Supporting Information

Mo₂C Catalyst Leads to Highly Efficient Hydrogen Transfer of Alcohols and Amines to Synthesize

N-alkylamines

Yimei Chen, ^a Zhe Wang, ^a Zhouyang Long, ^{*,b} Yunfei Wang, ^a Pingbo Zhang, ^a Yan Leng ^{*,a}

^a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China. E-mail: <u>yanleng@jiangnan.edu.cn</u>

^b Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.

Experimental section

Synthesis of TMC-based catalysts

The Mo-containing metal-organic hybrid was prepared by ball milling of tannin (1.0 g) and MoCl₅ (0.3 g) for 30 min. The hybrid was carbonized in nitrogen to yield the black solid sample Mo₂C@C₉₀₀ (from ambient temperature to 400°C at 5°C/min and maintained at 400°C for 1 h, then from 400°C to 900°C at 5°C/min and maintained at 900°C for 2 h). MoO₂@C₆₀₀ and Mo₂C-MoO₂@C₈₀₀ were prepared based on the same method with the maximum calcination temperature of 600°C and 800°C, respectively. WC and NbC were prepared accordingly by using WCl₆ and NbCl₅ as the metal precursors, respectively.

Characterization

X-ray diffraction (XRD) patterns were collected on the Bruker D8 Advance powder diffractometer using Ni-filtered Cu/K α radiation at 40 kV and 20 mA, from 5° to 90° with a scan rate of 5°/min. Transmission electron microscope (TEM) images were obtained with a JEOL JEM-2100 electron microscope operated at 200 kV. Hydrogen temperature-programmed desorption (H₂-TPD) was carried out with a BELCAT- II chemisorption instrument from 50° C to 800° C. X-ray photoelectron spectroscopy (XPS) was conducted with an Axis supra X-ray photoelectron spectrometer equipped with an Al K α radiation source to analyze the chemical environment of each element in the sample. Nitrogen adsorption-desorption analysis was carried out to determine the specific surface area and porous structure of the catalysts using an ASAP2460 fully automated specific surface and porosity analyzer at a temperature of 77 K in liquid nitrogen.

Catalytic tests

Hydrogen transfer coupling of amines and alcohols. A mixture of amine (1 mmol), alcohol (2 mmol), catalyst (20 mg), base (1 mmol), and solvent (1 mL) was added to a pressure tube. Then the tube was purged with nitrogen gas and sealed with a PTFE plug. The reaction was stirred in an oil bath at 150°C for 24 h. On completion, the reaction mixture was cooled to room temperature, the catalyst was filtered off, and the liquid was analyzed by GC-FID (GC 9720). The recovered catalyst was directly used in the next run to test its stability.

2

Benzyl alcohol dehydrogenation. A mixture of benzyl alcohol (2 mmol), catalyst (20 mg), and xylene (4 mL) was added to a distillation flask. The reaction was then refluxed at 120°C for 6 hours. On completion, the reaction mixture was cooled to room temperature, the catalyst was filtered off, and the liquid was analyzed by GC-FID.

Synthesis of N-benzylideneaniline. A mixture of aniline (1 mmol), benzaldehyde (1 mmol), and toluene (1 mL) was added to a pressure tube. Then the tube was purged with nitrogen and sealed with a PTFE plug. The reaction was stirred in an oil bath at 150 °C for 1 h. On completion, the reaction mixture was cooled to room temperature, and the liquid was analyzed by GC-FID.

Synthesis of N-benzylaniline. A mixture of benzyl alcohol (1 mmol),

N-benzylenaniline (1 mmol), catalyst (20 mg), and toluene (1 mL) was added to a pressure tube. Then the tube was purged with nitrogen and sealed with a PTFE plug. The reaction was stirred in an oil bath at 150 °C for 8 h. On completion, the reaction mixture was cooled to room temperature, the catalyst was filtered off, and the liquid was analyzed by GC-FID.

