Metal-Catalyzed Divergent Synthesis from Ylides with 3-arylbenzo[d][1,2,3]triazin-4(3*H*)-ones

Mei-Zhu Bao,^a Xiao-Ying Pan,^b Wen-Rong Wu,^a Lin Xiao,^a Jidan Liu,^c Xu-Ge Liu,^{*d} Shang-Shi Zhang,^{*a} Limin Zhao^{*b}

^aCenter for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.

^bSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China.

^cSchool of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China ^dThe Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.

*Email: <u>zhangshangshi@gdpu.edu.cn</u>.

*Email: <u>zhaolimin@gdpu.edu.cn.</u>

*Email: <u>liuxg7@henu.edu.cn</u>.

Supporting Information

1. General information	S2
2. Synthesis of substrates 1, 2 and 3	S3
3. General procedure and characterization of products	S4
4. Table 6 Optimization of the reaction conditions ^a	S6
5. X-Ray crystal data for compound 5ba and 6ab	S7
6. Scale-up experiment and mechanism studies	
7. Product characterization	
8. NMR Spectra for New Compounds	
9. Reference	S97

1. General information

Unless otherwise noted, all reactions were carried out at room temperature under an atmosphere of nitrogen with flame-dried glassware. If reaction was not conducted at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: THF (Na-benzophenone), 1,2-dichloroethane (CaH₂), dichloromethane (CaH₂). Anhydrous CF₃CH₂OH, CH₃CN, DMF and MeOH were purchased from Acros Organics and stored under nitrogen atmosphere. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton NMR (¹H) were recorded at 400 MHz, and Carbon NMR (¹³C) at 101 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (*J*) are reported in Hertz (Hz).

High-resolution mass spectra HRMS-ESI (Quadrupole) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of substrates 1, 2 and 3

The substrates of 1,2,3-benzotriazinone 1, sulfoxonium ylide 2 and iodonium ylide 3 were prepared accroding to the previous procedure. ^[1-3] All the characteristic data are consistent with the data reported before.

3. General procedure and characterization of products

General procedure A

In oven-dried Schlenk tube under mixture corresponding an air. а of 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one 1.0 1 (0.20)mmol, equiv), 2-(dimethyl(∞o)- λ^6 -sulfaneyli-dene)-1-phenylethan-1-one **2** (0.22 mmol, 1.1 equiv), (Cp*RhCl₂)₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), 1-AdCOOH (36.0 mg, 0.20 mmol, 1.0 equiv), AgF (6.3 mg, 0.05 mmol, 25 mol%), and HFIP (1.0 mL) was stirred at 80-130 °C (oil bath) for 24.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na_2SO_4 . The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product 4.

General procedure B

In an oven-dried Schlenk tube under mixture of corresponding air, а 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one 1 (0.20)mmol, 1.0 equiv), 2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione **3** (0.30 mmol, 1.5 equiv), (Cp*IrCl₂)₂ (4.0 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), PivOH (20.4 mg, 0.2 mmol, 1.0 equiv) and HFIP (1.0 mL) was stirred at 35 °C (oil bath) for 4.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H_2O . The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product 5.

General procedure C

In oven-dried Schlenk tube under corresponding an air. а mixture of 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one 1 (0.20)mmol, 1.0 equiv), 2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione **3** (0.30 mmol, 1.5 equiv), CuBr₂ (4.5 mg, 0.02 mmol, 10 mol%), 4,4'-dimethyl-2,2'-bipyridine (3.7 mg, 0.02 mmol, 10 mol%), 1-AdCOOH (36.0 mg, 0.20 mmol, 1.0 equiv) and HFIP (1.0 mL) was stirred at 80 °C (oil bath) for 4.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **6**.

$ \begin{array}{c} & O \\ & N \\ $					
	1a	3a		6aa	/ \
Entry	Catalyst	[L]	Additives	Solvent	Yields ^b
1	CuBr	Xantphos		HFIP	5%
2	CuBr	Xantphos	KF	HFIP	15%
3	CuBr	Xantphos	Na ₂ CO ₃	HFIP	21%
4	CuBr	Xantphos	NaOAc	HFIP	32%
5	CuBr	Xantphos	CsOPiv	HFIP	36%
6	CuBr	Xantphos	AcOH	HFIP	31%
7	CuBr	Xantphos	B(OH) ₃	HFIP	35%
8	CuBr	Xantphos	PivOH	HFIP	40%
9	CuBr	Xantphos	1-AdCOOH	HFIP	60%
10	CuBr	Xantphos	1-AdCOOH	TFE	50%
11	CuBr	Xantphos	1-AdCOOH	DCM	32%
12	CuBr	Xantphos	1-AdCOOH	MeOH	24%
13	CuBr	Xantphos	1-AdCOOH	MeCN	16%
14	CuBr	Xantphos	1-AdCOOH	PhCl	10%
15	CuOTf	Xantphos	1-AdCOOH	HFIP	40%
16	Cu(OAc) ₂	Xantphos	1-AdCOOH	HFIP	36%
17	$CuCl_2$	Xantphos	1-AdCOOH	HFIP	31%
18	CuO	Xantphos	1-AdCOOH	HFIP	27%
19	NHC-Cu	Xantphos	1-AdCOOH	HFIP	15%
20	CuBr	5,5'-dimethyl-2,2'-bipyridine	1-AdCOOH	HFIP	72%
21	CuBr	(o-MePh) ₃ P	1-AdCOOH	HFIP	58%
22	CuBr	2,2'-bipyridine	1-AdCOOH	HFIP	57%
23	CuBr	2,2'-biquinoline	1-AdCOOH	HFIP	59%
24	CuBr	4,4'-dimethoxy-2,2'-bipyridine	1-AdCOOH	HFIP	55%
25	CuBr	1,10-phenanthroline	1-AdCOOH	HFIP	27%
26	CuBr	4,4'-dibromo-2,2'-bipyridine	1-AdCOOH	HFIP	38%
27 ^c	CuBr	5,5'-dimethyl-2,2'-bipyridine	1-AdCOOH	HFIP	83%
28		5,5'-dimethyl-2,2'-bipyridine	1-AdCOOH	HFIP	-
29	CuBr	-	1-AdCOOH	HFIP	65%

4. Table 6 Optimization of the reaction conditions^a

^{*a*}Reaction conditions: **1a** (0.10 mmol), **3a** (0.10 mmol), catalyst (10 mol%), [L] (10 mol%), additives (1.2 equiv.), Solvent (0.2 M), 80 °C, 4 h. ^{*b*}Isolated yield. ^{*c*}**3a** (0.15 mmol).

5. X-Ray crystal data for compound 5ba and 6ab

CCDC: 2377169

The crystal structure of **5ba** by X-ray analysis.

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a dilute dichloromethane solution of **5ba** at room temperature under air. Thermal ellipsoids drawn at the 50 % probability level. Crystal data were obtained on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 200.00(10) K during data collection.

Identification code	5ba
Empirical formula	$C_{22}H_{21}N_3O_3$
Formula weight	375.42
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.6241(2)
b/Å	20.0539(4)
c/Å	18.4446(4)
α/°	90
β/°	92.354(2)
γ/°	90
Volume/Å ³	3926.39(14)
Z	8
$\rho_{calc}g/cm^3$	1.270
μ/mm^{-1}	0.697
F(000)	1584.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$

Table 1 Crystal data and structure refinement for 5ba.

Radiation	Cu Ka ($\lambda = 1.54184$)			
20 range for data collection/° 6.514 to 147.35				
Index ranges	$-13 \le h \le 12, -24 \le k \le 21, -22 \le l \le 17$			
Reflections collected	15823			
Independent reflections	7720 [$R_{int} = 0.0419, R_{sigma} = 0.0531$]			
Data/restraints/parameters	7720/419/580			
Goodness-of-fit on F ²	1.047			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0746, wR_2 = 0.1969$			
Final R indexes [all data]	$R_1 = 0.0863, wR_2 = 0.2093$			
Largest diff. peak/hole / e Å-3	0.57/-0.58			

Crystal structure determination of [5ba]

Crystal Data for C₂₂H₂₁N₃O₃ (*M* =375.42 g/mol): monoclinic, space group P2₁/n (no. 14), a = 10.6241(2) Å, b = 20.0539(4) Å, c = 18.4446(4) Å, $\beta = 92.354(2)^{\circ}$, V = 3926.39(14) Å³, Z = 8, T = 149.99(10) K, μ (Cu K α) = 0.697 mm⁻¹, *Dcalc* = 1.270 g/cm³, 15823 reflections measured (6.514° ≤ 2 Θ ≤ 147.35°), 7720 unique ($R_{int} = 0.0419$, $R_{sigma} = 0.0531$) which were used in all calculations. The final R_1 was 0.0746 (I > 2 σ (I)) and wR_2 was 0.2093 (all data).

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 5ba. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
O1	8522(2)	7669.8(10)	8751.9(11)	39.0(5)
O2	9023.8(16)	8745.7(10)	10767.0(10)	30.8(4)
O3	10633.1(16)	6733.1(10)	9957.8(11)	32.6(4)
N1	6631(2)	9268.5(13)	9425.8(15)	41.8(5)
N2	6642(2)	8748.9(13)	9803.8(15)	41.2(6)
N3	7412.9(19)	8193.1(12)	9563.4(12)	31.0(5)
C1	8101(2)	8817.3(14)	8547.7(16)	33.9(5)
C2	8824(3)	8924.0(18)	7956.9(17)	45.2(7)
C3	8843(3)	9532.7(19)	7648.1(19)	52.5(7)
C4	8123(3)	10044.4(17)	7890(2)	50.1(7)
C5	7370(3)	9963.4(17)	8476(2)	47.4(7)
C6	7377(3)	9320.4(16)	8824.7(18)	40.8(5)
C7	8059(3)	8173.0(15)	8941.3(15)	34.0(6)
C8	7374(2)	7643.5(12)	10068.9(13)	24.0(5)
C9	6209(2)	7383.2(13)	10213.5(14)	25.9(5)
C10	6104(2)	6863.2(13)	10708.4(14)	26.1(5)
C11	7203(2)	6615.0(14)	11038.1(15)	30.2(6)
C12	8362(2)	6885.3(14)	10892.4(14)	29.0(5)
C13	8481(2)	7412.8(13)	10410.8(13)	24.2(5)
C14	9735(2)	7731.3(13)	10311.9(13)	24.7(5)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 5ba. U _{eq} is defined as 1/3 of the trace of the orthogonalised
U _{IJ} tensor.

Atom	x	у	z	U(eq)
C15	9906(2)	8417.1(14)	10529.2(13)	26.5(5)
C16	11197(2)	8726.5(15)	10508.5(14)	30.6(6)
C17	12023(2)	8442.5(14)	9921.1(14)	29.2(6)
C18	10748(2)	7378.3(14)	10086.8(13)	27.0(5)
C19	12022(2)	7686.3(15)	9998.0(15)	32.4(6)
C20	11504(3)	8645.4(17)	9170.0(15)	38.1(7)
C21	13366(2)	8706.4(17)	10030.1(16)	38.2(7)
C22	4825(3)	6596.9(15)	10875.5(18)	37.3(6)
O4	4372(5)	7430(3)	8745(3)	29.3(11)
O5	4372.6(16)	5892.1(10)	7118.2(10)	30.6(4)
O6	2539.1(16)	6170.5(10)	9346.0(10)	31.4(4)
OA	6942(9)	6722(4)	7358(5)	38.7(15)
N00F	4798(7)	7366(4)	8604(6)	36.7(15)
N4	6768(4)	7380(2)	7099(2)	26.5(9)
N5	6608(7)	6874(4)	7484(4)	36.5(14)
N6	5719(2)	6925.6(11)	8140.9(14)	36.4(5)
N7	4586(5)	7953(2)	8376(3)	30.6(11)
C0	5650(6)	9129.3(18)	7006(3)	37(3)
C47	5019(5)	8861(2)	7583(3)	37.5(15)
C46	5218(5)	8200(2)	7784(3)	28.3(15)
C00{	6048(6)	7807.4(17)	7407(3)	28.8(15)
C01L	6679(4)	8076(2)	6829(2)	32.8(13)
C48	6480(5)	8737(2)	6628(3)	37.0(16)
C24	6391(4)	8521(2)	6811.2(19)	31.2(12)
C25	5790(5)	9124.4(17)	6928(3)	38(2)
C26	4923(4)	9177.0(14)	7470(2)	36.2(12)
C27	4657(3)	8625.7(19)	7893.8(18)	28.0(10)
C28	5258(4)	8021.9(16)	7777(2)	22.7(12)
C23	6126(4)	7969.4(15)	7235(2)	21.4(10)
C29	5071(5)	7453(2)	8245(3)	25.7(9)
C30	5833(2)	6312.6(12)	8545.3(14)	25.3(5)
C31	6994(2)	6164.1(12)	8869.1(14)	26.5(5)
C32	7178(2)	5580.4(13)	9267.9(13)	26.0(5)
C33	6142(2)	5160.5(13)	9336.5(14)	27.8(5)
C34	4976(2)	5319.5(13)	9016.0(13)	26.7(5)
C35	4784(2)	5895.5(12)	8606.3(13)	23.0(5)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 5ba. U _{eq} is defined as 1/3 of the trace of the orthogonalised
U _{IJ} tensor.

