) was added. The reaction solution was stirred in a 40 °C oil bath for 6 hours. Full consumption of the starting material was confirmed by TLC. Water (20 mL) was added to the mixture and extracted with DCM (20 mL), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (377.6 mg, 45%) (Petroleum, $R_f = 0.28$).

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 – 7.70 (m, 3H), 7.44 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.34 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.13 – 7.16 (m, 2H), 4.12 (t, J = 6.0 Hz, 2H), 3.53 (t, J = 6.5 Hz, 2H), 2.08 – 2.18 (m, 2H), 2.07 – 1.97 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.79, 134.52, 129.39, 128.95, 127.62, 126.68, 126.35, 123.59, 118.85, 106.55, 66.80, 33.46, 29.51, 27.85.

The NMR spectra are consistent with literature report.³ CAS registry No. 87723-22-6

TsCl (442.7 mg, 2.31 mmol, 1.1 equiv), DMAP (51.4 mg, 0.42 mmol, 0.2 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then DCM (10 mL) and Et₃N (0.6 mL, 4.2 mmol, 2 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of 1-Boc-4-(2-hydroxyethyl)piperidine (481.1 mg, 2.1 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the ice bath was removed and the mixture was kept stirring for 14 hours. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (566.3 mg, 70%) (Petroleum: EtOAc = 4:1, R_f = 0.46). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 2H), 7.39 – 7.30 (m, 2H), 4.06 (t, *J* = 6.2 Hz, 2H), 4.06 – 3.98 (m, 2H), 2.67 – 2.53 (m, 2H), 2.45 (s, 3H), 1.61 – 1.47 (m, 5H), 1.43 (s, 9H), 1.12 – 0.93 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.73, 144.81, 132.95, 129.83, 127.86, 79.31, 67.93, 43.68, 35.21, 32.12, 31.58, 28.40, 21.60.

The NMR spectra are consistent with literature report.⁴ CAS registry No. 89151-45-1

TsCl (630.7 mg, 3.3 mmol, 1.1 equiv), DMAP (73.1 mg, 0.6 mmol, 0.2 equiv) and a magnetic stir bar were added to a 100 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (10 mL) and Et₃N (0.84 mL, 6 mmol, 2 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of 1-(tert-butoxycarbonyl)-3-pyrrolidinol (566.3 mg, 3 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the ice bath was removed and the mixture was kept stirring for 14 hours. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (610.5 mg, 60%) (Petroleum: EtOAc = 3:1, R_f = 0.41).

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 5.11 – 4.92 (m, 1H), 3.54 – 3.31 (m, 4H), 2.43 (s, 3H), 2.20 – 1.87 (m, 2H), 1.41 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.14, 145.02, 134.32, 129.97, 127.69, 80.72, 80.00, 79.74, 51.83, 51.36, 43.56, 32.37, 31.33, 28.39, 21.64.

The NMR spectra are consistent with literature report.⁵ CAS registry No. 371240-55-0

TsCl (629.3 mg, 3.3 mmol, 1.1 equiv), DMAP (74.7 mg, 0.6 mmol, 0.2 equiv) and a magnetic stir bar were added to a 100 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (10 mL) and Et₃N (0.84 mL, 6 mmol, 2 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of thiophene-3-ethanol (388.5 mg, 3 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the ice bath was removed and the mixture was kept stirring for 14 hours. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (643.9 mg, 77%) (Petroleum: EtOAc = 3:1, R_f = 0.75). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.14 (dd, *J* = 5.0, 3.0 Hz, 1H), 6.90 – 6.87 (m, 1H), 6.80 – 6.77 (m, 1H), 4.13 (t, *J* = 6.9 Hz, 2H), 2.91 (t, *J* = 6.9 Hz, 2H), 2.36 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.71, 136.38, 132.97, 129.80, 128.02, 127.83, 125.83, 122.13, 69.92, 29.82, 21.63.

The NMR spectra are consistent with literature report.⁶ CAS registry No. 40412-09-7

6. Preparation of chiral alkyl pseudohalides

TsCl (417.9 mg, 2.2 mmol, 1.1 equiv), DMAP (48.3 mg, 0.4 mmol, 0.2 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.6 mL, 4 mmol, 2 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (*R*)-(+)-1-Cbz-3-pyrrolidinol (421.5 mg, 2 mmol, 1 equiv) in dry DCM (2 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with DCM (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (498.9 mg, 70%, >99:1 *e.r.*, $[\alpha]_D^{22.5} = 6.4$ (c = 0.8, CHCl₃)) (Petroleum: EtOAc = 4:1, R_f = 0.27).

¹**H NMR (600 MHz, CDCl₃)** δ 7.78 (d, *J* = 2.2 Hz, 2H), 7.37 – 7.29 (m, 7H), 5.20 – 4.98 (m, 3H), 3.64 – 3.45 (m, 4H), 2.44 (d, *J* = 6.3 Hz, 3H), 2.24 – 1.94 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.47, 154.37, 145.05, 136.47, 133.56, 129.96, 129.93, 128.40, 127.96, 127.83, 127.61, 80.39, 79.67, 66.89, 51.91, 51.65, 43.76, 43.42, 32.27, 31.28, 21.57.

The NMR spectra are consistent with literature report.⁷ CAS registry No. 158654-83-2

Chiral HPLC conditions: IF column (30% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S6): $t_1 = 18.632 \text{ min (major)}, t_2 = 24.104 \text{ min (minor)}.$

Figure	S5. HPL	C trace	of benzyl	3-(tosylo	xy)py	rrolidine-1	-carboxy	late.
			5	- 1	<u> </u>	5/15		5	

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	19.315	615824	27781643	49.226
2	23.238	474986	28655583	50.774
total		1090810	56437226	100.000

Table S3. HPLC trace of benzyl 3-(tosyloxy)pyrrolidine-1-carboxylate.

Figure S6. HPLC trace of benzyl (R)-3-(tosyloxy)pyrrolidine-1-carboxylate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	18.632	1204771	60500806	99.952
2	24.104	585	29150	0.048
total		1205356	60529956	100.000

 Table S4. HPLC trace of benzyl (R)-3-(tosyloxy)pyrrolidine-1-carboxylate.

Imidazole (407.1 mg, 6 mmol, 1.2 equiv), DMAP (60.6 mg, 0.5 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (15 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (*S*)-(+)-1,3-butaneiol (458.5 mg, 5 mmol, 1 equiv) and TBDPSCl (1511.7 mg, 5.5 mmol, 1.1 equiv) in dry DCM (10 mL) was added. After addition, the ice bath was removed and the mixture was kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. Water (15 mL) was added to the mixture and extracted with DCM (15 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (1398.5 mg, 84%) (Petroleum: EtOAc = 8:1, $R_f = 0.27$).

¹**H NMR (600 MHz, CDCl₃)** δ 7.73 – 7.65 (m, 4H), 7.48 – 7.36 (m, 6H), 4.12 – 4.07 (m, 1H), 3.91 – 3.82 (m, 2H), 3.25 (s, 1H), 1.79 – 1.71 (m, 1H), 1.68 – 1.60 (m, 1H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.06 (s, 9H).

The NMR spectra are consistent with literature report.⁸ CAS registry No. 1240290-96-3

TsCl (812.2 mg, 4.25 mmol, 1 equiv), Me₃N•HCl (44.0 mg, 0.43 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL)

and Et₃N (1.5 mL, 10.6 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-butanol (1395.4 mg, 4.25 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (1263.7 mg, 62%, 98.5:1.5 *e.r.*, $[\alpha]_D^{22.6} = -1.4$ (c = 0.8, CHCl₃)) (Petroleum: EtOAc = 20:1, R_f = 0.26).

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.62 – 7.55 (m, 4H), 7.47 – 7.41 (m, 2H), 7.41 – 7.34 (m, 4H), 7.27 – 7.22 (m, 2H), 4.90 – 4.80 (m, 1H), 3.56 (t, J = 6.1 Hz, 2H), 2.39 (s, 3H), 1.94 – 1.83 (m, 1H), 1.73 – 1.63 (m, 1H), 1.32 (d, J = 6.3 Hz, 3H), 1.01 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.32, 135.48, 135.45, 134.39, 133.50, 133.46, 129.70, 129.67, 127.70, 127.67, 127.65, 77.95, 59.70, 39.26, 26.75, 21.59, 20.97, 19.09.

The NMR spectra are consistent with literature report.9

Chiral HPLC conditions: AS column (5% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S8): $t_1 = 8.595 \text{ min (major)}, t_2 = 11.010 \text{ min (minor)}.$

Figure S7. HPLC trace of 4-((tert-butyldiphenylsilyl)oxy)butan-2-yl 4methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.638	311373	15600823	50.956
2	11.004	316899	15015615	49.044
total		628272	30616438	100.000

Table S5. HPLC trace of 4-((tert-butyldiphenylsilyl)oxy)butan-2-yl 4-methylbenzenesulfonate.

Figure S8. HPLC trace of (*S*)-4-((tert-butyldiphenylsilyl)oxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.595	579383	28704926	98.559
2	11.010	8412	419814	1.441
total		587795	29124740	100.000

 Table S6. HPLC trace of (S)-4-((tert-butyldiphenylsilyl)oxy)butan-2-yl 4-methylbenzenesulfonate.

p-TsOH (603.9 mg, 3.2 mmol, 0.2 equiv) and a magnetic stir bar were added to a 250 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry Et₂O (70 mL) was added. The mixture was stirred for 5 min, then the solution of (2*S*)-4-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-butanol (5228.0 mg, 16 mmol, 1 equiv) and DHP (2706.4 mg, 32 mmol, 2 equiv) in dry Et₂O (20 mL) was added. After addition, the mixture was kept stirring for 16 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (3841.5 mg, 58%) (Petroleum: EtOAc = 9:1, R_f = 0.63).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 – 7.63 (m, 8H), 7.46 – 7.34 (m, 12H), 4.76 – 4.72 (m, 1H), 4.64 – 4.59 (m, 1H), 4.08 – 3.89 (m, 3H), 3.88 – 3.66 (m, 5H), 3.51 – 3.40 (m, 2H), 1.93 – 1.39 (m, 16H), 1.24 (d, J = 6.3 Hz, 3H), 1.12 (d, J = 6.1 Hz, 3H), 1.05 (d, J = 1.7 Hz, 18H).

Tert-butyldiphenyl((3S)-3-((tetrahydro-2*H*-pyran-2-yl)oxy)butoxy)silane (3841.5 mg, 9.3 mmol) and a magnetic stir bar were added to a 100 mL bottle. The bottle was tightly sealed with the rubber stoppers, then dry THF (45 mL) was added. The mixture was stirred for 5 min, then TBAF (1.0 M in THF, 18.6 mmol, 18.6 mL, 2 equiv) was added. After addition, the mixture was kept stirring for 3 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (1398.2 mg, 86%) (Petroleum: EtOAc =

 $1:1, R_f = 0.23$).

¹**H NMR (400 MHz, CDCl₃)** δ 4.66 – 4.60 (m, 1H), 4.56 – 4.48 (m, 1H), 4.01 – 3.81 (m, 4H), 3.79 – 3.58 (m, 4H), 3.48 – 3.39 (m, 2H), 3.27 (s, 1H), 2.65 (s, 1H), 1.78 – 1.59 (m, 8H), 1.51 – 1.37 (m, 8H), 1.22 (d, J = 6.3 Hz, 3H), 1.10 (d, J = 6.2 Hz, 3H).

Phenol (384.0 mg, 4 mmol), PPh₃ (1088.8 mg, 4 mmol, 1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry THF (4 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (3*S*)-3-[(tetrahydro-2*H*-pyran-2-yl)oxy]-1-butanol (696.5 mg, 4 mmol, 1 equiv) in dry THF (2 mL) was added. The solution of DEAD (705.9 mg, 4 mmol, 1 equiv) in dry THF (2 mL) was added dropwise and the reaction was warmed to room temperature and stirred for 18 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (548.5 mg, 55%) (Petroleum: EtOAc = 20:1, $R_f = 0.29$).

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.23 (m, 4H), 6.98 – 6.86 (m, 6H), 4.78 – 4.72 (m, 1H), 4.66 – 4.60 (m, 1H), 4.19 – 3.90 (m, 7H), 3.84 – 3.74 (m, 1H), 3.54 – 3.39 (m, 2H), 2.06 – 1.88 (m, 4H), 1.88 – 1.61 (m, 4H), 1.61 – 1.40 (m, 8H), 1.32 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.2 Hz, 3H).

TsOH•py (56.3 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry EtOH (3 mL) was added. The mixture was stirred for 5 min, then the solution of tetrahydro-2-[(1*S*)-1-methyl-3-phenoxypropoxy]-2*H*-pyran (548.5mg, 2.19 mmol, 1 equiv) in dry EtOH (2 mL) was added . After addition, the mixture was heated to 55 °C and kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (306.9 mg, 83%) (Petroleum: EtOAc = 4:1, R_f = 0.5).

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.24 (m, 2H), 7.00 – 6.88 (m, 3H), 4.22 – 4.04 (m, 3H), 2.16 (s, 1H), 1.97 – 1.88 (m, 2H), 1.27 (d, J = 6.2 Hz, 3H).

TsCl (389.8 mg, 2 mmol, 1.1 equiv), Me₃N•HCl (21.4 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber

stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.7 mL, 4.6 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-phenoxy-2-butanol (306.9 mg, 1.83 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (364.9 mg, 62%, 98.5:1.5 *e.r.*, $[\alpha]_D^{22.2} = 43.8$ (c = 0.8, CHCl₃)) (Petroleum: EtOAc = 8:1, R_f = 0.5).

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, 2H), 7.28 – 7.19 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.92 (t, *J* = 1.1 Hz, 1H), 6.70 – 6.63 (m, 2H), 4.93 – 4.81 (m, 1H), 3.86 – 3.77 (m, 1H), 3.70 – 3.60 (m, 1H), 2.27 (s, 3H), 2.08 – 1.91 (m, 2H), 1.44 (d, *J* = 6.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.34, 144.52, 133.79, 129.65, 129.27, 127.53, 120.69, 114.19, 77.25, 62.84, 36.18, 21.58, 21.53.

The NMR spectra are consistent with literature report.¹⁰

Chiral HPLC conditions: OJ column (10% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S10): $t_1 = 25.372 \text{ min (major)}, t_2 = 28.398 \text{ min (minor)}.$

Figure S9. HPLC trace of 4-phenoxybutan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	25.545	614685	26234104	49.850
2	27.355	503957	26391817	50.150
total		1118641	52625921	100.000

Table S7. HPLC trace of 4-phenoxybutan-2-yl 4-methylbenzenesulfonate.