Details for DFT calculations

Density functional theory (DFT) calculations in this work were carried out using ORCA (version: 5.0.3), DFT calculations details: Geometry optimization and vibrational frequency calculations were conducted at the B3LYP/def2-SVP (with

DFT-D3 correction) level of theory.¹ The single point calculations for the optimized geometries were performed to obtain accurate energies at the B3LYP/def2-TZVP (with DFT-D3 correction) level of theory level of theory. The RIJCOSX approximation was applied with the def2/J auxiliary basis set.² The solvent effect of toluene was evaluated by the CPCM solvation model. The Gibbs free energies were included in the Gibbs energy correction of unscaled vibrational analysis at the B3LYP/def2-SVP (with DFT-D3 correction) level of theory.

Carbonised metal catalyst: Mo₂C

Scheme S1. Hydrogen borrowing (hydrogen transfer) mechanism for N-alkylation of

amines with alcohols (M = transition metal) based on catalysts.

Figure S1. XRD patterns of (a) NbC@C₉₀₀ and (b) WC@C₉₀₀.

Figure S2. (a) XPS spectrum of $Mo_2C@C_{900}$, (b) XPS spectrum of $Mo_2C-MoO_2@C_{800}$, (c) Mo 3d and (d) C 1s XPS spectra of $Mo_2C-MoO_2@C_{800}$.

Catalyst	Reaction condition	Con	Sel	Yield	Ref	
Catalyst	Reaction condition		(%)	(%)	NCI.	
MnCl ₂	catalyst 10 mol%, PPh ₃ 20 mol%, benzyl alcohol 1.2 equiv, aniline 1 mmol, KOt-Bu 1.2 equiv, PhMe 2 mL, N ₂ , 130°C, 20 h.			82	3	
TiOH	catalyst 0.1 g, benzyl alcohol 4.62 mmol, aniline 21.5 mmol, xylene 2 g, N ₂ , 180°C, 15 h.			99.6	4	
TiO ₂	catalyst 10mol%, benzyl alcohol 1.3 equiv, aniline 0.35 mmol, KOH 0.27 mmol, toluene 1.0 mL, 140°C, 24 h.			99	5	
Zn(La)Cl ₂	catalyst 3.0 mol%, benzyl alcohol 1.2 mmol, aniline 1.0 mmol, KOt-Bu 0.5 equiv, toluene 3 mL, Ar, 120°C, 16 h.			78	6	
NiBr ₂	catalyst 0.025 mmol, L1 0.05 mmol, benzyl alcohol 1.0 mmol, aniline 0.25 mmol, KOt-Bu 0.25 mmol, toluene 2.0 mL, N ₂ , 130°C, 48 h.	99		96	7	
Ni(COD) ₂	catalyst 3 mol%, benzyl alcohol 1.5 equiv, aniline 0.5 mmol, KOH 0.3 equiv, CPME 2.0 mL, Ar, 140°C, 18 h.	>99	>99		8	
Cat-6	catalyst 0.05 mmol, benzyl alcohol 0.6 mmol, aniline 0.5 mmol, KOt-Bu 0.5 mmol, 1,4-dioxane 1.0mL, N ₂ , 130°C, 24 h.	98		95	9	
Zn(NO ₃) ₂ ·6H ₂ O	catalyst 15.0 mol%, benzyl alcohol 1.5 mmol, aniline 1.0 mmol, KOt-Bu 1.00 mmol, toluene 1.5 mL, N ₂ , 140°C, 36 h.	100		98	10	
Fe ₂₀ -SA@NSC	aniline 3 mmol, KOH 0.3 equiv, Ar, 135°C, 24 h.			94	11	
Cu/CeO ₂ -P	catalyst 0.05 g, benzyl alcohol 1.2 mmol, aniline 1.0 mmol, toluene 2 mL, Ar, 160°C, 12 h.	>99	88	88	12	
Ni/θ-Al ₂ O ₃	catalyst 1 mol%, benzyl alcohol 1.2 mmol, aniline 1.0 mmol, o-xylene 1.5 g, reflux, 144°C, 3 h.	100		99	13	
Ni _{9.5} /NC	catalyst 0.1 g, benzyl alcohol 2 mmol, aniline 1 mmol, toluene 10 mL, Ar 1 bar, 160°C, 4 h.	99	92		14	
Ni/Ru@SBA	catalyst 3 mol%(Ni), benzyl alcohol 0.5 mmol, aniline 0.5 mmol, neat toluene 2 mL, 120°C, 24 h.	99		99	15	
Ru/CeO ₂ -R	catalyst 0.2 g, benzyl alcohol 6 mmol, aniline 2 mmol, p-xylene 2 mL, N ₂ , 160°C, 24 h.	99	88		16	
Cu ₂ /NPC-550	catalyst 0.05 g, benzyl alcohol 1 mmol, aniline 0.5 mmol, cyclohexane 3 mL, KOH 0.03g, Ar, 140°C, 12 h.	100	95		17	
Mo ₂ C@C ₉₀₀	catalyst 0.025 g, benzyl alcohol 2 mmol, aniline 1 mmol, KOH 1mmol, toluene 1 mL, N ₂ , 150°C, 24 h.	>99	>99		This work	