Atom	x	у	z	U(eq)
C36	3536(2)	6038.5(13)	8242.9(14)	25.7(5)
C37	8436(3)	5415.7(14)	9625.1(16)	35.0(6)
C38	2457(2)	6152.0(14)	8676.0(15)	31.6(5)
C39	1171(3)	6192.5(18)	8289.2(17)	42.6(7)
C40	1184(2)	6526.2(16)	7546.1(15)	34.7(6)
C41	2178(2)	6200.0(17)	7099.5(16)	39.3(7)
C42	3388(2)	6047.2(13)	7505.6(14)	27.4(5)
C43	1538(3)	7269.5(18)	7663(2)	51.8(8)
C44	-92(3)	6506(3)	7161(2)	62.5(11)
C45	6281(8)	7123(4)	7617(4)	33.8(13)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 5ba. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U_{22}	U33	U ₂₃	U13	U12
01	47.5(11)	31.6(11)	37.6(11)	5.0(9)	-2.4(9)	-6.6(9)
O2	23.1(8)	37.7(11)	32.0(9)	-5.8(8)	4.2(7)	1.2(7)
03	25.2(9)	34.2(10)	39.0(10)	-1.7(8)	10.3(8)	2.4(7)
N1	32.5(9)	39.3(10)	53.1(12)	5.9(8)	-3.1(8)	-2.0(8)
N2	33.6(12)	31.4(11)	57.6(15)	9.4(10)	-10.1(11)	-4.6(9)
N3	22.8(10)	35.2(12)	34.3(11)	11.3(9)	-6.9(8)	-5.5(8)
C1	28.5(12)	29.6(12)	42.4(14)	3.7(10)	-12.2(10)	-9.4(9)
C2	45.4(16)	50.1(16)	39.6(15)	-4.4(12)	-4.2(12)	-15.0(13)
C3	58.1(19)	57.5(16)	40.7(16)	5.9(13)	-12.5(14)	-21.2(13)
C4	52.6(17)	38.1(15)	57.9(18)	18.5(13)	-20.3(12)	-22.7(12)
C5	40.2(15)	35.9(14)	64.4(18)	-1.4(13)	-18.3(12)	-5.2(12)
C6	30.6(9)	39.9(10)	51.6(12)	4.6(9)	-4.0(8)	-3.8(8)
C7	32.1(13)	37.9(15)	31.5(12)	2.9(11)	-5.0(10)	-6.2(11)
C8	25.1(11)	23.5(12)	23.6(11)	0.8(9)	1.7(9)	1.2(9)
C9	21.0(11)	27.8(13)	28.7(12)	1.0(10)	-2.4(9)	1.0(9)
C10	26.6(12)	23.1(12)	28.8(12)	0.2(10)	2.6(10)	-1.2(9)
C11	30.8(13)	27.7(14)	32.4(13)	7.7(10)	3.8(11)	1.6(10)
C12	22.5(11)	35.0(15)	29.4(13)	6.6(11)	0.8(10)	5.9(10)
C13	21.0(11)	30.2(13)	21.4(11)	-2.0(9)	1.6(9)	2.6(9)
C14	18.7(10)	33.1(14)	22.2(11)	2.6(10)	1.5(9)	1.0(9)
C15	21.8(11)	37.1(14)	20.7(11)	-0.5(10)	2.3(9)	0.1(10)
C16	21.6(11)	39.0(15)	31.4(13)	-7.1(11)	2.6(10)	-3.3(10)
C17	18.6(11)	41.9(15)	27.2(12)	-2.7(11)	1.4(9)	-2.1(10)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
C18	21.5(11)	36.0(14)	23.7(12)	1.2(10)	2.1(9)	1.3(10)
C19	19.3(11)	42.1(16)	36.0(14)	-4.5(12)	4.0(10)	1.7(10)
C20	28.7(13)	52.4(19)	33.4(14)	2.0(13)	2.8(11)	-8.0(12)
C21	21.6(12)	53.9(19)	39.2(15)	-5.2(13)	2.0(11)	-6.1(12)
C22	28.9(13)	33.4(15)	49.9(17)	11.0(13)	3.1(12)	-6.9(11)
O4	28(3)	28(2)	31.3(19)	3.4(15)	-5.6(15)	0.4(16)
05	24.6(8)	40.6(11)	27.1(9)	-0.6(8)	4.1(7)	5.9(7)
O6	28.0(9)	37.6(11)	29.0(8)	0.3(7)	5.7(7)	3.8(7)
OA	38(4)	30(3)	48(3)	9(2)	-2(2)	-4(2)
N00F	32(5)	21(2)	56(5)	4(2)	-15(3)	-2(2)
N4	27.3(18)	26.0(17)	26.5(19)	2.9(13)	5.0(14)	-0.4(13)
N5	32(5)	30(4)	46(4)	15(3)	-11.0(19)	-9(2)
N6	30.6(11)	23.3(10)	54.1(14)	8.8(9)	-11.6(10)	-3.9(8)
N7	37(2)	20(2)	35(2)	-0.9(16)	2.3(18)	4.9(17)
C0	46(5)	23(4)	42(4)	6(3)	-9(4)	-10(3)
C47	45(3)	24(3)	42(3)	5(2)	-5(3)	-2(2)
C46	31(3)	23(3)	30(3)	-0.5(19)	-7(2)	-6(2)
C00{	30(3)	26(2)	30(3)	1.5(19)	-5(2)	-6(2)
C01L	32(3)	31(3)	36(3)	6(2)	-4(2)	-7(2)
C48	37(3)	32(3)	41(4)	10(2)	-10(3)	-8(2)
C24	31(2)	31(3)	31(3)	10(2)	-7.8(19)	-8(2)
C25	38(4)	29(3)	47(4)	11(3)	-7(3)	-7(3)
C26	41(3)	23(2)	44(3)	3(2)	-8(2)	-5(2)
C27	29(2)	20(2)	35(2)	-1.7(16)	-3.4(18)	2.5(16)
C28	22(2)	18(2)	28(2)	1.0(15)	-1.7(18)	-1.0(16)
C23	19(2)	23.6(19)	21(2)	0.2(16)	-5.4(17)	-3.9(15)
C29	24.3(19)	22.0(17)	30(2)	5.2(14)	-9.7(17)	-5.3(13)
C30	25.5(10)	18.9(11)	31.4(12)	-0.7(9)	-0.1(9)	0.3(8)
C31	24.9(10)	21.9(11)	32.5(12)	-0.8(9)	0.8(9)	-1.8(9)
C32	28.2(10)	23.8(11)	26.0(11)	-2.8(9)	1.7(9)	3.5(8)
C33	32.8(10)	25.1(12)	25.8(12)	2.2(9)	3.5(9)	1.2(9)
C34	27.7(10)	26.0(12)	27.0(12)	-0.3(9)	5.6(9)	-2.9(9)
C35	23.1(10)	22.6(11)	23.7(11)	-4.6(8)	4.4(8)	0.6(8)
C36	22.8(10)	25.5(12)	29.0(10)	-2.4(9)	2.6(8)	-0.1(9)
C37	33.5(12)	31.0(14)	40.0(15)	-0.7(12)	-5.1(11)	5.1(11)
C38	27.6(11)	36.5(15)	30.9(10)	-2.4(10)	4.4(9)	1.4(10)
C39	28.9(12)	61(2)	37.9(14)	-0.6(13)	3.4(11)	-0.9(13)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 5ba. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
23.0(11)	47.5(15)	33.5(12)	-2.1(11)	1.3(9)	5.9(10)
26.3(12)	60(2)	31.2(13)	-7.1(13)	-1.0(10)	6.3(12)
22.3(10)	30.6(13)	29.6(10)	-3.7(10)	3.8(8)	0.4(9)
47.5(18)	47.4(16)	60(2)	-1.5(16)	-5.4(16)	10.0(14)
30.0(14)	110(3)	47.2(19)	-13(2)	-6.4(13)	13.1(17)
30(3)	26(3)	44(3)	4(2)	-13.7(19)	-7(2)
	U ₁₁ 23.0(11) 26.3(12) 22.3(10) 47.5(18) 30.0(14) 30(3)	$\begin{array}{ccc} U_{11} & U_{22} \\ 23.0(11) & 47.5(15) \\ 26.3(12) & 60(2) \\ 22.3(10) & 30.6(13) \\ 47.5(18) & 47.4(16) \\ 30.0(14) & 110(3) \\ 30(3) & 26(3) \end{array}$	U_{11} U_{22} U_{33} 23.0(11)47.5(15)33.5(12)26.3(12)60(2)31.2(13)22.3(10)30.6(13)29.6(10)47.5(18)47.4(16)60(2)30.0(14)110(3)47.2(19)30(3)26(3)44(3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U_{11} U_{22} U_{33} U_{23} U_{13} 23.0(11)47.5(15)33.5(12)-2.1(11)1.3(9)26.3(12)60(2)31.2(13)-7.1(13)-1.0(10)22.3(10)30.6(13)29.6(10)-3.7(10)3.8(8)47.5(18)47.4(16)60(2)-1.5(16)-5.4(16)30.0(14)110(3)47.2(19)-13(2)-6.4(13)30(3)26(3)44(3)4(2)-13.7(19)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 5ba. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 5ba.

Atom	n Atom	Length/Å	Atom	Atom	Length/Å
01	C7	1.181(4)	N4	N5	1.254(7)
O2	C15	1.240(3)	N4	C23	1.393(5)
03	C18	1.320(3)	N5	N6	1.570(7)
N1	N2	1.253(4)	N6	C29	1.281(5)
N1	C6	1.393(4)	N6	C30	1.440(3)
N2	N3	1.463(4)	N6	C45	1.223(7)
N3	C7	1.362(4)	N7	C46	1.397(6)
N3	C8	1.445(3)	C0	C47	1.3900
C1	C2	1.375(4)	C0	C48	1.3900
C1	C6	1.379(4)	C47	C46	1.3900
C1	C7	1.484(4)	C46	C00{	1.3900
C2	C3	1.348(5)	C00{	C01L	1.3900
C3	C4	1.365(6)	C00{	C45	1.445(7)
C4	C5	1.380(5)	C01L	C48	1.3900
C5	C6	1.441(5)	C24	C25	1.3900
C8	C9	1.380(3)	C24	C23	1.3900
C8	C13	1.391(3)	C25	C26	1.3900
C9	C10	1.393(4)	C26	C27	1.3900
C10	C11	1.387(4)	C27	C28	1.3900
C10	C22	1.504(3)	C28	C23	1.3900
C11	C12	1.382(4)	C28	C29	1.450(6)
C12	C13	1.390(4)	C30	C31	1.381(4)
C13	C14	1.495(3)	C30	C35	1.401(3)
C14	C15	1.442(4)	C31	C32	1.392(4)
C14	C18	1.367(3)	C32	C33	1.396(4)
C15	C16	1.508(3)	C32	C37	1.502(4)
C16	C17	1.532(3)	C33	C34	1.388(4)
C17	C19	1.523(4)	C34	C35	1.391(4)

Table 4 Bond Lengths for 5ba.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C17	C20	1.525(4)	C35	C36	1.489(3)
C17	C21	1.527(3)	C36	C38	1.442(3)
C18	C19	1.503(3)	C36	C42	1.363(4)
O4	C29	1.209(7)	C38	C39	1.517(4)
05	C42	1.327(3)	C39	C40	1.526(4)
06	C38	1.236(3)	C40	C41	1.514(4)
OA	C45	1.180(9)	C40	C43	1.550(5)
N00F	N6	1.592(8)	C40	C44	1.505(4)
N00F	N7	1.267(10)	C41	C42	1.493(4)

Table 5 Bond Angles for 5ba.

Atom	n Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	N1	C6	120.8(3)	N00F	N7	C46	120.3(6)
N1	N2	N3	117.2(3)	C47	C0	C48	120.0
C7	N3	N2	125.9(2)	C46	C47	C0	120.0
C7	N3	C8	123.3(2)	C47	C46	N7	118.3(4)
C8	N3	N2	110.8(2)	C47	C46	C00{	120.0
C2	C1	C6	121.2(3)	C00{	C46	N7	121.7(4)
C2	C1	C7	123.5(3)	C46	C00{	C01L	120.0
C6	C1	C7	115.3(3)	C46	C00{	C45	120.6(4)
C3	C2	C1	119.6(4)	C01L	C00{	C45	119.4(4)
C2	C3	C4	121.6(3)	C48	C01L	C00{	120.0
C3	C4	C5	121.2(3)	C01L	C48	C0	120.0
C4	C5	C6	117.6(3)	C25	C24	C23	120.0
N1	C6	C5	115.5(3)	C24	C25	C26	120.0
C1	C6	N1	125.8(3)	C25	C26	C27	120.0
C1	C6	C5	118.8(3)	C28	C27	C26	120.0
01	C7	N3	120.3(3)	C27	C28	C23	120.0
01	C7	C1	125.3(3)	C27	C28	C29	121.2(3)
N3	C7	C1	114.4(3)	C23	C28	C29	118.7(3)
C9	C8	N3	117.6(2)	C24	C23	N4	117.4(3)
C9	C8	C13	122.4(2)	C28	C23	N4	122.6(3)
C13	C8	N3	120.0(2)	C28	C23	C24	120.0
C8	C9	C10	120.4(2)	O4	C29	N6	115.7(5)
C9	C10	C22	119.8(2)	O4	C29	C28	126.1(4)
C11	C10	C9	117.9(2)	N6	C29	C28	118.2(5)
C11	C10	C22	122.3(2)	C31	C30	N6	117.5(2)
C12	C11	C10	121.0(2)	C31	C30	C35	122.4(2)

Table 5 Bond Angles for 5ba.