Figure S10. HPLC trace of (S)-4-phenoxybutan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	25.372	1100698	63045659	98.746
2	28.398	18762	800763	1.254
total		1119461	63846422	100.000

 Table S8. HPLC trace of (S)-4-phenoxybutan-2-yl 4-methylbenzenesulfonate.

Guaiacol (498.4 mg, 4.0 mmol), PPh₃ (1047.5 mg, 4 mmol, 1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry THF (4 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (3*S*)-3-[(tetrahydro-2*H*-pyran-2-yl)oxy]-1-butanol (696.5 mg, 4 mmol, 1 equiv) in dry THF (2 mL) was added. The solution of DEAD (699.6 mg, 4 mmol, 1 equiv) in dry THF (2 mL) was added dropwise and the reaction was warmed to room temperature and stirred for 18 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (471.7 mg, 42%) (Petroleum: EtOAc = 9:1, R_f = 0.83).

¹**H NMR (400 MHz, CDCl₃)** δ 7.21 – 7.11 (m, 2H), 6.56 – 6.42 (m, 6H), 4.78 – 4.71 (m, 1H), 4.66 – 4.59 (m, 1H), 4.13 – 3.88 (m, 7H), 3.82 – 3.74 (m, 7H), 3.54 – 3.39 (m, 2H), 2.05 – 1.87 (m, 4H), 1.87 – 1.74 (m, 2H), 1.76 – 1.62 (m, 2H), 1.61 – 1.42 (m, 8H), 1.31 (d, *J* = 6.3 Hz, 3H), 1.19 (d, *J* = 6.1 Hz, 3H).

TsOH•py (59.1 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL

Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry EtOH (3 mL) was added. The mixture was stirred for 5 min, then the solution of 2-(((*S*)-4-(3-methoxyphenoxy)butan-2-yl)oxy)tetrahydro-2*H*-pyran (471.1 mg, 1.68 mmol, 1 equiv) in dry EtOH (2 mL) was added . After addition, the mixture was heated to 55 °C and kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (247.3 mg, 77%) (Petroleum: EtOAc = 4:1, R_f = 0.29).

¹**H NMR (400 MHz, CDCl₃)** δ 7.17 (t, *J* = 8.2 Hz, 1H), 6.54 – 6.49 (m, 2H), 6.48 – 6.45 (m, 1H), 4.19 – 4.03 (m, 3H), 3.78 (s, 3H), 2.22 (s, 1H), 1.95 – 1.87 (m, 2H), 1.26 (d, *J* = 6.3 Hz, 3H).

TsCl (303.0 mg, 1.43 mmol, 1.1 equiv), Me₃N•HCl (12.9 mg, 0.13 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.5 mL, 3.25 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-(3-methoxyphenoxy)-2-butanol (247.3 mg, 1.3 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated in *vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (246.4 mg, 54%, 98.5:1.5 *e.r.*, $[\alpha]_D^{22.1} = 20.5$ (c = 0.8, CHCl₃)) (Petroleum: EtOAc = 8:1, R_f = 0.27).

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, J = 7.9 Hz, 2H), 7.22 – 7.05 (m, 3H), 6.49 (d, J = 2.4 Hz, 1H), 6.28 (d, J = 2.4 Hz, 1H), 6.22 (s, 1H), 4.92 – 4.77 (m, 1H), 3.87 – 3.72 (m, 4H), 3.67 – 3.57 (m, 1H), 2.28 (s, 3H), 2.09 – 1.89 (m, 2H), 1.44 (d, J = 6.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.67, 159.62, 144.56, 133.78, 129.68, 129.66, 127.52, 106.50, 106.16, 100.74, 77.21, 62.97, 55.20, 36.13, 21.60, 21.47.

HR-MS (EI) for C₁₈H₂₂O₅S [M] *m*/*z* [M]⁺: calculated: 350.1185 found: 350.1190

Chiral HPLC conditions: AD column (10% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S12): $t_1 = 9.830 \text{ min (major)}$, $t_2 = 10.858 \text{ min (minor)}$.

Figure S11. HPLC trace of 4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	9.787	1180255	16418597	50.035
2	10.804	1078756	16395476	49.965
total		2259011	32814073	100.000

 Table S9. HPLC trace of 4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate.

Figure S12. HPLC trace of (S)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	9.830	2215863	31806574	98.414
2	10.858	33549	512705	1.586
total		2249412	32319279	100.000

Table S10. HPLC trace of (S)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate.

4-Bromophenol (569.7 mg, 3.12 mmol), PPh₃ (802.5 mg, 3.12 mmol, 1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber

stoppers and was evaluated and backfilled with N₂ three times, then dry THF (4 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (3*S*)-3-[(tetrahydro-2*H*-pyran-2-yl)oxy]-1-butanol (543.4 mg, 3.12 mmol, 1 equiv) in dry THF (2 mL) was added. The solution of DEAD (551.3 mg, 3.12 mmol, 1 equiv) in dry THF (2 mL) was added dropwise and the reaction was warmed to room temperature and stirred for 18 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (593.3 mg, 58%) (Petroleum: EtOAc = 9:1, $R_f = 0.83$).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.31 (m, 4H), 6.80 – 6.73 (m, 4H), 4.73 – 4.69 (m, 1H), 4.63 – 4.57 (m, 1H), 4.08 – 3.88 (m, 7H), 3.80 – 3.71 (m, 1H), 3.52 – 3.37 (m, 2H), 1.99 – 1.86 (m, 4H), 1.84 – 1.60 (m, 4H), 1.58 – 1.41 (m, 8H), 1.30 (d, *J* = 6.3 Hz, 3H), 1.18 (d, *J* = 6.2 Hz, 3H).

TsOH•py (59.3 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry EtOH (3 mL) was added. The mixture was stirred for 5 min, then the solution of 2-(((*S*)-4-(4-bromophenoxy)butan-2-yl)oxy)tetrahydro-2*H*-pyran (593.3 mg, 1.8 mmol, 1 equiv) in dry EtOH (2 mL) was added . After addition, the mixture was heated to 55 °C and kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (374.0 mg, 85%) (Petroleum: EtOAc = 4:1, R_f = 0.29).

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.33 (m, 2H), 6.82 – 6.75 (m, 2H), 4.17 – 4.02 (m, 3H), 1.97 – 1.83 (m, 3H), 1.27 (d, *J* = 6.2 Hz, 3H).

TsCl (324.8 mg, 1.68 mmol, 1.1 equiv), Me₃N•HCl (14.8 mg, 0.15 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.54 mL, 3.83 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-(4-bromophenoxy)-2-butanol (374.0 mg, 1.53 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (347.3 mg, 57%, 98.5:1.5 *e.r.*, $[\alpha]_D^{22.1} = 3.8$ (c = 0.4, CHCl₃)) (Petroleum: EtOAc = 8:1, R_f = 0.27).

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.70 (m, 2H), 7.34 – 7.28 (m, 2H), 7.13 – 7.11 (m, 2H),

6.56 – 6.51 (m, 2H), 4.90 – 4.79 (m, 1H), 3.80 – 3.73 (m, 1H), 3.64 – 3.57 (m, 1H), 2.28 (s, 3H), 2.06 – 1.90 (m, 2H), 1.44 (d, *J* = 6.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.48, 144.60, 133.78, 132.09, 129.69, 127.55, 115.99, 112.89, 76.98, 63.20, 36.10, 21.69, 21.61.

HR-MS (EI) for $C_{17}H_{19}^{79}BrO_4S$ [M] m/z [M]⁺: calculated: 398.0187 found: 398.0189 Chiral HPLC conditions: IB column (5% EtOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S14): $t_1 = 8.631$ min (major), $t_2 = 9.402$ min (minor).

Figure S13. HPLC trace of 4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.648	484516	6173689	50.603
2	9.408	460937	6026498	49.397
total		945453	12200187	100.000

 Table S11. HPLC trace of 4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate.

Figure S14. HPLC trace of (S)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.631	619175	7883269	98.409
2	9.402	10085	127453	1.591
total		629261	8010721	100.000

 Table S12. HPLC trace of (S)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate.

$$\begin{array}{c} OH \\ + \\ (1 equiv) \\ (1 equiv) \end{array} \xrightarrow{\text{DEAD (1 equiv)}} \\ THF, 0 ^{\circ}C - r.t. \end{array} \xrightarrow{\text{OTHP}} \\ \begin{array}{c} OTHP \\ \hline \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ O \\ \hline \end{array}$$

2,4-Dimethylphenol (696.0 mg, 5 mmol), PPh₃ (1322.8 mg, 5 mmol, 1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry THF (6 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (3*S*)-3-[(tetrahydro-2*H*-pyran-2-yl)oxy]-1-butanol (870.7 mg, 5 mmol, 1 equiv) in dry THF (2 mL) was added. The solution of DEAD (873.5 mg, 5 mmol, 1 equiv) in dry THF (2 mL) was added dropwise and the reaction was warmed to room temperature and stirred for 12 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (490.3 mg, 35%) (Petroleum: EtOAc = 20:1, R_f = 0.25).

¹**H NMR (400 MHz, CDCl₃)** δ 6.89 – 6.81 (m, 4H), 6.67 – 6.60 (m, 2H), 4.70 – 4.65 (m, 1H), 4.57 – 4.52 (m, 1H), 4.07 – 3.81 (m, 7H), 3.75 – 3.66 (m, 1H), 3.44 – 3.31 (m, 2H), 2.17 (s, 6H), 2.11 (s, 6H), 1.96 – 1.81 (m, 4H), 1.78 – 1.67 (m, 2H), 1.66 – 1.54 (m, 2H), 1.53 – 1.33 (m, 8H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 6.2 Hz, 3H).

TsOH•py (50.9 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers, then dry EtOH (3 mL) was added. The mixture was stirred for 5 min, then the solution of 2-(((*S*)-4-(2,4-dimethylphenoxy)butan-2-yl)oxy)tetrahydro-2*H*-pyran (490.3 mg, 1.8 mmol, 1 equiv) in dry EtOH (2 mL) was added . After addition, the mixture was heated to 55 °C and kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (292.9 mg, 84%) (Petroleum: EtOAc = 6:1, $R_f = 0.31$).

¹**H NMR (400 MHz, CDCl₃)** δ 7.00 – 6.92 (m, 2H), 6.74 (d, J = 7.9 Hz, 1H), 4.21 – 4.03 (m, 3H), 2.43 (s, 1H), 2.27 (s, 3H), 2.20 (s, 3H), 2.00 – 1.90 (m, 2H), 1.28 (d, J = 6.2 Hz, 3H).

TsCl (221.2 mg, 1.16 mmol, 1.1 equiv), Me₃N•HCl (9.5 mg, 0.11 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.4 mL, 2.6 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-(2,4-dimethylphenoxy)-2-butanol (292.9 mg, 1.05 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were

dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (209.5 mg, 57%, 98.5:1.5 *e.r.*, $[\alpha]_D^{22.5} = 16.7$ (c = 0.4, CHCl₃)) (Petroleum: EtOAc = 8:1, R_f = 0.42).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 2.3 Hz, 1H), 6.88 – 6.84 (m, 1H), 6.41 (d, J = 8.1 Hz, 1H), 4.92 – 4.82 (m, 1H), 3.81 – 3.73 (m, 1H), 3.66 – 3.58 (m, 1H), 2.26 (s, 6H), 2.06 (s, 3H), 2.04 – 1.92 (m, 2H), 1.46 (d, J = 6.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.28, 144.42, 133.76, 131.32, 129.59, 129.32, 127.44, 126.73, 126.06, 110.25, 77.34, 62.81, 36.36, 21.59, 21.47, 20.38, 16.04.

HR-MS (EI) for C₁₉H₂₄O₄S [M] *m*/*z* [M]⁺: calculated: 348.1395 found: 348.1393

Chiral HPLC conditions: OJ column (10% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S16): $t_1 = 14.655 \text{ min (major)}$, $t_2 = 19.612 \text{ min (minor)}$.

Figure S15. HPLC trace of 4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (μV)	Area (µV.sec)	Area (%)	
1	14.795	477437	12912989	50.268	
2	19.459	375509	12775303	49.732	
total		852946	25688292	100.000	

Table S13. HPLC trace of 4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate.

Figure S16. HPLC trace of (*S*)-4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	14.655	609104	16340704	98.493
2	19.612	7910	250098	1.507
total		617014	16590802	100.000

Table S14. HPLC trace of (S)-4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate.

4-Tert-butylphenol (760.6 mg, 5 mmol), PPh₃ (1306.3 mg, 5 mmol, 1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry THF (6 mL) was added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (3*S*)-3-[(tetrahydro-2*H*-pyran-2-yl)oxy]-1-butanol (870.7 mg, 5 mmol, 1 equiv) in dry THF (2 mL) was added. The solution of DEAD (873.5 mg, 5 mmol, 1 equiv) in dry THF (2 mL) was added dropwise and the reaction was warmed to room temperature and stirred for 12 hours. Full consumption of the starting material was confirmed by TLC. Water (5 mL) was added to the mixture and extracted with EtOAc (5 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (464.3 mg, 30%) (Petroleum: EtOAc = 20:1, R_f = 0.25).

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.27 (m, 4H), 6.88 – 6.81 (m, 4H), 4.79 – 4.72 (m, 1H), 4.68 – 4.59 (m, 1H), 4.11 – 3.90 (m, 7H), 3.85 – 3.78 (m, 1H), 3.55 – 3.41 (m, 2H), 2.04 – 1.89 (m, 4H), 1.86 – 1.77 (m, 2H), 1.73 – 1.62 (m, 2H), 1.60 – 1.42 (m, 8H), 1.33 – 1.29 (m, 21H), 1.19 (d, *J* = 6.1 Hz, 3H).

TsOH•py (57.0 mg, 0.2 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers, then dry EtOH (3 mL) was added. The mixture was stirred for 5 min, then the solution of 2-(((*S*)-4-(4-(tert-butyl)phenoxy)butan-2-yl)oxy)tetrahydro-2*H*-pyran (464.3 mg, 1.5 mmol, 1 equiv) in dry EtOH (3 mL) was added. After addition, the mixture was heated to 55 °C and kept stirring for 12 hours. Full consumption of the starting material was confirmed by TLC. the organic layers were concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a colorless oil (250.3 mg, 75%) (Petroleum: EtOAc = 6:1, $R_f = 0.34$).

