Electronic Supporting Information

Positional effects of electron-donating and withdrawing groups on the photophysical properties of single benzene fluorophores

General methods and materials	S2
General procedures for nitration, reduction, acetylation, deacetylation and esterification	S3
Synthetic procedures for SBBFs	S5
Computational details	S10
Additional schemes, Figures, and table	S11
References for ESI	S39
Appendix I: Spectral copies of ¹ H NMR, ¹³ C NMR, and IR for obtained compounds (including HPLC data for 1E2A3E4A and 1E2A4E6A)	S42
Appendix II: Crystal data for 1E2E4A	S85
Appendix III: Cartesian coordinates for the optimized structures (1E4A , 1E2A4E5A , 1E2E3A , and 1E2E4A)	S92

General methods and materials

All chemicals in this study were purchased from chemical company. All commercial reagents and solvents were directly used without additional purification. evaporation and removal of organic solvents during the synthesis was carried out using a rotary evaporator with a diaphragm pump, and residual solvents were removed on a vacuum line held at 0.1-1 torr. TLC (thin layer chromatography) was performed on pre-coated plate with silica gel 60 F254. Visualization on TLC was achieved using UV light (254 nm). For the separation of organic compounds, the flash column chromatography was performed on silica gel (400-630 mesh) with proper organic eluents. Proton nuclear magnetic resonance spectra (1H NMR) were recorded on Bruker AVANCE 400 (400 MHz) and 500 (500 MHz). ¹³C NMR was recorded on Bruker AVANCE 400 (100 MHz) and 500 (125 MHz) and was fully decoupled by broad band decoupling. Infrared (IR) spectra were recorded on Bruker Alpha FT-IR spectrometer. HPLC were recorded on Waters ACQUOTY ultra performance Ic system with UV detector. UV-Vis absorption and photoluminescence (PL) spectra were obtained using Agilent Cary 8454 and HORIBA FluoroMax Plus spectrophotometers, respectively. The PL spectra of the solutions were measured using quartz cuvettes with a path length of 1 cm in oxygen-free solvents (20 μ M in toluene, THF and MeCN). The absolute PLQYs of the solutions were measured using a FluoroMax Plus spectrophotometer (HORIBA) equipped with a 3.2-inch integrating sphere (FL-QM-sphere, HORIBA). The fluorescence decay lifetime was measured using a FluoroMax Plus spectrophotometer equipped with a DeltaTime TCSPC accessory. The data collection for single crystal structure analysis was performed on a Bruker D8 QUEST diffractometer equipped with Iµs 3.0 Mo x-ray tube (λ = 0.71073Å) and Photon II detector. The selected crystal was coated with Parabar oil for mounting on goniometer under a stream of N_2 (g) at 220 K. The diffraction data were integrated, scaled, and reduced by using the Bruker APEX4 software. The crystal structure was solved by SHELX structure solution program and refined by full-matrix least-squares calculations with the SHELXL.

General procedures for nitration, reduction, acetylation, deacetylation and esterification

General procedure for nitration (Method A-1, A-2, A-3 and A-4):

Method A-1^{s1}: SBBF (5 mmol) was dissolved in conc. sulfuric acid (5 mL), and the mixture was stirred at 0 °C. Then 60% nitric acid (0.5 mL, 6.5 mmol) was slowly added to the cooled mixture solution, and the solution was continuously stirred for 2 h at 0 °C. The reaction was quenched by addition of ice, and solid were formed. The mixture was extracted with ethyl acetate (EA), organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure, and the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to obtain the desired product.

Method A-2^{s1}: SBBF (1 mmol) were dissolved in Ac₂O (5 mL). To mixture solution was added 60% nitric acid (1 mL) at 0 °C and stirred at room temperature for 24 h. Once conversion was complete (monitored by TLC), the solution was poured into H₂O (20 mL). Saturated NaHCO₃ solution was added to the mixture until neutral by pH paper. The organic phase was extracted with 25 mL of EA and then the organic solution was dried with MgSO₄, filtered, and evaporated. The solid mixture was separated by silica gel column chromatography and the desired compound was obtained.

Method A-3: SBBF (1 mmol) were dissolved in Ac₂O (5 mL). To mixture solution was added 60% nitric acid (1 mL) at 0 °C and stirred at 40 °C for 24 h. Once conversion was complete (monitored by TLC), the solution was poured into H_2O (20 mL). Saturated NaHCO₃ solution was added to the mixture until neutral by pH paper. The organic phase was extracted with 25 mL of EA and then the organic solution was dried with MgSO₄, filtered, and evaporated. The solid mixture was separated by silica gel column chromatography and the desired compound was obtained.

Method A-4: SBBF (5 mmol) was dissolved in conc. sulfuric acid (5 mL), and the mixture was stirred at 0 °C. Then 60% nitric acid (0.5 mL, 6.5 mmol) was slowly added to the cooled mixture solution, and the solution was continuously stirred at room temperature for 4 h. The reaction was quenched by addition of ice, and solid were formed. The mixture was extracted with EA, organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure, and the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to obtain the desired product.

General procedure for reduction of nitro group (Method B)^{s1}: SBBF (1 mmol) was dissolved in ethanol (4 mL) and EA (1 ml), and hydrogenation was performed using 10% Pd/C (35 mg, 10 wt.%) under H₂ (1 atm) at 50 °C for 18 h. The resulting suspension filtered through celite with EA and ethanol and evaporated to remove volatile solvents. The solid mixture was separated by silica gel column chromatography and the desired compound, and the desired compound was obtained.

General procedure for acetylation of Ar-NH₂ (Method C): SBBF (1 mmol) was added to DCM (5 mL), followed by the addition of Et₃N (0.278 mL, 2 mmol). Subsequently, acid anhydride of acid chloride was slowly added dropwise. The mixture was stirred at room temperature overnight. After the completion of the reaction, water was added to react with the remaining acid anhydride for 10 minutes. The mixture was extracted with EA, and the organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure, and the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to obtain the desired acetylation product.

General procedure for deacetylation of acetamide (or esterification) (Method D): Acetamide SBBF (1 mmol) was added to MeOH (10 mL), followed by the slow dropwise addition of sulfuric acid (1 mL). The mixture was then allowed to react overnight at 80 °C. After the completion of the reaction, water (5 mL) was added, and neutralization was carried out using saturated NaHCO₃. The mixture was extracted with EA, and the organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure, and the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to obtain the desired deacetylation product.

General procedure for oxidation of benzylic position (Method E-1 and E-2):

Method E-1: Target SBBF (1 mmol) was dissolved in *t*-BuOH (5 mL), and water (5 ml) followed by the addition KMnO₄ (2 mmol). The mixture was stirred at 100 °C 1 h, additional KMnO₄ was added. After the completion of the reaction monitored by TLC, evaporation under reduced pressure to remove *t*-BuOH, and solution was acidified by 2M HCI. The solution was stored overnight in a refrigerator. The precipitate was collected by filtration and washed with water. The desired compound was obtained by air drying.

Method E-2^{s2}: Target SBBF (1 mmol) was dissolved in water (10 ml) followed by the addition KMnO₄ (6 mmol) and MgSO₄ (6 mmol). The mixture was stirred at 90 °C for 24h. After the completion of the reaction monitored by TLC, the resulting brown solution was filtered using hot water. After cooling to room temperature, and solution was acidified by 2M HCI. The solution was stored overnight in a refrigerator. The precipitate was collected by filtration and washed with water. The desired compound was obtained by air drying.

General procedure for methylation of carboxylic acid (Method F): Target SBBF (1 mmol) was dissolved in DMF (15 mL), followed by the addition MeI (2.7 mmol) and NaHCO₃ (3.5 mmol). The mixture was stirred at 60 °C for 24 h. After the completion of the reaction, the mixture was extracted with EA, and the organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure and using with DCM (5 mL) and *n*-hexane (50 mL) for recrystallized overnight in a refrigerator. The precipitate was collected by filtration and washed with Hexane. The desired compound was obtained by air drying.

Synthetic Procedures for SBBFs

The obtained substrates, **1E2A3A**,^{S3} **1E3A4A**,^{S3} **1E3A4A**,^{S4} **1E3A5A**,^{S5} **1E2E4A**,^{S6} **1E2E4A5A**,^{S7} **1E2A4A5E**,^{S8} **1E2A3A4E**,^{S1} and **1E2A4E5A**^{S9} were identified with reported spectra in the literature.

