Supplementary Material

Elucidation of the photoluminescence mechanism and determination of configuration content of arabinose isomer solution by fluorescence analysis

Qing Zhou*a,b,c, Jun Wang^b, Xiaoping Lei^b, Chuchu Li^b, Qingfeng Wu^b, Jingzhi Sun^a

[1] Dr. Q. Zhou, Prof. Sun

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Departmentof Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China

[2] Dr. Q. Zhou, X. Lei, Q. Wang, C. Li, Q. Wu

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China

[3] Prof. Q. Zhou

Zhejiang Sci-Tech University Shaoxing-Keqiao Research Institute, Cross border E-commerce Park, Huashe Street, Keqiao District, Shaoxing City, Zhejiang, 312030, China

Methods

Materials. D-(-)-Arabinos (D-Arb, 99%), L-(+)-Arabinos (L-Arb, 99%) and anhydrous ethanol (99.9%), which were purchased from Adamas-Beta Reagent Co. Purified water was purchased from Hangzhou Wahaha Group Co., Ltd and used as received.

Instrumentation. ¹H NMR spectra of SR dissolved in D₂O was recorded by using a Bruker Avance 400 MHz spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany). Absorption spectra of SR solution was taken on UV-8000, UV–Vis double-beam spectrophotometer (Shanghai Precision Instrument Co., Ltd, China). Absorption spectra of SR powder and tablet was taken on UV-2600, UV–Vis spectrometer (Shimadzu, Japan). The photoluminescence (PL) spectra of samples of the same quality were obtained with the fluorescence spectrophotometer (F-46001, Japan). Delayed PL spectra of solids at room temperature and phosphorescence lifetimes were measured on an Edinburgh FLS1000 fluorescence spectrophotometer equipped with Quanta- φ F-3029 integrating sphere. XRD measurements were conducted on powders and tablets with a D8 Advance diffractometer (Bruker, Germany) and a Cu K α radiation source ($\lambda = 1.5418$ Å), at a scanning rate of 6° min⁻¹. Luminescent photographs were taken with a SLR camera (Canon EOS 70D, Japan), and the videos were recorded using acamera (Sony A7S2, Japan) and the afterglow images were captured from the videos.

Calculation of HOMO, LUMO Electron Densities and Energy level

ORCA4.2 program was utilized to perform the TD-DFT calculations with this fundamentals and functionals (! B3LYP/G TZVP RIJCOSX miniprint tightSCF gridx6 NoFinalGridx CPCM(water)). The HOMO and LUMO energy densities were obtained via Multiwfn and VMD.

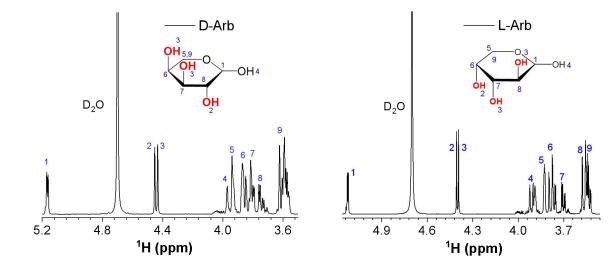


Fig. S1 ¹H NMR of D-Arb and L-Arb.

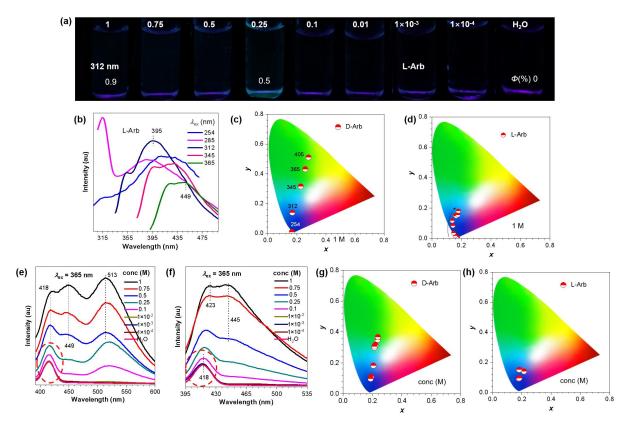
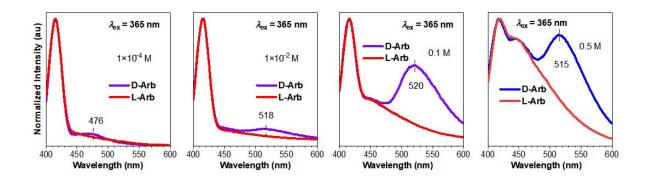
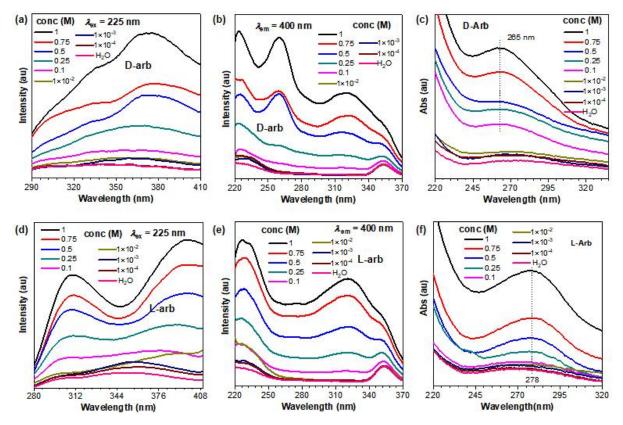