Atom	n Atom	n Atom	Angle/°	Atom	n Atom	n Atom	Angle/°
C11	C12	C13	121.8(2)	C35	C30	N6	120.0(2)
C8	C13	C14	122.9(2)	C30	C31	C32	120.9(2)
C12	C13	C8	116.5(2)	C31	C32	C33	117.5(2)
C12	C13	C14	120.5(2)	C31	C32	C37	121.3(2)
C15	C14	C13	118.4(2)	C33	C32	C37	121.2(2)
C18	C14	C13	122.2(2)	C34	C33	C32	121.1(2)
C18	C14	C15	119.1(2)	C33	C34	C35	122.0(2)
O2	C15	C14	121.1(2)	C30	C35	C36	123.0(2)
O2	C15	C16	119.4(2)	C34	C35	C30	116.1(2)
C14	C15	C16	119.3(2)	C34	C35	C36	120.8(2)
C15	C16	C17	114.4(2)	C38	C36	C35	119.7(2)
C19	C17	C16	107.6(2)	C42	C36	C35	121.0(2)
C19	C17	C20	110.4(2)	C42	C36	C38	119.3(2)
C19	C17	C21	109.7(2)	06	C38	C36	122.2(2)
C20	C17	C16	110.3(2)	06	C38	C39	119.6(2)
C20	C17	C21	109.1(2)	C36	C38	C39	118.0(2)
C21	C17	C16	109.7(2)	C38	C39	C40	113.9(2)
03	C18	C14	119.6(2)	C39	C40	C43	107.9(3)
O3	C18	C19	117.4(2)	C41	C40	C39	109.3(2)
C14	C18	C19	123.0(2)	C41	C40	C43	108.7(3)
C18	C19	C17	115.0(2)	C44	C40	C39	111.8(3)
N7	NOOF	5 N6	116.3(8)	C44	C40	C41	111.5(3)
N5	N4	C23	120.4(5)	C44	C40	C43	107.4(3)
N4	N5	N6	118.9(6)	C42	C41	C40	114.9(2)
C29	N6	N5	121.0(4)	05	C42	C36	118.3(2)
C29	N6	C30	131.4(3)	O5	C42	C41	117.3(2)
C30	N6	N00F	103.6(4)	C36	C42	C41	124.4(2)
C30	N6	N5	107.6(3)	OA	C45	N6	114.7(7)
C45	N6	N00F	125.1(5)	OA	C45	C00{	129.5(7)
C45	N6	C30	130.7(4)	N6	C45	C00{	115.8(6)

Table 6 Torsion Angles for 5ba.

Α	B C	·	D	Angle/°	Α	В	С	D	Angle/°
O2	C15C1	6C	17	-153.2(2)	N5	N6	C30	C35	-117.1(4)
O3	C18C1	9C	17	161.9(2)	N6	NOOF	FN7	C46	-4.8(10)
N1	N2 N3	8 C	7	-4.4(4)	N6	C30	C31	C32	-179.9(2)
N1	N2 N3	8 C	8	177.5(2)	N6	C30	C35	C34	-179.0(2)
N2	N1 C6	5 C	1	5.5(5)	N6	C30	C35	C36	2.6(4)

Table 6 Torsion Angles for 5ba.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
N2	N1	C6	C5	-174.4(3)	N7	NOOF	N6	C30	177.0(6)
N2	N3	C7	01	-170.3(2)	N7	NOOF	N6	C45	4.4(10)
N2	N3	C7	C1	9.1(4)	N7	C46	C00{	C01L	-178.7(6)
N2	N3	C8	C9	56.9(3)	N7	C46	C00{	C45	0.2(6)
N2	N3	C8	C13	-120.6(2)	C0	C47	C46	N7	178.8(6)
N3	C8	C9	C10	-178.5(2)	C0	C47	C46	C00{	0.0
N3	C8	C13	8 C12	179.6(2)	C47	C 0	C48	C01L	0.0
N3	C8	C13	8C14	3.3(4)	C47	C46	C00{	C01L	0.0
C1	C2	C3	C4	-2.5(5)	C47	C46	C00{	C45	178.9(7)
C2	C1	C6	N1	-178.9(3)	C46	C00{	C01L	C48	0.0
C2	C1	C6	C5	1.1(4)	C46	C00{	C45	OA	179.5(12)
C2	C1	C7	01	-8.4(4)	C46	C00{	C45	N6	-0.8(10)
C2	C1	C7	N3	172.2(3)	C00{	C01L	C48	C0	0.0
C2	C3	C4	C5	1.9(5)	C01L	C00{	C45	OA	-1.5(17)
C3	C4	C5	C6	0.3(5)	C01L	C00{	C45	N6	178.2(5)
C4	C5	C6	N1	178.3(3)	C48	C0	C47	C46	0.0
C4	C5	C6	C1	-1.7(4)	C24	C25	C26	C27	0.0
C6	N1	N2	N3	-3.3(4)	C25	C24	C23	N4	-179.3(4)
C6	C1	C2	C3	1.0(4)	C25	C24	C23	C28	0.0
C6	C1	C7	01	173.0(3)	C25	C26	C27	C28	0.0
C6	C1	C7	N3	-6.4(3)	C26	C27	C28	C23	0.0
C7	N3	C8	C9	-121.3(3)	C26	C27	C28	C29	175.3(5)
C7	N3	C8	C13	61.2(3)	C27	C28	C23	N4	179.2(4)
C7	C1	C2	C3	-177.5(3)	C27	C28	C23	C24	0.0
C7	C1	C6	N1	-0.2(4)	C27	C28	C29	O4	3.1(8)
C7	C1	C6	C5	179.7(2)	C27	C28	C29	N6	-175.1(3)
C8	N3	C7	01	7.6(4)	C23	N4	N5	N6	-2.6(9)
C8	N3	C7	C1	-172.9(2)	C23	C24	C25	C26	0.0
C8	C9	C10)C11	-0.8(4)	C23	C28	C29	O4	178.5(6)
C8	C9	C10)C22	178.4(2)	C23	C28	C29	N6	0.2(6)
C8	C13	3C14	C15	61.2(3)	C29	N6	C30	C31	-115.2(4)
C8	C13	3C14	C18	-124.9(3)	C29	N6	C30	C35	64.0(5)
C9	C8	C13	3C12	2.2(4)	C29	C28	C23	N4	3.8(4)
C9	C8	C13	3C14	-174.1(2)	C29	C28	C23	C24	-175.5(5)
C9	C10)C11	C12	1.4(4)	C30	N6	C29	O4	-4.8(8)
C10	C11	C12	2C13	-0.2(4)	C30	N6	C29	C28	173.6(3)
C11	C12	2C13	3 C 8	-1.6(4)	C30	N6	C45	OA	7.9(15)
C11	C12	2C13	3C14	174.8(2)	C30	N6	C45	C00{	-171.8(4)

Table 6 Torsion Angles for 5ba.

Α	B	С	D	Angle/°	A	B	С	D	Angle/°
C12	C13	C14	C15	-115.0(3)	C30	C31	C32	C33	-1.1(4)
C12	C13	C14	C18	58.9(3)	C30	C31	C32	C37	-179.7(2)
C13	C8	C9	C10	-1.0(4)	C30	C35	C36	C38	-117.2(3)
C13	C14	C15	02	-2.7(4)	C30	C35	C36	C42	64.5(3)
C13	C14	C15	C16	173.6(2)	C31	C30	C35	C34	0.2(4)
C13	C14	C18	03	-0.7(4)	C31	C30	C35	C36	-178.2(2)
C13	C14	C18	C19	-178.8(2)	C31	C32	C33	C34	0.2(4)
C14	C15	C16	C17	30.5(3)	C32	C33	C34	C35	0.8(4)
C14	C18	C19	C17	-20.0(4)	C33	C34	C35	C30	-1.0(4)
C15	C14	C18	03	173.1(2)	C33	C34	C35	C36	177.4(2)
C15	C14	C18	C19	-5.0(4)	C34	C35	C36	C38	64.5(3)
C15	C16	C17	C19	-51.5(3)	C34	C35	C36	C42	-113.8(3)
C15	C16	C17	C20	69.0(3)	C35	C30	C31	C32	0.9(4)
C15	C16	C17	C21	-170.7(2)	C35	C36	C38	06	4.0(4)
C16	C17	C19	C18	46.3(3)	C35	C36	C38	C39	-171.0(3)
C18	C14	C15	02	-176.8(2)	C35	C36	C42	05	3.3(4)
C18	C14	C15	C16	-0.5(4)	C35	C36	C42	C41	-178.7(3)
C20	C17	C19	C18	-74.1(3)	C36	C38	C39	C40	-35.8(4)
C21	C17	C19	C18	165.6(2)	C37	C32	C33	C34	178.9(2)
C22	C10	C11	C12	-177.7(3)	C38	C36	C42	05	-175.0(2)
06	C38	C39	C40	149.1(3)	C38	C36	C42	C41	3.0(4)
NOOF	FN6	C30	C31	-113.0(4)	C38	C39	C40	C41	51.6(4)
NOOF	FN6	C30	C35	66.3(4)	C38	C39	C40	C43	-66.5(3)
NOOF	FN6	C45	OA	178.3(10)	C38	C39	C40	C44	175.6(3)
NOOF	FN6	C45	C00{	-1.4(10)	C39	C40	C41	C42	-41.5(4)
NOOF	FN7	C46	C47	-175.7(6)	C40	C41	C42	05	-166.4(3)
NOOF	FN7	C46	C00{	3.0(8)	C40	C41	C42	C36	15.6(4)
N4	N5	N6	C29	6.6(8)	C42	C36	C38	06	-177.7(3)
N4	N5	N6	C30	-172.4(5)	C42	C36	C38	C39	7.3(4)
N5	N4	C23	C24	177.0(5)	C43	C40	C41	C42	76.1(3)
N5	N4	C23	C28	-2.3(7)	C44	C40	C41	C42	-165.6(3)
N5	N6	C29	O4	176.6(6)	C45	N6	C30	C31	58.9(7)
N5	N6	C29	C28	-5.0(7)	C45	N6	C30	C35	-121.8(6)
N5	N6	C30	C31	63.6(4)	C45	C00{	C011	LC48	-178.9(7)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 5ba.

Atom	x	у	Z	U(eq)

Atom	x	у	z	U(eq)
H3	11288.75	6591.62	9770.03	49
H2	9306.62	8570.53	7767.55	54
H3A	9370.03	9607.71	7252.59	63
H4	8139.88	10463.4	7649.98	60
H5A	6866.42	10318.57	8642.74	57
H9	5473.13	7559.61	9974.16	31
H11	7158.64	6253.71	11369.17	36
H12	9098.77	6705.65	11127.86	35
H16A	11636.11	8662.29	10987.31	37
H16B	11100.61	9212.31	10428.97	37
H19A	12395.04	7490.61	9563.15	39
H19B	12572.96	7564.14	10423.35	39
H20A	10651	8466.49	9091.97	57
H20B	12048.84	8467.27	8800.05	57
H20C	11479.28	9132.92	9135.24	57
H21A	13358.56	9194.2	9998.88	57
H21B	13890.79	8524.37	9652.88	57
H21C	13709.51	8569.93	10508.51	57
H22A	4372.47	6928.73	11155.35	56
H22B	4920.54	6185.37	11158.98	56
H22C	4347.09	6502.94	10421.08	56
H5	4175.1	5928.87	6674.31	46
H0	5513.47	9581.05	6868.5	44
H47	4451.59	9129.6	7840.93	45
H01L	7245.99	7807.08	6571.35	39
H48	6910.69	8919.77	6233.7	44
H24	6984	8484.67	6441.19	37
H25	5971.93	9501.13	6638.35	46
H26	4512.3	9589.63	7549.64	43
H27	4064.73	8661.67	8263.77	34
H31	7677.04	6464.37	8818.92	32
H33	6236.76	4759.18	9606.99	33
H34	4286.75	5025.82	9078.52	32
H37A	9066.63	5375.31	9254.39	52
H37B	8377.14	4993	9888.13	52
H37C	8685.39	5771.46	9965.89	52
H39A	596.14	6443.79	8597.91	51

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 5ba.

Atom	x	у	z	U(eq)
H39B	829.79	5735.68	8229.01	51
H41A	1829.34	5779.46	6894.14	47
H41B	2358.46	6497.4	6688.15	47
H43A	2372.02	7299.81	7907.95	78
H43B	913.06	7483.52	7962.28	78
H43C	1552.71	7494.98	7191.83	78
H44A	-58.77	6746.41	6699.36	94
H44B	-713.25	6717.75	7464.87	94
H44C	-334.34	6041.67	7067.72	94

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 5ba.

Table 8 Atomic Occupancy for 5ba.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
O4	0.544(4)	OA	0.456(4)	N00F	0.456(4)
N4	0.544(4)	N5	0.544(4)	N7	0.456(4)
C0	0.456(4)	H0	0.456(4)	C47	0.456(4)
H47	0.456(4)	C46	0.456(4)	C00{	0.456(4)
C01L	0.456(4)	H01L	0.456(4)	C48	0.456(4)
H48	0.456(4)	C24	0.544(4)	H24	0.544(4)
C25	0.544(4)	H25	0.544(4)	C26	0.544(4)
H26	0.544(4)	C27	0.544(4)	H27	0.544(4)
C28	0.544(4)	C23	0.544(4)	C29	0.544(4)
C45	0.456(4)				

Table 9 Solvent masks information for 5ba.

Number	X	Y	Z	Volume E	lectron count Content
1	-0.197	0.524	0.315	69.4	6.3?
2	0.197	0.476	0.685	69.4	6.3?
3	0.303	0.976	0.815	69.4	6.3?
4	0.697	0.024	0.185	69.4	6.3?

CCDC: 2377170

The crystal structure of **6ab** by X-ray analysis.

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a dilute dichloromethane solution of **6ab** at room temperature under air. Thermal ellipsoids drawn at the 50 % probability level. Crystal data were obtained on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 200.00(10) K during data collection.

Table 1	Crystal	data	and	structure	refinement	for	6ab.
---------	---------	------	-----	-----------	------------	-----	------

Identification code	6ab
Empirical formula	$C_{20}H_{18}Cl_3N_3O_3$
Formula weight	454.72
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.2448(4)
b/Å	14.5349(5)
c/Å	14.7931(5)
α/°	70.151(3)
β/°	89.702(3)
γ/°	85.415(3)
Volume/Å ³	2064.74(13)
Z	4
$\rho_{calc}g/cm^3$	1.463
μ/mm^{-1}	4.254
F(000)	936.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.12$
Radiation	Cu Ka ($\lambda = 1.54184$)

2@ range for data collection/° 6.354 to 147.526

Index ranges	$-12 \le h \le 11, -18 \le k \le 16, -18 \le l \le 17$
Reflections collected	14771
Independent reflections	$8122 [R_{int} = 0.0411, R_{sigma} = 0.0491]$
Data/restraints/parameters	8122/7/527
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0590, wR_2 = 0.1578$
Final R indexes [all data]	$R_1 = 0.0673, wR_2 = 0.1692$
Largest diff. peak/hole / e Å-	³ 1.09/-0.69

Crystal structure determination of 6ab

Crystal Data for C₂₀H₁₈Cl₃N₃O₃ (*M* =454.72 g/mol): triclinic, space group P-1 (no. 2), *a* = 10.2448(4) Å, *b* = 14.5349(5) Å, *c* = 14.7931(5) Å, *a* = 70.151(3)°, *β* = 89.702(3)°, *γ* = 85.415(3)°, *V* = 2064.74(13) Å³, *Z* = 4, *T* = 150.00(10) K, μ (Cu K α) = 4.254 mm⁻¹, *Dcalc* = 1.463 g/cm³, 14771 reflections measured (6.354° ≤ 2 Θ ≤ 147.526°), 8122 unique (*R*_{int} = 0.0411, R_{sigma} = 0.0491) which were used in all calculations. The final *R*₁ was 0.0590 (I > 2 σ (I)) and *wR*₂ was 0.1692 (all data).