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.27 (m, 2H), 6.89 – 6.82 (m, 2H), 4.20 – 4.05 (m, 3H), 2.15 (d, *J* = 3.8 Hz, 1H), 1.96 – 1.88 (m, 2H), 1.30 (s, 9H), 1.27 (d, *J* = 6.2 Hz, 3H).

TsCl (167.6 mg, 0.9 mmol, 1.1 equiv), Me₃N•HCl (9.1 mg, 0.08 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.3 mL, 2.1 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (2*S*)-4-[4-(1,1-dimethylethyl)phenoxy]-2-butanol (250.3 mg, 0.8 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (192.3 mg, 63%, 98:2 *e.r.*, $[\alpha]_D^{22.5} = 21.7$ (c = 0.4, CHCl₃)) (Petroleum: EtOAc = 8:1, R_f = 0.37).

¹**H NMR (400 MHz, CDCl₃)** δ 7.75 – 7.72 (m, 2H), 7.27 – 7.23 (m, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.62 – 6.59 (m, 2H), 4.91 – 4.83 (m, 1H), 3.80 – 3.75 (m, 1H), 3.65 – 3.59 (m, 1H), 2.26 (s, 3H), 2.05 – 1.90 (m, 2H), 1.43 (d, J = 6.3 Hz, 3H), 1.30 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.11, 144.46, 143.27, 133.79, 129.65, 127.57, 126.04, 113.62, 77.35, 62.87, 36.23, 34.03, 31.52, 21.58.

HR-MS (EI) for C₂₁H₂₈O₄S [M] *m*/*z* [M]⁺: calculated: 376.1708 found: 376.1711

Chiral HPLC conditions: AD column (5% EtOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S18): $t_1 = 8.547 \text{ min (major)}, t_2 = 9.681 \text{ min (minor)}.$

Figure S17. HPLC trace of 4-(4-(tert-butyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.542	2169145	32879595	50.066
2	9.616	2164333	32792949	49.934
total		4333478	65672544	100.000

 Table S15. HPLC trace of 4-(4-(tert-butyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate.

Figure S18. HPLC trace of (*S*)-4-(4-(tert-butyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.547	2243723	34491369	98.164
2	9.681	43907	645109	1.836
total		2287630	35136478	100.000

Table S16. HPLC trace of (*S*)-4-(4-(tert-butyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate.

TsCl (210.8 mg, 1.1 mmol, 1.1 equiv), Me₃N•HCl (10.8 mg, 0.1 mmol, 0.1 equiv) and a magnetic stir bar were added to a 50 mL Schlenk bottle. The bottle was tightly sealed with the rubber stoppers and was evaluated and backfilled with N₂ three times, then dry DCM (5 mL) and Et₃N (0.4 mL, 2.5 mmol, 2.5 equiv) were added. The mixture was stirred for 5 min and cooled to 0 °C, then the solution of (*R*)-5-phenylpentan-2-ol (151.4 mg, 1 mmol, 1 equiv) in dry DCM (5 mL) was added. After addition, the mixture was kept stirring for 2 hours at 0 °C. Full consumption of the starting material was confirmed by TLC. Water (10 mL) was added to the mixture and extracted with DCM (10 mL×3), the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Subsequent purification via a silical gel column chromatography afforded a white solid (146.2 mg, 46%, >99:1 *e.r.*, $[\alpha]_D^{22.6} = 0.7$ (c = 0.8, CHCl₃)) (Petroleum: EtOAc = 16:1, R_f = 0.26).

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.29 – 7.23 (m, 2H), 7.19 (d, J = 7.2 Hz, 1H), 7.07 (d, J = 7.4 Hz, 2H), 4.72 – 4.60 (m, 1H), 2.69 – 2.57 (m, 1H), 2.55 – 2.48 (m, 1H), 2.46 (s, 3H), 2.01 – 1.89 (m, 1H), 1.87 – 1.76 (m, 1H), 1.31 (d, J = 6.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.47, 140.80, 134.47, 129.74, 128.41, 128.23, 127.70, 126.01, 79.84, 38.12, 31.13, 21.60, 20.82.

The NMR spectra are consistent with literature report.¹⁰

Chiral HPLC conditions: OJ column (10% EtOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for chiral compound (Fig. S20): $t_1 = 17.197 \text{ min (major)}, t_2 = 20.481 \text{ min (minor)}.$

Figure S19. HPLC trace of 5-phenylpentan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	17.443	584602	15131184	50.007
2	20.167	483315	15127216	49.993
total		1067917	30258401	100.000

 Table S17. HPLC trace of 5-phenylpentan-2-yl 4-methylbenzenesulfonate.

Figure S20. HPLC trace of (*R*)-5-phenylpentan-2-yl 4-methylbenzenesulfonate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	17.197	1212741	37205342	99.975
2	20.481	358	9294	0.025
total		1213099	37214636	100.000

Table S18. HPLC trace of (*R*)-5-phenylpentan-2-yl 4-methylbenzenesulfonate.

7. Reaction procedures for the nucleophilic substitutions and electrochemical deconstruction of alkyl substituted hexaborate clusters, and product characterization data

Method A (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and t-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of benzyl bromides or alkyl bromides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed in vacuo and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, pinacol (236.3 mg, 2 mmol, 10 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N2 three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm \times 0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method B (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, *n*-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and *t*-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of **benzyl chlorides (0.2 mmol, 1 equiv)** in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, pinacol (236.3 mg, 2 mmol, 10 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. The undivided cell was equipped with

RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N_2 to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method C (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and t-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of alkyl pseudohalides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed in vacuo and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, pinacol (236.3 mg, 2 mmol, 10 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N2 three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 $mm \times 0.4 mm$) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method D (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, *n*-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and *t*-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of **alkyl bromides (0.2 mmol, 1 equiv)** in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, pinacol (236.3 mg, 2 mmol, 10 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for

five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing **1.10 F/mol of charge (1 hours)** at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method E (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and t-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of benzyl bromides or alkyl bromides or alkyl pseudohalides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed in vacuo and resulting oil was washed with hexane (3 mL \times 3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.8 mg, 1.6 mmol, 8 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method F (Electrolysis set up 2): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol, 1 equiv), and t-BuONa (19.2 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N2 three times. Dry MeCN (1 mL) was added via syringe. Then the solution of benzyl bromides or alkyl bromides or alkyl pseudohalides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL \times 3), from ¹¹B NMR the conversion could be determined. To a 20 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.8 mg, 1.6 mmol, 8 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (155.0 mg, 0.4 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (2 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (2 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N_2 to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method G (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (124.9 mg, 0.4 mmol, 2 equiv), and t-BuONa (38.4 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of alkyl bromides or alkyl pseudohalides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL \times 3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.8 mg, 1.6 mmol, 8 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF_6 (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm \times 0.5 mm \times 0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method H (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, $n-Bu_4N(B_6H_7)$ (1) (93.7 mg, 0.3 mmol, 1.5 equiv), and t-BuONa (28.8 mg, 0.3 mmol, 1.5 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of alkyl bromides or alkyl pseudohalides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 12 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL \times 3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.8 mg, 1.6 mmol, 8 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF_6 (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm \times 0.5 mm \times 0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

Method I (Electrolysis set up 1, ElectraSyn 2.0): To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (93.7 mg, 0.3 mmol, 1.5 equiv), and t-BuONa (28.8 mg, 0.3 mmol, 1.5 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of alkyl bromides (0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath at 100 °C for 36 hours. Then the heating bath was removed and the flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.8 mg, 1.6 mmol, 8 equiv), MgSO₄ (288.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (116.3 mg, 0.3 mmol, 0.1 M) were added sequentially. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC $(3.5 \text{ mm} \times 0.5 \text{ mm} \times 0.4 \text{ mm})$ as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation to give the alkyl boronic ester products.

2-Benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. Benzyl bromide (35.1 mg, 0.2 mmol), *t*-BuONa (19.2 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.7 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step:

Figure S21. ¹¹B{¹H} NMR spectrum after substitution step with benzyl bromide.

The assignment of boron signals is shown here. The signal c corresponds to boron atom B_c of substituted cluster, unreacted *closo*-hexaborate anion signal overlapped with signal b corresponds to equatorial boron B_b . The ratio of substituted cluster/hexaborate = $1/{(4.90-1\times4)/6}=1/0.15$, the conversion = $1/(1+0.15)\times100\% = 87\%$.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.43$ (Petroleum: EtOAc = 25:1). For method A, 28.0 mg (64%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 – 7.21 (m, 4H), 7.19 – 7.14 (m, 1H), 2.34 (s, 2H), 1.27 (s, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 138.63, 128.97, 128.24, 124.80, 83.40, 24.73.

The NMR spectra are consistent with literature report.¹¹ CAS registry No. 87100-28-5

4,4,5,5-Tetramethyl-2-(4-methylbenzyl)-1,3,2-dioxaborolane

Method A are applied. 4-Methylbenzyl bromide (38.1 mg, 0.2 mmol), *t*-BuONa (19.0 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.8 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step (72% conversion):

Figure S22. ¹¹B{¹H} NMR spectrum after substitution step with 4-methylbenzyl bromide. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.7$ (Petroleum: EtOAc = 20:1). For method A, 22.5 mg (48%) of product was obtained.

¹H NMR (600 MHz, CDCl₃) δ 7.09 -7.05 (m, 4H), 2.30 (s, 3H), 2.26 (s, 2H), 1.24 (s, 12H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 135.34, 134.08, 128.95, 128.82, 83.32, 24.70, 20.93. The NMR spectra are consistent with literature report.¹¹ CAS registry No. 356570-52-0

4,4,5,5-Tetramethyl-2-(4-(trifluoromethyl)benzyl)-1,3,2-dioxaborolane **Method A** are applied. 4-(Trifluoromethyl)benzyl bromide (49.9 mg, 0.2 mmol), *t*-BuONa (19.2 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.2 mg, 0.2 mmol) are used for substitution step. **For method A**, the ¹¹B NMR after substitution step (76% conversion):

Figure S23. ¹¹B{¹H} NMR spectrum after substitution step with 4-(trifluoromethyl)benzyl bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.63$ (Petroleum: EtOAc = 20:1). For method A, 23.4 mg (41%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 2.35 (s, 2H), 1.23 (s, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 143.10, 129.15, 127.15 (q, ²*J* = 31.9 Hz), 125.12 (q, ³*J* = 4.1 Hz), 124.51 (q, ^{*1*}*J* = 271.9 Hz, CF₃), 83.66, 24.69.

The NMR spectra are consistent with literature report.¹¹ CAS registry No. 475250-46-5

2-(3,5-Bis(1,1-dimethylethyl)phenyl]methyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane**Method A**are applied. 3,5-Bis(1,1-dimethylethyl)phenyl]methyl bromide (57.7 mg, 0.2 mmol),*t*-BuONa (19.6 mg, 0.2 mmol) and*n*-Bu₄N(B₆H₇) (1) (62.0 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step (84% conversion):

Figure S24. ¹¹B{¹H} NMR spectrum after substitution step with 3,5-bis(1,1-dimethylethyl)phenyl]methyl.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 30:1) to give a colorless oil. $R_f = 0.76$ (Petroleum: EtOAc = 30:1). For method A, 35.7 mg (54%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.19– 7.18 (m, 1H), 7.05 – 7.04 (m, 2H), 2.29 (s, 2H), 1.31 (s, 18H), 1.26 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.29, 137.21, 123.47, 118.81, 83.28, 34.70, 31.49, 24.75.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.23.

HR-MS (ESI) for C₂₁H₃₅¹¹BO₂Na [M] *m*/*z* [M+Na]⁺: calculated: 353.2628, found: 353.2628

2-(3,5-dimethoxybenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. 3,5-Dimethoxybenzyl bromide (46.7 mg, 0.2 mmol), *t*-BuONa (19.7 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.5 mg, 0.2 mmol) are used for substitution step. For **method A**, the ¹¹B NMR after substitution step (72% conversion):

Figure S25. ¹¹B{¹H} NMR spectrum after substitution step with 3,5-dimethoxybenzyl bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 30:1) to give a colorless oil. $R_f = 0.32$ (Petroleum: EtOAc = 20:1). For method A, 17.9 mg (32%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 6.35 (d, *J* = 2.2 Hz, 2H), 6.25 (t, *J* = 2.3 Hz, 1H), 3.76 (s, 6H), 2.24 (s, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.58, 140.89, 107.06, 97.27, 83.44, 55.17, 24.70. The NMR spectra are consistent with literature report.¹² CAS registry No. 1854115-26-6

2-(3,5-bis(trifluoromethyl)benzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. 3,5-Bis(trifluoromethyl)benzyl bromide (62.4 mg, 0.2 mmol), *t*-BuONa (19.8 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol) are used for substitution step. **For method A**, the ¹¹B NMR after substitution step (68% conversion):

Figure S26. ¹¹B{¹H} NMR spectrum after substitution step with 3,5bis(trifluoromethyl)benzyl bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 30:1) to give a colorless oil. $R_f = 0.06$ (Petroleum). For method A, 38.1 mg (53%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 3H), 2.42 (s, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 141.31, 131.22 (q, ²*J* = 32.8 Hz), 129.1, 124.82 (q, ¹*J* = 271.7 Hz, CF₃), 119.0 (q, ³*J* = 3.8 Hz), 83.97, 24.65.

The NMR spectra are consistent with literature report.¹² CAS registry No. 1854115-27-7

2-[(2-Chloro-4- bromide)methyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. 4-Bromo-1-(bromomethyl)-2-chloro-bromide (56.1 mg, 0.2 mmol), *t*-BuONa (19.1 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.2 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step (77% conversion):

Figure S27. ¹¹B{¹H} NMR spectrum after substitution step with 4-bromo-1-(bromomethyl)-2-chloro-bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.31$ (Petroleum: EtOAc = 25:1). For method A, 33.2 mg (50%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 – 7.46 (m, 1H), 7.28 – 7.25 (m, 1H), 7.10 – 7.08 (m, 1H), 2.33 (s, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.72, 134.71, 131.85, 131.51, 129.79, 118.73, 83.68, 24.69.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.74.