 Table S1. Results of catalytic performance of hydrogen transfer reactions over various reported catalysts.

Figure S3. (a) Reusability of $Mo_2C@C_{900}$ -catalyzed hydrogen transfer coupling of benzyl alcohol and aniline, (b) XRD patterns of fresh $Mo_2C@C_{900}$ and recycled $Mo_2C@C_{900}$. (c) Mo 3d and (d) C 1s XPS spectra of recycled $Mo_2C@C_{900}$.

Í	он +	$\mathbb{NH}_{2} \qquad \frac{\text{Base, S}}{15000}$	Solvent alyst) +	\sim	.N	
	1a	2a	30 C/ 24 II 3aa			3aa'		
Entry	Catalyst	Base and	Solvent	Ratio ^b	Con ^c	Sel ^c (%)		
		amount (mmol)			(%)	3aa	3aa'	Others
1	Mo ₂ C@C ₉₀₀	KOH (0.3)	toluene	2.0:1	34.6	92.1	7.0	0.9
2	Mo ₂ C@C ₉₀₀	KOH (0.5)	toluene	2.0:1	64.3	95.3	4.4	0.3
3	Mo ₂ C@C ₉₀₀	KOH (0.7)	toluene	2.0:1	82.2	98.3	1.4	0.3
4	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	2.0:1	92.7	99.2	0.8	0.0
5	Mo ₂ C@C ₉₀₀	NaOH (1)	toluene	2.0:1	16.6	79.4	18.1	2.5
6	Mo ₂ C@C ₉₀₀	t-KOBu (1)	toluene	2.0:1	50.8	96.8	2.7	0.5
7	Mo ₂ C@C ₉₀₀	$K_2CO_3(1)$	toluene	2.0:1	1.7	12.2	65.1	22.7
8	Mo ₂ C@C ₉₀₀	KOH (1)	xylene	2.0:1	40.5	92.9	5.9	1.2
9	Mo ₂ C@C ₉₀₀	KOH (1)	1,4-dioxane	2.0:1	25.3	90.0	9.3	0.6
10	Mo ₂ C@C ₉₀₀	KOH (1)	/	9.2:1	38.6	76.5	7.2	16.3
11	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	1.2:1	46.2	95.9	4.1	0.0
12	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	1.5:1	72.6	99.0	0.9	0.1
13 ^d	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	2.0:1	99.2	99.5	0.5	0.0
14 ^e	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	2.0:1	47.0	95.9	3.5	0.6
15 ^f	Mo ₂ C@C ₉₀₀	KOH (1)	toluene	2.0:1	97.0	99.5	0.5	0.0
16	Mo ₂ C@C ₉₀₀	/	toluene	2.0:1	12.1	50.2	40.0	9.8
17	-	KOH (1)	toluene	2.0:1	21.9	68.8	28.8	2.4

Table S2. Optimization of reaction conditions.^a

^a Reaction conditions: 1a (2 mmol), 2a (1 mmol), base (1 mmol), Mo₂C@C₉₀₀ (0.02 g), solvent (1 mL), at 150°C for 24 h. ^b Reaction uses different molar ratios of benzyl alcohol and aniline. ^c Conversion and selectivity were determined by GC analysis. ^d Mo₂C@C₉₀₀ (0.025 g). ^e Mo₂C@C₉₀₀ (0.02 g), at 140°C for 24 h. ^f Mo₂C@C₉₀₀ (0.02 g), at 160 °C for 24 h.