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 6ab. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C11	1026.8(8)	840.0(6)	-224.7(7)	54.4(2)
Cl2	3216.3(11)	835.3(8)	-1453.9(7)	70.0(3)
C13	3642.0(9)	891.1(7)	452.7(7)	60.9(2)
C40	2557(3)	1259(2)	-549(2)	41.3(6)
Cl4	1798.9(7)	3310.2(5)	300.2(5)	44.62(19)
C15	4576.5(8)	3455.7(7)	446.1(6)	53.8(2)
C16	2742.7(9)	4562.0(6)	1254.4(6)	55.5(2)
C39	3068(3)	3463(2)	1018.3(19)	38.5(6)
01	8010.8(18)	2952.5(15)	6249.0(14)	38.1(4)
O2	6008(2)	4205.4(16)	4599.8(16)	48.0(5)
03	7902.4(19)	6643.5(16)	2091.4(14)	41.4(5)
N1	9550(2)	3053.0(16)	7307.0(16)	33.1(5)
N2	8517(2)	4319.0(16)	4468.3(16)	30.0(4)
N3	8285(2)	5050.8(16)	3673.1(15)	29.5(4)
C1	8833(2)	2768.6(18)	8161.7(19)	30.9(5)
C2	9069(3)	3196(2)	8846(2)	38.8(6)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 6ab. U _{eq} is defined as 1/3 of the trace of the orthogonalised
U _{IJ} tensor.

Atom	r	v	7	∐(ea)
C2	x 9/21/2)	y 2004(2)	4 0716(2)	40 7(8)
C3	$\frac{3431(3)}{7550(2)}$	2904(3)	9/16(2)	49.7(8)
C4	7330(3)	2193(2)	9902(2)	49.5(8)
C3	7317(3)	1772(2)	9219(2)	47.7(7)
C6	7949(3)	2055(2)	8352(2)	39.4(6)
C/	9128(2)	3099.5(18)	6427(2)	30.8(5)
C8	10144(2)	3330.6(18)	5668(2)	31.4(5)
C9	11431(3)	2932(2)	5890(2)	38.3(6)
C10	12373(3)	3117(2)	5185(3)	46.8(8)
C11	12034(3)	3702(2)	4257(3)	46.9(7)
C12	10773(3)	4129(2)	4021(2)	38.7(6)
C13	9822(2)	3925.9(19)	4723(2)	30.8(5)
C14	7066(2)	5373.7(19)	3377.5(18)	30.3(5)
C15	6943(3)	6234(2)	2484.3(19)	36.4(6)
C16	5592(3)	6635(3)	2079(3)	57.0(7)
C17	4605(3)	5928(3)	2319(3)	59.0(7)
C18	4590(3)	5365(3)	3394(3)	70.2(12)
C19	5898(3)	4925(2)	3849(2)	42.0(7)
O4	4591.0(17)	2571.9(13)	3503.3(14)	35.0(4)
O5	2233(2)	1814.4(15)	2774.2(14)	42.4(5)
O6	916.0(19)	-1148.4(14)	4912.1(14)	40.2(5)
N4	6770.9(19)	2283.4(14)	3923.8(15)	26.7(4)
N5	3298.5(19)	975.1(14)	4480.6(14)	25.6(4)
N6	2456.5(19)	318.1(14)	4604.7(14)	24.0(4)
C20	7343(2)	2927.2(17)	3092.0(17)	26.3(5)
C21	6628(3)	3588(2)	2320.2(19)	34.3(6)
C22	7276(3)	4202(2)	1550(2)	39.5(6)
C23	8625(3)	4163(2)	1541.2(19)	36.5(6)
C24	9337(3)	3500(2)	2310(2)	33.5(6)
C25	8705(2)	2887.9(18)	3087.4(18)	29.0(5)
C26	5485(2)	2176.0(16)	4095.0(18)	26.0(5)
C27	5207(2)	1503.3(17)	5086.5(17)	25.2(5)
C28	5972(2)	1469.1(19)	5875.3(19)	30.2(5)
C29	5776(3)	810(2)	6783.9(19)	34.9(6)
C30	4813(3)	161(2)	6908.6(18)	32.5(5)
C31	3989(2)	213.0(18)	6154.5(17)	27.7(5)
C32	4158(2)	895.5(16)	5242.8(17)	24.1(5)
	\ /			(-)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement					
Parameters ($Å^2 \times 10^3$) for 6ab. U _{eq} is defined as 1/3 of the trace of the orthogonalised					
U _{IJ} tensor.					
Atom	r	v	7	U(ea)	

Atom	x	y	2	U(eq)
C33	1615(2)	368.1(17)	3917.5(17)	25.4(5)
C34	1516(2)	1139.3(18)	2968.6(18)	30.3(5)
C35	534(3)	1070(2)	2245(2)	40.0(6)
C36	-660(3)	546(2)	2718(2)	45.6(7)
C37	-242(3)	-457(2)	3422(2)	36.7(6)
C38	771(2)	-464.1(18)	4157.1(18)	29.2(5)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 6ab. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U_{23}	U ₁₃	U_{12}
C11	39.6(4)	57.2(5)	62.7(5)	-16.3(4)	1.7(3)	-0.8(3)
Cl2	84.6(7)	70.3(6)	63.0(6)	-35.4(5)	23.9(5)	2.3(5)
C13	57.2(5)	55.5(5)	66.1(5)	-16.7(4)	-19.6(4)	1.5(4)
C40	48.8(17)	36.8(14)	36.7(14)	-11.7(12)	3.8(12)	2.7(12)
Cl4	43.4(4)	44.1(4)	46.1(4)	-14.2(3)	-3.1(3)	-6.9(3)
C15	40.1(4)	74.0(5)	44.6(4)	-16.0(4)	3.7(3)	-6.6(4)
Cl6	74.3(6)	46.4(4)	51.2(4)	-22.3(3)	5.2(4)	-12.3(4)
C39	44.1(15)	38.0(14)	27.6(12)	-2.6(11)	2.4(11)	-8.0(12)
O1	30.0(9)	47.3(11)	38.5(10)	-14.2(9)	-0.7(8)	-12.9(8)
O2	37.4(11)	50.1(12)	49.4(12)	-5.5(10)	12.1(9)	-14.0(9)
O3	32.9(10)	55.5(12)	30.5(9)	-5.3(9)	-0.5(8)	-14.4(9)
N1	26.1(10)	35.1(11)	37.2(12)	-10.5(9)	-4.0(9)	-5.7(9)
N2	29.8(11)	33.0(11)	30.9(11)	-14.5(9)	5.9(9)	-7.9(9)
N3	32.2(11)	34.9(11)	26.6(10)	-15.6(9)	3.4(8)	-10.2(9)
C1	24.9(12)	28.1(12)	35.4(13)	-6.2(10)	-4.5(10)	3.2(9)
C2	37.0(14)	38.7(14)	40.4(15)	-14.2(12)	-4.1(11)	1.4(11)
C3	52.8(19)	54.4(19)	42.7(16)	-21.0(14)	-1.7(14)	10.8(15)
C4	42.3(17)	53.0(18)	43.0(16)	-5.8(14)	8.7(13)	6.6(14)
C5	39.1(16)	39.9(16)	52.5(18)	-1.1(13)	4.8(13)	-1.6(12)
C6	39.3(15)	31.0(13)	43.7(15)	-7.2(11)	-0.2(12)	-3.5(11)
C7	27.2(12)	24.9(12)	41.1(14)	-12.4(10)	-2.8(10)	-1.8(9)
C8	30.5(13)	26.0(12)	45.0(14)	-20.5(11)	4.5(11)	-7.1(10)
C9	31.6(13)	31.8(13)	59.3(18)	-26.2(13)	-2.1(12)	-0.5(10)
C10	26.8(13)	47.4(17)	81(2)	-41.2(17)	6.6(14)	-1.9(12)
C11	37.4(15)	49.3(17)	68(2)	-36.7(16)	17.1(14)	-11.0(13)
C12	35.4(14)	41.2(15)	46.6(16)	-22.7(13)	12.6(12)	-11.0(12)

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
C13	27.8(12)	30.4(12)	42.4(14)	-22.3(11)	4.9(10)	-5.7(10)
C14	27.1(12)	37.7(13)	31.3(12)	-16.9(11)	4.8(10)	-9.7(10)
C15	31.7(13)	52.2(16)	27.4(12)	-14.6(12)	0.7(10)	-11.3(12)
C16	35.9(12)	69.7(16)	57.1(15)	-10.0(13)	-8.7(11)	-8.1(11)
C17	36.8(12)	69.7(16)	61.3(15)	-9.7(13)	-8.7(11)	-7.8(11)
C18	30.0(16)	90(3)	68(2)	4(2)	8.6(16)	-13.3(17)
C19	33.2(14)	50.4(17)	43.9(16)	-16.1(13)	11.9(12)	-12.9(12)
O4	23.5(9)	31.4(9)	41.4(10)	-1.1(8)	-1.7(7)	-2.6(7)
05	41.6(11)	39.6(11)	35.0(10)	4.6(8)	-4.3(8)	-16.3(9)
06	35.5(10)	34.8(10)	38.6(10)	4.6(8)	-5.9(8)	-11.4(8)
N4	22.9(10)	26.1(10)	27.6(10)	-4.3(8)	1.3(8)	-4.0(8)
N5	22.9(9)	24.1(9)	26.5(10)	-4.2(8)	3.0(8)	-3.7(7)
N6	21.5(9)	23.7(9)	26.9(9)	-8.6(8)	3.6(7)	-1.9(7)
C20	29.1(12)	24.2(11)	27.7(11)	-10.1(9)	2.5(9)	-8.8(9)
C21	31.7(13)	35.0(13)	31.7(13)	-5.0(11)	-0.3(10)	-5.0(10)
C22	45.3(16)	36.9(14)	29.6(13)	-2.1(11)	-0.8(11)	-5.8(12)
C23	46.5(16)	35.9(14)	28.5(12)	-10.7(11)	9.1(11)	-13.3(12)
C24	33.0(13)	34.2(13)	36.1(13)	-13.8(11)	9.1(10)	-11.3(10)
C25	29.2(12)	26.8(11)	29.4(12)	-6.7(10)	2.2(9)	-5.3(9)
C26	23.6(11)	21.6(11)	33.3(12)	-9.6(9)	2.4(9)	-3.0(9)
C27	22.8(11)	23.5(11)	29.7(12)	-9.9(9)	5.0(9)	0.0(9)
C28	27.5(12)	33.3(13)	35.2(13)	-18.5(11)	5.0(10)	-4.5(10)
C29	32.9(13)	49.1(15)	28.4(12)	-20.1(11)	2.8(10)	-5.9(11)
C30	32.9(13)	40.8(14)	24.3(12)	-11.4(10)	5.2(10)	-3.8(11)
C31	26.6(12)	30.4(12)	27.0(12)	-10.5(10)	7.1(9)	-5.0(9)
C32	21.5(11)	22.8(11)	28.4(11)	-9.8(9)	2.7(9)	0.5(8)
C33	22.7(11)	24.8(11)	26.3(11)	-6.1(9)	2.3(9)	-0.7(9)
C34	29.8(12)	30.0(12)	26.7(12)	-3.7(10)	1.7(9)	-2.6(10)
C35	44.7(16)	40.9(15)	30.0(13)	-4.9(11)	-6.1(11)	-8.6(12)
C36	43.8(16)	45.0(16)	44.3(16)	-9.5(13)	-11.1(13)	-7.1(13)
C37	35.4(14)	34.4(13)	38.6(14)	-9.0(11)	-4.3(11)	-7.4(11)
C38	24.1(11)	28.5(12)	33.5(13)	-8.3(10)	2.9(9)	-2.8(9)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 6ab. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 6ab .

Atom	Atom	Length/Å	Atom	n Atom	Length/Å
Cl1	C40	1.734(3)	C16	C17	1.456(5)
Cl2	C40	1.764(3)	C17	C18	1.522(5)

Table 4 Bond Lengths for 6ab .

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C13	C40	1.761(3)	C18	C19	1.496(5)
Cl4	C39	1.757(3)	O4	C26	1.232(3)
C15	C39	1.760(3)	05	C34	1.227(3)
Cl6	C39	1.754(3)	06	C38	1.218(3)
01	C7	1.227(3)	N4	C20	1.425(3)
O2	C19	1.238(4)	N4	C26	1.351(3)
03	C15	1.229(3)	N5	N6	1.304(3)
N1	C1	1.412(3)	N5	C32	1.402(3)
N1	C7	1.352(3)	N6	C33	1.316(3)
N2	N3	1.298(3)	C20	C21	1.383(4)
N2	C13	1.411(3)	C20	C25	1.392(3)
N3	C14	1.320(3)	C21	C22	1.389(4)
C1	C2	1.387(4)	C22	C23	1.379(4)
C1	C6	1.387(4)	C23	C24	1.381(4)
C2	C3	1.389(4)	C24	C25	1.386(3)
C3	C4	1.381(5)	C26	C27	1.502(3)
C4	C5	1.379(5)	C27	C28	1.394(3)
C5	C6	1.382(4)	C27	C32	1.414(3)
C7	C8	1.499(4)	C28	C29	1.385(4)
C8	C9	1.391(4)	C29	C30	1.388(4)
C8	C13	1.396(4)	C30	C31	1.380(4)
C9	C10	1.390(4)	C31	C32	1.396(3)
C10	C11	1.376(5)	C33	C34	1.467(3)
C11	C12	1.380(4)	C33	C38	1.486(3)
C12	C13	1.393(4)	C34	C35	1.506(4)
C14	C15	1.477(4)	C35	C36	1.531(4)
C14	C19	1.467(4)	C36	C37	1.506(4)
C15	C16	1.503(4)	C37	C38	1.504(4)

Table 5 Bond Angles for 6ab.