HR-MS (EI) for $C_{13}H_{17}^{11}BO_2^{35}Cl^{81}Br$ [M] m/z [M]⁺: calculated: 332.0173, found: 332.0171

4,4,5,5-Tetramethyl-2-phenethyl-1,3,2-dioxaborolane

Method A are applied. (2-Bromoethyl)benzene (37.5 mg, 0.2 mmol), *t*-BuONa (19.9 mg, 0.2 mmol) and n-Bu₄N(B₆H₇) (1) (63.0 mg, 0.2 mmol) are used for substitution step. For method **A**, the ¹¹B NMR after substitution step (54% conversion):

Figure S28. ¹¹B{¹H} NMR spectrum after substitution step with (2-bromoethyl)benzene. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.6$ (Petroleum: EtOAc = 25:1). For method A, 19.0 mg (41%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.28 – 7.26 (m, 2H), 7.24 – 7.22 (m, 2H), 7.17 – 7.13 (m, 1H), 2.75 (t, *J* = 7.95, 2H), 1.22 (s, 12H), 1.17 – 1.13 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.41, 128.17, 127.99, 125.48, 83.09, 29.93, 24.79. The NMR spectra are consistent with literature report.¹¹ CAS registry No. 165904-22-3

4,4,5,5-Tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane

Method A are applied. 1-Bromo-3-phenylpropane (40.6 mg, 0.2 mmol), *t*-BuONa (19.6 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.6 mg, 0.2 mmol) are used for substitution step. **For method A**, the ¹¹B NMR after substitution step (76% conversion):

Figure S29. ¹¹B{¹H} NMR spectrum after substitution step with 1-bromo-3-phenylpropane. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 40:1) to give a colorless oil. $R_f = 0.6$ (Petroleum: EtOAc = 20:1). For method A, 25.8 mg (52%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.26 (m, 2H), 7.20 – 7.15 (m, 3H), 2.62 (t, *J* = 7.78, 2H), 1.79 – 1.71 (m, 2H), 1.26 (s, 12H), 0.84 (t, *J* = 7.93 Hz, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 142.68, 128.53, 128.15, 125.54, 82.92, 38.58, 26.09, 24.81.

The NMR spectra are consistent with literature report.¹³ CAS registry No. 329685-40-7

11a

2-[4-(1-naphthalenyloxy)butyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. 1-(4-Bromobutoxy)naphthalene (57.4 mg, 0.2 mmol), *t*-BuONa (19.3 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.5 mg, 0.2 mmol) are used for substitution step. For **method A**, the ¹¹B NMR after substitution step (95% conversion):

Figure S30. ${}^{11}B{}^{1}H$ NMR spectrum after substitution step with 1-(4-bromobutoxy)naphthalene.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 40:1) to give a colorless oil. $R_f = 0.59$ (Petroleum: EtOAc = 16:1). For method A, 36.9 mg (57%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.28 (m, 1H), 7.80 – 7.76 (m, 1H), 7.50 – 7.43 (m, 2H), 7.41 – 7.34 (m, 2H), 6.80 – 6.78 (m, 1H), 4.14 (t, *J* = 6.4 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.75 – 1.67 (m, 2H), 1.26 (s, 12H), 0.92 (t, *J* = 7.8 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.88, 134.45, 127.33, 126.24, 125.88, 124.95, 122.19, 119.82, 104.44, 82.99, 67.87, 31.82, 24.81, 20.80.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 34.08.

HR-MS (EI) for C₂₀H₂₇¹¹BO₃ [M] *m/z* [M]⁺: calculated: 326.2053, found: 326.2055

2-(2-(Benzyloxy)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **Method A** are applied. Benzyl 2-bromoethyl ether (44.4 mg, 0.2 mmol), *t*-BuONa (19.8 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (63.3 mg, 0.2 mmol) are used for substitution step. For **method A**, the ¹¹B NMR after substitution step (67% conversion):

Figure S31. ¹¹B{¹H} NMR spectrum after substitution step with benzyl 2-bromoethyl ether. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.2$ (Petroleum: EtOAc = 30:1). For method A, 19.1 mg (36%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.35 – 7.31 (m, 4H), 7.27 – 7.26 (m, 1H), 4.51 (s, 2H), 3.63 (t, *J* = 7.9 Hz, 2H), 1.26 – 1.23(m, 14H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 138.78, 128.26, 127.60, 127.34, 83.15, 72.58, 67.04, 24.80.

The NMR spectra are consistent with literature report.¹⁴ CAS registry No. 137297-51-9

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)butanenitrile

Method D are applied. 3-Bromopropyl cyanide (30.5 mg, 0.2 mmol), *t*-BuONa (19.5 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.7 mg, 0.2 mmol) are used for substitution step. For method **D**, the ¹¹B NMR after substitution step (61% conversion):

Figure S32. ¹¹B{¹H} NMR spectrum after substitution step with 3-bromopropyl cyanide. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 8:1) to give a colorless oil. $R_f = 0.56$ (Petroleum: EtOAc = 4:1). For method A, 19.4 mg (50%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 2.37 (t, J = 7.2 Hz, 2H), 1.82 – 1.74 (m, 2H), 1.24 (s, 12H), 0.94 (t, J = 7.8 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 119.87, 83.35, 24.80, 20.36, 19.15.

The NMR spectra are consistent with literature report.¹⁵ CAS registry No. 2238088-16-9

6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanenitrile

Method A are applied. 6-Bromohexanenitrile (37.2 mg, 0.2 mmol), *t*-BuONa (18.9 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.4 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step (93% conversion):

Figure S33. ¹¹B{¹H} NMR spectrum after substitution step with 6-bromohexanenitrile. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 8:1) to give a colorless oil. $R_f = 0.65$ (Petroleum: EtOAc = 4:1). For method A, 24.2 mg (54%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 2.33 (t, *J* = 7.2 Hz, 2H), 1.67 – 1.62 (m, 2H), 1.47 – 1.43 (m, 4H), 1.25 (s, 12H), 0.81 – 0.77 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 119.86, 83.02, 31.18, 29.68, 25.13, 24.80, 23.11, 17.02. The NMR spectra are consistent with literature report.³ CAS registry No. 1361022-65-2

2-(Cyclohexylmethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method A are applied. Cyclohexylmethyl bromide (35.1 mg, 0.2 mmol), *t*-BuONa (20.1 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.3 mg, 0.2 mmol) are used for substitution step. For **method A**, the ¹¹B NMR after substitution step (74% conversion):

Figure S34. ¹¹B{¹H} NMR spectrum after substitution step with cyclohexylmethyl bromide. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.88$ (Petroleum: EtOAc = 20:1). For method A, 19.3 mg (43%) of product was obtained.

¹H NMR (600 MHz, CDCl₃) δ 1.70 – 1.59 (m, 5H), 1.50 – 1.46 (m, 1H), 1.26 – 1.22(m, 14H), 1.13 – 1.08 (m, 1H), 0.95 – 0.88 (m, 2H), 0.71 (d, *J* = 7.2 Hz, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 82.79, 35.91, 34.19, 26.54, 26.28, 24.82.

The NMR spectra are consistent with literature report.¹⁴ CAS registry No. 123706-53-6

16a

Ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoate

Method A are applied. Ethyl 4-bromobutyrate (40.5 mg, 0.2 mmol), *t*-BuONa (19.1 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.5 mg, 0.2 mmol) are used for substitution step. For method A, the ¹¹B NMR after substitution step (47% conversion):

Figure S35. ¹¹B{¹H} NMR spectrum after substitution step with ethyl 4-bromobutyrate. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.39$ (Petroleum: EtOAc = 16:1). For method A, 11.3 mg (23%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 4.11 (q, *J* = 7.1 Hz, 2H), 2.31 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.71 (m, 2H), 1.27 – 1.23 (m, 15H), 0.82 (t, *J* = 7.9 Hz, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 173.72, 83.04, 60.08, 36.60, 24.80, 19.64, 14.24. The NMR spectra are consistent with literature report.¹⁵ CAS registry No. 1392140-97-4

2-(4-Methoxybenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method B are applied. 4-Methoxybenzylchloride (31.8 mg, 0.2 mmol), *t*-BuONa (19.4 mg, 0.2 mmol) and n-Bu₄N(B₆H₇) (1) (62.5 mg, 0.2 mmol) are used for substitution step. For **method B**, the ¹¹B NMR after substitution step (88% conversion):

Figure S36. ¹¹B{¹H} NMR spectrum after substitution step with 4-methoxybenzylchloride. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.23$ (Petroleum: EtOAc = 25:1). For method A, 25.3 mg (51%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.10 – 7.09 (m, 2H), 6.80 – 6.78 (m, 2H), 3.77 (s, 3H), 2.23 (s, 2H), 1.23 (s, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 157.08, 130.45, 129.78, 113.73, 83.33, 55.18, 24.71. The NMR spectra are consistent with literature report.¹⁵ CAS registry No. 475250-52-3

2-(2,6-difluorobenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method B are applied. 2,6-Difluorobenzyl chloride (33.2 mg, 0.2 mmol), *t*-BuONa (19.8 mg, 0.2 mmol) and n-Bu₄N(B₆H₇) (1) (62.8 mg, 0.2 mmol) are used for substitution step. For **method B**, the ¹¹B NMR after substitution step (85% conversion):

Figure S37. ¹¹B{¹H} NMR spectrum after substitution step with 2,6-difluorobenzyl chloride. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.25$ (Petroleum: EtOAc = 25:1). For method A, 31.9 mg (62%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.09 – 7.04 (m, 1H), 6.84 – 6.79 (m, 2H), 2.23 (s, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.36 (d, ¹*J* = 244.4 Hz), δ 161.3 (d, ¹*J* = 244.8 Hz), 126.09(t, ³*J* = 10.8 Hz), 114.04(t, ²*J* = 21.1 Hz), 110.66(m, ²*J* = 20.5 Hz), 83.68, 24.62. The NMR spectra are consistent with literature report.¹² CAS registry No. 2052955-28-7

2-(4-bromobenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Method B are applied. 4-Bromobenzyl chloride (41.9 mg, 0.2 mmol), *t*-BuONa (19.1 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.1 mg, 0.2 mmol) are used for substitution step. For method **B**, the ¹¹B NMR after substitution step (75% conversion):

Figure S38. ¹¹B{¹H} NMR spectrum after substitution step with 4-bromobenzyl chloride. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.2$ (Petroleum: EtOAc = 25:1). For method A, 25.0 mg (42%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.35 – 7.33 (m, 2H), 7.06 – 7.04 (m, 2H), 2.23 (s, 2H), 1.23 (s, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 137.68, 131.22, 130.71, 118.54, 83.55, 24.69. The NMR spectra are consistent with literature report.³ CAS registry No. 477841-90-0

20a

1-Piperidinecarboxylic acid, 4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-,1,1-di methylethyl ester

Method C are applied. N-tert-butoxycarbonyl-4-[2-(4-toluenesulfonyloxy)ethyl] (76.8 mg, 0.2 mmol), *t*-BuONa (19.2 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.8 mg, 0.2 mmol) are used for substitution step. **For method C**, the ¹¹B NMR after substitution step (83% conversion):

Figure S39. ¹¹B{¹H} NMR spectrum after substitution step with N-tert-butoxycarbonyl-4-[2-(4-toluenesulfonyloxy)ethyl].

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 10:1) to give a colorless oil. $R_f = 0.45$ (Petroleum: EtOAc = 10:1). For method A, 27.1 mg (40%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 4.05 (s, 2H), 2.67 – 2.61 (m, 2H), 1.72 – 1.59 (m, 3H), 1.44 (s, 9H), 1.37 – 1.32 (m, 2H), 1.24 (s, 12H), 1.08 – 0.98 (m, 2H), 0.78 – 0.74 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.92, 82.94, 79.07, 44.01, 38.18, 31.77, 30.43, 28.44, 24.77.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 34.21.

HR-MS (EI) for C₁₈H₃₄¹¹BNO₄ [M] *m/z* [M]⁺: calculated: 339.2581, found: 339.2583

1-Boc-pyrrolidine-3-boronic acid pinacol ester

Method C are applied. 1-Boc-3-tosyloxypyrrolidine (69.0 mg, 0.2 mmol), *t*-BuONa (19.2 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.2 mg, 0.2 mmol) are used for substitution step. For **method C**, the ¹¹B NMR after substitution step (64% conversion):

Figure S40. ¹¹B{¹H} NMR spectrum after substitution step with 1-Boc-3-tosyloxypyrrolidine. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 7:1) to give a colorless oil. $R_f = 0.51$ (Petroleum: EtOAc = 7:1). For method A, 21.8 mg (37%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 3.54 – 3.45 (m, 2H), 3.22 – 3.15 (m, 2H), 2.02 – 1.95 (m, 1H), 1.82 – 1.72 (m, 1H), 1.57 – 1.52 (m, 1H), 1.45 (s, 9H), 1.24 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.57, 83.45, 78.83, 47.90, 46.61, 28.57, 24.72. The NMR spectra are consistent with literature report.¹⁶ CAS registry No. 1312712-22-3

2-benzyl-4,4,5,5-tetraethyl-1,3,2-dioxaborolane

Method E are applied. Benzyl bromide (35.3 mg, 0.2 mmol), *t*-BuONa (19.2 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.7 mg, 0.2 mmol) are used for substitution step. For method E, the ¹¹B NMR after substitution step (86% conversion):

Figure S41. ¹¹B{¹H} NMR spectrum after substitution step with benzyl bromide. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 40:1) to give a colorless oil. $R_f = 0.7$ (Petroleum: EtOAc = 20:1). For method E, 33.8 mg (71%) of product was obtained.

¹**H NMR (600 MHz, CDCl₃)** δ 7.24 – 7.19 (m, 4H), 7.13 – 7.09 (m, 1H), 2.30 (s, 2H), 1.69 – 1.59 (m, 8H), 0.87 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 139.03, 129.00, 128.07, 124.63, 88.41, 26.26, 8.72. ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.48.

HR-MS (EI) for C₁₇H₂₇¹¹BO₂ [M] *m/z* [M]⁺: calculated: 274.2104, found: 274.2106

2-(3,5-di-tert-butylbenzyl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane

Method E are applied. 3,5-Bis(1,1-dimethylethyl)phenyl]methyl bromide (56.1 mg, 0.2 mmol), *t*-BuONa (18.9 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.5 mg, 0.2 mmol) are used for substitution step. For method E, the ¹¹B NMR after substitution step (84% conversion):

Figure S42. ¹¹B{¹H} NMR spectrum after substitution step with 3,5-bis(1,1-dimethylethyl)phenyl]methyl bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.66$ (Petroleum: EtOAc = 20:1). For method E, 49.0 mg (63%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.17 – 7.16 (m, 1H), 7.07 – 7.06 (m, 2H), 2.30 (s, 2H), 1.71 – 1.58 (m, 8H), 1.31 (s, 18H), 0.89 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.17, 137.64, 123.42, 118.60, 88.29, 34.68, 31.49, 26.26, 8.76.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.66.