Fig. S2 (a) Photographs of aqueous solutions of L-Arb at different concentrations taken under 312 nm UV light. (b) PL spectra of 1 M L-Arb aqueous solution at different λ_{exS} . Trajectory of tunable PL colors of 1 M (c) D-Arb and (d) L-Arb aqueous solution, recorded by the change in the λ_{ex} from 254 to 365 nm, in the CIE coordinate diagram. PL spectra of different concentrations of (e) D-Arb and (f) L-Arb aqueous solution. Trajectory of tunable PL colors, recorded by the change in the λ_{ex} from 254 to 365 nm, in the CIE coordinate diagram of (g) D-Arb and (h) L-Arb aqueous solution (λ_{ex} =365 nm).

Fig. S3 Normalized spectral comparison of D-Arb and L-Arb at different concentrations ($\lambda_{ex} = 365 \text{ nm}$).

Fig. S4 PL spectra of D-Arb and L-Arb at different concentrations (λ_{ex} =225 nm, a,d) and (λ_{ex} =400 nm, b,e). UV absorption spectra of D-Arb (c) and L-Arb (f) at different concentrations.

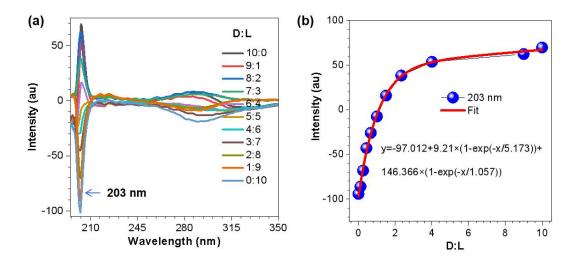



Fig. S5 Molecular interactions in coupled triplets and tetramers of D-Arb.

Fig. S6 (a) Circular dichroism spectra of mixed aqueous solutions of D-Arb and L-Arb with different molar ratios. (b) Fitting curves of the relationship between peak intensity at 203 nm and molar ratios of D-Arb and L-Arb aqueous solutions.

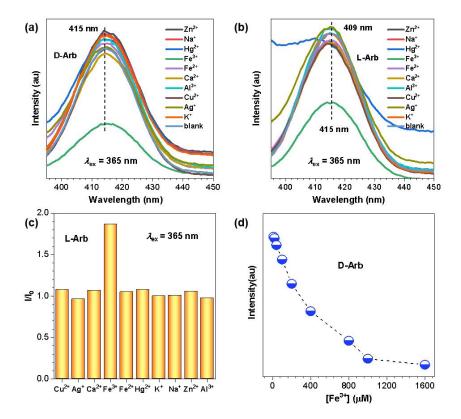


Fig. S7 PLspectra of (a)D-Arb and (b) L-Arb (0.01 M) after adding different 1000 μ M metal ions (NaCl, KCl, FeCl₃·6H₂O, FeSO₄, ZnCl₂, CuCl₂, CaCl₂, MnCl₂, NiCl₂, Ag₂SO₄, HgSO₄) (λ_{ex} =365 nm). (c) PL intensity changes of L-Arb (0.01 M) adding different 1000 μ M

metal ions. (d) PL spectra of D-Arb solution (0.01 M) with multiple Fe^{3+} concentrations.