Methyl 2,3-diaminobenzoate (1E2A3A), methyl 2,5-diaminobenzoate (1E2A5A) and **methyl 3,4-diaminobenzoate (1E3A4A)**: The compound **1E2A3A**, **1E2A5A** and **1E3A4A** was synthesized through a four-step process. First, methyl 3-amino-bezoate (**1E3A**) (10 mmol) reacted follow method C using AcCl (1.1 equiv.) without additional purification and following reaction using method A-2 The nitrated compound was reduction with method B without additional purification. Finally, reaction using Method D, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent.

Methyl 2,3-diaminobenzoate (1E2A3A)^{S3}: White solid; overall yield 14%; ¹H NMR (500 MHz, DMSO- d_6) δ 7.10 (dd, J = 8.1, 1.5 Hz, 1H), 6.70 (dd, J = 7.5, 1.5 Hz, 1H), 6.39 (dd, J = 8.1, 7.5 Hz, 1H), 6.20 (s, 2H), 4.76 (s, 2H), 3.76 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO- d_6) δ 168.7, 139.6, 135.9, 118.7, 117.3, 115.3, 108.9, 51.3; IR (cm⁻¹) 3448, 3426, 3365, 3077, 2947, 1879, 1690, 1639, 1610, 1558, 1468, 1432, 1282.

Methyl 2,5-diaminobenzoate (1E2A5A)^{S10}: White solid; overall yield 25%; ¹H NMR (500 MHz, DMSO- d_6) δ 6.99 (d, J = 2.8 Hz, 1H), 6.69 (dd, J = 8.7, 2.7 Hz, 1H), 6.56 (d, J = 8.7 Hz, 1H), 5.86 (s, 2H), 4.41 (s, 2H), 3.75 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO- d_6) δ 168.0, 143.2, 137.8, 123.4, 117.7, 113.8, 109.3, 51.2; IR (cm⁻¹) 3448, 3418, 3397, 3350, 3264, 3032, 2957, 1679, 1633, 1592, 1566, 1497, 1435.

Methyl 3,4-diaminobenzoate (1E3A4A)^{S3}: White solid; overall yield 3%; ¹H NMR (500 MHz, DMSO- d_6) δ 7.16 (d, J = 2.0 Hz, 1H), 7.09 (dd, J = 8.1, 2.0 Hz, 1H), 6.51 (d, J = 8.1 Hz, 1H), 5.28 (s, 2H), 4.66 (s, 2H), 3.71 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO- d_6) δ 166.8, 140.5, 133.8, 120.2, 117.1, 114.8, 112.6, 51.0; IR (cm⁻¹) 3434, 3361, 3195, 2923, 2851, 1688, 1662, 1625, 1584, 1511, 1449, 1426.

Methyl 2,4-diaminobenzoate (1E2A4A)^{S11}: The compound **1E2A4A** was synthesized through a two-step process. First, 2-amino-4nitrobezoic acid (10 mmol) reacted follow method D without additional purification and following reaction using Method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired white product was obtained in overall yield 20%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.39 (d, *J* = 8.5 Hz, 1H), 6.40 (s, 2H), 5.82 (dd, *J* = 8.5, 2.2 Hz, 1H) 5.79 (d, *J* = 2.2 Hz, 1H), 5.61 (s, 2H), 3.66 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 167.6, 153.9, 153.1, 132.0, 104.0, 98.4, 97.3, 50.5; IR (cm⁻¹) 3423, 3333, 3231, 2942, 1650, 1622, 1579, 1549, 1509, 1450.

Methyl 2,6-diaminobenzoate (1E2A6A)^{S12}: Compound 1E2A6A was synthesized through

two-steps was 2,6-diaminobenzoic acid reacted follow method D, ester was synthesized without purification. And next reduction follows method B, and crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a brown solid in yield 80%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.80 (t, *J* = 8.0 Hz, 1H), 6.19 (s, 4H), 5.85 (d, *J* = 8.0 Hz, 2H), 3.78 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 169.6, 152.6, 134.2, 103.2, 96.4, 51.6; IR (cm⁻¹) 3479, 3365, 2924, 2852, 1677, 1582, 1463, 1433, 1350.

Methyl 3,5-diaminobenzoate (1E3A5A)^{S4}: Compound **1E3A5A** was synthesized through method D. 3,5-diaminobenzoic acid reacted follow method D; Yellow solid; yield 80%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.43 (d, *J* = 2.1 Hz, 2H), 6.02 (t, *J* = 2.1 Hz, 1H), 4.99 (s, 4H), 3.74 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO-D6) δ 167.27, 149.38, 130.54, 103.67, 103.64, 51.53; IR (cm⁻¹) 3381, 3308, 3212, 3021, 2946, 2842, 1703, 1598, 1463, 1434, 1352, 1293.

Dimethyl 3-aminophthalate (1E2E3A)^{S5}: Compound **1E2E3A** was synthesized through a two-step process. First, Dimethyl 3-Nitrophthalic acid (10 mmol) reacted follow method F without additional purification. And reduction using method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a yellow oil in overall yield 25%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.24 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.92 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.75 (dd, *J* = 7.3, 1.1 Hz, 1H), 6.09 (s, 2H), 3.75 (s, 3H), 3.74 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 168.6, 167.6, 148.8, 133.6, 131.8, 119.1, 115.6, 111.0, 52.3; IR (cm⁻¹) 3479, 3376, 2951, 1702, 1608, 1462, 1432, 1311.

Dimethyl 4-aminophthalate (1E2E4A)^{S6}: Compound **1E2E4A** was synthesized through a two-step process. First, Dimethyl phthalate (10 mmol) reacted follow method A-1 without additional purification. And reduction using method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent The desired product was obtained as white solid in overall yield 25%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.57 (d, *J* = 8.5 Hz, 1H), 6.63 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.16 (s, 2H), 3.75 (s, 3H), 3.70 (s, 3H); ¹³C{¹H} NMR (126 MHz DMSO-*d*₆) δ 169.4, 165.9, 152.7, 136.5, 131.5, 113.9, 113.6, 111.8, 52.2, 51.6; IR (cm⁻¹) 3438, 3354, 3246, 2949, 1727, 1692, 1648, 1598, 1563, 1433, 1345.

Dimethyl 2-aminoisophthalate (1E2A3E) and **Dimethyl 4-aminoisophthalate (1E2A5E)**: **1E2A3E** and **1E2A5E** compounds were synthesized through a four-step process. First, *m*-xylene (10 mmol) reacted according to method A-2. The mono-nitrated *m*-xylene was oxidized with method E without additional purification and esterified with method D. Finally, after reduction using method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent.

Dimethyl 2-aminoisophthalate (1E2A3E)^{S13}: Yellow solid; overall yield 7%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 7.8 Hz, 2H), 8.01 (s, 2H), 6.63 (t, *J* = 7.8 Hz, 1H), 3.82 (s, 6H); ¹³C{¹H} NMR (101 MHz, DMSO) δ 167.4, 152.1, 137.2, 113.8, 111.2, 51.9; IR (cm⁻¹) 3446, 3335, 2958, 2851, 1691, 1605, 1572, 1464, 1435, 1381.

Dimethyl 4-aminoisophthalate (1E2A5E)^{S14}: Yellow solid; overall yield 4%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.37 (d, *J* = 2.1 Hz, 1H), 7.77 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.35 (s, 2H), 6.83 (d, *J* = 8.9 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 167.2, 165.6, 154.6, 134.2, 133.5, 116.4, 115.5, 108.0, 51.7, 51.5; IR (cm⁻¹) 3448, 3341, 2950, 1684, 1617, 1595, 1561, 1456, 1433, 1361, 1327.

Dimethyl 3,4-diaminophthalate (1E2E3A4A): Compound **1E2E3A4A** was synthesized through a five-step process. First, 3-amino-*o*-xylene (10 mmol) reacted followed method C, reacted follow method A-1 without additional purification. And following reaction using method E-2. The oxidation compound was esterification using method D without additional purification. The crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to dimethyl 3-amino, 4-nitrophthalate was separated. Finally, after reduction using method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as an orange solid in overall yield 4%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.98 (d, *J* = 8.2 Hz, 1H), 5.56 (s, 2H), 4.88 (s, 2H), 3.68 (s, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 169.1, 166.9, 140.5, 132.4, 120.1, 116.9, 116.6, 112.5, 52.0, 51.6; IR (cm⁻¹) 3364, 2950, 1696, 1617, 1587, 1493, 1453, 1432.