HR-MS (EI) for C₂₅H₄₃¹¹BO₂ [M] *m/z* [M]⁺: calculated: 386.3356, found: 386.3359

2-(3,5-dimethoxybenzyl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane

Method E are applied. 3,5-Dimethoxybenzyl bromide (48.5 mg, 0.2 mmol), *t*-BuONa (18.5 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (61.9 mg, 0.2 mmol) are used for substitution step. For **method E**, the ¹¹B NMR after substitution step (72% conversion):

Figure S43. ¹¹B{¹H} NMR spectrum after substitution step with 3,5-dimethoxybenzyl bromide.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 25:1) to give a colorless oil. $R_f = 0.45$ (Petroleum: EtOAc = 25:1). For method E, 49.0 mg (63%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 6.38 – 6.37 (m, 2H), 6.25 – 6.24 (m, 1H), 3.76 (s, 6H), 2.25 (s, 2H), 1.71 – 1.57 (m, 8H), 0.88 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 160.48, 141.31, 107.02, 97.28, 88.46, 55.17, 26.25, 8.75. ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.36.

HR-MS (EI) for C₁₉H₃₁¹¹BO₄ [M] *m/z* [M]⁺: calculated: 334.2315, found: 334.2319

4,4,5,5-tetraethyl-2-(4-((trifluoromethyl)thio)benzyl)-1,3,2-dioxaborolane **Method F** are applied. 1-Bromomethyl-4-trifluoromethylsulfanylbenzene (54.8 mg, 0.2 mmol), *t*-BuONa (21.4 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (63.2 mg, 0.2 mmol) are used for substitution step. **For method F**, the ¹¹B NMR after substitution step (66% conversion):

Figure S44. ¹¹B{¹H} NMR spectrum after substitution step with 1-bromomethyl-4-trifluoromethylsulfanylbenzene.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: DCM = 10:1) to give a colorless oil. $R_f = 0.88$ (Petroleum: EtOAc = 20:1). For method F, 40.4 mg (53%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 – 7.49 (m, 2H), 7.25 – 7.23 (m, 2H), 2.33 (s, 2H), 1.70 – 1.56 (m, 8H), 0.86 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 142.92, 136.28, 130.13,129.69(q, ¹*J* = 307.4 Hz, CF₃), 119.95(q, ³*J* = 2.2 Hz), 88.71, 29.70, 26.26, 8.68.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -43.31.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.30.

HR-MS (EI) for C₁₈H₂₆¹¹BF₃O₂S [M] *m*/*z* [M]⁺: calculated: 374.1699, found: 374.1697

4,4,5,5-tetraethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane

Method E are applied. 1-Bromo-3-phenylpropane (41.0 mg, 0.2 mmol), *t*-BuONa (19.4 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (61.7 mg, 0.2 mmol) are used for substitution step. For **method E**, the ¹¹B NMR after substitution step (77% conversion):

Figure S45. ¹¹B{¹H} NMR spectrum after substitution step with1-bromo-3-phenylpropane. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.7$ (Petroleum: EtOAc = 20:1). For method E, 34.2 mg (57%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.24 (m, 2H), 7.20 – 7.14 (m, 3H), 2.64 – 2.60 (m, 2H), 1.78 – 1.71 (m, 2H), 1.71 – 1.59 (m, 8H), 0.92 (t, *J* = 7.5 Hz, 12H), 0.84 (t, *J* = 7.7 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.87, 128.54, 128.14, 125.51, 87.94, 38.63, 26. 36, 8.80.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.51.

HR-MS (EI) for C₁₉H₃₁¹¹BO₂ [M] *m/z* [M]⁺: calculated: 302.2417, found: 302.2419

4,4,5,5-tetraethyl-2-(4-(naphthalen-2-yloxy)butyl)-1,3,2-dioxaborolane **Method E** are applied. 2-(4-Bromobutoxy)naphthalene (57.1 mg, 0.2 mmol), *t*-BuONa (20.7 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.9 mg, 0.2 mmol) are used for substitution step. For **method E**, the ¹¹B NMR after substitution step (76% conversion):

Figure S46. ¹¹B{¹H} NMR spectrum after substitution step with 2-(4-bromobutoxy)naphthalene.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.8$ (Petroleum: EtOAc = 20:1). For method E, 49.1 mg (64%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 – 7.70 (m, 3H), 7.45 – 7.40 (m, 1H), 7.34 – 7.30 (m, 1H), 7.16 – 7.12 (m, 2H), 4.08 (t, *J* = 6.6 Hz, 2H), 1.90 – 1.86 (m, 2H), 1.72 – 1.60 (m, 10H), 0.94 – 0.87 (m, 14H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.12, 134.61, 129.20, 128.81, 127.58, 126.66, 126.19, 123.35, 119.08, 106.49, 88.00, 67.83, 31.76, 26.36, 20.81, 8.80.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.49.

HR-MS (EI) for C₂₄H₃₅¹¹BO₃ [M] *m/z* [M]⁺: calculated: 382.2679, found: 382.2675

2-(2-(benzyloxy)ethyl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane

Method E are applied. Benzyl 2-bromoethyl ether (43.7 mg, 0.2 mmol), *t*-BuONa (19.0 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (61.2 mg, 0.2 mmol) are used for substitution step. For **method E**, the ¹¹B NMR after substitution step (66% conversion):

Figure S47. ¹¹B{¹H} NMR spectrum after substitution step with benzyl 2-bromoethyl ether. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 30:1) to give a colorless oil. $R_f = 0.23$ (Petroleum: EtOAc = 30:1). For method E, 24.9 mg (40%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 4H), 7.28 – 7.24 (m, 1H), 4.50 (s, 2H), 3.64 (t, J = 7.9 Hz, 2H), 1.72 – 1.58 (m, 8H), 1.26 – 1.22 (m, 2H), 0.90 (t, J = 7.5 Hz, 12H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.83, 128.23, 127.55, 127.29, 88.17, 72.52, 67.30, 26.32, 8.76.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.79.

HR-MS (EI) for C₁₉H₃₁¹¹BO₃ [M] *m/z* [M]⁺: calculated: 318.2366 found: 318.2364

methyl 5-(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)pentanoate

Method F are applied. 5-Bromo-pentanoicacimethylester (38.2 mg, 0.2 mmol), *t*-BuONa (20.1 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.3 mg, 0.2 mmol) are used for substitution step. **For method F**, the ¹¹B NMR after substitution step (46% conversion):

Figure S48. ¹¹B{¹H} NMR spectrum after substitution step with 5-bromopentanoicacimethylester.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.47$ (Petroleum: EtOAc =20:1). For method F, 24.5 mg (41%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 2.30 (t, J = 7.6 Hz, 2H), 1.70 – 1.57 (m, 10H), 1.47 – 1.40 (m, 2H), 0.90 (t, J = 7.5 Hz, 12H), 0.79 (t, J = 7.9 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.34, 87.98, 51.39, 33.98, 27.57, 26.38, 26.35, 23.80, 8.77.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.53.

HR-MS (EI) for C₁₄H₂₆¹¹BO₄ [M] *m/z* [M-CH₂CH₃]⁺: calculated: 269.1924, found: 269.1921

tert-butyl 15-(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)pentadecanoate

Method F are applied. Tert-butyl 15-bromopentadecanoate (76.0 mg, 0.2 mmol), t-BuONa (20.0 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (62.8 mg, 0.2 mmol) are used for substitution step. For method F, the ¹¹B NMR after substitution step (64% conversion):

Figure S49. ¹¹B{¹H} NMR spectrum after substitution step with *tert*-butyl 15-bromopentadecanoate.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: DCM = 5:1) to give a colorless oil. $R_f = 0.33$ (Petroleum: DCM = 5:1). For method F, 37.0 mg (38%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 2.19 (t, J = 7.5 Hz, 2H), 1.70 – 1.61 (m, 8H), 1.58 – 1.53 (m, 2H), 1.44 (s, 9H), 1.42 – 1.37 (m, 2H), 1.28 – 1.24 (m, 20H), 0.90 (t, J = 7.5 Hz, 12H), 0.76 (t, J = 7.7 Hz, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 173.37, 87.81, 79.86, 35.63, 32.45, 29.66, 29.60, 29.48, 29.45, 29.30, 29.09, 28.10, 26.34, 25.12, 24.21, 8.79.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 31.12.

HR-MS (ESI) for C₂₉H₅₇¹¹BO₄Na [M] *m*/*z* [M+Na]⁺: calculated: 503.4248, found: 503.4245

tert-butyl 2-(2-(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)ethoxy)acetate

Method I are applied. *Tert*-butyl 2-(2-bromoethoxy)acetate (48.3 mg, 0.2 mmol), *t*-BuONa (32.4 mg, 0.3 mmol) and *n*-Bu₄N(B_6H_7) (1) (92.6 mg, 0.3 mmol) are used for substitution step. **For method I**, the ¹¹B NMR after substitution step (52% conversion):

Figure S50. ¹¹B{¹H} NMR spectrum after substitution step with *tert*-butyl 2-(2-bromoethoxy)acetate.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 20:1) to give a colorless oil. $R_f = 0.5$ (Petroleum: EtOAc = 10:1). For method I, 31.5 mg (45%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 3.94 (s, 2H), 3.65 (t, *J* = 8.2 Hz, 2H), 1.71 – 1.64 (m, 8H), 1.47 (s, 9H), 1.24 (t, *J* = 8.2 Hz, 2H), 0.89 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.90, 88.21, 81.31, 81.29, 68.48, 68.46, 28.10, 26.31, 8.76.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.61.

HR-MS (ESI) for C₁₈H₃₅¹¹BO₅Na [M] *m/z* [M+Na]⁺: calculated: 365.2475, found: 365.2477

1,4-bis(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)butane

Method G are applied. 1,4-Dibromobutane (43.7 mg, 0.2 mmol), *t*-BuONa (38.3 mg, 0.4 mmol) and *n*-Bu₄N(B₆H₇) (1) (124.1 mg, 0.4 mmol) are used for substitution step. For **method G**, the ¹¹B NMR after substitution step (>90% conversion):

Figure S51. ¹¹B{¹H} NMR spectrum after substitution step with 1,4-dibromobutane. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.7$ (Petroleum: EtOAc = 20:1). For method G, 46.4 mg (54%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 1.71 – 1.60 (m, 16H), 1.43 – 1.39 (m, 4H), 0.90 (t, *J* = 7.4 Hz, 24H), 0.78 – 0.74 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 87.77, 27.04, 26.35, 8.79.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.68.

HR-MS (EI) for C₂₂H₄₃¹¹B₂O₄ [M] *m*/*z* [M-CH₂CH₃]⁺: calculated: 393.3347, found: 393.3345

4,4,5,5-tetraethyl-2-(4-fluorobutyl)-1,3,2-dioxaborolane

Method G are applied. 1-Bromo-4-fluorobutane (32.0 mg, 0.2 mmol), *t*-BuONa (40.4 mg, 0.4 mmol) and *n*-Bu₄N(B₆H₇) (1) (123.3 mg, 0.4 mmol) are used for substitution step. For **method G**, the ¹¹B NMR after substitution step (95% conversion):

Figure S52. ¹¹B{¹H} NMR spectrum after substitution step with 1-bromo-4-fluorobutane. The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.49$ (Petroleum: EtOAc = 38:1). For method G, 30.5 mg (57%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 4.49 (t, *J* = 6.2 Hz, 1H), 4.37 (t, *J* = 6.2 Hz, 1H), 1.77 – 1.59 (m, 10H), 1.55 – 1.48 (m, 2H), 0.90 (t, *J* = 7.5 Hz, 12H), 0.81 (t, *J* = 7.9 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 87.99, 84.04 (d, ¹J = 162.5 Hz), 32.86 (d, ²J = 19.5 Hz), 26.35, 19.80 (d, ³J = 5.7 Hz), 8.76.

¹⁹F{¹H} NMR (**376** MHz, CDCl₃) δ -218.22.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.34.

HR-MS (EI) for C₁₄H₂₈¹¹BFO₂ [M] *m*/*z* [M]⁺: calculated: 258.2166 found: 258.2168

4,4,5,5-tetraethyl-2-(2-(thiophen-3-yl)ethyl)-1,3,2-dioxaborolane

Method E are applied. 2-(Thiophen-3-yl)ethyl 4-methylbenzenesulfonate (57.1 mg, 0.2 mmol), *t*-BuONa (18.9 mg, 0.2 mmol) and *n*-Bu₄N(B₆H₇) (1) (61.6 mg, 0.2 mmol) are used for substitution step. For method E, the ¹¹B NMR after substitution step (70% conversion):

Figure S53. ¹¹B{¹H} NMR spectrum after substitution step with 2-(thiophen-3-yl)ethyl 4methylbenzenesulfonate.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 120:1) to give a colorless oil. $R_f = 0.14$ (Petroleum: Diethyl ether = 120:1). For method E, 23.9 mg (41%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.20 (m, 1H), 6.97 – 6.95 (m, 1H), 6.95 – 6.93 (m, 1H), 2.76 (t, 2H), 1.69 – 1.56 (m, 8H), 1.17 (t, *J* = 7.2 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 12H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.02, 128.17, 124.87, 119.27, 88.12, 26.30, 24.66, 8.75.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.23.

HR-MS (EI) for $C_{16}H_{27}^{11}BO_2S$ [M] m/z [M]⁺: calculated: 294.1825 found: 294.1822

4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)ethyl)-1,3,2-dioxaborolane

Method C are applied. 2-(Thiophen-3-yl)ethyl 4-methylbenzenesulfonate (57.5 mg, 0.2 mmol), t-BuONa (19.3 mg, 0.2 mmol) and n-Bu₄N(B₆H₇) (1) (62.6 mg, 0.2 mmol) are used for substitution step. For method C, the ¹¹B NMR after substitution step (70% conversion):

Figure S54. ¹¹B{¹H} NMR spectrum after substitution step with 2-(thiophen-3-yl)ethyl 4methylbenzenesulfonate.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: Diethyl ether = 80:1) to give a colorless oil. $R_f = 0.78$ (Petroleum: EtOAc = 16:1). For method A, 9.3 mg (19%) of product was obtained.

¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 4.9, 3.0 Hz, 1H), 6.97 – 6.93 (m, 2H), 2.76 (t, J= 8.0 Hz, 2H), 1.22 (s, 12H), 1.17 – 1.13 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.86, 128.18, 124.95, 119.40, 83.10, 24.78, 24.52. The NMR spectra are consistent with literature report.¹⁷ CAS registry No. 280563-56-6

4,4,5,5-tetraethyl-2-(4-phenylbutan-2-yl)-1,3,2-dioxaborolane

Method H are applied. 4-Phenylbutan-2-yl 4-methylbenzenesulfonate (61.2 mg, 0.2 mmol), t-BuONa (28.6 mg, 0.3 mmol) and n-Bu₄N(B₆H₇) (1) (95.0 mg, 0.3 mmol) are used for substitution step. For method H, the ¹¹B NMR after substitution step (65% conversion):

Figure S55. ¹¹B{¹H} NMR spectrum after substitution step with 4-phenylbutan-2-yl 4-methylbenzenesulfonate.

The title compound after the bulk electrolysis was purified by flash column chromatography (silica gel, Petroleum: EtOAc = 60:1) to give a colorless oil. $R_f = 0.76$ (Petroleum: EtOAc = 30:1). For method H, 28.9 mg (47%) of product was obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 – 7.25 (m, 2H), 7.20 – 7.14 (m, 3H), 2.63 (t, *J* = 8.2 Hz, 2H), 1.82 – 1.73 (m, 1H), 1.73 – 1.61 (m, 8H), 1.59 – 1.54 (m, 1H), 1.10 – 1.06 (m, 1H), 1.05 – 1.00 (m, 3H), 0.94 – 0.90 (m, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 143.30, 128.43, 128.17, 125.44, 87.87, 35.52, 35.32, 26.31, 26.26, 15.78, 8.81, 8.77.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.96.

HR-MS (EI) for C₂₀H₃₃¹¹BO₂ [M] *m/z* [M]⁺: calculated: 316.2574 found: 316.2576

8. Substitutions of chiral electrophiles, electrochemical deconstruction procedures and characterization data

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, *n*-Bu₄N(B₆H₇) (1) (124.8 mg, 0.4 mmol, 2 equiv), and *t*-BuONa (37.8 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*R*)-4-phenylbutan-2-yl 4-methylbenzenesulfonate (60.9 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. he mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 89%.

Figure S56. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with (*R*)-4-phenylbutan-2-yl 4-methylbenzenesulfonate.

Electrolysis set up 1(IKA: ElectraSyn 2.0) is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (279.6mg, 1.6 mmol, 8 equiv), MgSO₄(290.2 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (114.3 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the product (23.9 mg, $[\alpha]_D^{22.8} = -0.6$ (c = 0.1, CHCl₃)) in 46% yield. R_f= 0.64 (Petroleum: EtOAc = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.25 (m, 2H), 7.22 – 7.14 (m, 3H), 2.63 (t, *J* = 8.2 Hz, 2H), 1.84 – 1.73 (m, 1H), 1.73 – 1.61 (m, 8H), 1.55 – 1.53 (m, 1H), 1.13 – 1.05 (m, 1H), 1.03 – 1.01 (m, 3H), 0.95 – 0.90 (m, 12H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 143.23, 128.43, 128.17, 125.44, 87.87, 35.52, 35.32, 26.31, 26.26, 15.78, 8.81, 8.77.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.94.

HR-MS (EI) for C₂₀H₃₃¹¹BO₂ [M] *m/z* [M]⁺: calculated: 316.2574 found: 316.2576

(*S*)-4,4,5,5-tetraethyl-2-(4-phenylbutan-2-yl)-1,3,2-dioxaborolane (29.4 mg, 0.09 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (22.5 mg, 0.2 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (Petroleum: EtOAc =5:1) afforded a colorless oil (10.7 mg, 77%, 94:6 *e.r.*). The *e.r.* was determined on HPLC system with IB column (5% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S58): $t_1 = 6.976$ min (major), $t_2 = 9.177$ min (minor).

Figure S57. HPLC trace of 4-phenylbutan-2-ol

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.231	232369	12210839	50.955
2	9.491	273592	11753162	49.045
total		505961	23964001	100.000

 Table S19. HPLC trace of 4-phenylbutan-2-ol

Figure S58. HPLC trace of (S)-4-phenylbutan-2-ol

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	6.976	4327	202089	5.910
2	9.177	86098	3217454	94.090
total		90426	3419543	100.000

 Table S20. HPLC trace of (S)-4-phenylbutan-2-ol

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (128.7 mg, 0.4 mmol, 2 equiv), and t-BuONa (38.9 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-phenoxybutan-2-yl 4-methylbenzenesulfonate (67.0 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 91%.

Figure S59. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with (*S*)-4-phenoxybutan-2-yl 4-methylbenzenesulfonate

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (291.1 mg, 1.6 mmol, 8 equiv), MgSO₄ (284.9 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (117.1 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the

crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afforded the product (38.8 mg, $[\alpha]_D^{22.8} = -4.8$ (c = 0.8, CHCl₃)) in 56% yield. R_f = 0.7 Petroleum: EtOAc = 20:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 – 7.24 (m, 2H), 6.93 – 6.89 (m, 3H), 4.10 – 3.96 (m, 2H), 2.02 – 1.93 (m, 1H), 1.80 – 1.70 (m, 1H), 1.70 – 1.58 (m, 8H), 1.29 – 1.19 (m, 1H), 1.08 (d, *J* = 7.5 Hz, 3H), 0.88 (td, *J* = 7.5, 2.6 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.19, 129.31, 120.28, 114.56, 88.02, 67.28, 32.51, 26.29, 26.24, 15.79, 8.77, 8.75.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.76.

HR-MS (EI) for $C_{20}H_{33}^{11}BO_3$ [M] m/z [M]⁺: calculated: 332.2523 found: 332.2520

(*R*)-4,4,5,5-tetraethyl-2-(4-phenoxybutan-2-yl)-1,3,2-dioxaborolane (38.8 mg, 0.12 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (23.9 mg, 0.24 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 4:1) afforded a colorless oil (15.7 mg, 80%, 93:7 *e.r.*). The *e.r.* was determined on HPLC system with AD column (5% EtOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S61): $t_1 = 10.294$ min (minor), $t_2 = 11.436$ min (major).

Figure S60. HPLC trace of 4-phenoxybutan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	10.251	1746984	31917745	49.782
2	11.417	1637483	32197411	50.218
total		3384466	64115156	100.000

Table S21. HPLC trace of 4-phenoxybutan-2-ol.

Figure S61. HPLC trace of (*R*)-4-phenoxybutan-2-ol

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	10.294	139394	2465324	7.151
2	11.436	1643408	32010931	92.849
total		1782802	34476255	100.000

 Table S22. HPLC trace of (R)-4-phenoxybutan-2-ol

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, *n*-Bu₄N(B₆H₇) (1) (121.0 mg, 0.4 mmol, 2 equiv), and *t*-BuONa (40.2 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate (80.2 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. T The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 90%.

Figure S62. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with ((*S*)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (271.3 mg, 1.6 mmol, 8 equiv), MgSO₄ (295.8 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (114.6 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the

solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the product (35.5 mg, $[\alpha]_D^{22.4} = -1.4$ (c = 0.2, CHCl₃)) in 43% yield. R_f = 0.42(Petroleum: EtOAc = 20:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.35 – 7.33 (m, 2H), 6.82 – 6.75 (m, 2H), 4.02 – 3.91 (m, 2H), 1.99 – 1.90 (m, 1H), 1.78 – 1.70 (m, 1H), 1.68 – 1.57 (m, 8H), 1.26 – 1.18 (m, 1H), 1.04 (d, *J* = 7.5 Hz, 3H), 0.92 – 0.88 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.32, 132.10, 116.37, 112.38, 88.07, 67.68, 32.36, 26.30, 26.24, 15.81, 8.77, 8.74.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.74.

HR-MS (EI) for C₂₀H₃₂¹¹BO₃⁷⁹Br [M] *m/z* [M]⁺: calculated: 410.1628 found: 410.1631

33b

(*R*)-2-(4-(4-bromophenoxy)butan-2-yl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane (32.3 mg, 0.07 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (19.4 mg, 0.16 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 4:1) afforded a colorless oil (10.4 mg, 54%, 93:7 *e.r.*). The *e.r.* was determined on HPLC system with AS column (10% EtOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S64): $t_1 = 7.119$ min (minor), $t_2 = 12.463$ min (major).

Figure S63. HPLC trace of 4-(4-bromophenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.106	1346073	25409184	49.017
2	12.544	748609	26427912	50.983
total		2094682	51837096	100.000

 Table S23. HPLC trace of standard 4-(4-bromophenoxy)butan-2-ol.

Figure S64. HPLC trace of (*R*)-4-(4-bromophenoxy)butan-2-ol

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.119	112741	1792121	6.878
2	12.463	731923	24262311	93.122
total		844664	26054431	100.000

Table S24. HPLC trace of (*R*)-4-(4-bromophenoxy)butan-2-ol

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (125.5 mg, 0.4 mmol, 2 equiv), and t-BuONa (38.5 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-(4-(tert-butyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate (75.7 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 83%.

Figure S65. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with (*S*)-4-(4-(tertbutyl)phenoxy)butan-2-yl 4-methylbenzenesulfonate

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (281.9 mg, 1.6 mmol, 8 equiv), MgSO₄ (289.2 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (117.3 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N_2 three times. Dry MeCN (1.5 mL) was added. Then the solution of the

crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the product (35.9 mg, $[\alpha]_D^{22.3} = -2.3$ (c = 0.4, CHCl₃)) in 46% yield. R_f = 0.65 (Petroleum: EtOAc = 20:1).

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H), 6.86 – 6.82 (m, 2H), 4.02 – 3.93 (m, 2H), 1.99 – 1.94 (m, 1H), 1.76 – 1.59 (m, 9H), 1.29 (s, 9H), 1.04 (d, *J* = 7.5 Hz, 3H), 0.90 (td, *J* = 7.5, 2.6 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.92, 142.89, 126.08, 113.95, 88.00, 67.29, 34.00, 32.56, 31.53, 26.27, 26.22, 15.76, 8.79, 8.76.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.67.

HR-MS (EI) for C₂₄H₄₁¹¹BO₃ [M] *m/z* [M]⁺: calculated: 388.3149 found: 388.3147

(*R*)-2-(4-(4-(tert-butyl)phenoxy)butan-2-yl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane (29.3 mg, 0.08 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (17.3 mg, 0.16 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 4:1) afforded a colorless oil (9.0 mg, 54%, 94:6 *e.r.*). The *e.r.* was determined on HPLC system with OJ column (5% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S67): $t_1 = 12.377$ min (major), $t_2 = 13.382$ min (minor).

Figure S66. HPLC trace of 4-(4-(tert-butyl)phenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	12.107	2161789	47049753	48.901
2	13.008	1622788	49164206	51.099
total		3784577	96213959	100.000

 Table S25. HPLC trace of 4-(4-(tert-butyl)phenoxy)butan-2-ol.

Figure S67. HPLC trace of (*R*)-4-(4-(tert-butyl)phenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	12.377	1146004	16131538	93.638
2	13.382	47711	1096041	6.362
total		1193715	17227579	100.000

 Table S26. HPLC trace of (R)-4-(4-(tert-butyl)phenoxy)butan-2-ol.

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (125.1 mg, 0.4 mmol, 2 equiv), and *t*-BuONa (39.6 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of benzyl (*S*)-4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate (69.9 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 90%.

Figure S68. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with benzyl (*S*)-4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate.

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.9 mg, 1.6 mmol, 8 equiv), MgSO₄ (289.5 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (117.6 mg, 0.3 mmol, 0.1 M) were added. The cell

was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 100:1) to afford the product (46.0 mg, $[\alpha]_D^{21.7} = -3.2$ (c = 0.4, CHCl₃)) in 63% yield. R_f = 0.75 (Petroleum: EtOAc = 20:1).

35b

¹**H NMR (400 MHz, CDCl₃)** δ 6.94 – 6.90 (m, 2H), 6.73 (d, *J* = 8.1 Hz, 1H), 4.01 – 3.94 (m, 2H), 2.25 (s, 3H), 2.19 (s, 3H), 2.00 – 1.95 (m, 1H), 1.78 – 1.74 (m, 1H), 1.70 – 1.59 (m, 8H), 1.28 – 1.24 (m, 1H), 1.05 (d, *J* = 7.5 Hz, 3H), 0.92 – 0.88 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.19, 131.32, 129.05, 126.76, 126.69, 111.23, 87.98, 67.58, 32.59, 26.29, 26.23, 20.42, 16.18, 15.78, 8.79, 8.74.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.81.

HR-MS (EI) for C₂₂H₃₇¹¹BO₃ [M] *m/z* [M]⁺: calculated: 360.2836 found: 360.2834

(*R*)-2-(4-(2,4-dimethylphenoxy)butan-2-yl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane (21.8 mg, 0.06 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (13.2 mg, 0.12 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 4:1) afford a colorless oil (9.2 mg, 78%, 94:6 *e.r.*). The *e.r.* was determined on HPLC system with AD column (5% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S70): $t_1 = 8.360$ min (minor), $t_2 = 8.938$ min (major).

Figure S69. HPLC trace of 4-(2,4-dimethylphenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.385	620118	9754192	50.112
2	8.973	648124	9710696	49.888
total		1268242	19464888	100.000

Table S27. HPLC trace of 4-(2,4-dimethylphenoxy)butan-2-ol.

Figure S70. HPLC trace of (*R*)-4-(2,4-dimethylphenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	8.360	51405	800493	5.979
2	8.938	837283	12587903	94.021
total		888688	13388396	100.000

Table S28. HPLC trace of (*R*)-4-(2,4-dimethylphenoxy)butan-2-ol.

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (120.1 mg, 0.4 mmol, 2 equiv), and t-BuONa (39.1 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate (69.8 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 98%.