Atom	1 Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	C40	C12	110.89(17)	O2	C19	C14	120.3(3)
C11	C40	C13	111.02(16)	O2	C19	C18	121.9(3)
C13	C40	Cl2	109.88(17)	C14	C19	C18	117.8(3)
Cl4	C39	C15	110.22(16)	C26	N4	C20	127.8(2)
Cl6	C39	Cl4	110.04(17)	N6	N5	C32	118.72(19)
Cl6	C39	C15	110.61(15)	N5	N6	C33	121.1(2)
C7	N1	C1	126.4(2)	C21	C20	N4	124.0(2)

Table 5 Bond Angles for 6ab.

Atom Atom Atom		nAtom	Angle/°	Atom Atom		Atom	Angle/°
N3	N2	C13	119.0(2)	C21	C20	C25	119.4(2)
N2	N3	C14	120.1(2)	C25	C20	N4	116.5(2)
C2	C1	N1	118.2(2)	C20	C21	C22	119.8(3)
C2	C1	C6	119.4(3)	C23	C22	C21	121.0(3)
C6	C1	N1	122.4(3)	C22	C23	C24	119.2(2)
C1	C2	C3	120.1(3)	C23	C24	C25	120.5(2)
C4	C3	C2	120.3(3)	C24	C25	C20	120.1(2)
C5	C4	C3	119.4(3)	O4	C26	N4	124.7(2)
C4	C5	C6	120.7(3)	O4	C26	C27	121.1(2)
C5	C6	C1	120.0(3)	N4	C26	C27	114.3(2)
01	C7	N1	123.7(3)	C28	C27	C26	120.7(2)
01	C7	C8	121.5(2)	C28	C27	C32	118.5(2)
N1	C7	C8	114.8(2)	C32	C27	C26	120.8(2)
C9	C8	C7	120.2(3)	C29	C28	C27	121.2(2)
C9	C8	C13	118.6(3)	C28	C29	C30	119.4(2)
C13	C8	C7	121.2(2)	C31	C30	C29	120.8(2)
C10	C9	C8	120.7(3)	C30	C31	C32	119.9(2)
C11	C10	C9	119.9(3)	N5	C32	C27	119.9(2)
C10	C11	C12	120.7(3)	C31	C32	N5	120.3(2)
C11	C12	C13	119.4(3)	C31	C32	C27	119.8(2)
C8	C13	N2	120.0(2)	N6	C33	C34	124.9(2)
C12	C13	N2	119.3(3)	N6	C33	C38	114.3(2)
C12	C13	C8	120.7(3)	C34	C33	C38	120.8(2)
N3	C14	C15	114.4(2)	05	C34	C33	120.2(2)
N3	C14	C19	124.9(3)	05	C34	C35	121.4(2)
C19	C14	C15	120.6(2)	C33	C34	C35	118.4(2)
O3	C15	C14	121.9(2)	C34	C35	C36	112.6(2)
O3	C15	C16	119.9(3)	C37	C36	C35	110.6(3)
C14	C15	C16	118.1(2)	C38	C37	C36	114.5(2)
C17	C16	C15	115.3(3)	06	C38	C33	121.4(2)
C16	C17	C18	111.9(3)	O6	C38	C37	120.6(2)
C19	C18	C17	115.1(3)	C33	C38	C37	118.0(2)

Table 6 Torsion Angles for 6ab.

A	B	С	D	Angle/°	A	В	С	D	Angle/°
01	C7	C8	C9	-140.3(3)	O4	C26	C27	C28	-145.5(2)
01	C7	C8	C13	38.1(4)	O4	C26	C27	C32	34.1(3)
O3	C15	5C16	5C17	155.9(3)	05	C34	C35	C36	-151.4(3)

Table 6 Torsion Angles for 6ab.

Α	B	С	D	Ang	le/°	Α	B	С	D	Angle/°
N1	C1	C2	C3	-1	77.0(3)	N4	C20	C21	C22	178.5(2)
N1	C1	C6	C5	1	77.0(3)	N4	C20	C25	C24	-179.1(2)
N1	C7	C8	C9		38.7(3)	N4	C26	C27	C28	35.5(3)
N1	C7	C8	C13	-1	43.0(2)	N4	C26	C27	C32	-145.0(2)
N2	N3	C14	4C15	1	77.6(2)	N5	N6	C33	C34	-0.4(4)
N2	N3	C14	4C19		-4.4(4)	N5	N6	C33	C38	177.0(2)
N3	N2	C13	3C8	1	63.0(2)	N6	N5	C32	C27	170.4(2)
N3	N2	C13	3C12	-	17.8(3)	N6	N5	C32	C31	-9.1(3)
N3	C14	C15	503		-4.3(4)	N6	C33	C34	05	-1.6(4)
N3	C14	C15	5C16	1	78.3(3)	N6	C33	C34	C35	177.6(2)
N3	C14	C19	902		2.4(5)	N6	C33	C38	06	-3.5(4)
N3	C14	C19	PC18	-1	77.7(3)	N6	C33	C38	C37	178.6(2)
C1	N1	C7	01		4.7(4)	C20	N4	C26	04	6.7(4)
C1	N1	C7	C8	-1	74.3(2)	C20	N4	C26	C27	-174.3(2)
C1	C2	C3	C4		-0.6(5)	C20	C21	C22	C23	0.2(4)
C2	C1	C6	C5		-0.4(4)	C21	C20	C25	C24	-0.6(4)
C2	C3	C4	C5		0.5(5)	C21	C22	C23	C24	0.1(4)
C3	C4	C5	C6		-0.4(5)	C22	2C23	C24	C25	-0.6(4)
C4	C5	C6	C1		0.4(5)	C23	C24	C25	C20	0.9(4)
C6	C1	C2	C3		0.5(4)	C25	5C20	C21	C22	0.1(4)
C7	N1	C1	C2	-1	48.2(3)	C26	5N4	C20	C21	2.4(4)
C7	N1	C1	C6		34.3(4)	C26	5N4	C20	C25	-179.2(2)
C7	C8	C9	C10	1	78.0(2)	C26	5C27	C28	C29	-176.1(2)
C7	C8	C13	3 N2		-0.2(3)	C26	5C27	C32	N5	-5.2(3)
C7	C8	C13	3C12	-1	79.4(2)	C26	5C27	C32	C31	174.3(2)
C8	C9	C10)C11		0.1(4)	C27	'C28	C29	C30	1.0(4)
C9	C8	C13	3 N2	1	78.2(2)	C28	8C27	C32	N5	174.3(2)
C9	C8	C13	3C12		-1.0(4)	C28	8C27	C32	C31	-6.2(3)
C9	C10)C11	C12		1.6(4)	C28	8C29	C30	C31	-4.8(4)
C10	C11	C12	2C13		-3.0(4)	C29	C30	C31	C32	2.9(4)
C11	C12	2C13	3 N2	-1	76.5(2)	C30	C31	C32	N5	-177.9(2)
C11	C12	2C13	3C8		2.7(4)	C30	C31	C32	C27	2.6(4)
C13	N2	N3	C14	1	74.0(2)	C32	2N5	N6	C33	178.9(2)
C13	C8	C9	C10		-0.4(4)	C32	2C27	C28	C29	4.4(4)
C14	C15	5C16	5C17	-	26.7(5)	C33	C34	C35	C36	29.5(4)
C15	5 C 14	C19	902	-1	79.7(3)	C34	C33	C38	06	174.0(2)
C15	5 C 14	C19	C18		0.2(4)	C34	C33	C38	C37	-3.8(4)
C15	C16	5C17	7C18		50.7(5)	C34	C35	C36	C37	-55.6(4)

Table 6 Torsion Angles for 6ab.

Α	B	С	D	Ang	le/°	Α	В	С	D	Ang	gle/°
C160	C17	C18	C19		-50.1(5)	C35	C36	C37	C38		52.8(4)
C170	C18	C19	O2	-1	55.5(4)	C36	C37	C38	06		158.7(3)
C170	C18	C19	C14		24.5(5)	C36	C37	C38	C33		-23.5(4)
C190	C14	C15	03	1	77.6(3)	C38	C33	C34	05	-	178.8(3)
C190	C14	C15	C16		0.2(4)	C38	C33	C34	C35		0.3(4)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 6ab.

Atom	x	у	Z	U(eq)
H40	2456.45	1993.15	-809.03	50
H39	3114.04	2904.18	1642.55	46
H1	10350.07	3216.03	7351.36	40
H2	7860(40)	4030(30)	4850(30)	78(14)
H2A	9667.53	3688.75	8719.92	47
H3	8601.33	3194.02	10185.76	60
H4	7108.12	1999.44	10495.44	59
Н5	6716.17	1280.52	9346.77	57
H6	7776.84	1761.62	7885.34	47
H9	11668.31	2528.14	6529.91	46
H10	13248.52	2839.95	5343.03	56
H11	12674.31	3813.03	3772.96	56
H12	10555.21	4557.21	3386.5	46
H16A	5300.95	7179.57	2312.09	68
H16B	5640.59	6914.51	1370.16	68
H17A	4782.98	5458.67	1971.55	71
H17B	3731.64	6277.24	2102.91	71
H18A	4217.28	5815.7	3719.91	84
H18B	3999.36	4832.77	3506.03	84
H4A	7321.24	1911.13	4380.76	32
H5A	3326.48	1459.04	3929.15	31
H21	5698.36	3621.47	2316.46	41
H22	6781.65	4656.17	1022.45	47
H23	9058.99	4586.04	1012.1	44
H24	10266.74	3462.87	2307.11	40
H25	9202.39	2440.77	3617.72	35
H28	6641.43	1905.86	5788.24	36
H29	6295.07	802.23	7316.92	42
H30	4719.4	-324.94	7520.21	39

Atom	x	у	Z	U(eq)
H31	3307.41	-215.19	6255.56	33
H35A	963.82	712.32	1846.85	48
H35B	238.11	1740.31	1813.48	48
H36A	-1152.53	940.15	3056.3	55
H36B	-1247.26	481.54	2217.06	55
H37A	-1023.95	-749.47	3761.95	44
H37B	112	-879	3060.19	44

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 6ab.

6. Scale-up experiment and mechanism studies

6aa, 592.3 mg, 81 %

3a (1.5 equiv)

1a (2.0 mmol)

In an oven-dried Schlenk tube under air, а mixture of 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one 1a (2.0 mmol, 1.0 equiv), 5,5-dimethyl-2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione **3a** (3.0 mmol, 1.5 equiv), CuBr₂ (44.6 mg, 0.2 mmol, 10 mol%), 4,4'-dimethyl-2,2'-bipyridine (36.8 mg, 0.2 mmol, 10 mol%), 1-AdCOOH (360.0 mg, 2.0 mmol, 1.0 equiv) and HFIP (10.0 mL) was stirred at 80 °C (oil bath) for 4.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography by using EA/PE = 1/2 as the eluent to afford the pure product **6aa** (592.3 mg, 81 %).

Competitive reaction between benzotriazinone substrates.

In a 10 mL oven dried reaction tube with a magnetic stir bar was charged with 5d (51.5 mg, 0.2 mmol, 1.0 equiv), 5e (47.5 0.2 1.0 mg, mmol, equiv), 5,5-dimethyl-2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione **3a** (102.9 mg, 0.30 mmol, 1.5 equiv), (Cp*IrCl₂)₂ (4.0 mg, 0.005 mmol, 2.5 mol%), PivOH (20.4 mg, 0.20 mmol, 1.0 equiv), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%) and HFIP (1.0 mL) was added. Then, the tube was capped with septa and the resulting mixture was stirred at 35 °C for 4.0 h. The solvent was evaporated under reduced pressure, and 5da and 5ea were obtained directly by silica gel column chromatography. The mass of **5da** and **5ea** is 39.6 mg and 37.5 mg respectively.

In oven-dried Schlenk tube under mixture corresponding an air, а of 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one (0.20)mmol. 1.0 equiv), 1a 2-(dimethyl(oxo)-l⁶-sulfaneylidene)-1-phenylethan-1-one **2a** (0.22 mmol, 1.1 equiv), (Cp*RhCl₂)₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), 1-AdCOOH (36.0 mg, 0.20 mmol, 1.0 equiv), AgF (6.3 mg, 0.05 mmol, 25 mol%), and HFIP (1.0 mL) was stirred at 80- °C (oil bath) for 24.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product 7, the product 7 was obtained in 0 % yield.

In oven-dried Schlenk tube under corresponding air, mixture of an а 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one (0.20)1.0 **1**a mmol, equiv), 5,5-dimethyl-2-(phenyl-1³-iodaneylidene)cyclohexane-1,3-dione **3a** (0.30 mmol, 1.5 equiv), (Cp*IrCl₂)₂ (4.0 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), PivOH (20.4 mg, 0.2 mmol, 1.0 equiv) and HFIP (1.0 mL) was stirred at 35 °C (oil bath) for 4.0 h. The reaction mixture was then diluted with DCM (10.0 mL) and washed with H₂O. The aqueous phase was extracted with DCM again. The organic layers were combined, washed with brine and dried over Na₂SO₄. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product 8, the product 8 was obtained in 0 % yield.

Conclusion: The results of competitive experiments show that the directing ability of nitrogen atoms is greater than that of carbonyl oxygen atoms, and the electrical properties of the 1,2,3-benzotriazinone have little effect on the product **5** yield.