Dimethyl 3,5-diaminophthalate (1E2E3A5A): Compound **1E2E3A5A** was synthesized through a four-step process. First 3-nitro phthalic acid (10 mmol) reacted followed method F, following reaction using method B. The Reduction compound was nitration with method A-4 without additional purification. The crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to dimethyl 3-Amino,5-nitrophthalate was separated. Finally, after reduction using method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a brown oil, in overall yield 9%; ¹H NMR (500 MHz, CDCl₃) δ 6.08 (d, *J* = 2.1 Hz, 1H), 5.93 (d, *J* = 2.1 Hz, 1H), 4.68 (s, 4H), 3.81 (s, 3H), 3.75 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 170.4, 167.3, 151.3, 149.8, 138.0, 105.6, 101.3, 100.6, 52.2, 51.5; IR (cm⁻¹) 3485, 3470, 3364, 2948, 1692, 1600, 1455, 1430, 1397, 1346; HR-MS (ESI) : Calculated for C₁₀H₁₂N₂O₄ [M+Na]⁺: 247.0689, found: 247.0689.

Dimethyl 3,6-diaminophthalate (1E2E3A6A): Compound **1E2E3A6A** was synthesized through a six-step process. First 3-nitro phthalic acid (10 mmol) reacted followed Method F, without additional purification and following reaction using method B. The crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to dimethyl 3-aminophthalate was separated. The Reduction compound was Acetylation with

method C without additional purification and following nitration with method A-3. The crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to dimethyl 3-acetamino, 6-nitrophthalate was separated. The nitrated compound was esterification with method D without additional purification. Finally, reduction using Method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a yellow solid in overall yield 7%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.77 (s, 2H), 5.21 (s, 4H), 3.70 (s, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 168.3, 139.4, 122.3, 111.6, 51.8; IR (cm⁻¹) 3470, 3445, 3361, 2922, 2851, 2105, 1692, 1602, 1480, 1444, 1312; HR-MS (ESI): Calculated for C₁₀H₁₂N₂O₄ [M+Na]⁺: 247.0689, found: 247.0689.

Dimethyl 4,5-diaminophthalate (1E2E4A5A)^{S7}: Compound **1E2E3A4A** was synthesized through a five-step process. First 4-amino-*o*-xylene (10 mmol) reacted followed Method C, without additional purification and reacted follow method A-1 without additional purification. And following reaction using method E-1. The oxidation compound was esterification with method D without additional purification. The crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent to dimethyl 4-amino-5-nitrophthalate was separated. Finally, reduction using Method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as an orange solid in overall yield 10%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.80 (s, 2H), 5.22 (s, 4H), 3.69 (s, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 168.2, 137.0, 120.6, 113.5, 51.7; IR (cm⁻¹) 3415, 3359, 3299, 2948, 1715, 1688, 1625, 1574, 1520, 1437, 1372, 1327.

2,4-diaminoisophthalate (1E2A3E4A): Dimethyl Compound 1E2A3E4A was synthesized through a four-step process. First, methyl 3-methyl benzoate (5 mmol) reacted follow method A-1, di-nitrated compound was synthesized, purified by chromatography on silica gel using n-hexane/EA as the eluent to methyl 3-methyl-2,6-dinitrobenzoate was separated. The nitrated compound was oxidation with method E-1 without additional purification and following esterification with method D. Finally, reduction using Method B, the crude reaction mixture was purified by chromatography on silica gel using n-hexane/EA as the eluent. The desired product was obtained as a white solid in overall yield 2%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.27 (s, 2H), 7.59 (d, *J* = 9.0 Hz, 1H), 7.16 (s, 2H), 5.95 (d, *J* = 9.1 Hz, 1H), 3.81 (s, 3H), 3.69 (s, 3H); ${}^{13}C{}^{1}H$ NMR (101 MHz, DMSO- d_6) δ 168.6, 167.7, 156.5, 155.5, 135.8, 104.0, 96.7, 93.4, 51.4, 50.8; IR (cm⁻¹) 3502, 3434, 3368, 2950, 2922, 2851, 1679, 1572, 1534, 1491, 1433, 1383, 1345; HR-MS (ESI) : Calculated for $C_{10}H_{12}N_2O_4$ [M+H]⁺: 225.0870, found: 225.0872.

Dimethyl 2,5-diaminoisophthalate (1E2A3E5A) and **Dimethyl 4,5-diaminoisophthalate (1E2A3A5E)**: Compound **1E2A3E5A** and **1E2A3A5E** was synthesized through a four-step process. First, dimethyl 5-amino-isophthalate (**1E3E5A**) (10 mmol) reacted follow method C using AcCl (1.1 equiv.) without additional purification

and following reaction using method A-2 The nitrated compound was reduction with method B without additional purification. Finally, reaction using Method D, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent.

Dimethyl 2,5-diaminoisophthalate (1E2A3E5A): Yellow solid; overall yield 16%; ¹H NMR (400 MHz, DMSO- d_6) δ 7.46 (s, 2H), 7.34 (broad, 2H), 4.75 (s, 2H), 3.79 (s, 6H); ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 167.5, 144.9, 136.7, 123.2, 111.6, 51.7; IR (cm⁻¹) 3458, 3396, 3350, 3001, 2950, 1693, 1661, 1574, 1548, 1432; HR-MS (ESI) : Calculated for C₁₀H₁₂N₂O₄ [M+Na]⁺: 247.0689, found: 247.0689.

Dimethyl 4,5-diaminoisophthalate (1E2A3A5E): White solid; overall yield 51%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.85 (d, *J* = 2.0 Hz, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 6.89 (s, 2H), 5.08 (s, 2H), 3.81 (s, 3H), 3.75 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 168.1, 166.2, 143.5, 135.7, 121.9, 115.9, 115.8, 107.5, 51.6, 51.4; IR (cm⁻¹) 3442, 3397, 3342, 2951, 1680, 1621, 1572, 1483, 1437, 1333, 1307; HR-MS (ESI) : Calculated for C₁₀H₁₂N₂O₄ [M+Na]⁺: 247.0689, found: 247.0689.

Dimethyl 4,6-diaminoisophthalate (1E2A4A5E)^{S8}: Compound **1E2A4A5E** was synthesized through a three-step process. First, *m*-xylene (10 mmol) reacted follow method A-1. The nitrated compound was oxidation with method E-1 without additional purification and following esterification with method D. Finally, reaction using Method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a white solid in yield 6%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.33 (s, 1H), 6.92 (s, 4H), 5.91 (s, 1H), 3.74 (s, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 167.0, 154.6, 136.9, 100.3, 97.2, 51.0; IR (cm⁻¹) 3430, 3318, 2953, 1672, 1629, 1586, 1543, 1434, 1307.

Dimethyl 2,3-diaminoterephthalate (1E2A3A4E)^{S1}: Compound **1E2A3A4E** was synthesized through a four-step process. First, dimethyl 2-amino-terephthalate (**1E2A4E**) (2 mmol) reacted follow method C using AcCl (1.1 equiv.) without additional purification and following reaction using method A-1. The nitrated compound was reduction with method B without additional purification. Finally, reaction using Method D, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a yellow solid in overall yield 2%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.02 (s, 2H), 6.70 (s, 4H), 3.80 (s, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 168.2, 140.6, 115.6, 109.8, 51.7, 39.5; IR (cm⁻¹) 3441, 3366, 3013, 2957, 2921, 2849, 1689, 1624, 1605, 1532, 1433, 1312.

Dimethyl 2,5-diaminoterephthalate (1E2A4E5A)^{S1}: Dimethyl 1,4-cyclohexanedione-2,5-dicarboxylate (1 g, 4.3 mmol) was dissolved in 50 mL acetic acid solution, followed by the addition of phenyl hydrazine (1 mL, 1.01 mmol). The mixture was stirred at room temperature under atmospheric conditions for 2 hours. Subsequently, water (50 mL) was

added, and the mixture was neutralized with a saturated K_2CO_3 solution. The mixture was extracted with EA, organic layer was dried by treatment with MgSO₄. The organic solvents were removed under reduced pressure, and the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a yellow solid in yield 32%; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (s, 2H), 5.07 (s, 2H), 3.86 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.7, 140.7, 119.0, 117.6, 52.0; IR (cm⁻¹) 3467, 3365, 2954, 1679, 1573, 1502.

