$Ba_2GeF_2Q_3$ (Q = S, Se) and $Ba_3GeF_2Se_4$: New F-based Chalcohalides

with Enhanced Birefringence

Kaixuan Li,^a Hongping Wu,^{*a} Hongwei Yu,^a Zhanggui Hu,^a Jiyang Wang,^a and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

Experimental Section	S1
Table S1. Crystal data and structure refinement for $Ba_2GeF_2Q_3$ (Q = S, Se) and	
Ba ₃ GeF ₂ Se ₄	S3
Table S2. Selected bond distances (Å) and angles (deg) for $Ba_2GeF_2Q_3$ (Q = S, Se)	
and Ba ₃ GeF ₂ Se ₄	S4
Table S3. Atoms coordinate, displacement parameters, and BVS for $Ba_2GeF_2Q_3$ (Q =	
S, Se) and Ba ₃ GeF ₂ Se ₄	S10
Table S4. The response electron distribution anisotropy (REDA) for $Ba_2GeF_2Q_3$ (Q =	
S, Se) and Ba ₃ GeF ₂ Se ₄	S13
Table S5. Ge-based compounds containing alkali metals or alkaline earth metals.	S14
Fig. S1 . Experimental and calculated PXRD of $Ba_2GeF_2Q_3$ (Q = S, Se) and	
Ba ₃ GeF ₂ Se ₄	S15
Fig. S2. Arrangement of Ba-F layer and Ge-based polyhedra in Ba ₂ GeF ₂ Se ₃ and	
Ba ₃ GeF ₂ Se ₄	S16
Fig. S3. Different Ge-based configuration in Ge-based compounds containing alkali	
metals or alkaline earth metals.	S17
Fig. S4. Powder XRD patterns: calculated one for Ba ₃ GeF ₂ Se ₄ , annealed at 800, 850	
and 900 °C for Ba ₃ GeF ₂ S ₄ , respectively	S18

Experimetal Section: Reagents

BaSe (Beijing Hawk Science and Technology Co. Ltd.), BaS (Beijing Hawk Science and Technology Co. Ltd.), BaF₂ (Aladdin Chemistry Co., Ltd.), Ge (Beijing Hawk Science and Technology Co. Ltd.) S (Aladdin Chemistry Co., Ltd.) and Se (Aladdin Chemistry Co., Ltd.) were used as received from commercial sources without any further purification.

Synthesis

Single crystals of $Ba_2GeF_2Q_3$ (Q = S, Se) and $Ba_3GeF_2Se_4$ were synthesized via the traditional high-temperature solid-state reaction. For Ba₂GeF₂S₃, mixture of BaF₂ (1 mmol, 0.175 g), BaS (1 mmol, 0.170 g), Ge (2 mmol, 0.146), and S (6 mmol, 0.192 g) at the ratio of 1:1:2:6 was transferred into a silica tube in a glovebox and further evacuated to be 1×10^{-3} Torr, and then sealed by flame. For Ba₂GeF₂Se₃, mixture of BaF₂ (1 mmol, 0.175 g), BaSe (1 mmol, 0.216 g), Ge (2 mmol, 0.146), and Se (5 mmol, 0.395 g) at the ratio of 1:1:2:5 was transferred into a silica tube in a glovebox and further evacuated to be 1×10^{-3} Torr, and then sealed by flame. Those tubes were placed into a muffle furnace heated from room temperature to 900 °C in 50 h and kept at 900 °C for 100 h and then cooled down to 350 °C in 130 h. The crystal of Ba₂GeF₂S₃ and Ba₂GeF₂Se₃ were obtained. For Ba₃GeF₂Se₄, mixture of BaF₂ (1 mmol, 0.175 g), BaS (2 mmol, 0.340 g), Ge (2 mmol, 0.146), and Se (5 mmol, 0.395 g) at the ratio of 1:2:2:5 was transferred into a silica tube in a glovebox and further evacuated to be 1×10^{-3} Torr, and then sealed by flame. The tube was placed into a muffle furnace heated from room temperature to 850 °C in 30 h and kept at 850 °C for 120 h and then cooled down to 350 °C in 80 h. The crystal of Ba₃GeF₂Se₄ was obtained. In addition, we directly attempted to mix Ba2GeF2Se3 and BaSe in a 1:1 ratio, Ba3GeF2Se4 can also be successfully synthesized under the same temperature conditions. And the yield was about 70% on the basis of Ge. For Ba₃GeS₄F₂, a series of experiments were conducted at different reaction temperatures by the high-temperature solid-state method. The powder XRD results of the sample indicate that at 800 and 850 °C, the powder sample is a mixture of BaF₂ and Ba₂GeS₄. When the sample was heated to 900 °C, the sample

melted and the powder XRD results showed only BaF_2 (Fig. S4). The above results indicate sample with stoichiometric ratio was heated until the sample melt. The powder XRD of sample was not agreement with or similar with the theoretical XRD of $Ba_3GeSe_4F_2$. In the end, due to the lack of suitable flux, we did not obtain $Ba_3GeS_4F_2$ crystals.