Figure S71. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with (*S*)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (276.6 mg, 1.6 mmol, 8 equiv), MgSO₄ (289.6 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (121.8 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the

solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the product (48.5 mg, $[\alpha]_D^{22.0} = -2.3$ (c = 0.4, CHCl₃)) in 67% yield. R_f = 0.54 (Petroleum: EtOAc = 20:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 – 7.14 (m, 1H), 6.52 – 6.46 (m, 3H), 4.01 – 3.96 (m, 2H), 3.78 (s, 3H), 1.97 – 1.95 (m, 1H), 1.77 – 1.71(m, 1H), 1.71 – 1.59 (m, 8H), 1.26 – 1.22 (m, 1H), 1.04 (d, *J* = 7.5 Hz, 3H), 0.94 – 0.88 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.74, 160.48, 129.72, 106.69, 106.02, 100.93, 88.02, 67.37, 55.21, 32.47, 26.28, 26.22, 15.77, 8.78, 8.75.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.74.

HR-MS (EI) for C₂₁H₃₅¹¹BO₄ [M] *m/z* [M]⁺: calculated: 362.2628 found: 362.2630

(*R*)-4,4,5,5-tetraethyl-2-(4-(3-methoxyphenoxy)butan-2-yl)-1,3,2-dioxaborolane (48.5 mg, 0.14 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (28.2 mg, 0.28 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 4:1) afforded a colorless oil (17.2 mg, 67%, 93:7 *e.r.*). The *e.r.* was determined on HPLC system with AD column (5% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S73): $t_1 = 12.964$ min (minor), $t_2 = 15.152$ min (major).

Figure S72. HPLC trace of 4-(3-methoxyphenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	13.088	191291	3450438	49.944
2	15.277	167519	3458219	50.056
total		358811	6908657	100.000

 Table S29. HPLC trace of 4-(3-methoxyphenoxy)butan-2-ol.

Figure S73. HPLC trace of (*R*)-4-(3-methoxyphenoxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	12.964	1691	32335	6.202
2	15.152	23455	489055	93.798
total		25146	521390	100.000

Table S30. HPLC trace of (R)-4-(3-methoxyphenoxy)butan-2-ol.

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (125.3 mg, 0.4 mmol, 2 equiv), and t-BuONa (39.4 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-((tert-butyldiphenylsilyl)oxy)butan-2-yl 4-methylbenzenesulfonate (95.2 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 72%.

Figure S74. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with (*S*)-4-((tertbutyldiphenylsilyl)oxy)butan-2-yl 4-methylbenzenesulfonate

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (278.4 mg, 1.6 mmol, 8 equiv), MgSO₄ (294.5 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (127.1 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5

mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the product (47.7 mg, $[\alpha]_D^{22.2} = -2.4$ (c = 0.4, CHCl₃)) in 45% yield. R_f = 0.14(Petroleum: EtOAc = 40:1).

37b

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.66 (m, 4H), 7.43 – 7.34 (m, 6H), 3.72 – 3.67 (m, 2H), 1.82 – 1.78 (m, 1H), 1.63 – 1.52 (m, 9H), 1.20 – 1.14 (m, 1H), 1.04 (s, 9H), 0.95 (d, J = 7.5 Hz, 3H), 0.86 (t, J = 7.5 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.55, 134.30, 129.37, 127.50, 87.78, 63.38, 35.97, 29.70, 26.87, 26.26, 26.20, 19.21, 15.73, 8.77, 8.71.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.83.

HR-MS (EI) for C₂₈H₄₂¹¹BO₃Si [M] *m/z* [M-CH₂CH₃]⁺: calculated: 465.2996, found: 465.2992

(*R*)-tert-butyldiphenyl(3-(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)butoxy)silane (47.7 mg, 0.1 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (21.1 mg, 0.2 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 8:1) afforded a colorless oil (13.5 mg, 43%, 92:8 *e.r.*). The *e.r.* was determined on HPLC system with IB column (1% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S76): t_1 = 7.267 min (minor), t_2 = 9.600 min (major).

Figure S75. HPLC trace of 4-((tert-butyldiphenylsilyl)oxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.453	903338	54406623	49.765
2	10.241	833728	54920967	50.235
total		1737066	109327590	100.000

Table S31. HPLC trace of 4-((tert-butyldiphenylsilyl)oxy)butan-2-ol.

Figure S76. HPLC trace of (*R*)-4-((tert-butyldiphenylsilyl)oxy)butan-2-ol.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.267	81614	5311046	7.983
2	9.600	892271	61222397	92.017
total		973884	66533442	100.000

Table S32. HPLC trace of (*R*)-4-((tert-butyldiphenylsilyl)oxy)butan-2-ol.

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (92.6 mg, 0.3 mmol, 1.5 equiv), and *t*-BuONa (29.5 mg, 0.3 mmol, 1.5 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of benzyl (*R*)-3-(tosyloxy)pyrrolidine-1-carboxylate (75.3 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined as 76%.

Figure S77. ¹¹B $\{^{1}H\}$ NMR spectrum after substitution step with benzyl (*R*)-3- (tosyloxy)pyrrolidine-1-carboxylate.

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (279.5 mg, 1.6 mmol, 8 equiv), MgSO₄ (287.3 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (115.8 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated

and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: EtOAc= 15:1) to afford the product (46.9 mg, $[\alpha]_D^{21.4} = -3.5$ (c = 0.4, CHCl₃)) in 60% yield. R_f = 0.29 (Petroleum: EtOAc = 8:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.28 (m, 5H), 5.17 – 5.09 (m, 2H), 3.63 – 3.52 (m, 2H), 3.35 – 3.25 (m, 2H), 2.04 – 1.98 (m, 1H), 1.83 – 1.80 (m, 1H), 1.69 – 1.57 (m, 9H), 0.89 (t, *J* = 7.5 Hz, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.66, 137.21, 128.39, 127.77, 88.50, 66.51, 48.66, 47.09, 28.51, 26.37, 26.35, 8.75, 8.73.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.88.

HR-MS (EI) for C₂₂H₃₄¹¹BNO₄ [M] *m/z* [M]⁺: calculated: 387.2581 found: 387.2584

Benzyl (*S*)-3-(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)pyrrolidine-1-carboxylate (38.7 mg, 0.1 mmol) was dissolved in THF (1.0 mL) and transferred to 20 mL vial, then NaBO₃•H₂O (21.2 mg, 0.2 mmol) and H₂O (0.5 mL) were added and the mixture was stirred at room temperature for 4 hours. Upon complete consumption of the substrate, the mixture was extracted with Et₂O (3 mL×3) and dried over Na₂SO₄. Column separation (silica gel, Petroleum: EtOAc = 2:1) afforded a colorless oil (10.6 mg, 48%, 94:6 *e.r.*). The *e.r.* was determined on HPLC system with IF column (20% *i*-PrOH/hexanes, flow rate 1.0 mL/min, 25 °C); retention time for compound (Fig. S79): $t_1 = 7.709$ min (minor), $t_2 = 9.066$ min (major).

Figure S78. HPLC trace of benzyl 3-hydroxypyrrolidine-1-carboxylate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.641	562125	9955785	46.348
2	9.078	504502	11524549	53.652
total		1066627	21480334	100.000

Table S33. HPLC trace of benzyl 3-hydroxypyrrolidine-1-carboxylate.

Figure S79. HPLC trace of benzyl (S)-3-hydroxypyrrolidine-1-carboxylate.

#	Ret Time (min)	Height (µV)	Area (µV.sec)	Area (%)
1	7.709	52830	705793	5.544
2	9.066	513769	12024251	94.456
total		566599	12730044	100.000

 Table S34. HPLC trace of benzyl (S)-3-hydroxypyrrolidine-1-carboxylate.

9. Intramolecular nucleophilic borylation of unactivated alkyl chloride

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (123.7 mg, 0.4 mmol, 2 equiv), and *t*-BuONa (19.6 mg, 0.2 mmol, 1 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of 1-bromo-4-chlorobutane (37.3 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 100 °C for 12 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined.

Figure S80. ¹¹B{¹H} NMR spectrum after substitution step with 1-bromo-4-chlorobutane

Figure S81. ESI-MS(-) of reaction mixture containing A-1 and A-2.

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (280.1 mg, 1.6 mmol, 8 equiv), MgSO₄ (289.4 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (120.6 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL).

The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the 2-(4-chlorobutyl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane (11.1 mg) in 19% yield and 1,4-bis(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)butane (24.6 mg) in 27% yield.

2-(4-chlorobutyl)-4,4,5,5-tetraethyl-1,3,2-dioxaborolane

¹**H** NMR (400 MHz, CDCl₃) δ 3.53 (t, J = 6.8 Hz, 2H), 1.82 – 1.75 (m, 2H), 1.70 – 1.61 (m, 8H), 1.58 – 1.51 (m, 2H), 0.90 (t, J = 7.5 Hz, 12H), 0.80 (t, J = 7.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 88.05, 44.95, 35.11, 26.35, 21.57, 8.78. ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 33.35.

HR-MS (EI) for C₁₄H₂₈¹¹BO₂Cl [M] *m/z* [M]⁺: calculated: 274.1871, found: 274.1873

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (122.2 mg, 0.4 mmol, 2 equiv), and t-BuONa (39.8 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of 1-Bromo-4-chlorobutane (37.3 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 100 °C for 12 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3), from ¹¹B NMR the conversion could be determined.

Figure S82. ¹¹B{¹H} NMR spectrum after substitution step with 1-bromo-4-chlorobutane

Figure S83. ESI-MS(-) of reaction mixture containing.

Electrolysis set up 1 is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (281.7 mg, 1.6 mmol, 8 equiv), MgSO₄ (290.2 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (115.8 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the anode and RVC (3.5 mm×0.5 mm×0.4 mm) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1) to afford the 1,4-bis(4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-yl)butane (46.8mg) in 51% yield.

10. Investigations of the boron-containing fragments after the bulk electrolysis.

To a 10 mL oven dried Schlenk tube equipped with a magnetic stir bar, n-Bu₄N(B₆H₇) (1) (120.1 mg, 0.4 mmol, 2 equiv), and t-BuONa (39.1 mg, 0.4 mmol, 2 equiv) were added sequentially. The tube was evacuated and backfilled with N₂ three times. Dry MeCN (1 mL) was added via syringe. Then the solution of (*S*)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate (69.8 mg, 0.2 mmol, 1 equiv) in dry MeCN (1 mL) was added. The mixture was then magnetically stirred while being heated in oil bath 90 °C for 16 hours. Then the heating bath was removed and flask was cooled down to room temperature. The solvent was removed *in vacuo* and resulting oil was washed with hexane (3 mL×3).

Electrolysis set up 1(IKA ElectraSyn 2.0) is used. To a 5 mL electrochemical reaction cell equipped with a magnetic stir bar, 3,4-Diethyl-3,4-hexanediol (276.6 mg, 1.6 mmol, 8 equiv), MgSO₄(289.6 mg, 2.4 mmol, 12 equiv), and TBAPF₆ (121.8 mg, 0.3 mmol, 0.1 M) were added. The cell was evacuated and backfilled with N₂ three times. Dry MeCN (1.5 mL) was added. Then the solution of the crude product of the substituted cluster in dry TCE (1.5 mL) was added. The undivided cell was equipped with RVC ($3.5 \text{ mm} \times 0.5 \text{ mm} \times 0.4 \text{ mm}$) as the cathode and then backfilled with N₂ to replace air atmosphere. The mixture was pre-stirred for five minutes, and then the reaction mixture was electrolyzed at a constant current of 6 mA until passing 2.20 F/mol of total charge (2 hours) at room temperature. The solvent was removed under reduced pressure and the residual solids were extracted with ethyl acetate (10 mL). The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1 - Petroleum: EtOAc = 8:1) to afford the product (48.5 mg) in 67% yield, 4,4,4',4',5,5,5',5'-octaethyl-2,2'-bi(1,3,2-dioxaborolane) (6.2 mg) in 3% yield and 4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-ol (142.2 mg) in 71% yield.

4,4,4',4',5,5,5',5'-octaethyl-2,2'-bi(1,3,2-dioxaborolane) ¹H NMR (400 MHz, CDCl₃) δ 1.75 – 1.59 (m, 16H), 0.90 (t, *J* = 7.5 Hz, 24H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 88.31, 26.39, 8.95. ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 29.61. HR-MS (EI) for C₂₀H₄₀¹¹B₂O₄ [M] *m/z* [M]⁺: calculated: 366.3113, found: 366.3112

HO-B
$$O$$
 Et
 O Et
 O Et
 Et

4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-ol ¹H NMR (400 MHz, CDCl₃) δ 5.44 (s, 1H), 1.76 – 1.65 (m, 8H), 0.91 (t, *J* = 7.5 Hz, 12H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 88.34, 26.21, 8.55. ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 22.00.

HR-MS (EI) for $C_{20}H_{40}^{11}B_2O_5$ [M] m/z [(Epin)B-O-B(Epin)]⁺: calculated: 382.3062, found: 382.3059

Method E are applied. The extract was concentrated and subjected to column separation (silica gel, Petroleum: Diethyl ether= 80:1 - Petroleum: EtOAc = 8:1) to afford the product (49.0 mg) in 63% yield, 4,4,4',4',5,5,5',5'-octaethyl-2,2'-bi(1,3,2-dioxaborolane) (13.6 mg) in 7% yield and 4,4,5,5-tetraethyl-1,3,2-dioxaborolan-2-ol (101.8 mg) in 51% yield.

11. References and notes

(1) X. Mu, J. C. Axtell, N. A. Bernier, K. O. Kirlikovali, D. Jung, A. Umanzor, K. Qian, X. Chen, K. L. Bay, M. Kirollos, A. L. Rheingold, K. N. Houk and A. M. Spokoyny, *Chem.*, 2019, **5**, 2461–2469.

(2) Chen, S and Shen, F, J Incl Phenom Macrocycl Chem., 2017, 88, 229-238.

(3) C.-T. Yang, Z.-Q Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder and L. Liu, *Angew. Chem. Int. Ed.*, 2012, **51**, 2, 528-532.

(4) R. De Gasparo, E. Brodbeck-Persch, S. Bryson, N. B. Hentzen, M. Kaiser, E. F. Pai, R. L. Krauth-Siegel, and F. Diederich, *ChemMedChem.*, 2018, **13**, 957–967.

(5) C. Andersen, V. Ferey, M. Daumas, P. Bernardelli, A. Guérinot and J. Cossy, *Org. Lett.*, 2020, **22**, 15, 6021–6025.

(6) M. H. Shaw, R. A. Croft, W. G. Whittingham and J. F. Bower, *J. Am. Chem. Soc.*, 2015, **137**, 25, 8054–8057.

(7) J. Katarzyńska, A. Mazur, M. Bilska, E. Adamek, M. Zimecki, S. Jankowski and J. Zabrocki, *J. Pept. Sci.*, 2008, **14**, 1283–1294.