Dimethyl 2,6-diaminoterephthalate (1E2A4E6A): Compound **1E2A4E6A** was synthesized through a two-step process. First, Dimethyl 2-amino-terephthalate (**1E2A4E**) (2 mmol) reacted follow method A-1. The nitrated compound was reduction with method B, the crude reaction mixture was purified by chromatography on silica gel using *n*-hexane/EA as the eluent. The desired product was obtained as a brown solid in overall yield 1.5%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.47 (s, 2H), 6.43 (broad, 2H), 3.80 - 3.77 (m, 6H); ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 169.0, 166.9, 152.4, 134.0, 103.3, 102.8, 98.5, 52.4, 51.8, 40.5; IR (cm⁻¹) 3508, 3373, 2918, 2849, 1716, 1669, 1583, 1477, 1439, 1385, 1319; HR-MS (ESI) : Calculated for C₁₀H₁₂N₂O₄ [M+H]⁺: 225.0870, found: 225.0872.

Computational details

All calculations were conducted using the Gaussian 09 package.^{S15} Ground state calculation DFT/cam-B3LYP, 6-31g(d) level of theory and excited state calculations doing TD-DFT/cam-B3LYP, 6-31g(d) level of theory. The cam-B3LYP functional was used to achieve improved accuracy for molecules exhibiting electronic transitions with charge-transfer characteristics.^{S16}

Scheme S1. Synthetic scheme for 1E2A3A, 1E2A4A, 1E2A5A, 1E2A4A, 1E2A6A, and 1E3A5A.

Scheme S2. Synthetic scheme for 1E2E3A, 1E2E4A, 1E2A3E, and 1E2A5E.

Scheme S3. Synthetic scheme for 1E2E3A4A, 1E2E3A5A, 1E2E3A6A, and 1E2E4A5A.

Scheme S4. Synthetic scheme for 1E2A3E4A, 1E2A3E5A, 1E2A3A5E, and 1E2A4A5E.

Scheme S5. Synthetic scheme for 1E2A3A4E, 1E2A4E5A and 1E2A4E6A.

Compound	Solvent	λ _{abs} [nm] (ε ×10 ⁻³ M ⁻¹ cm ⁻¹)	λ _{ex} [nm]	λ _{em} [nm]	Stokes shift [cm ⁻¹]	ф _{РL} [%]ª	T [ns]⁵	к _г [x 10 ⁷ s ⁻¹]	к _{nr} [x 10 ⁸ s ⁻¹]
			Mono-	amino 8	k mono-ester				
1E2A	Tol	336 (6.91)	335	388	4078	48	6.29	7.65	0.82
	THF	339 (8.75)	337	392	4163	59	7.20	8.16	0.57
	MeCN	335 (5.45)	334	395	4624	60	7.26	8.22	0.55
	Tol	321 (6.32)	321	373	4343	31	0.54	57.54	12.76
1E3A	THF	322 (5.06)	326	390	5034	51	9.90	5.19	0.49
	MeCN	323 (3.99)	322	395	5739	42	12.22	3.41	0.48
	Tol	286 (50.21)	294	322	2958	62	0.65	95.55	5.83
1E4A	THF	288 (28.32)	285	328	4600	N.A.	0.63	N.A.	N.A.
	MeCN	285 (24.40)	283	329	4941	N.A.	3.45	N.A.	N.A.
			Di-an	nino & r	nono-ester				
1E2A3A	Tol	346 (6.82)	344	429	5760	55	8.18	6.70	0.55
	THF	352 (6.89)	352	442	5785	47	9.43	4.93	0.57
	MeCN	348 (6.22)	348	450	6513	33	8.00	4.08	0.84
	Tol	322 (6.07)	321	367	3905	19	0.62	29.89	13.14
1E2A4A	THF	321 (10.01)	322	369	3956	14	0.63	21.49	13.72
	MeCN	320 (9.72)	321	372	4271	16	0.67	23.19	12.61
	Tol	375 (2.58)	376	465	5090	47	9.51	4.97	0.55
1E2A5A	THF	386 (5.66)	385	480	5141	43	11.14	3.87	0.51
	MeCN	379 (5.25)	379	483	5681	54	10.26	5.28	0.45
	Tol	358 (12.59)	356	414	3935	42	7.07	6.00	0.81
1E2A6A	THF	371 (3.30)	365	427	3978	32	6.89	4.61	0.99
	MeCN	368 (2.68)	370	445	4555	6	11.97	0.51	0.78
1E3A4A	Tol	308 (18.19)	313	368	4775	28	0.62	44.71	11.66
	THF	308 (18.19)	319	383	5238	50	0.57	88.35	8.71
	MeCN	316 (9.40)	317	390	5905	53	0.40	131.38	11.86
	Tol	336 (2.99)	336	390	4121	11	2.94	3.60	3.04
1E3A5A	THF	343 (5.03)	343	404	4402	12	3.73	3.13	2.37
	MeCN	341 (4.65)	340	411	5081	19	4.06	4.74	1.99

Table S1 Photophysical data of mono-amino & mono-ester and di-amino & mono-esterSBBFs in toluene, THF and MeCN.

^a Absolute photoluminescence quantum yield (PLQY). ^b Emission lifetime.

Compound	Solvent	λ _{abs} [nm] (ε ×10 ⁻³ M ⁻¹ cm ⁻¹)	λ _{ex} [nm]	λ _{em} [nm]	Stokes shift [cm ⁻¹]	ф _{РL} [%]ª	T [ns]⁵	к _г [x 10 ⁷ s ⁻¹]	κ _{nr} [x 10 ⁸ s ⁻¹]	
	Mono-amino & di-ester									
1E2E3A	Tol	340 (4.66)	339	426	6024	39	7.63	5.16	0.79	
	THF	343 (5.71)	341	435	6337	53	9.54	5.54	0.49	
	MeCN	341 (6.14)	337	435	6685	66	9.40	6.98	0.37	
	Tol	285 (15.33)	300	400	8333	66	0.74	88.69	4.64	
1E2E4A	THF	283 (19.63)	283	412	11064	N.A.	3.34	N.A.	N.A.	
	MeCN	282 (19.63)	279	417	11861	N.A.	0.63	N.A.	N.A.	
1E2A3E	Tol	373 (10.36)	366	407	2752	53	6.08	8.65	0.78	
	THF	369 (9.02)	364	405	2781	34	6.26	5.41	1.06	
	MeCN	363 (7.09)	362	406	2994	50	6.27	7.94	0.80	
1E2A5E	Tol	331 (5.88)	329	378	3940	32	0.58	55.69	11.67	
	THF	332 (7.50)	333	383	3920	28	0.43	66.21	16.63	
	MeCN	331 (6.19)	330	383	4193	23	0.47	48.13	16.46	
	Tol	337 (6.54)	337	384	3632	9	2.33	3.69	3.92	
1E3E5A	THF	337 (3.87)	346	402	4026	13	3.69	3.44	2.37	
	MeCN	340 (7.38)	340	401	4474	14	3.59	3.97	2.39	
1E2A4E	Tol	366 (7.00)	363	420	3739	64	10.19	6.29	0.35	
	THF	371 (6.36)	368	425	3645	50	11.33	4.38	0.44	
	MeCN	365 (6.91)	363	428	4184	58	14.58	3.98	0.29	

Table S2 Photophysical data of mono-amino & di-ester SBBFs in toluene, THF andMeCN.

^a Absolute photoluminescence quantum yield (PLQY). ^b Emission lifetime.