Figure S4. (a) Conversion of aniline on $MoO_{2@}C_{600}$ and $Mo_2C@C_{900}$ with reaction time, (b) Selectivity of N-benzylaniline on $MoO_{2@}C_{600}$ and $Mo_2C@C_{900}$ with reaction time.

Scheme S2. (a) The dehydrogenation of benzyl alcohol, (b) The condensation reaction of benzaldehyde and aniline, (c) The hydrogenation of N-benzylideneaniline with benzyl alcohol as hydrogen source.

Figure S5. Benzyl alcohol selective oxidation to benzaldehyde on MoO_2 with the initial structure, transition state and the final structure.

Figure S6. Benzyl alcohol selective oxidation to benzaldehyde on Mo_2C with the initial

structure, transition state and the final structure.

Figure S7. Calculated structures of the intermediates in benzyl alcohol dehydrogenation on MoO₂, and the corresponding energy profile.

Notes and references

- 1. F. Weigend and R. Ahlrichs, Phys Chem Chem Phys, 2005, 7, 3297-3305.
- 2. F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chemical Physics*, 2009, **356**, 98-109.
- 3. D. Wei, P. Yang, C. Yu, F. Zhao, Y. Wang and Z. Peng, J Org Chem, 2021, 86, 2254-2263.
- F. Niu, Q. Wang, Z. Yan, B. T. Kusema, A. Y. Khodakov and V. V. Ordomsky, ACS Catalysis, 2020, 10, 3404-3414.
- 5. R. Upadhyay and S. K. Maurya, J Org Chem, 2023, 88, 16960-16966.
- S. Chakraborty, R. Mondal, S. Pal, A. K. Guin, L. Roy and N. D. Paul, *J Org Chem*, 2023, 88, 771-787.
- 7. M. Vellakkaran, K. Singh and D. Banerjee, ACS Catalysis, 2017, 7, 8152-8158.
- A. Afanasenko, S. Elangovan, M. C. A. Stuart, G. Bonura, F. Frusteri and K. Barta, *Catalysis Science & Technology*, 2018, 8, 5498-5505.
- X. B. Lan, Z. Ye, C. Yang, W. Li, J. Liu, M. Huang, Y. Liu and Z. Ke, *ChemSusChem*, 2021, 14, 860-865.
- V. Sankar, M. Kathiresan, B. Sivakumar and S. Mannathan, *Advanced Synthesis & Catalysis*, 2020, 362, 4409-4414.
- 11. G.-P. Lu, H. Shan, Y. Lin, K. Zhang, B. Zhou, Q. Zhong and P. Wang, *Journal of Materials Chemistry A*, 2021, **9**, 25128-25135.
- 12. X. Wang, T. Li, H. Wang, K. Zhao, Y. Huang, H. Yuan, X. Cui and F. Shi, *Journal of Catalysis*, 2023, **418**, 163-177.
- 13. K.-i. Shimizu, N. Imaiida, K. Kon, S. M. A. Hakim Siddiki and A. Satsuma, ACS Catalysis,

2013, **3**, 998-1005.

- 14. H. Su, P. Gao, M. Y. Wang, G. Y. Zhai, J. J. Zhang, T. J. Zhao, J. Su, M. Antonietti, X. H. Li and J. S. Chen, *Angew Chem Int Ed Engl*, 2018, **57**, 15194-15198.
- 15. L. Wang, X. Jv, R. Wang, L. Ma, J. Liu, J. Sun, T. Shi, L. Zhao, X. Zhang and B. Wang, *ACS Sustainable Chemistry & Engineering*, 2022, **10**, 8342-8349.
- 16. Y. Zou, L. Dong, S. Yan, J. Liu, L. Mu, L. Li, Y. Hu, H. Qi, S. Mao and Z. Chen, *Journal of Catalysis*, 2024, **429**.
- 17. D. Zhang, J. Tian, Y. Yan, L. Zhang and H. Hu, Arabian Journal of Chemistry, 2023, 16.