Procedure for kinetic isotopic effect experiments

The kinetic isotope effect (KIE) was determined by measuring the initial rates of the reactions with hydrogenated and deuterated substrates. Five reactions with hydrogenated substrates and five reactions with deuterated substrates were stopped at 3.0, 4.0, 5.0, 6.0 and 7.0 h, using the following procedure: in an oven-dried Schlenk tube under air, a mixture of 3-phenylbenzo[*d*][1,2,3]triazin-4(3*H*)-one **1**a D₅-1a (0.10)mmol, 1.0 equiv), or 2-(dimethyl(oxo)- λ^6 -sulfaneyli-dene)-1-phenylethan-1-one **2a** (21.6 mg, 0.11 mmol, 1.1 equiv), (Cp*RhCl₂)₂ (1.5 mg, 0.0025 mmol, 2.5 mol%), AgSbF₆ (3.4 mg, 0.01 mmol, 10 mol%), 1-AdCOOH (18.0 mg, 0.10 mmol, 1.0 equiv), AgF (3.2 mg, 0.025 mmol, 25 mol%) and HFIP (0.5 mL) was stirred at 80 °C (oil bath) for the indicated time. Quickly cooled to room temperature under the ice water. the solvent was evaporated under reduced pressure and the crude product was directly purified by a silica gel column chromatography by using EA/PE = 1/4 as the eluent to afford the corresponding the yield. The K_H/K_D value was 3/4 = 0.75.

For **4aa**: y = 3X+2.2; R² = 0.9912

For **D**₄-4aa: y = 4X–8.2; R² = 0.9950

$$\text{KIE} = K_H / K_D = 0.75$$

Conclusion: KIE results indicate that the reaction rate may not undergo the first-order kinetic process.

7. Product characterization

3-(2-(2-oxo-2-phenylethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4aa)

Following the above procedure 4, the product **4aa** was obtained in 78 % yield (53.2 mg, 0.156 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.26. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 7.9 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.91 (t, *J* = 7.7 Hz, 1H), 7.78 (t, *J* = 8.0 Hz,

3H), 7.45 (d, 4H), 7.38 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.3 Hz, 2H), 4.24 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.39, 155.14, 143.56, 137.76, 137.42, 136.15, 135.13, 133.07, 132.86, 132.78, 131.60, 129.96, 128.47, 128.40, 128.27, 128.24, 125.37, 120.04, 41.48. ESI-MS: calculated C₂₁H₁₆N₃O₂ [M+H]⁺ 342.1237; Found 342.1230.

3-(2-(2-oxo-2-(p-tolyl)ethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ab)

Following the above procedure 4, the product **4ab** was obtained in 52 % yield (37.3 mg, 0.104 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 7.9, 1.0 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.96 (t, *J* = 8.2, 7.8,

1.4 Hz, 1H), 7.86 – 7.77 (t, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.57 – 7.38 (m, 4H), 7.07 (d, J = 8.0 Hz, 2H), 4.21 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.26, 155.35, 144.06, 143.84, 137.88, 135.16, 133.94, 133.33, 132.83, 131.71, 130.19, 129.27, 128.70, 128.65, 128.56, 128.38, 125.67, 120.32, 41.56, 21.70. ESI-MS: calculated C₂₂H₁₈N₃O₂ [M+H]⁺ 356.1394; Found 356.1389.

3-(2-(2-(3,5-dimethylphenyl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ac)

Following the above procedure 4, the product **4ac** was obtained in 55 % yield (40.6 mg, 0.110 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.9, 1.2 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 8.00 – 7.90 (m, 1H), 7.84 – 7.76 (m, 1H), 7.55 – 7.41 (m, 4H), 7.37 (s, 2H), 7.01 (s, 1H),

4.21 (s, 2H), 2.22 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.98, 155.30, 143.76, 138.19, 137.83, 136.53, 135.17, 134.86, 133.30, 132.79, 131.74, 130.15, 128.63, 128.52, 128.35, 126.22, 125.60, 120.30, 41.53, 21.19. ESI-MS: calculated C₂₃H₁₉N₃O₂Na [M+Na]⁺ 392.1369; Found 392.1360.

3-(2-(2-(3,4-dimethoxyphenyl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ad)

Following the above procedure 4, the product **4ad** was obtained in 39 % yield (31.3 mg, 0.078 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). Rf (Petroleum ether/EtOAc 2:1): 0.25. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 7.9 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.95 (t, *J* = 7.7

Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.50 – 7.39 (m, 5H), 7.32 (d, J = 1.6 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 4.18 (s, 2H), 3.83 (d, J = 3.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.33, 155.23, 153.13, 148.75, 143.71, 137.63, 135.11, 133.66, 132.72, 131.44, 130.14, 129.47, 128.54, 128.47, 128.26, 125.50, 123.22, 120.19, 110.39, 109.75, 55.97, 55.92, 41.10. ESI-MS: calculated C₂₃H₂₀N₃O₄ [M+H]⁺ 402.1448; Found 402.1449.

3-(2-(2-(3-methoxyphenyl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ae)

Following the above procedure 4, the product **4ae** was obtained in 42 % yield (31.2 mg, 0.084 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, 1H), 8.16 (d, *J* = 8.1 Hz, 1H), 8.00 – 7.93 (m, 1H), 7.85 –

7.77 (m, 1H), 7.55 – 7.42 (m, 4H), 7.37 (d, J = 7.7 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.18 (t, J = 7.9

Hz, 1H), 6.98 - 6.90 (m, 1H), 4.23 (s, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.46, 159.72, 155.32, 143.85, 137.82, 137.66, 135.24, 135.19, 133.11, 132.90, 131.66, 130.29, 129.49, 128.64, 128.51, 128.39, 125.65, 121.15, 120.01, 112.33, 55.48, 41.74. ESI-MS: calculated C₂₂H₁₈N₃O₃ [M+H]⁺ 372.1343; Found 372.1336.

3-(2-(2-oxo-2-(m-tolyl)ethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4af)

Following the above procedure 4, the product **4af** was obtained in 50 % yield (35.5 mg, 0.100 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 6:1 v/v). Rf (Petroleum ether/EtOAc 6:1): 0.25. ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.34 (dd, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 7.96 (td, *J* = 8.2, 7.8, 1.4 Hz,

1H), 7.84 – 7.78 (m, 1H), 7.59 (d, J = 7.0 Hz, 2H), 7.54 – 7.39 (m, 4H), 7.19 (dt, J = 15.8, 7.5 Hz, 2H), 4.23 (s, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.70, 155.25, 143.72, 138.31, 137.79, 136.34, 135.14, 133.93, 133.07, 132.78, 131.65, 130.09, 128.87, 128.61, 128.47, 128.38, 128.33, 125.63, 125.56, 120.22, 41.53, 21.25. ESI-MS: calculated C₂₂H₁₈N₃O₂ [M+H]⁺ 356.1394; Found 356.1387.

3-(2-(4-chlorophenyl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ag)

Following the above procedure 4, the product **4ag** was obtained in 33 % yield (24.6 mg, 0.066 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 7.9, 1.1 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.98 (td, *J* =

8.2, 7.8, 1.4 Hz, 1H), 7.89 – 7.80 (m, 1H), 7.74 – 7.69 (m, 2H), 7.54 – 7.41 (m, 4H), 7.27 – 7.21 (m, 2H), 4.20 (s, 2H). 13 C NMR (101 MHz, CDCl₃) δ 195.51, 155.33, 143.78, 139.70, 137.82, 135.36, 134.68, 133.01, 132.81, 131.69, 130.29, 129.93, 128.91, 128.73, 128.66, 128.61, 125.62, 120.21, 41.66. ESI-MS: calculated C₂₁H₁₅N₃O₂Cl [M+H]⁺ 376.0847; Found 376.0843.

3-(2-(2-(4-bromophenyl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ah)

Following the above procedure 4, the product 4ah was obtained in 40 % yield (33.3 mg, 0.080 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.24. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, J = 7.9, 1.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.98 (td, J = 8.3, 7.8, 1.4 Hz, 1H), 7.87 - 7.79 (m, 1H), 7.67 - 7.60 (m, 2H), 7.52 - 7.38 (m, 6H), 4.19 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 195.71, 155.32, 143.76, 137.80, 135.36, 135.07, 133.01, 132.79, 131.88, 131.69, 130.28, 130.00, 128.72, 128.66, 128.60, 128.49, 125.60, 120.19, 41.62. ESI-MS: calculated C₂₁H₁₅N₃O₂Br [M+H]⁺ 420.0342; Found 420.0338.

3-(2-(2-(naphthalen-2-yl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ai)

Following the above procedure 4, the product 4ai was obtained in 57 % yield (44.6 mg, 0.114 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 6:1 v/v). Rf (Petroleum ether/EtOAc 6:1): 0.27. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, J = 8.0, 1.1 Hz, 1H), 8.28 (s, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.91 -7.78 (m, 3H), 7.78 – 7.65 (m, 3H), 7.60 – 7.42 (m, 6H), 4.36 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.59, 155.31, 143.60, 137.73, 135.44, 135.02, 133.64, 133.31, 132.68, 132.24, 131.65, 130.34, 130.19, 129.66, 128.54, 128.53, 128.43, 128.40, 128.40, 127.62, 126.67, 125.37, 123.97, 120.07, 41.45. ESI-MS: calculated C₂₅H₁₈N₃O₂ [M+H]⁺ 392.1394; Found 392.1386.

3-(2-(2-(1-methyl-1H-pyrrol-2-yl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4aj)

Following the above procedure 4, the product 4aj was obtained in 51 % yield (35.1 mg, 0.102 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 7.9, 1.0 Hz, 1H), 8.15 (d, J = 7.6 Hz, 1H), 7.95 (td, J = 8.2, 7.8, 1.4 Hz, 1H),

7.84 - 7.76 (m, 1H), 7.56 - 7.38 (m, 4H), 6.70 (dd, J = 4.1, 1.7 Hz, 1H), 6.58 (t, J = 1.8 Hz, 1H),
5.78 (dd, J = 4.1, 2.5 Hz, 1H), 4.02 (s, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.88, 155.58, 143.96, 137.95, 135.19, 134.28, 132.84, 132.18, 131.59, 130.30, 128.68, 128.57, 128.39, 125.61, 120.52, 120.03, 119.78, 108.01, 42.27, 37.79. ESI-MS: calculated C₂₀H₁₇N₄O₂ [M+H]⁺ 345.1346; Found 345.1346.

3-(2-(2-oxo-2-(thiophen-2-yl)ethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ak)

Following the above procedure 4, the product **4ak** was obtained in 37 % yield (25.6 mg, 0.074 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.26. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 8.1 Hz, 1H), 7.97 (t, *J* = 7.7 Hz, 1H), 7.83 (t, *J* = 7.6 Hz,

1H), 7.62 – 7.38 (m, 6H), 6.91 (t, J = 3.9 Hz, 1H), 4.15 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.28, 155.39, 143.82, 143.59, 137.86, 135.29, 134.32, 132.95, 132.85, 131.58, 130.25, 128.74, 128.62, 128.59, 128.40, 128.15, 125.66, 120.29, 42.43. ESI-MS: calculated C₁₉H₁₄N₃O₂S [M+H]⁺ 348.0801; Found 348.0801.

3-(2-(2-cyclopropyl-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4al)

Following the above procedure 4, the product **4al** was obtained in 51 % yield (31.1 mg, 0.102 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 8.01 (td, *J* = 8.3, 7.8, 1.4 Hz, 1H),

7.89 – 7.83 (m, 1H), 7.58 – 7.40 (m, 4H), 3.77 (s, 2H), 1.87 – 1.79 (m, 1H), 0.86 (p, J = 3.8, 3.3 Hz, 2H), 0.73 (p, J = 7.5, 3.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 207.04, 155.27, 143.83, 138.03, 135.28, 132.94, 132.48, 131.79, 130.16, 128.70, 128.54, 128.46, 125.59, 120.30, 46.93, 20.09, 11.78. ESI-MS: calculated C₁₈H₁₆N₃O₂ [M+H]⁺ 306.1237; Found 306.1229.

3-(2-(2-(adamantan-1-yl)-2-oxoethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4am)

Following the above procedure 4, the product 4am was obtained in 43 % yield (34.5 mg, 0.086 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.24. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 7.9, 1.0 Hz, 1H), 8.23 (d, J = 7.7 Hz, 1H), 8.00 (td, J = 8.2, 7.8, 1.4 Hz, 1H), 7.90 - 7.81 (m, 1H), 7.52 - 7.40 (m, 3H), 7.38 - 7.33 (m, 1H), 3.77 (s, 2H), 1.87 (s, 3H), 1.66 -

1.57 (m, 9H), 1.52 (d, J = 11.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 210.80, 155.24, 143.86, 137.92, 135.33, 132.94, 132.77, 132.35, 129.85, 128.67, 128.33, 128.16, 125.65, 120.42, 46.73, 39.55, 38.75, 38.22, 36.44, 27.91. ESI-MS: calculated $C_{25}H_{26}N_3O_2$ [M+H]⁺ 400.2020; Found 400.2021.

3-(2-(3,3-dimethyl-2-oxobutyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4an)

Following the above procedure 4, the product 4an was obtained in 36 % yield (23.3 mg, 0.072 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.26. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (dd, J = 7.9,

1.1 Hz, 1H), 8.23 (d, J = 7.7 Hz, 1H), 8.01 (td, J = 8.2, 7.8, 1.4 Hz, 1H),

7.89 – 7.80 (m, 1H), 7.55 – 7.33 (m, 4H), 3.82 (s, 2H), 0.96 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) 8 211.04, 155.16, 143.75, 137.85, 135.26, 132.89, 132.60, 132.16, 129.78, 128.63, 128.26, 128.14, 125.57, 120.26, 44.45, 39.82, 26.39. ESI-MS: calculated C₁₉H₂₀N₃O₂ [M+H]⁺ 322.1550; Found 322.1546.