Compound	Solvent	λ _{abs} [nm] (ε ×10 ⁻³ M ⁻¹ cm ⁻¹)	λ _{ex} [nm]	λ _{em} [nm]	Stokes shift [cm ⁻¹]	ф _{РL} [%]ª	T [ns]⁵	κ _r [x 10 ⁷ s ⁻¹]	к _{nr} [x 10 ⁸ s ⁻¹]
			Di-ar	nino &	di-ester				
1E2E3A4A	Tol	324 (14.06)	332	452	7997	23	4.43	5.29	1.73
	THF	333 (8.37)	338	457	7704	31	4.75	6.50	1.45
	MeCN	329 (13.18)	331	461	8520	21	4.16	4.94	1.91
	Tol	329 (9.11)	331	429	6901	6	0.86	7.38	10.89
1E2E3A5A	THF	330 (6.55)	332	439	7341	4	0.85	4.78	11.29
	MeCN	330 (8.54)	340	440	6684	1	0.82	1.52	12.04
	Tol	391 (4.31)	392	498	5430	39	8.50	4.58	0.72
1E2E3A6A	THF	398 (7.42)	400	503	5119	38	9.04	4.22	0.68
	MeCN	391 (6.73)	391	499	5535	34	9.02	3.79	0.73
	Tol	310 (10.3)	308	396	7215	34	0.48	70.00	13.88
1E2E4A5A	THF	291 (14.26)	316	422	7949	28	0.59	46.78	12.27
	MeCN	316 (9.85)	316	436	8710	28	3.57	7.92	2.01
	Tol	360 (7.08)	360	390	2137	7	2.83	2.60	3.27
1E2A3E4A	THF	358 (9.24)	357	389	2304	24	2.74	8.92	2.76
	MeCN	356 (8.62)	354	394	2868	25	3.31	7.51	2.27
	Tol	423 (7.25)	422	494	3454	45	9.67	4.63	0.57
1E2A3E5A	THF	428 (8.13)	428	511	3795	65	11.09	5.84	0.32
	MeCN	420 (8.41)	422	510	4089	52	10.45	5.00	0.46
	Tol	344 (5.63)	344	418	5146	24	3.59	6.81	2.11
1E2A3A5E	THF	351 (10.18)	350	431	5370	21	3.78	5.65	2.08
	MeCN	347 (7.90)	347	436	5883	17	13.05	1.28	0.64
	Tol	331 (14.74)	331	357	2200	0.4	0.52	0.85	19.15
1E2A4A5E	THF	333 (7.96)	331	362	2587	0.8	0.53	1.45	18.72
	MeCN	331 (6.19)	329	365	2998	1	3.54	0.31	2.79
1E2A3A4E	Tol	391 (4.62)	389	471	4476	67	10.03	6.64	0.33
	THF	399 (6.33)	400	476	3992	63	11.04	5.75	0.33
	MeCN	392 (7.33)	391	478	4655	47	10.77	4.38	0.49
1E2A4E5A	Tol	443 (3.91)	443	539	4020	53	11.36	4.70	0.41
	THF	451 (6.64)	447	553	4288	47	11.26	4.16	0.47
	MeCN	440 (6.01)	440	553	4644	32	10.95	2.94	0.62
	Tol	394 (5.55)	394	450	3158	39	9.57	4.05	0.64
1E2A4E6A	THF	392 (4.82)	396	453	3177	35	8.12	4.33	0.80
	MeCN	387 (5.65)	391	455	3597	19	0.38	50.21	21.29

Table S3 Photophysical data of di-amino & di-ester SBBFs in toluene, THF and MeCN.

^a Absolute photoluminescence quantum yield (PLQY). ^b Emission lifetime.

Fig. S1 Emission and excitation spectra of 1E2A in toluene.

Fig. S2 Emission and excitation spectra of 1E3A in toluene.

Fig. S4 Emission and excitation spectra of 1E2A3A in toluene.

Fig. S5 Emission and excitation spectra of 1E2A4A in toluene.

Fig. S6 Emission and excitation spectra of 1E2A5A in toluene.

Fig. S7 Emission and excitation spectra of 1E2A6A in toluene.

Fig. S8 Emission and excitation spectra of 1E3A4A in toluene.

Fig. S9 Emission and excitation spectra of 1E3A5A in toluene.

Fig. S10 Emission and excitation spectra of 1E2E3A in toluene.

Fig. S11 Emission and excitation spectra of 1E2E4A in toluene.

Fig. S12 Emission and excitation spectra of 1E2A3E in toluene.

Fig. S13 Emission and excitation spectra of 1E2A5E in toluene.

Fig. S14 Emission and excitation spectra of 1E3E5A in toluene.

Fig. S15 Emission and excitation spectra of 1E2A4E in toluene.

Fig. S16 Emission and excitation spectra of 1E2E3A4A in toluene.

Fig. S17 Emission and excitation spectra of 1E2E3A5A in toluene.

Fig. S18 Emission and excitation spectra of 1E2E3A6A in toluene.

Fig. S19 Emission and excitation spectra of 1E2E4A5A in toluene.

Fig. S20 Emission and excitation spectra of 1E2A3E4A in toluene.

Fig. S21 Emission and excitation spectra of 1E2A3E5A in toluene.

Fig. S22 Emission and excitation spectra of 1E2A3A5E in toluene.

Fig. S23 Emission and excitation spectra of 1E2A4A5E in toluene.

Fig. S24 Emission and excitation spectra of 1E2A3A4E in toluene.

Fig. S25 Emission and excitation spectra of 1E2A4E5A in toluene.

Fig. S26 Emission and excitation spectra of 1E2A4E6A in toluene.

Fig. S27 HOMOs and LUMOs for 1E4A and 1E2A4E5A.

Fig. S28 a) Excitation and b) emission spectra of mono-amino & mono-ester series in THF.

Fig. S29 a) Excitation and b) emission spectra of mono-amino & mono-ester series in MeCN.

Fig. S30 a) Excitation and b) emission spectra of di-amino & mono-ester series in THF.

Fig. S31 a) Excitation and b) emission spectra of di-amino & mono-ester series in MeCN.

Fig. S32 a) Excitation and b) emission spectra of mono-amino & di-ester series in THF.

Fig. S33 a) Excitation and b) emission spectra of mono-amino & di-ester series in MeCN.

Fig. S34 a) Excitation and b) emission spectra of di-amino & di-ester series in THF.

Fig. S35 a) Excitation and b) emission spectra of di-amino & di-ester series in MeCN.

Fig. S36 Lippert–Mataga plot of (a) mono-ester mono-amino SBBF, (b) mono-ester diamino SBBF, (c) di-ester mono-amino SBBF and (d) di-ester di-amino SBBF series.

Fig. S38 Planar angles between functional group and benzene plane based on DFT calculated structure in ground state and excited state of **1E2E3A**.

Fig. S40 Planar angles between functional group and benzene plane based on DFT calculated structure in ground state and excited state of **1E2E4A**

Fig. S41 Torsion angles between functional group and benzene plane based on DFT calculated structure in ground state and excited state of **1E2E3A** and **1E2E4A**.

References for ESI

S1. H. Ha, H. Hahm, D. G. Jwa, K. Yoo, M. H. Park, M. Yoon, Y. Kim, M. Kim, *CrystEngComm.* 2017, **19**, 5361

S2. H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Nagano, *Anal. Chem.* 1998, **70**, 2446.

S3 C. Lavigueur, E. J. Foster, V. E. Williams, J. Am. Chem. Soc. 2008, 130, 11791.

S4 S. R. Nam, H. Y. Lee, J.-I. Hong, Tetrahedron, 2008, 64, 10531.

S5 P. Funk, K. Motyka, P. Džubák, P. Znojek, S. Gurská, J. Kusz, C. McMaster, M. Hajdúch, M. Soural, *RSC Adv.*, **2015**, 48861.

S6 World Intellectual Property Organization, WO2020172655.

S7 K. Yagi, K. Ohira, K. Yamana, K. Imato, R. Kawasaki, A. Ikeda, Y. Ooyama, *Org. Biomol. Chem.*, 2023, **21**, 5194.

S8 A. Yokoyama, M. Karasawa, R. Kiyota, *Polym J.*, 2015, **47**, 348.

S9 R. Huang, B. Tang, K. Ye, C. Wang, H. Zhang, Advanced Optical Materials, 2019, 7, 1900927.

S10 Japan, JP11246512A.

S11 J.T. Markiewicz, O. Wiest, P. Helquist, J. Org. Chem. 2010, 75, 4887.

S12 S. Yang, A. C. Garner, J. D. Wallis, *CrystEngComm*. 2020, 22, 3701.

S13 World Intellectual Property Organization, WO2020089571.

S14 D.-W. Wang, H.-Y. Lin, R.-J. Cao, S.-G. Yang, Q. Chen, G.-F. Hao, W.-C. Yang, G.-F. Yang *J. Agric. Food Chem.* 2014, **62**, 49, 11786.

S15 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X.
Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.
Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.
Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.

- B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- S16 P. Dev, S. Agrawal, N. J. English, J. Chem. Phys. 2012, 136, 224301.
- S17 R. G. Lavanya, G. N. Anil Kuma, CCDC 1903412; DOI: 10.5517/ccdc.csd.cc21wnd0

Appendix I

Spectral copies of ¹H NMR, ¹³C NMR and IR for the obtained compounds (including HPLC data for 1E2A3E4A and 1E2A4E6A)

140 130 120 110 100 f1 (ppm) . . 190 180

S49

00 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70

Transmittance [%] 80 85

110 100 f1 (ppm)

110 100 f1 (ppm)

110 100 f1 (ppm)

120 110 100 f1 (ppm) 190 180

110 100 f1 (ppm)

S66

140 130 120 110 100 f1 (ppm)

110 100 f1 (ppm)

[Additional HPLC data to check purity of 1E2A3E4A]

110 100 f1 (ppm)

140 130 120 110 100 90 f1 (ppm)

S76

120 110 100 f1 (ppm) ľ

1

.....