Powder X-ray Diffraction. The PXRD measurements were collected using a SmartLab3KW X-ray diffractometer at room temperature (Cu K α radiation). All the data were collected in the 2θ range of 10–60° with a step size of 0.01° and a step time of 2s. The XRD patterns are displayed in Figure S1.

Single-Crystal X-ray Diffraction. A Bruker SMART APEX III 4K CCD diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) was used to collect the single-crystal XRD data at 298(2) K, and the data were integrated with the SAINT program. The crystal structure of Ba₂GeF₂Q₃ (Q = S, Se) and Ba₃GeF₂Se₄ were solved by the direct methods and refined using the SHELXTL system. All of the atomic positions were refined by full-matrix least-squares techniques. The structures were checked for missing symmetry elements with PLATON. The crystal data and structural refinement information are summarized in Table S1. The atomic coordinates and the equivalent isotropic displacement parameters are available in Table S1. The selected bond lengths and angles are listed in Table S2.

Infrared Spectroscopy. The IR spectra of $Ba_2GeF_2Q_3$ (Q = S, Se) and $Ba_3GeF_2Se_4$ were recorded on a Nicolet iS50 FT-IR spectrometer in the range 400–4000 cm⁻¹. The samples were placed on the test platform for testing.

Ultraviolet–Visible–Near-IR Diffuse Reflectance Spectroscopy. UV–vis–NIR diffuse reflectance data for Ba₂GeF₂Q₃ (Q = S, Se) and Ba₃GeF₂Se₄ were collected using a Hitachi UV–vis–NIR spectrophotometer equipped with an integrating sphere over the spectral range 240–2500 nm. BaSO₄ was used as a reference. Reflectance spectra were converted to absorbance with the Kubelka–Munk function, $F(R) = (1-R)^2/2R = K/S$, where *R* represents the reflectance, *K* represents the absorption, and *S* represents the scattering factor.

Band gap calculation. we calculated the band gap of the compounds by Tauc Plot method. Using the formula $(\alpha h\nu)^{1/n} = B(h\nu-Eg)$, where α is absorption coefficient, h is Planck-constant, ν is frequency, B is constant, Eg is the bandgap width of semiconductor, Exponential n is directly related to the type of semiconductor, direct bandgap n=1/2, indirect bandgap n=2. The title compounds are the indirect bandgap, so n=2, and the formula is $(\alpha h\nu)^{1/2}=B$ (hv-Eg). The band-gaps of Ba₂GeF₂Q₃ (Q = S, Se) and Ba₃GeF₂Se₄ are 3.53, 2.45 and 2.57 eV, respectively.

Birefringence Measurement. The birefringence of Ba₂GeF₂Q₃ (Q = S, Se) and Ba₃GeF₂Se₄ were measured by using a cross-polarizing microscope. On the basis of the crystal optics, the birefringence was calculated from the following formula: $R = \Delta n \times d$, Δn can be obtained, where R, Δn and d are retardation, birefringence, and thickness, respectively.

Theoretical Calculation Details. The electronic structure calculations were performed by first-principles calculations in the CASTEP package, with the ultrasoft pseudopotentials. The Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was applied for the exchange–correlation potential. The valence electrons of title compounds were calculated to be Ba $4d^{10}5p^{6}6s^{2}$, Ge $4s^{2}4p^{2}$, F $2s^{2}2p^{5}$, S $3s^{2}3p^{4}$ and Se $3d^{10}4s^{2}4p^{4}$. The plane-wave cutoff energy for Ba₂GeF₂S₃, Ba₂GeF₂Se₃ and Ba₃GeF₂Se₄ were set to 400 eV during the calculation, and the k-points sampling of $6 \times 4 \times 3$, $6 \times 4 \times 3$ and $2 \times 6 \times 3$ for Ba₂GeF₂S₃, Ba₂GeF₂Se₃ and Ba₃GeF₂Se₄ respectively was selected to guarantee convergence for all computations. The other estimated parameters and convergent criteria matched the default CASTEP code values. Our experiments show that the computational parameters listed above are accurate enough for the current computations.

Empirical formula	Ba_2GeF_2S3	Ba ₂ GeF ₂ Se3	$Ba_3GeF_2Se_4$		
Formula weight	481.45	622.15	838.45		
Space group	Pnma	Pnma	$P2_1/n$		
a (Å)	12.626(14)	12.8823(15)	9.3777(3)		
b (Å)	18.669(18)	19.118(3)	9.4571(3)		
			<i>β</i> = 91.668(2)		
c (Å)	6.316(7)	6.4566(10)	12.3301(5)		
V (Å ³)	1489(3)	1590.2(4)	1093.04(7)		
Z, ρ_{calcd} (mg/m ³)	8, 4.296	8, 5.198	4, 5.095		
Completeness to θ (%)	99.90	99.50	99.80		
GOOF on F ²	1.057	1.050	1.072		
Final R indices	$R_1 = 0.0445,$	$R_1 = 0.0255,$	$R_1 = 0.0348,$		
$(F_{o}^{2} > 2\sigma(F_{o}^{2}))$	$wR_2 = 0.1021$	$wR_2 = 0.0624$	$wR_2 = 0.0620$		
Largest diff.peak and hole	4.840 and -3.641	1.558 and -2.650	2.001 and -4.555		
${}^{[a]}R_1 = \Sigma F_o - F_c / \Sigma F_o . {}^{[b]}wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}.$					

