Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Visualizing Back Electron Transfer in Eosin Y Photoredox Catalysis

*Kai Gu,^a Wenqiao Zhou,^a Chunming Liu*ab*

^a School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, United States, 44325

^b Department of Chemistry, University of Akron, Akron, OH, United States, 44325 *Corresponding author: chunmingliu@uakron.edu (C.L.)

1. Experimental Methods

Materials. Diethyl 2-bromo-2-methylmalonate (DEBMM) (98%), ethyl α-bromophenylacetate (EBPA) (97%), methyl α -bromoisobutyrate (MBriB) (\geq 99%), triethylamine (TEA) (≥99.5%), 3-bromopropylamine hydrobromide (98%), 3-(triethoxysilyl) propyl isocyanate (95%), and butylamine (99.5%) were purchased from Sigma Aldrich. Eosin Y disodium salt (Eosin Y Certified, Ricca Chemical, 98.0%), and glass slides (Fisherbrand™ Economy Plain Glass Microscope Slides) were purchased from Fisher Scientific. N, N-dimethylformamide (DMF, 99.8%), diethyl ether (99%), anhydrous ethanol (EtOH, 200 proof), sodium hydroxide (NaOH) and No.1 glass coverslips (VWR® SuperSlips™ Micro Cover Glasses, Rectangular, No. 1) were purchased from VWR. Milli Q water (0.04μS/cm) was obtained from MilliporeSigma™ Direct-Q™ 3 water purification system.

EY functionalization and surface immobilization. EY-NH² was synthesized and immobilized on coverslips as previously reported.¹ Briefly, eosin Y disodium salt $(3 \text{ mmol}, 2.08)$ g), 3-bromopropylamine hydrobromide (4.5 mmol, 985 mg) and DMF (15 mL) were mixed in a 50 mL round bottom flask. The mixture was stirred vigorously in the dark at 80°C overnight and then quenched by immersing the flask in ice water bath. The product was obtained after precipitation in a mixture solution of diethyl ether and Milli Q water ($v/v = 1:1$). The EY-NH₂ product was collected after centrifugation and dried in vacuum for 24 hours.

Glass coverslips were cleaned by sonicating in detergent/ $H_2O/EtOH$ mixture (3/92/5 wt%) for \sim 3 hours and then sonicated in water for 5 min, 1 M NaOH aqueous solution for 1 min, water for 5 min and dried by air blow. The cleaned coverslips were functionalized with isocyanate groups by reacting with NCO-silane vapor for 2 hours. After that, the coverslips were cleaned by sonicating in EtOH for 5 min, detergent aqueous solution (3 wt\%) for 15 min, and water for 5 min and dried by air blow. The isocyanate-functionalized coverslips were immersed in the DMF solution of $EY-NH_2$ and butylamine (Bu-NH₂) mixture (molar ratio 1:100) overnight. After the immobilization, the coverslips were cleaned again by sonicating in DMF for 5 min, detergent aqueous solution (3 wt%) for 15 min, and water for 5 min and dried by air blow. The EY immobilized coverslips were stored in the dark for future use.

Single-molecule fluorescence imaging. The imaging of EY molecules followed the same procedure as previously reported.¹ The EY immobilized coverslips were assembled into flow cell devices for TIRFM imaging by attaching the coverslips to glass slides using double-sided tape (Scotch double-sided tape) and sealing the coverslip edges with epoxy super glue (Devcon No. 14250). An objective-type total internal reflection fluorescence microscope (o-TIRFM), built based on an Olympus IX73 inverted microscope with TIRF objective (Olympus UAPON100XOTIRF), was used to image the EY molecules. A 2.5 mW 532 nm laser (CrystaLaser CL532-025-L filtered by Thorlabs NE03B ND filter) was used to excite the molecules on the glass surface. The photoemission of these molecules was filtered by a 542 nm longpass filter (Chroma ET542lp) and a 585/65 nm bandpass filter (Chroma ET585/65m) and collected by a sCMOS camera (Teledyne Photometrics Prime 95B). In each imaging experiment, 1000 consecutive images of the samples were taken, and the exposure time was 50 ms (frame rate: 20 fps).

2. Determining photobleaching rate of photobleaching EYs

Figure s1. The distribution of photobleaching time τ_0 in 0.02 M DEBMM.

The distribution of photobleaching time τ_0 is fitted with single exponential decay function:

$$
f(\tau_0) = A \exp\left(-\frac{\tau_0}{T_0}\right)
$$

where A is prefactor, T_0 is the decay constant of τ_0 . The T_0 values in different conditions are summarized in the table below, all errors are fitting errors.

3. Determining the decay constants of $^{\tau_{on}}$ of photoblinking EYs

Figure s2. The distribution of τ ^{on} of photoblinking EYs in 0.02 M DEBMM.

The distribution of photobleaching time τ_{on} is fitted with double exponential decay function:

$$
f(\tau_{on}) = A_1 \exp(-\frac{\tau_{on}}{\tau_{on1}}) + A_2 \exp(-\frac{\tau_{on}}{\tau_{on2}})
$$

where A_1 and A_2 are prefactors, T_{on1} and T_{on2} are the decay constant of τ_{on} . The T_{on} values in different conditions are summarized in the table below, all errors are fitting errors.

Figure s3. The distribution of $^{\tau_{off}}$ of photoblinking EYs in 0.02 M DEBMM.

The distribution of photobleaching time τ_{off} is fitted with single exponential decay function:

$$
f(\tau_{off}) = A \exp\left(-\frac{\tau_{off}}{\tau_{off}}\right)
$$

where A is prefactor, T_{off} is the decay constant of τ_{off} . The T_{off} values in different conditions are summarized in the table below, all errors are fitting errors.

5. *P*_{blink} values

References

1. K. Gu, S. Liu and C. Liu, *Langmuir*, 2022, **38**, 15848-15857.