1

10 10

1

1

1

1

· · · · ·

....

···· · ···

[Additional HPLC data to check purity of 1E2A4E6A]

Appendix II

Crystal data for 1E2E4A

Empirical formula	C H N O.
	209.20
Temperature	253(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a = 8.831(6) Å, α = 73.42(2)°
	b = 9.067(6) Å, β = 81.83(2)°
	c = 13.811(9) Å, y = 86.68(2)°
Volume	1049.0(12) Å ³
Z	4
Density (calculated)	1.325 Mg/m ³
Absorption coefficient	0.104 mm ⁻¹
F(000)	440
Crystal size	0.116 x 0.053 x 0.048 mm ³
Theta range for data collection	2.421 to 26.000°.
Index ranges	_10<=h<=10, _11<=k<=11, _16<=l<=16
Reflections collected	28678
Independent reflections	4081 [R(int) = 0.0880]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7453 and 0.6624
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4081 / 0 / 287
Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0491, wR2 = 0.1293
R indices (all data)	R1 = 0.0828, wR2 = 0.1530
Largest diff. peak and hole	0.217 and –0.212 e·Å⁻³

Table AP1. Crystal data and structure refinement for 1E2E4A

	x	у	Z	U(eq)
N(1)	226(2)	7870(2)	1520(1)	61(1)
C(2)	807(2)	7269(2)	2422(1)	45(1)
C(3)	709(2)	5690(2)	2942(1)	48(1)
C(4)	1322(2)	5102(2)	3841(1)	45(1)
C(5)	2037(2)	6052(2)	4277(1)	42(1)
C(6)	2093(2)	7644(2)	3778(1)	43(1)
C(7)	1496(2)	8236(2)	2863(1)	47(1)
C(8)	2781(2)	5428(2)	5208(1)	45(1)
O(9)	3507(2)	6189(2)	5567(1)	69(1)
O(10)	2592(2)	3909(2)	5614(1)	54(1)
C(11)	3268(3)	3223(3)	6540(2)	61(1)
C(12)	2738(2)	8801(2)	4194(2)	49(1)
O(13)	3938(2)	9450(2)	3845(1)	63(1)
O(14)	1750(2)	9117(2)	4939(1)	64(1)
C(15)	2225(3)	10266(3)	5379(2)	77(1)
N(21)	5295(3)	7138(3)	6937(2)	66(1)
C(22)	5868(2)	6525(2)	7841(1)	48(1)
C(23)	5950(2)	4937(2)	8299(2)	51(1)
C(24)	6575(2)	4362(2)	9194(2)	49(1)
C(25)	7127(2)	5338(2)	9690(1)	43(1)
C(26)	6983(2)	6940(2)	9251(1)	43(1)
C(27)	6390(2)	7517(2)	8340(1)	47(1)
C(28)	7851(2)	4739(2)	10625(2)	46(1)
O(29)	8416(2)	5534(2)	11047(1)	65(1)
O(30)	7844(2)	3197(2)	10975(1)	62(1)
C(31)	8566(3)	2534(3)	11885(2)	70(1)
C(32)	7398(2)	8117(2)	9745(2)	48(1)
O(33)	8527(2)	8898(2)	9466(1)	70(1)
O(34)	6288(2)	8286(2)	10476(1)	59(1)
C(35)	6517(3)	9465(3)	10960(2)	73(1)

Table AP2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for **1E2E4A** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(2)	1.368(2)	N(21)-C(22)	1.369(3)
N(1)-H(1A)	0.89(3)	N(21)-H(21A)	0.82(3)
N(1)-H(1B)	0.85(3)	N(21)-H(21B)	0.91(3)
C(2)-C(7)	1.408(3)	C(22)-C(23)	1.400(3)
C(2)-C(3)	1.409(3)	C(22)-C(27)	1.410(3)
C(3)-C(4)	1.378(3)	C(23)-C(24)	1.377(3)
C(3)-H(3)	0.9400	C(23)-H(23)	0.9400
C(4)-C(5)	1.404(2)	C(24)-C(25)	1.408(2)
C(4)-H(4)	0.9400	C(24)-H(24)	0.9400
C(5)-C(6)	1.411(3)	C(25)-C(26)	1.411(3)
C(5)-C(8)	1.479(2)	C(25)-C(28)	1.471(3)
C(6)-C(7)	1.390(3)	C(26)-C(27)	1.382(3)
C(6)-C(12)	1.505(3)	C(26)-C(32)	1.506(3)
C(7)-H(7)	0.9400	C(27)-H(27)	0.9400
C(8)-O(9)	1.212(2)	C(28)-O(29)	1.214(2)
C(8)-O(10)	1.341(2)	C(28)-O(30)	1.342(2)
O(10)-C(11)	1.448(2)	O(30)-C(31)	1.449(3)
C(11)-H(11A)	0.9700	C(31)-H(31A)	0.9700
C(11)-H(11B)	0.9700	C(31)-H(31B)	0.9700
C(11)-H(11C)	0.9700	C(31)-H(31C)	0.9700
C(12)-O(13)	1.211(3)	C(32)-O(33)	1.209(2)
C(12)-O(14)	1.337(3)	C(32)-O(34)	1.339(3)
O(14)-C(15)	1.454(2)	O(34)-C(35)	1.449(2)
C(15)-H(15A)	0.9700	C(35)-H(35A)	0.9700
C(15)-H(15B)	0.9700	C(35)-H(35B)	0.9700
C(15)-H(15C)	0.9700	C(35)-H(35C)	0.9700
C(2)-N(1)-H(1A)	116.9(18)	C(7)-C(6)-C(5)	120.48(17)
C(2)-N(1)-H(1B)	116.5(18)	C(7)-C(6)-C(12)	115.86(17)
H(1A)-N(1)-H(1B)	125(3)	C(5)-C(6)-C(12)	123.64(16)
N(1)-C(2)-C(7)	120.23(19)	C(6)-C(7)-C(2)	120.89(19)
N(1)-C(2)-C(3)	121.47(17)	C(6)-C(7)-H(7)	119.6
C(7)-C(2)-C(3)	118.29(17)	C(2)-C(7)-H(7)	119.6
C(4)-C(3)-C(2)	120.66(17)	O(9)-C(8)-O(10)	122.88(18)
C(4)-C(3)-H(3)	119.7	O(9)-C(8)-C(5)	124.30(19)
C(2)-C(3)-H(3)	119.7	O(10)-C(8)-C(5)	112.81(16)
C(3)-C(4)-C(5)	121.45(19)	C(8)-O(10)-C(11)	115.88(16)
C(3)-C(4)-H(4)	119.3	O(10)-C(11)-H(11A)	109.5
C(5)-C(4)-H(4)	119.3	O(10)-C(11)-H(11B)	109.5
C(4)-C(5)-C(6)	118.17(17)	H(11A)-C(11)-H(11B)	109.5
C(4)-C(5)-C(8)	122.17(18)	O(10)-C(11)-H(11C)	109.5