3-(4-bromo-2-(2-oxo-2-phenylethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ba)

Following the above procedure 4, the product 4ba was obtained in 53 % yield (44.8 mg, 0.106 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.24. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 7.9 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.96 (t, J = 7.7 Hz, 1H), 7.79 (dd, J = 19.8, 7.8 Hz, 3H), 7.61 (d, J = 9.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 7.36 – 7.18 (m, 3H), 4.22 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.68, 155.18, 143.65, 137.00, 136.13, 135.39, 135.04, 134.79, 133.45, 133.07, 131.57, 130.02, 128.78, 128.65, 128.36, 125.62, 124.00, 120.09, 41.29. ESI-MS: calculated C₂₁H₁₅N₃O₂Br [M+H]⁺ 420.0342; Found 420.0342.

3-(4-methoxy-2-(2-oxo-2-phenylethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ca)

Following the above procedure 4, the product **4ca** was obtained in 32 % yield (24.1 mg, 0.064 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.27. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.99 – 7.91

(m, 1H), 7.84 - 7.75 (m, 3H), 7.42 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.02 - 6.94 (m, 2H), 4.18 (s, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.50, 160.54, 155.60, 143.81, 136.35, 135.19, 134.30, 133.27, 132.84, 130.67, 129.62, 128.68, 128.60, 128.51, 125.66, 120.29, 116.91, 113.57, 55.71, 41.78. ESI-MS: calculated C₂₂H₁₈N₃O₃ [M+H]⁺ 372.1343; Found 372.1338.

8-chloro-3-(2-(2-oxo-2-phenylethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4da)

Following the above procedure 4, the product **4da** was obtained in 46 % yield (34.6 mg, 0.092 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.97 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.78 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.71 (t, *J* = 7.9 Hz, 1H), δ 7.52 – 7.38 (m, 5H), 7.34 – 7.27 (m, 2H)., 4.25

(s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.45, 154.43, 140.23, 137.61, 136.29, 135.88, 134.01, 133.28, 133.15, 133.07, 132.95, 131.88, 130.35, 128.57, 128.47, 128.45, 124.38, 122.08, 41.58.

ESI-MS: calculated C₂₁H₁₅N₃O₂Cl [M+H]⁺ 376.0847; Found 376.0849.

8-methyl-3-(2-(2-oxo-2-phenylethyl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (4ea)

Following the above procedure 4, the product **4ea** was obtained in 41 % yield (29.1 mg, 0.082 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.25. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 7.0 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.78 – 7.73 (m, 1H), 7.68 (t, *J* = 7.6 Hz, 1H),

7.52 – 7.39 (m, 5H), 7.33 – 7.27 (m, 2H), 4.24 (s, 2H), 2.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.68, 155.67, 142.16, 138.48, 138.02, 136.44, 136.34, 133.18, 133.07, 132.65, 131.64, 130.34, 130.09, 128.54, 128.52, 128.40, 123.26, 120.38, 41.59, 17.35. ESI-MS: calculated C₂₂H₁₈N₃O₂ [M+H]⁺ 356.1394; Found 356.1386.

3-(6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)benzo[*d*][1,2,3] triazin-4(3*H*)-one (5aa)

Following the above procedure 5, the product **5aa** was obtained in 81 % yield (58.5 mg, 0.162 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 7.4 Hz, 1H), 8.18 (d, *J* = 8.1 Hz, 1H), 8.02 – 7.93 (m,

1H), 7.81 (t, J = 7.5 Hz, 1H), 7.60 – 7.52 (m, 3H), 7.39 – 7.32 (m, 1H), 2.55 – 1.88 (m, 4H), 1.02 (s, 3H), 0.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.69, 171.30, 155.71, 143.66, 138.86, 135.29, 133.06, 132.75, 130.28, 130.24, 129.61, 128.62, 128.49, 125.46, 119.87, 113.59, 50.32, 42.28, 31.46, 28.46, 27.57. ESI-MS: calculated C₂₁H₂₀N₃O₃ [M+H]⁺ 362.1499; Found 362.1493.

5,5-dimethyl-2-(2-methyl-6-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)phenyl)cyclohexane-1,3-dio ne (5ba)

Following the above procedure 5, the product 5ba was obtained in 82 % yield (61.4 mg, 0.164 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.27. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.9 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.93 (t, J = 7.7 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 9.6 Hz, 2H), 7.20 (d, J = 7.7 Hz, 1H), 2.39 (s, 3H), 2.15

(d, J = 62.8 Hz, 4H), 0.98 (s, 3H), 0.70 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.11, 143.02, 137.91, 136.44, 135.41, 132.81, 132.77, 128.96, 128.91, 127.93, 127.88, 124.95, 120.08, 111.66, 30.94, 28.92, 26.61, 20.58. ESI-MS: calculated C₂₂H₂₂N₃O₃ [M+H]⁺ 376.1656; Found 376.1652.

3-(5-bromo-6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)benzo [d][1,2,3]triazin-4(3H)-one (5ca)

Following the above procedure 5, the product 5ca was obtained in 68 % yield (60.2 mg, 0.136 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.23. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 7.9 Hz, 1H), 8.06 (d, *J* = 8.1 Hz, 1H), 7.90 (t, *J* = 7.7 Hz,

1H), 7.74 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 10.2 Hz, 1H), 7.44 (s, 1H), 7.34 (d, J = 8.4 Hz, 1H), 3.49 (s, 1H), 2.17 (s, 2H), 2.00 (d, J = 15.5 Hz, 2H), 0.93 (s, 3H), 0.70 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) & 145.76, 133.91, 127.71, 126.48, 125.84, 123.78, 123.29, 121.75, 119.66, 118.74, 115.86, 113.53, 110.50, 102.51, 21.82, 19.01, 17.88, 17.35. ESI-MS: calculated C₂₁H₁₉N₃O₃Br [M+H]⁺ 440.0604; Found 440.0602.

3-(6'-hydroxy-5-methoxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)ben zo[*d*][1,2,3]triazin-4(3*H*)-one (5da)

Following the above procedure 5, the product **5da** was obtained in 69 % yield (54.2 mg, 0.138 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.24. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 7.9 Hz, 1H), 8.16 (d, *J* = 8.1 Hz, 1H), 7.96 (t, *J* = 7.7

Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.05 (dd, J = 8.6, 2.5 Hz, 1H), 6.84 (d, J = 2.7 Hz, 1H), 3.84 (s, 3H), 2.27 – 1.96 (m, 4H), 1.01 (s, 3H), 0.71 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.71, 154.29, 143.03, 135.34, 133.39, 132.69, 131.25, 128.67, 127.84, 124.96, 120.08, 117.87, 112.42, 111.80, 55.42, 46.24, 30.91, 28.97, 26.51. ESI-MS: calculated C₂₂H₂₂N₃O₄ [M+H]⁺ 392.1605; Found 392.1602.

methyl 3-(6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-4-oxo -3,4-dihydrobenzo[*d*][1,2,3]triazine-7-carboxylate (5ea)

Following the above procedure 5, the product **5ea** was obtained in 77 % yield (64.8 mg, 0.154 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.41 (s,

2H), 7.57 (s, 3H), 7.44 – 7.32 (m, 1H), 4.03 (s, 3H), 2.20 (d, J = 62.4 Hz, 4H), 1.02 (s, 3H), 0.74 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 195.71, 171.43, 165.16, 154.98, 143.53, 138.63, 136.45, 133.15, 132.66, 130.40, 130.29, 130.25, 129.56, 128.39, 126.11, 122.84, 113.49, 53.18, 50.38, 42.44, 31.53, 28.61, 27.65. ESI-MS: calculated C₂₃H₂₂N₃O₅ [M+H]⁺ 420.1554; Found 420.1552.

6-bromo-3-(6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)benzo [d][1,2,3]triazin-4(3H)-one (5fa)

Following the above procedure 5, the product **5fa** was obtained in 77 % yield (68.1 mg, 0.154 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.26. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.05 (s, 2H), 7.62 – 7.52 (m, 3H),

7.38 – 7.32 (m, 1H), 2.64 – 1.84 (m, 4H), 1.04 (s, 3H), 0.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.55, 171.14, 154.42, 142.29, 138.68, 138.66, 133.02, 130.53, 130.26, 130.00, 129.78, 128.49, 128.22, 127.45, 121.12, 113.53, 50.35, 42.24, 31.49, 28.38, 27.67. ESI-MS: calculated C₂₁H₁₉N₃O₃Br [M+H]⁺ 440.0604; Found 440.0602.

2-(2-(7-chloro-4-oxobenzo[*d*][1,2,3]triazin-3(4*H*)-yl)phenyl)-5,5-dimethylcyclohexane-1,3-dio ne (5ga)

Following the above procedure 5, the product **5ga** was obtained in 94 % yield (74.6 mg, 0.188 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 9.9 Hz, 1H), 8.14 (s, 1H), 7.75 (d, *J* = 8.5

Hz, 1H), 7.60 - 7.49 (m, 3H), 7.38 - 7.32 (m, 1H), 2.20 (dd, J = 71.3, 15.7 Hz, 4H), 1.03 (s, 3H), 0.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.94, 144.35, 141.69, 138.55, 133.30, 133.13, 130.35, 130.20, 129.50, 128.37, 128.00, 127.25, 118.45, 113.44, 31.53, 28.54, 27.68. ESI-MS: calculated C₂₁H₁₉N₃O₃Cl [M+H]⁺ 396.1109; Found 396.1107.

2-(2-(6-chloro-4-oxobenzo[*d*][1,2,3]triazin-3(4*H*)-yl)phenyl)-5,5-dimethylcyclohexane-1,3-dio ne (5ha)

Following the above procedure 5, the product **5ha** was obtained in 79 % yield (62.4 mg, 0.158 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.23. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 2.3 Hz, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 7.89

(dd, J = 8.7, 2.3 Hz, 1H), 7.60 – 7.50 (m, 3H), 7.38 – 7.31 (m, 1H), 2.19 (d, J = 18.4 Hz, 4H), 1.03 (s, 3H), 0.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.62, 142.06, 139.21, 138.67, 135.88, 133.12, 130.49, 130.35, 130.15, 129.70, 128.49, 125.10, 121.16, 113.55, 31.56, 28.48, 27.72. ESI-MS: calculated C₂₁H₁₉N₃O₃Cl [M+H]⁺ 396.1109; Found 396.1106.

8-chloro-3-(6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)benzo [*d*][1,2,3]triazin-4(3*H*)-one (5ia)

Following the above procedure 5, the product **5ia** was obtained in 67 % yield (52.8 mg, 0.134 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.26. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.9 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.75 – 7.68 (m,

1H), 7.55 (s, 3H), 7.39 – 7.31 (m, 1H), 2.58 – 1.92 (m, 4H), 1.04 (s, 3H), 0.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.63, 171.39, 154.75, 140.18, 138.70, 135.97, 133.98, 133.13, 132.97, 130.51, 130.04, 129.65, 128.47, 124.37, 121.88, 113.58, 50.42, 42.36, 31.59, 28.57, 27.74. ESI-MS: calculated C₂₁H₁₉N₃O₃Cl [M+H]⁺ 396.1109; Found 396.1109.

3-(6'-hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-8-methylbenz o[*d*][1,2,3]triazin-4(3*H*)-one (5ja)

Following the above procedure 5, the product **5ja** was obtained in 70 % yield (52.8 mg, 0.140 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:1 v/v). Rf (Petroleum ether/EtOAc 1:1): 0.24. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.2 Hz, 1H), 7.66 (t, *J* = 7.6 Hz,

1H), 7.56 - 7.43 (m, 3H), 7.36 - 7.30 (m, 1H), 2.83 (s, 3H), 2.37 (d, J = 15.7 Hz, 1H), 2.17 (dd, J = 16.8, 7.9 Hz, 2H), 2.00 (d, J = 16.1 Hz, 1H), 1.00 (s, 3H), 0.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.94, 171.63, 155.99, 142.01, 138.92, 138.35, 136.34, 133.03, 132.44, 130.47, 130.02, 129.32, 128.33, 123.05, 119.97, 113.62, 50.34, 42.44, 31.48, 28.59, 27.51, 17.29. ESI-MS: calculated C₂₂H₂₂N₃O₃ [M+H]⁺ 376.1656; Found 376.1653.

4-(2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)phenyl)-2H-pyran-3,5(4H,6H)-dione (5ab)

Following the above procedure 5, the product **5ab** was obtained in 84 % yield (56.3 mg, 0.168 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 20:1 v/v). Rf (Dichloromethane/Methanol 20:1): 0.23. ¹H NMR (400 MHz,

DMSO- d_6) δ 8.25 (d, J = 7.8 Hz, 1H), 8.15 (d, J = 8.6 Hz, 1H), 8.05 (t, J = 7.7 Hz, 1H), 7.89 (t, J = 7.8 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.46 – 7.29 (m, 3H), 3.81 (s, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.19, 142.95, 137.89, 135.44, 132.87, 132.86, 129.90, 128.31, 128.00, 127.74, 127.32, 124.98, 120.07, 110.21, 68.03. ESI-MS: calculated C₁₈H₁₄N₃O₄ [M+H]⁺ 336.0979; Found 336.0974.

3-(6'-hydroxy-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)benzo[*d*][1,2,3]triazin-4(3*H*)-o ne (5ac)

Following the above procedure 5, the product **5ac** was obtained in 85 % yield (56.9 mg, 0.170 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 1:3 v/v). Rf (Petroleum ether/EtOAc 1:3): 0.24. ¹H NMR (400 MHz, CDCl₃) δ

8.35 (d, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.02 – 7.95 (m, 1H), 7.87 – 7.79 (m, 1H), 7.55 (d, J = 3.1 Hz, 3H), 7.38 – 7.32 (m, 1H), 4.59 (s, 1H), 2.49 – 2.32 (m, 2H), 2.28 – 2.09 (m, 2H), 1.97 – 1.81 (m, 1H), 1.79 – 1.65 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.74, 143.68, 138.78, 135.41, 133.11, 132.91, 130.28, 130.17, 129.62, 128.71, 128.42, 125.53, 119.85, 114.78, 32.61, 32.56, 20.42. ESI-MS: calculated C₁₉H₁₆N₃O₃ [M+H]⁺ 334.1186; Found 334.1176.

