Supporting Information

Stabilizing Ni catalysts in biogas reforming via In-Situ carbon deposit removal by CeO₂ oxygen vacancies

Yonggang Gang^a, Zijiang Zhao^a, Yanhui Long^a, Xiaodong Li^a, Hao Zhang^{*,a}

^aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

* Corresponding author:

zhang_hao@zju.edu.cn (H. Zhang)

Table of Contents

Preparation of Catalysts	2
Ni ₃ Fe/CeO ₂	2
Ni ₃ Fe/CeO ₂ -NS	2
Ni ₃ Fe/CeO ₂ -RS	2
Characterizations	3
Catalytic Evaluations	4
Figures S1-S16 and Table S1-S2	6

Preparation of Catalysts

Ni₃Fe/CeO₂

Firstly, CeO₂ was prepared by weighing 4.0 g of Ce(NO₃)₃ · 6H₂O, adding 100 ml of deionized water to make a solution, and then stirring for 30 min at room temperature, followed by dropping ammonia to make the PH value reach 9.5-10, stirring at room temperature overnight, and then finally filtering and washing the precipitate, drying it for 12 h in the oven at 80 °C, and then finally calcining it for 5 h at a temperature of 950 °C (10 °C/min), to obtain CeO₂. Ni₃Fe/CeO₂ was prepared using the impregnation method, the total nickel-iron metal loading was set at 10 wt%, and then a certain amount of Ni(NO₃)₂·6H₂O and Fe(NO₃)₃·9H₂O were weighed according to the proportion as the metal precursor, and a solution was made by adding deionized water and ethanol (1:1) and stirred at room temperature for 30 min, 1 g of CeO₂ was added, stirred and dried, and then the final precipitate obtained was calcined in a muffle furnace at a temperature of 400 °C (5 °C/min) calcined for 4h.

Ni₃Fe/CeO₂-NS

4 g of Ce(NO₃)₃ · $6H_2O$ and 4 ml of deionized water were combined to form solution A. Subsequently, 4 ml of glacial acetic acid and 104 ml of ethylene glycol were mixed to create solution B. Both solutions were stirred separately before A was added to B, with stirring continuing for 30 minutes. The mixture was then transferred to a 100 ml autoclave, where it underwent hydrothermal processing at 100°C for 24 hours. The resultant solid was isolated, dried, and calcined following the same procedure to obtain CeO₂-nanostructure (remarked as CeO₂-NS). Ni₃Fe/CeO₂-NS was synthesized using the impregnation method previously described.

Ni₃Fe/CeO₂-RS

Ni₃Fe/CeO₂-rod structure (regarded as Ni₃Fe/CeO₂-RS) was synthesized using the hydrothermal precipitation method. A solution was prepared by dissolving 16.8 g of NaOH in 70 ml of deionized water (solution a). Concurrently, the metal precursor

(0.004 mol) was dissolved in 10 ml of deionized water to form another solution (solution b). Both solutions were stirred separately before solution a was added to solution b, and the mixture was stirred for an additional 30 minutes. This mixture was then transferred to a 100 ml autoclave for hydrothermal treatment at 120 °C for 24 hours. The resultant solid was isolated and dried following the same procedure used for CeO₂ preparation and then calcined at 400 °C for 2 hours.

Characterizations

The contents of the metals Ni and Fe were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES, Agilent S730, USA).

Nitrogen adsorption/desorption measurements were used to determine the physical properties of the catalysts produced. Parameters studied included total surface area, pore size distribution and pore volume. The Brunauer-Emmett-Teller (BET) method was used to calculate the surface area and the Barrett, Joyner and Halenda (BJH) method was used to study the mesoporosity. Measurements were made using a fully automated BET (Quantachrome Autosorb IQ3, USA) dedicated surface and porosity analyser.

Powder X-ray diffraction (XRD) studies were carried out on a Rigaku SmartLab SE diffractometer using copper target radiation. X-ray diffractograms were recorded between $2\theta = 10 - 80^{\circ}$ at a rate of 2 °/min.

Transmission electron microscopy (TEM) was used to analyse the morphology of fresh and post-reaction catalyst samples for analysis using FEI Talos F200x, USA. In addition, mapping tests were performed to check the distribution of elements in the samples.

X-ray photoelectron spectroscopy (XPS) was performed using Al Ka radiation (Thermo Scientific K-Alpha, USA). 284.8 eV C 1s signals were used to calibrate binding energies for all spectra. For each depleted catalysis, a high-resolution area scan and a low-resolution survey were performed to determine the associated binding energy. TGA tests were carried out using Netzsch TG 209 F3 Tarsus, Germany, to investigate the type and amount of carbon build-up on the spent catalyst. The rate of temperature increase was 10 °C min⁻¹, from 50 °C to 800 °C.

Catalytic Evaluations

The catalyst performance experiment was carried out in a quartz tube with a length of 600 mm and an inner diameter of 8 mm, and the pressure was normal. 0.1 g of catalyst (40-60 mesh) was diluted with 0.9 g of quartz sand. Before the reaction, the catalyst was reduced at 700 °C with a mixed gas of hydrogen and argon (H₂ : 20 %) for 1 hour. Nitrogen was introduced, the temperature was raised to 800 °C, and the mixture of CH₄ and CO₂ (CH₄: CO₂: N₂ = 3 : 2 : 5, total flow rate was 100 ml/min) was introduced. The analysis was carried out by an online gas chromatograph (FULI GC9790) fitted with FID and TCD detectors. Cycling performance experiments were conducted in the same way as described above, with the reaction gas switched to CO₂ after 3h of feed, and switched to reaction gas again after 1 hour of CO₂ reaction.