Table AP3. Bond lengths [Å] and angles [°] for 1E2E4A

C(6)-C(5)-C(8)	119.60(16)	H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5	O(30)-C(31)-H(31B)	109.5
O(13)-C(12)-O(14)	124.44(19)	H(31A)-C(31)-H(31B)	109.5
O(13)-C(12)-C(6)	124.4(2)	O(30)-C(31)-H(31C)	109.5
O(14)-C(12)-C(6)	110.94(19)	H(31A)-C(31)-H(31C)	109.5
C(12)-O(14)-C(15)	116.02(19)	H(31B)-C(31)-H(31C)	109.5
O(14)-C(15)-H(15A)	109.5	O(33)-C(32)-O(34)	123.90(19)
O(14)-C(15)-H(15B)	109.5	O(33)-C(32)-C(26)	124.6(2)
H(15A)-C(15)-H(15B)	109.5	O(34)-C(32)-C(26)	111.26(18)
O(14)-C(15)-H(15C)	109.5	C(32)-O(34)-C(35)	116.16(19)
H(15A)-C(15)-H(15C)	109.5	O(34)-C(35)-H(35A)	109.5
H(15B)-C(15)-H(15C)	109.5	O(34)-C(35)-H(35B)	109.5
C(22)-N(21)-H(21A)	121(2)	H(35A)-C(35)-H(35B)	109.5
C(22)-N(21)-H(21B)	120.7(18)	O(34)-C(35)-H(35C)	109.5
H(21A)-N(21)-H(21B)	118(3)	H(35A)-C(35)-H(35C)	109.5
N(21)-C(22)-C(23)	122.36(19)	H(35B)-C(35)-H(35C)	109.5
N(21)-C(22)-C(27)	119.4(2)		
C(23)-C(22)-C(27)	118.23(18)		
C(24)-C(23)-C(22)	120.68(18)		
C(24)-C(23)-H(23)	119.7		
C(22)-C(23)-H(23)	119.7		
C(23)-C(24)-C(25)	121.67(19)		
C(23)-C(24)-H(24)	119.2		
C(25)-C(24)-H(24)	119.2		
C(24)-C(25)-C(26)	117.52(18)		
C(24)-C(25)-C(28)	122.20(18)		
C(26)-C(25)-C(28)	120.27(16)		
C(27)-C(26)-C(25)	120.79(17)		
C(27)-C(26)-C(32)	115.93(17)		
C(25)-C(26)-C(32)	123.24(16)		
C(26)-C(27)-C(22)	121.01(19)		
C(26)-C(27)-H(27)	119.5		
C(22)-C(27)-H(27)	119.5		
O(29)-C(28)-O(30)	122.21(19)		
O(29)-C(28)-C(25)	124.47(19)		
O(30)-C(28)-C(25)	113.32(16)		
C(28)-O(30)-C(31)	115.97(17)		
O(30)-C(31)-H(31A)	109.5		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+1 #2 x-1,y,z-

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	72(1)	58(1)	56(1)	-9(1)	-30(1)	-14(1)
C(2)	44(1)	50(1)	44(1)	-14(1)	-12(1)	-3(1)
C(3)	47(1)	54(1)	48(1)	-20(1)	-12(1)	-8(1)
C(4)	47(1)	43(1)	45(1)	-13(1)	-7(1)	-6(1)
C(5)	40(1)	47(1)	41(1)	-16(1)	-8(1)	0(1)
C(6)	42(1)	45(1)	47(1)	-18(1)	-12(1)	-1(1)
C(7)	48(1)	46(1)	50(1)	-12(1)	-15(1)	-2(1)
C(8)	47(1)	46(1)	45(1)	-16(1)	-10(1)	0(1)
O(9)	91(1)	58(1)	67(1)	-15(1)	-43(1)	-7(1)
O(10)	66(1)	49(1)	48(1)	-10(1)	-20(1)	0(1)
C(11)	73(2)	57(1)	51(1)	-6(1)	-20(1)	5(1)
C(12)	56(1)	43(1)	52(1)	-16(1)	-22(1)	4(1)
O(13)	62(1)	58(1)	77(1)	-24(1)	-20(1)	-10(1)
O(14)	71(1)	66(1)	67(1)	-36(1)	-14(1)	-1(1)
C(15)	102(2)	71(2)	77(2)	-45(1)	-26(1)	2(1)
N(21)	85(2)	63(1)	58(1)	-20(1)	-29(1)	-11(1)
C(22)	45(1)	58(1)	45(1)	-19(1)	-8(1)	-5(1)
C(23)	54(1)	54(1)	52(1)	-25(1)	-3(1)	-14(1)
C(24)	53(1)	45(1)	52(1)	-18(1)	-2(1)	-10(1)
C(25)	43(1)	42(1)	47(1)	-16(1)	-3(1)	-7(1)
C(26)	42(1)	45(1)	45(1)	-16(1)	-7(1)	-6(1)
C(27)	50(1)	44(1)	50(1)	-15(1)	-12(1)	-4(1)
C(28)	46(1)	44(1)	51(1)	-15(1)	-6(1)	-4(1)
O(29)	82(1)	51(1)	70(1)	-16(1)	-34(1)	-8(1)
O(30)	83(1)	43(1)	63(1)	-12(1)	-23(1)	-5(1)
C(31)	87(2)	56(1)	66(1)	-9(1)	-25(1)	6(1)
C(32)	59(1)	39(1)	47(1)	-9(1)	-20(1)	-5(1)
O(33)	84(1)	65(1)	64(1)	-18(1)	-13(1)	-33(1)
O(34)	66(1)	59(1)	65(1)	-33(1)	-14(1)	2(1)
C(35)	101(2)	60(1)	78(2)	-41(1)	-42(2)	23(1)

Table AP4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **1E2E4A** The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

	Х	У	Z	U(eq)
	520(20)	8810/20)	1150(20)	01
	100(30)	7220(20)	1200(20)	01
	-190(30)	7230(30)	1290(20)	91
⊓(<i>3)</i>	2215030	207337		
H(4)	12614041	416954		
H(7)	15549297	253457		
H(11A)	30062144	679792		
H(11B)	28783750	704792		
H(11C)	43713315	639592		
H(15A)	142510423	5900115		
H(15B)	241211228	4849115		
H(15C)	31569914	5679115		
H(21A)	4990(30)	6580(30)	6630(20)	98
H(21B)	5290(30)	8170(30)	6640(20)	98
H(23)	55754255	799261		
H(24)	66343290	948159		
H(27)	63358588	804856		
H(31A)	84851422	12080105		
H(31B)	80612927	12434105		
H(31C)	96372807	11750105		
H(35A)	56769460	11495110		
H(35B)	655710464	10457110		
H(35C)	74719260	11250110		

Table AP5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for **1E2E4A**.

Table AP6. Hydrogen bonds for 1E2E4A [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)O(33)#1	0.89(3)	2.17(3)	3.054(3)	168(2)
N(1)-H(1B)O(29)#2	0.85(3)	2.15(3)	2.991(3)	166(3)
N(21)-H(21A)O(9)	0.82(3)	2.21(3)	2.958(3)	151(3)
N(21)-H(21B)O(13)#1	0.91(3)	2.18(3)	3.053(3)	159(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+1 #2 x-1,y,z-1

Appendix III

Cartesian coordinates for the optimized structures (1E4A, 1E2A4E5A, 1E2E3A, and 1E2E4A)

1E4A (G	iS)		
С	-0.449354 1.2934	27 0.361146	
С	-1.813681.09258	7 0.43795	6
С	-2.377748 -0.124	167 0.023158	
С	-1.52608-1.12405	53 -0.469096	
С	-0.158635 -0.920	185 -0.521497	
С	0.404974	0.286709	-0.099101
С	1.849756	0.604658	-0.225527
0	2.248116	1.719939	-0.473738
0	2.764623	-0.385595 -0.103	242
С	2.552855	-1.530303 0.7226	627
Ν	-3.736238 -0.347	248 0.138197	
Н	-0.021211	2.244588	0.658486
Н	-2.460003 1.8800	0.81467	6
Н	-1.947913 -2.063	877 -0.813294	
Н	0.471612	-1.703864 -0.927	472
Н	3.472495	-1.676268 1.2921	165
Н	1.718219	-1.385825 1.4101	102
Н	2.370982	-2.414221 0.1065	559
Н	-4.122643 -1.071	691 -0.45105	
Н	-4.322314 0.4750	4 0.180305	

1E4A (ES)

С	0.581058	1.334282	0.080461
С	1.943324	1.133224	0.174376
С	2.499565	-0.145299 0.0460)38
С	1.63363 -1.22569	93 -0.186473	
С	0.271867	-1.044234 -0.280	903
С	-0.298345 0.2465	94 -0.145477	
С	-1.680109 0.4415	575 -0.23876	
0	-2.347565 1.5668	85 -0.129345	
0	-2.58064-0.55926	65 -0.476324	
С	-3.323852 -1.010	396 0.669332	
Ν	3.882838	-0.335387 0.0856	677
Н	0.178981	2.33628 0.18365	1
Н	2.59903 1.98338	0.344969	
Н	2.049681	-2.22343-0.30189	97
Н	-0.37507-1.89359	94 -0.470115	
Н	-3.839463 -1.915	418 0.346819	
Н	-2.642037 -1.233	506 1.494509	
Н	-4.053465 -0.259	843 0.977922	
Н	4.173697	-1.263060.36418	5
Н	4.391589	0.375623	0.593995

1E2A4E5A (GS)