(8) R. J. Comito, F. G. Finelli and D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 25, 9358–9361.

(9) T. Yoshida, M. Murai, M. Abe, N. Ichimaru, T. Harada, T. Nishioka and H Miyoshi, *Biochemistry.*, 2007, **46**, 36, 10365–10372.

(10) B. T. Sargent and E. J. Alexanian, J. Am. Chem. Soc., 2017, 139, 36, 12438-12440.

(11) T. C. Atack, R. M. Lecker and S. P. Cook, J. Am. Chem. Soc., 2014, 136, 27, 9521–9523

(12) F. Lima, M. A. Kabeshov, D. N. Tran, C. Battilocchio, J. Sedelmeier, G. Sedelmeier, B. Schenkel and S. V. Ley, *Angew. Chem. Int. Ed.*, 2016, **128**, 14291–14295.

(13) C Kuhwald and A Kirschning, Org. Lett., 2021, 23, 11, 4300-4304.

(14) L. Zhang, Z. Q. Wu and L. Jiao, Angew. Chem. Int. Ed., 2020, 132, 2111-2115.

(15) K. Suzuki, Y. Nishimoto and M. Yasuda, Chem. Eur. J., 2021, 27, 3968-3973.

(16) R. Oeschger, B. Su, I. Yu, C. Ehinger, E. Romero, S. He and J. Hartwig, *Science.*, 2020 **368**, 736–741.

(17) X. Wang, P. Cui, C. Xia and L. Wu, Angew. Chem. Int. Ed., 2021, 60, 12298-12303.

12. NMR spectra of chiral alkyl pseudohalides 7.74 7.72 7.15 7.13 7.12 7.12 7.12 6.48 6.47 6.29 6.22 6.22 6.22 6.21 4.88 6.50 4.85 4.84 4.84 3.76 3.63 3.63 3.61 3.61 3.60 3.60 3.60 3.59 3.50 2.28 2003 1.92 5 1.85 6 | || OTs 3.10H 3.18 2.00-1 1.04-4.28 1.10 0.98 ⊻ 1.01 ¥ 0.96 ¥ 3.19-0 9 8 5 f1 (ppm) (6 4 3 1

Figure S84. ¹H NMR spectrum of (*S*)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate in CDCl₃ at 298K

Figure S85. ${}^{13}C{}^{1}H$ NMR spectrum of (*S*)-4-(3-methoxyphenoxy)butan-2-yl 4-methylbenzenesulfonate in CDCl₃ at 298K

Figure S86. ¹H NMR spectrum of (*S*)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate in CDCl₃ at 298K

Figure S87. ¹³C $\{^{1}H\}$ NMR spectrum of (*S*)-4-(4-bromophenoxy)butan-2-yl 4-methylbenzenesulfonate in CDCl₃ at 298K

Figure S88. ¹H NMR spectrum of (*S*)-4-(2,4-dimethylphenoxy)butan-2-yl 4-methylbenzenesulfonate in CDCl₃ at 298K

methylbenzenesulfonate in CDCl₃ at 298K

methylbenzenesulfonate in CDCl₃ at 298K
13. NMR spectra of borylation products

Figure S92. ¹H NMR spectrum of 2a in CDCl₃ at 298K

Figure S93. ¹³C{¹H} NMR spectrum of 2a in CDCl₃ at 298K

Figure S94. ¹H NMR spectrum of **3a** in CDCl₃ at 298K

Figure S95. ${}^{13}C{}^{1}H$ NMR spectrum of **3a** in CDCl₃ at 298K

Figure S96. ¹H NMR spectrum of 4a in CDCl₃ at 298K

114 / 231

Figure S98. ¹H NMR spectrum of 5a in CDCl₃ at 298K

Figure S99. ${}^{13}C{}^{1}H$ NMR spectrum of 5a in CDCl₃ at 298K

-33.23

Figure S100. ${}^{11}B{}^{1}H$ NMR spectrum of 5a in CDCl₃ at 298K

Figure S101. ¹H NMR spectrum of 6a in CDCl₃ at 298K

Figure S102. ${}^{13}C{}^{1}H$ NMR spectrum of 6a in CDCl₃ at 298K

Figure S103. ¹H NMR spectrum of 7a in CDCl₃ at 298K

Figure S104. ¹³C{¹H} NMR spectrum of 7a in CDCl₃ at 298K

Figure S105. ¹H NMR spectrum of 8a in CDCl₃ at 298K

Figure S106. ${}^{13}C{}^{1}H$ NMR spectrum of 8a in CDCl₃ at 298K

-32.74

Figure S107. ${}^{11}B{}^{1}H$ NMR spectrum of 8a in CDCl₃ at 298K

Figure S108. ¹H NMR spectrum of 9a in CDCl₃ at 298K

Figure S109. ${}^{13}C{}^{1}H$ NMR spectrum of 9a in CDCl₃ at 298K

Figure S110. ¹H NMR spectrum of 10a in CDCl₃ at 298K

Figure S111. ${}^{13}C{}^{1}H$ NMR spectrum of 10a in CDCl₃ at 298K

Figure S112. ¹H NMR spectrum of 11a in CDCl₃ at 298K

Figure S113. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 11a in CDCl₃ at 298K

-34.08

Figure S114. ${}^{11}B{}^{1}H$ NMR spectrum of 11a in CDCl₃ at 298K

Figure S115. ¹H NMR spectrum of 12a in CDCl₃ at 298K

Figure S116. ${}^{13}C{}^{1}H$ NMR spectrum of 12a in CDCl₃ at 298K

Figure S117. ¹H NMR spectrum of 13a in CDCl₃ at 298K

Figure S118. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 13a in CDCl₃ at 298K

Figure S119. ¹H NMR spectrum of 14a in CDCl₃ at 298K

Figure S120. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 14a in CDCl₃ at 298K

Figure S121. ¹H NMR spectrum of 15a in CDCl₃ at 298K

Figure S122. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 15a in CDCl3 at 298K

Figure S123. ¹H NMR spectrum of 16a in CDCl₃ at 298K

Figure S125. ¹H NMR spectrum of 17a in CDCl₃ at 298K

Figure S126. ${}^{13}C{}^{1}H$ NMR spectrum of 17a in CDCl₃ at 298K

Figure S127. ¹H NMR spectrum of 18a in CDCl₃ at 298K

Figure S128. ${}^{13}C{}^{1}H$ NMR spectrum of 18a in CDCl₃ at 298K

Figure S129. ¹H NMR spectrum of 19a in CDCl₃ at 298K

Figure S130. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 19a in CDCl3 at 298K

44.05 2.267 2.267 1.72 2.264 1.73 2.264 1.733 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 1.735 2.264 2.264 1.735 2.264 2

Figure S131. ¹H NMR spectrum of 20a in CDCl₃ at 298K

-34.21

Figure S133. ${}^{11}B{}^{1}H$ NMR spectrum of 20a in CDCl₃ at 298K

3.3.51 3.3.51 3.3.51 3.3.51 3.3.55 3.55

Figure S134. ¹H NMR spectrum of 21a in CDCl₃ at 298K

Figure S135. ${}^{13}C{}^{1}H$ NMR spectrum of 21a in CDCl₃ at 298K

Figure S136. ¹H NMR spectrum of 2b in CDCl₃ at 298K

Figure S137. ${}^{13}C{}^{1}H$ NMR spectrum of 2b in CDCl₃ at 298K

Figure S138. ${}^{11}B{}^{1}H{}$ NMR spectrum of 2b in CDCl₃ at 298K

Figure S139. ¹H NMR spectrum of 5b in CDCl₃ at 298K

Figure S140. ${}^{13}C{}^{1}H$ NMR spectrum of 5b in CDCl₃ at 298K

-32.66

Figure S141. ${}^{11}B{}^{1}H$ NMR spectrum of 5b in CDCl₃ at 298K

Figure S142. ¹H NMR spectrum of 6b in CDCl₃ at 298K

Figure S143. ${}^{13}C{}^{1}H$ NMR spectrum of **6b** in CDCl₃ at 298K

-32.36

Figure S144. ${}^{11}B{}^{1}H$ NMR spectrum of **6b** in CDCl₃ at 298K

Figure S145. ¹H NMR spectrum of 22b in CDCl₃ at 298K

Figure S146. ¹³C{¹H} NMR spectrum of 22b in CDCl₃ at 298K

Figure S147. $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR spectrum of 22b in CDCl₃ at 298K

-32.30

Figure S148. ${}^{11}B{}^{1}H$ NMR spectrum of 22b in CDCl₃ at 298K

Figure S149. ¹H NMR spectrum of 10b in CDCl₃ at 298K

Figure S150. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 10b in CDCl₃ at 298K

Figure S151. ${}^{11}B{}^{1}H$ NMR spectrum of 10b in CDCl₃ at 298K

Figure S152. ¹H NMR spectrum of 23b in CDCl₃ at 298K

Figure S153. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 23b in CDCl₃ at 298K

Figure S154. ${}^{11}B{}^{1}H$ NMR spectrum of 23b in CDCl₃ at 298K

Figure S155. ¹H NMR spectrum of **12b** in CDCl₃ at 298K

Figure S156. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 12b in CDCl₃ at 298K

Figure S157. $^{11}\mathrm{B}\{^{1}\mathrm{H}\}$ NMR spectrum of 12b in CDCl₃ at 298K

Figure S158. ¹H NMR spectrum of 24b in CDCl₃ at 298K

Figure S159. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 24b in CDCl₃ at 298K

-33.53

Figure S160. ${}^{11}B{}^{1}H$ NMR spectrum of 24b in CDCl₃ at 298K

Figure S161. ¹H NMR spectrum of 25b in CDCl₃ at 298K

Figure S162. ¹³C{¹H} NMR spectrum of 25b in CDCl₃ at 298K

-31.12

Figure S163. ${}^{11}B{}^{1}H$ NMR spectrum of 25b in CDCl₃ at 298K

Figure S164. ¹H NMR spectrum of 26b in CDCl₃ at 298K

Figure S165. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 26b in CDCl₃ at 298K

Figure S166. ${}^{11}B{}^{1}H$ NMR spectrum of 26b in CDCl₃ at 298K

Figure S167. ¹H NMR spectrum of 27b in CDCl₃ at 298K

Figure S169. ${}^{11}B{}^{1}H$ NMR spectrum of 27b in CDCl₃ at 298K

Figure S170. ¹H NMR spectrum of **28b** in CDCl₃ at 298K

Figure S171. ${}^{13}C{}^{1}H$ NMR spectrum of 28b in CDCl₃ at 298K

---218.22

Figure S172. $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR spectrum of 28b in CDCl₃ at 298K

Figure S173. ${}^{11}B{}^{1}H$ NMR spectrum of 28b in CDCl₃ at 298K

Figure S174. ¹H NMR spectrum of 29b in CDCl₃ at 298K

Figure S175. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 29b in CDCl₃ at 298K

Figure S176. ${}^{11}B{}^{1}H$ NMR spectrum of 29b in CDCl₃ at 298K

Figure S177. ¹H NMR spectrum of 29a in CDCl₃ at 298K

Figure S178. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 29a in CDCl₃ at 298K

Figure S179. ¹H NMR spectrum of **30b** in CDCl₃ at 298K

Figure S180. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 30b in CDCl₃ at 298K

Figure S181. $^{11}B{}^{1}H$ NMR spectrum of 30b in CDCl₃ at 298K

Figure S182. ¹H NMR spectrum of **31b** in CDCl₃ at 298K

Figure S183. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 31b in CDCl₃ at 298K

Figure S184. ${}^{11}B{}^{1}H$ NMR spectrum of 31b in CDCl₃ at 298K

Figure S185. ¹H NMR spectrum of **32b** in CDCl₃ at 298K

Figure S186. ${}^{13}C{}^{1}H$ NMR spectrum of **32b** in CDCl₃ at 298K

Figure S187. ${}^{11}B{}^{1}H$ NMR spectrum of 32b in CDCl₃ at 298K

Figure S188. ¹H NMR spectrum of **33b** in CDCl₃ at 298K

Figure S189. ${}^{13}C{}^{1}H$ NMR spectrum of 33b in CDCl₃ at 298K

Figure S190. $^{11}B{^{1}H}$ NMR spectrum of 33b in CDCl₃ at 298K

Figure S191. ¹H NMR spectrum of **34b** in CDCl₃ at 298K

Figure S192. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 34b in CDCl₃ at 298K

Figure S193. $^{11}B{^{1}H}$ NMR spectrum of 34b in CDCl₃ at 298K

Figure S194. ¹H NMR spectrum of **35b** in CDCl₃ at 298K

Figure S195. ${}^{13}C{}^{1}H$ NMR spectrum of 35b in CDCl₃ at 298K

Figure S196. ${}^{11}B{}^{1}H$ NMR spectrum of 35b in CDCl₃ at 298K

Figure S197. ¹H NMR spectrum of **36b** in CDCl₃ at 298K

Figure S198. ${}^{13}C{}^{1}H$ NMR spectrum of 36b in CDCl₃ at 298K

Figure S199. ${}^{11}B{}^{1}H$ NMR spectrum of 36b in CDCl₃ at 298K

Figure S200. ¹H NMR spectrum of **37b** in CDCl₃ at 298K

Figure S201. ${}^{13}C{}^{1}H$ NMR spectrum of 37b in CDCl₃ at 298K

-33.83

Figure S202. ${}^{11}B{}^{1}H$ NMR spectrum of 37b in CDCl₃ at 298K

Figure S203. ¹H NMR spectrum of **38b** in CDCl₃ at 298K

Figure S204. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 38b in CDCl₃ at 298K

-32.88

Figure S205. $^{11}\mathrm{B}\{^{1}\mathrm{H}\}$ NMR spectrum of 38b in CDCl₃ at 298K

Figure S206. ¹H NMR spectrum of **39b** in CDCl₃ at 298K

Figure S207. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 39b in CDCl₃ at 298K

-33.35

Figure S208. $^{11}B{^1H}$ NMR spectrum of 39b in CDCl₃ at 298K

Figure S209. ¹H NMR spectrum of 40 in CDCl₃ at 298K

Figure S210. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of 40 in CDCl₃ at 298K

228 / 231

Figure S212. ¹H NMR spectrum of 41 in CDCl₃ at 298K

Figure S213. ${}^{13}C{}^{1}H$ NMR spectrum of 41 in CDCl₃ at 298K

Figure S214. ${}^{11}B{}^{1}H$ NMR spectrum of 41 in CDCl₃ at 298K