CH₄ conversion, CO₂ conversion and reaction rate are calculated according to the following formula:

The conversion of CH4 (XCH4) is defined as

$$X_{CH_4}(\%) = \frac{moles \ of \ CH_4 \ converted}{moles \ of \ initial \ of \ CH_4} \times 100$$
(S1)

The conversion of CO₂ (X_{CO2}) is defined as

$$X_{CO_2}(\%) = \frac{moles \ of \ CO_2 \ converted}{moles \ of \ initial \ of \ CO_2} \times 100$$
(S2)

The H₂/CO is defined

$$\frac{H_2}{CO}ratio = \frac{moles \ of \ H_2 \ producted}{moles \ of \ CO \ producted}$$
(S3)

The C balance is defined as

$$C_{balance} = \frac{[moles of CH_4]_{out} + [moles of CO]_{out} + [moles of CO_2]_{out}}{[moles of CH_4]_{in} + [moles of CO_2]_{in}} \times 100\%(S4)$$

Where [moles of X] in and [moles of X] out represent the moles of X before and after reactions, respectively.

The carbon deposition rate, defined as Eq S5, represents the amount of carbon deposited on the catalyst surface per unit time.

the carbon deposition rate = $\frac{mass \ of \ carbon \ (mg)}{mass \ of \ catalyst \ (g) \ * \ reaction \ time \ (h)}$ (S5) Where the mass of carbon is the amount of carbon deposited on the catalyst's surface after the reaction, and the mass of the catalyst is the mass used in the TGA analysis.

Figures S1-S12 and Table S1-S2

Sample	Ni	Fe loading (wt%) ^a	Surface	Pore	Pore
	loading		Area (m ² g ⁻	Diameter	Volume
	(wt%) ^a		1) b	(nm) ^b	$(cm^{3}/g)^{b}$
Ni ₃ Fe/CeO ₂	6.32	2.06	2.02	11.58	0.005
Ni ₃ Fe/CeO ₂ -NS	8.54	2.83	11.17	12.21	0.055
Ni ₃ Fe/CeO ₂ -RS	8.42	2.80	13.54	42.11	0.227

Table S1 Texture properties and metal loading weight of the fresh samples

a measured by ICP-OES

b calculated by BET formular

Sample $Ce^{3+} / (Ce^{3+} + Ce^{4+})^{a}$	initial CH4	final CH ₄	initial CO ₂	initial CO ₂	
	$Ce^{4+})^{a}$	conversion	conversion	conversion	conversion
		(%) ^b	(%) ^b	(%) ^b	(%) ^b
Ni ₃ Fe/CeO ₂ -	0.21	71.1	40.3	94.5	58.7
600					
Ni ₃ Fe/CeO ₂ -	0.23	76.0	52.2	00 5	76 1
500		/0.9	32.2	88.3	/0.1
Ni ₃ Fe/CeO ₂ -	0.28	Q17	65 9	06.7	05.0
NS		84./	03.8	90.7	95.9
Ni ₃ Fe/CeO ₂ -	0.22	<u> 20 1</u>	677	07.2	04.4
RS	0.55	00.4	07.7	71.2	74.4

Table S2 Oxygen vacancy concentration and biogas reforming CH_4 and CO_2 conversion

a measured by XPS

b obtained by experiment

Ni₃Fe/CeO₂-x refers to a reduction temperature of x degrees before reaction

Fig. S1 TEM images of the catalyst before the reaction and the corresponding exposed crystal face information. a-b: Ni₃Fe/CeO₂, c-d: Ni₃Fe/CeO₂-NS.

Fig. S2 HAADF-STEM images and mapping images of the fresh $\rm Ni_3Fe/CeO_2$ catalyst.

Fig. S3 HAADF-STEM images and mapping images of the fresh Ni₃Fe/CeO₂-NS catalyst.

Fig. S4 N₂ sorption isotherms and pore diameter distribution of Ni₃Fe/CeO₂ (a), Ni₃Fe/CeO₂-NS (b) and Ni₃Fe/CeO₂-RS (c), respectively.

Fig. S5 O 1s XPS spectrums of Ni₃Fe/CeO₂ (a), Ni₃Fe/CeO₂-NS (b) and Ni₃Fe/CeO₂-RS (c), respectively.

Fig. S6 Ni 2p XPS spectrums of Ni₃Fe/CeO₂ (a), Ni₃Fe/CeO₂-NS (b) and Ni₃Fe/CeO₂-RS (c), respectively.

Fig. S7 Fe 2p XPS spectrums of the catalysts.

Fig. S8 Relationship between Ov concentration and decline of CH_4 and CO_2 conversion.

Fig. S9 SEM images of fresh and spent catalysts, Ni₃Fe/CeO₂ (a-b), Ni₃Fe/CeO₂-NS (c-d).

Fig. S10 TEM (a) HAADF-STEM images and mapping (b) images of the spent Ni₃Fe/CeO₂ catalyst.

Fig. S11 TEM (a) HAADF-STEM images and mapping (b) images of the spent Ni₃Fe/CeO₂-NS catalyst.

Fig. S12 TEM (a) HAADF-STEM images and mapping (b) images of the spent Ni₃Fe/CeO₂-RS catalyst.

Fig. S13 N₂ sorption isotherms and pore diameter distribution of Ni₃Fe/CeO₂ (a), Ni₃Fe/CeO₂-NS (b) and Ni₃Fe/CeO₂-RS (c) after reaction, respectively

Fig. S14 Ni 2p and Fe 2p XPS spectrums of the spent catalysts.

Fig. S15 schematic diagram of the catalytic mechanism.

Fig. S16 XPS spectrum after the first cycle reaction. (a) Ni 2p, (b) Fe 2p, (c) Ce 3d of Ni₃Fe/CeO₂-NS, (d) Ce 3d of Ni₃Fe/CeO₂-RS