С	1.38751 -0.15423 0.0728
С	0.83852 1.14627 0.23898
Ν	1.61291 2.24952 0.49798
С	-0.555741.25219 0.15341
Н	-1.0239 2.2194 0.27463
С	-1.389220.15468 -0.0741
С	-2.854160.36627 -0.12492
0	-3.68779-0.51976-0.25201
0	-3.210071.65266 -0.0112
С	-4.613911.92429 -0.04056
С	-0.84023-1.14582-0.24027
Ν	-1.61462-2.24908-0.49927
С	0.55403 -1.25175-0.1547
Н	1.02219 -2.21896-0.27593
0	3.20835 -1.652230.00991
С	4.61219 -1.923870.03926
0	3.68608 0.52019 0.25069
Н	4.69929 -3.004 -0.06465
Н	5.04491 -1.593630.98573
Н	5.11641 -1.41731-0.7862
Н	-4.701023.00442 0.06338
Н	-5.118131.41772 0.78489
Н	-5.046621.59407 -0.98703
С	-1.08574-3.59049-0.49451
Н	-0.36516-3.74361-1.3074
Н	-1.91178-4.28642-0.64672
Н	-0.5906 -3.8447 0.45405
Н	-2.61071-2.11468-0.41096
С	1.08402 3.59094 0.49318
Н	0.36342 3.74407 1.30606
Н	0.58889 3.84512 -0.45539
Н	1.91006 4.28687 0.64539
Н	2.60899 2.11513 0.40964

1E2A4E5A (ES)

С	2.869259429 -0.3440283917 0.1287134247
С	1.43429463 -0.1720048823 0.0638828802
С	0.8218380826 1.133789635 0.1837100747
Ν	1.615897337 2.210316663 0.3599754439
С	-0.5764052294 1.267366467 0.116452108
Н	-1.016557807 2.25136825 0.2072919182
С	-1.436011677 0.1724425452 -0.0651897601
С	-2.870976498 0.3444659678 -0.1300198125
0	-3.712704771 -0.5550425459 -0.2886163785
0	-3.258029486 1.634697701 0.0023578769
С	-4.661918707 1.876512456 -0.0531079997
С	-0.8235551002 -1.133351908 -0.1850175466
Ν	-1.617614312 -2.209878854 -0.361283588
С	0.5746881931 -1.266928776 -0.1177592233
Н	1.014840786 -2.250930546 -0.2085991002
0	3.256312316 -1.634260249 -0.0036633206
С	4.66020149 -1.876075132 0.0518031697
0	3.710987738 0.555480138 0.2873096959
Н	4.774666225 -2.952447436 -0.0715768345
Н	5.070442873 -1.558524124 1.013374766
Н	5.177309918 -1.344780411 -0.750795054
Н	-4.776383542 2.952884639 0.0702729658
Н	-5.179026836 1.34521697 0.7494899101
Н	-5.072160329 1.558962228 -1.014679752
С	-1.151393415 -3.568001989 -0.4985929618
Н	-0.4978526488 -3.676790739 -1.371814832
Н	-2.016223508 -4.218244921 -0.6263028977
Н	-0.5982979437 -3.88963703 0.3913809392
Н	-2.616565895 -2.001089165 -0.3963947198
С	1.149676476 3.568439914 0.4972837248
Н	0.4961356909 3.677229387 1.370505492
Н	0.5965810281 3.890074245 -0.3926904501
Н	2.014506579 4.218682929 0.6249931678
Н	2.614848912 2.001526965 0.3950866734

1E2E3A (GS)

С	-2.9823 0.47427	8	-0.89786	5
С	-1.604980.38232	5	-0.62676	6
С	-0.886841.57382	9	-0.38471	
С	-1.572382.80291	7	-0.40333	}
С	-2.924172.870334	4	-0.69062	2
С	-3.625811.69245	1	-0.93803	}
Н	-3.53355-0.44108	8-1.095		
Н	-3.416343.835234	4	-0.71129)
Н	-4.688111.72992	9	-1.15849)
С	-0.907744.10268	3	-0.06724	Ļ
0	-1.028845.11223	-0.71676		
0	-0.251574.04175	1	1.101369	9
С	0.479857	5.21925	1.439842	2
Н	0.917589	5.024812	2	2.418369
Н	1.262291	5.397324	Ļ	0.698783
Н	-0.181766.08670	5	1.479514	4
С	0.592216	1.611226	6	-0.24836
0	1.293264	2.522629)	-0.61943
0	1.114883	0.506724	ļ	0.335825
С	2.540468	0.505307	,	0.453075
Н	2.796576	-0.44211	0.925788	8
Н	3.005873	0.585101		-0.5311
Н	2.8694 1.34334	9	1.069743	3
Ν	-1.00219-0.85544	-0.68316		
Н	-0.13274-0.95607	'- 0.18188		
Н	-1.6217 -1.65012	2-0.63393		

1E2E3A (ES)

С	-2.9823 0.47427	8	-0.89786	5
С	-1.604980.38232	5	-0.62676	6
С	-0.886841.57382	9	-0.38471	
С	-1.572382.80291	7	-0.40333	}
С	-2.924172.870334	4	-0.69062	2
С	-3.625811.69245	1	-0.93803	}
Н	-3.53355-0.44108	8-1.095		
Н	-3.416343.835234	4	-0.71129)
Н	-4.688111.72992	9	-1.15849)
С	-0.907744.10268	8	-0.06724	ŀ
0	-1.028845.11223	-0.71676		
0	-0.251574.04175	1	1.101369	9
С	0.479857	5.21925	1.439842	2
Н	0.917589	5.024812	2	2.418369
Н	1.262291	5.397324	1	0.698783
Н	-0.181766.08670	5	1.479514	4
С	0.592216	1.611226	6	-0.24836
0	1.293264	2.522629)	-0.61943
0	1.114883	0.506724	1	0.335825
С	2.540468	0.505307	7	0.453075
Н	2.796576	-0.44211	0.92578	8
Н	3.005873	0.585107	1	-0.5311
Н	2.8694 1.343349	9	1.069743	3
Ν	-1.00219-0.85544	-0.68316		
Н	-0.13274-0.95607-0.18188			
Н	-1.6217 -1.65012	2-0.63393		

1E2E4A (GS)

С	2.831719 -0	0.209312	0.090983
С	1.798849	0.733164	0.022415
С	0.471892	0.337578	-0.076835
С	0.142975	-1.025326 -0.090	62
С	1.175981	-1.958366 -0.052	539
С	2.50008 -1.56718	33 0.039143	
Н	0.918212	-3.011358	-0.084619
Н	3.287616	-2.314776 0.0710)22
С	-1.245313 -1.559	898 -0.094195	
0	-1.580097 -2.572	182 -0.665386	
0	-2.072485 -0.843	821 0.682237	
С	-3.439234 -1.249	707 0.645402	
Н	-3.963431 -0.585	24 1.33129	
Н	-3.837014 -1.144	235 -0.366214	
Н	-3.540728 -2.289	367 0.963111	
С	-0.565544 1.3861	72 -0.318418	
0	-1.513069 1.2623	314 -1.055654	
0	-0.290432 2.5267	76 0.33918	
С	-1.202973.59684	5 0.09129	2
Н	-0.843869 4.4353	316 0.686745	
Н	-1.214235 3.8544	81 -0.969964	
Н	-2.212801 3.3143	352 0.395422	
Н	2.035837	1.791555	0.022492
Ν	4.153695	0.200833	0.14422
Н	4.317047	1.130934	0.502325
Н	4.815558	-0.475989 0.4960)65

1E2E4A (ES)

С	-2.762257 -0.2403	-0.18091	17			
С	-1.739505 0.7094	47 -0.361301				
С	-0.424776 0.4197	13 0.054281				
С	-0.143823 -0.986	311 0.239738				
С	-1.177079 -1.906	-1.177079 -1.906645 0.488716				
С	-2.49875-1.552782 0.322791					
Н	-0.896598 -2.921613 0.748671					
Н	-3.311184	-2.250733 0.4899	73			
С	1.223401	-1.539996 0.1263	54			
0	1.646377	-2.387353 0.8880)7			
0	1.904697	-1.053187 -0.912	741			
С	3.292052	-1.383589 -0.936	71			
Н	3.683976	-0.943065 -1.852	668			
Н	3.78617 -0.950097 -0.064797					
Н	3.43498 -2.466283 -0.938472					
С	0.594458	1.408009	0.275747			
0	1.724063	1.187872	0.705306			
0	0.167425	2.670662	-0.038521			
С	1.128154	3.689239	0.192657			
Н	0.646358	4.626203	-0.08986			
Н	1.4243 3.718014 1.244619					
Н	2.024599	3.527605	-0.411877			
Н	-1.968961.673154	4 -0.80478	31			
N	-4.036733 0.0770	93 -0.505588				
Н	-4.272941 0.991702 -0.861025					
Н	-4.785319 -0.588	663 -0.385699				