3-(2-(2-hydroxy-5-oxocyclopent-1-en-1-yl)phenyl)benzo[d][1,2,3]triazin-4(3H)-one (5ad)

Following the above procedure 5, the product **5ad** was obtained in 99 % yield (63.2 mg, 0.198 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 20:1 v/v). Rf (Dichloromethane/Methanol 20:1): 0.21. ¹H NMR (400 MHz,

DMSO- d_6) δ 8.28 – 8.24 (dd, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.04 (td, J = 8.2, 7.8, 1.4 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.60 (dd, J = 7.8, 1.2 Hz, 1H), 7.48 (dd, J = 7.8, 1.2 Hz, 1H), 7.43 (td, J = 7.6, 1.4 Hz, 1H), 7.34 (td, J = 7.6, 1.5 Hz, 1H), 3.67 (s, 1H), 2.03 (s, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.55, 142.99, 136.75, 135.31, 132.76, 131.32, 129.28, 128.44, 128.13, 128.01, 127.07, 124.88, 120.41, 113.26, 30.34, 26.38. ESI-MS: calculated C₁₈H₁₄N₃O₃ [M+H]⁺ 320.1030; Found 320.1027.

2-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazineyl)-N-phenylbenzamide (6aa)

Following the above procedure 6, the product **6aa** was obtained in 83 % yield (60.3 mg, 0.166 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). Rf (Petroleum ether/EtOAc 2:1): 0.27. ¹H NMR (400 MHz, DMSO-d₆) δ 15.57 (s, 1H), 10.58 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.92 (d, J =

7.0 Hz, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.69 (t, J = 7.7 Hz, 1H), 7.43 – 7.34 (m, 3H), 7.16 (t, J = 7.4 Hz, 1H), 2.60 (d, J = 17.7 Hz, 4H), 1.02 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 196.05, 193.11, 165.68, 141.54, 138.60, 132.85, 131.19, 129.06, 128.72, 125.22, 124.27, 122.57, 120.78, 116.50, 52.13, 51.80, 30.17, 28.04. ESI-MS: calculated C₂₁H₂₂N₃O₃ [M+H]⁺ 364.1656; Found 364.1647.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-N-phenylbenzamide (6ab)

Following the above procedure 6, the product **6ab** was obtained in 83 % yield (55.8 mg, 0.166 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). Rf (Petroleum ether/EtOAc 2:1): 0.28. ¹H NMR (400 MHz, DMSO- d_6) δ 15.53 (s, 1H), 10.58 (s, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.91 (dd, *J*

= 7.8, 1.1 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.73 – 7.66 (m, 1H), 7.44 – 7.33 (m, 3H), 7.15 (t, J = 7.4 Hz, 1H), 2.66 (t, J = 6.3 Hz, 2H), 2.63 – 2.59 (t, 2H), 2.01 – 1.91 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.76, 193.63, 165.68, 141.57, 138.63, 132.85, 132.51, 129.04, 128.74, 125.15, 124.27, 122.65, 120.75, 116.49, 38.79, 38.62, 17.69. ESI-MS: calculated C₁₉H₁₈N₃O₃ [M+H]⁺ 336.1343; Found 336.1347.

2-(2-(3,5-dioxotetrahydro-4*H*-pyran-4-ylidene)hydrazineyl)-*N*-phenylbenzamide (6ac)

Following the above procedure 6, the product **6ac** was obtained in 39 % yield (26.3 mg, 0.078 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). Rf (Petroleum ether/EtOAc 2:1): 0.23. ¹H NMR (400 MHz, DMSO- d_6) δ 15.45 (s, 1H), 10.62 (s, 1H), 7.99 (dd, *J* = 15.1, 8.1

Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 4.37 (d, J = 13.9 Hz, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 192.91, 191.13, 165.65, 141.28, 138.52, 133.05, 130.62, 129.14, 128.76, 125.92, 124.38, 122.68, 120.89, 116.71, 73.21, 72.45. ESI-MS: calculated C₁₈H₁₅N₃O₄Na [M+Na]⁺ 360.0955; Found 360.0958.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-5-methyl-N-phenylbenzamide (6bb)

Following the above procedure 6, the product **6bb** was obtained in 96 % yield (67.1 mg, 0.192 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 2:1 v/v). Rf (Petroleum ether/EtOAc 2:1): 0.20. ¹H NMR (400 MHz, DMSO-d₆) δ 15.53 (s, 1H), 10.48 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.92 – 7.86 (m, 1H), 7.70 – 7.64 (m, 1H), 7.59 (s, 1H), 7.56 (d, J = 8.2 Hz, 1H),

7.41 – 7.33 (m, 1H), 7.27 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 2.77 – 2.54 (m, 4H), 2.33 (s, 3H), 2.05 – 1.84 (m, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 196.31, 193.25, 165.25, 141.21, 138.18, 137.52, 132.40, 132.11, 128.64, 128.19, 124.76, 124.59, 122.30, 120.89, 117.61, 116.15, 38.41, 38.24, 20.91, 17.34. ESI-MS: calculated C₂₀H₁₉N₃O₃Na [M+Na]⁺ 372.1324; Found 372.1322.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-4-methoxy-N-phenylbenzamide (6cb)

Following the above procedure 6, the product **6cb** was obtained in 78 % yield (57.2 mg, 0.156 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.23. ¹H NMR (400 MHz, DMSO- d_6) δ 15.55 (s, 1H), 10.44 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H),

7.92 – 7.87 (m, 1H), 7.71 – 7.64 (m, 3H), 7.39 – 7.34 (m, 1H), 6.99 – 6.94 (m, 2H), 3.76 (s, 3H), 2.70 – 2.57 (m, 4H), 2.01 – 1.89 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.24, 193.23, 164.86, 155.59, 141.18, 132.28, 132.08, 131.24, 128.48, 124.75, 122.31, 121.99, 116.10, 113.47, 54.88, 38.41, 38.24, 17.33. ESI-MS: calculated C₂₀H₁₉N₃O₄Na [M+Na]⁺ 388.1273; Found 388.1274.

N-(4-chlorophenyl)-2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)benzamide (6db)

Following the above procedure 6, the product **6db** was obtained in 45 % yield (33.3 mg, 0.090 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.21. ¹H NMR (400 MHz,

DMSO- d_6) δ 15.42 (s, 1H), 10.59 (s, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 2.1 Hz, 1H), 7.74 (d, J = 7.7 Hz, 2H), 7.47 – 7.35 (m, 3H), 7.16 (t, J = 7.4 Hz, 1H), 2.74 – 2.54 (m, 4H), 2.05 – 1.89 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.62, 193.36, 164.51, 142.93, 138.06, 137.11, 132.66, 130.65, 128.38, 124.03, 123.98, 120.49, 120.27, 115.32, 38.44, 38.34, 17.14. ESI-MS: calculated C₁₉H₁₆N₃O₃NaCl [M+Na]⁺ 392.0778; Found 392.0771.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-N-(4-(trifluoromethyl)phenyl)benzamide (6eb)

Following the above procedure 6, the product **6eb** was obtained in 74 % yield (59.7 mg, 0.148 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.24. ¹H NMR (400 MHz,

DMSO- d_6) δ 15.40 (s, 1H), 10.75 (s, 1H), 8.18 – 8.15 (m, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.74 – 7.70 (m, 1H), 7.41 (t, J = 7.9 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 2.72 – 2.60 (m, 4H), 2.01 – 1.92 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.95, 193.38, 164.24, 141.99, 137.97, 132.10 (d, J = 32.3 Hz), 131.56 (d, J = 269.0 Hz), 128.45, 125.18, 124.51, 124.22, 121.80, 120.44, 112.18, 38.46, 38.38, 17.11. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.92. ESI-MS: calculated C₂₀H₁₆N₃O₃F₃Na [M+Na]⁺ 426.1041; Found 426.1044.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-N-(3-methoxyphenyl)benzamide (6fb)

Following the above procedure 6, the product **6fb** was obtained in 87 % yield (63.6 mg, 0.174 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.23. ¹H NMR (400 MHz, DMSO-*d*₆) δ 15.63 (s, 1H), 10.60 (s, 1H), 7.90 (d, *J* = 9.1 Hz, 1H),

7.75 (d, J = 7.9 Hz, 2H), 7.44 (d, J = 2.7 Hz, 1H), 7.39 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 9.1, 2.7 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 3.88 (s, 3H), 2.67 – 2.54 (m, 4H), 1.98 – 1.89 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.00, 193.18, 164.93, 156.50, 138.15, 134.40, 131.41, 128.38, 124.03, 123.74, 120.58, 118.54, 118.11, 113.24, 55.52, 38.36, 38.08, 17.58. ESI-MS: calculated C₂₀H₁₉N₃O₄Na [M+Na]⁺ 388.1273; Found 388.1277.

2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-N-(m-tolyl)benzamide (6gb)

Following the above procedure 6, the product **6gb** was obtained in 94 % yield (65.7 mg, 0.188 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.20. ¹H NMR (400 MHz, DMSO-*d*₆) δ 15.16 (s, 1H), 10.46 (s, 1H), 7.68 (d, *J* = 7.8 Hz, 2H),

7.57 (d, J = 7.4 Hz, 1H), 7.49 (d, J = 7.4 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.10 (t, J = 7.4 Hz, 1H), 2.63 (t, J = 6.3 Hz, 2H), 2.54 – 2.49 (m, 2H), 2.48 (s, 3H), 1.93 – 1.82 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.61, 192.58, 165.42, 138.48, 137.66, 133.95, 131.82, 130.50, 128.46, 128.23, 126.49, 125.88, 123.48, 119.90, 38.16, 38.08, 19.30, 17.46. ESI-MS: calculated C₂₀H₁₉N₃O₃Na [M+Na]⁺ 372.1324; Found 372.1327.

N-(3-chlorophenyl)-2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)benzamide (6hb)

Following the above procedure 6, the product **6hb** was obtained in 78 % yield (57.7 mg, 0.156 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.27. ¹H NMR (400 MHz, DMSO- d_6) δ 15.44 (s, 1H), 10.62 (s, 1H), 7.99 (d, J = 2.3 Hz, 1H), 7.95 (d, J =

9.0 Hz, 1H), 7.78 – 7.71 (m, 3H), 7.40 (t, J = 7.9 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 2.70 – 2.58 (m, 4H), 2.02 – 1.88 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 196.51, 193.25, 163.98, 140.27, 138.01, 132.36, 132.28, 128.63, 128.38, 128.22, 124.09, 123.17, 120.47, 117.94, 38.41, 38.28, 17.24. ESI-MS: calculated C₁₉H₁₆N₃O₃NaCl [M+Na]⁺ 392.0778; Found 392.0782.

4-bromo-2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)-N-phenylbenzamide (6ib)

Following the above procedure 6, the product **6ib** was obtained in 70 % yield (58.0 mg, 0.140 mmol) as a yellow solid after column chromatography (eluent = Dichloromethane/Methanol 80:1 v/v). Rf (Dichloromethane/Methanol 80:1): 0.25. ¹H NMR (400 MHz, DMSO- d_6) δ 15.51 (s, 1H), 10.67 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 1H),

7.92 – 7.88 (m, 1H), 7.75 (d, J = 8.9 Hz, 2H), 7.69 (t, J = 7.7 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.40 – 7.35 (m, 1H), 2.70 – 2.58 (m, 4H), 2.00 – 1.92 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.46, 193.32, 165.43, 141.26, 137.70, 132.67, 132.20, 131.25, 128.71, 124.80, 122.27, 121.97, 116.20, 115.69, 38.44, 38.27, 17.35. ESI-MS: calculated C₁₉H₁₆N₃O₃NaBr [M+Na]⁺ 436.0273; Found 436.0271.

N-(3-bromophenyl)-2-(2-(2,6-dioxocyclohexylidene)hydrazineyl)benzamide (6jb)

Following the above procedure 6, the product **6jb** was obtained in 83 % yield (68.7 mg, 0.166 mmol) as a yellow solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.23. ¹H NMR (400 MHz, DMSO- d_6) δ 15.43 (s, 1H), 10.63 (s, 1H), 8.10 (d, J =

1.9 Hz, 1H), 7.92 - 7.84 (m, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 7.9 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 2.74 - 2.55 (m, 4H), 2.03 - 1.90 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 196.59, 193.29, 163.92, 140.66, 138.02, 135.18, 132.42, 131.00, 128.40, 124.11, 123.50, 120.49, 118.17, 116.77, 38.42, 38.30, 17.23. ESI-MS: calculated C₁₉H₁₆N₃O₃NaBr [M+Na]⁺ 436.0273; Found 436.0269.

8. NMR Spectra for New Compounds

¹H NMR (400 MHz, CDCl₃) Spectra of 4aa

S59

S61

S63

¹H NMR (400 MHz, CDCl₃) Spectra of 4an

¹H NMR (400 MHz, CDCl₃) Spectra of **5ba**

¹H NMR (400 MHz, CDCl₃) Spectra of 5ga

S78

¹H NMR (400 MHz, DMSO-*d*₆) Spectra of **5ad**

¹H NMR (400 MHz, DMSO-*d*₆) Spectra of **6ab**

¹H NMR (400 MHz, DMSO- d_6) Spectra of **6cb**

¹H NMR (400 MHz, DMSO-*d*₆) Spectra of **6gb**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

¹H NMR (400 MHz, DMSO- d_6) Spectra of **6hb**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

9. Reference

[1] Wang, H.; Yu, S. Org. Lett. 2015, 17, 4272-4275.

[2] S.-S. Zhang, H. Xie, B. Shu, T. Che, X.-T. Wang, D.-M. Peng, F. Yang, L.-Y. Zhang. *Chem. Commun.*, **2020**, *56*, 423-426.

[3] F. Wu, L. Xiao, H. Xie, et al. Org. Biomol. Chem., 2022, 20, 5055-5059.