Table S1. Crystal data and structure refinement for $Ba_2GeF_2Q_3$ (Q = S, Se) and $Ba_3GeF_2Se_4$

Ba(1)-F(1)#1	2.664(9)	S(2)#5-Ba(1)-S(2)#6	138.25(13)
Ba(1)-F(2)	2.673(9)	F(1)#1-Ba(1)-S(1)#6	71.4(3)
Ba(1)-F(1)#2	2.685(9)	F(2)-Ba(1)-S(1)#6	68.0(2)
Ba(1)-F(2)#1	2.695(10)	F(1)#2-Ba(1)-S(1)#6	136.1(2)
Ba(1)-S(3)#3	3.232(3)	F(2)#1-Ba(1)-S(1)#6	141.2(3)
Ba(1)-S(1)#4	3.295(5)	S(3)#3-Ba(1)-S(1)#6	63.12(13)
Ba(1)-S(2)#5	3.303(6)	S(1)#4-Ba(1)-S(1)#6	136.31(16)
Ba(1)-S(2)#6	3.458(6)	S(2)#5-Ba(1)-S(1)#6	78.73(10)
Ba(1)-S(1)#6	3.509(5)	S(2)#6-Ba(1)-S(1)#6	87.64(10)
Ba(1)-Ba(2)#7	4.311(4)	F(1)#9-Ba(2)-F(2)#7	72.6(4)
Ba(1)-Ba(2)#1	4.316(4)	F(1)#9-Ba(2)-F(1)	72.8(3)
Ba(1)-Ba(1)#8	4.319(3)	F(2)#7-Ba(2)-F(1)	113.6(2)
Ba(2)-F(1)#9	2.649(10)	F(1)#9-Ba(2)-F(2)	112.9(2)
Ba(2)-F(2)#7	2.673(9)	F(2)#7-Ba(2)-F(2)	71.6(3)
Ba(2)-F(1)	2.673(10)	F(1)-Ba(2)-F(2)	72.6(4)
Ba(2)-F(2)	2.675(10)	F(1)#9-Ba(2)-S(4)	115.9(2)
Ba(2)-S(4)	3.235(3)	F(2)#7-Ba(2)-S(4)	123.53(19)
Ba(2)-S(2)#5	3.292(5)	F(1)-Ba(2)-S(4)	122.3(2)
Ba(2)-S(1)#6	3.304(6)	F(2)-Ba(2)-S(4)	131.20(19)
Ba(2)-S(2)#10	3.477(5)	F(1)#9-Ba(2)-S(2)#5	140.6(2)
Ba(2)-S(1)#10	3.502(6)	F(2)#7-Ba(2)-S(2)#5	70.7(2)
Ba(2)-Ba(2)#9	4.283(4)	F(1)-Ba(2)-S(2)#5	136.2(2)
Ge(1)-S(1)	2.144(5)	F(2)-Ba(2)-S(2)#5	67.8(2)
Ge(1)-S(1)#10	2.144(5)	S(4)-Ba(2)-S(2)#5	74.74(13)
Ge(1)-S(3)	2.273(7)	F(1)#9-Ba(2)-S(1)#6	137.1(2)
Ge(1)-S(4)	2.285(6)	F(2)#7-Ba(2)-S(1)#6	140.0(2)
Ge(2)-S(2)	2.178(4)	F(1)-Ba(2)-S(1)#6	68.11(18)
Ge(2)-S(2)#10	2.178(4)	F(2)-Ba(2)-S(1)#6	71.41(18)
Ge(2)-S(3)	2.284(6)	S(4)-Ba(2)-S(1)#6	73.37(12)
Ge(2)-S(4)	2.295(7)	S(2)#5-Ba(2)-S(1)#6	81.91(10)
F(1)#1-Ba(1)-F(2)	72.9(3)	F(1)#9-Ba(2)-S(2)#10	70.9(2)
F(1)#1-Ba(1)-F(1)#2	113.13(15)	F(2)#7-Ba(2)-S(2)#10	141.1(2)
F(2)-Ba(1)-F(1)#2	72.0(4)	F(1)-Ba(2)-S(2)#10	67.2(2)
F(1)#1-Ba(1)-F(2)#1	72.4(4)	F(2)-Ba(2)-S(2)#10	136.2(2)
F(2)-Ba(1)-F(2)#1	113.40(15)	S(4)-Ba(2)-S(2)#10	64.08(13)
F(1)#2-Ba(1)-F(2)#1	72.2(3)	S(2)#5-Ba(2)-S(2)#10	137.81(14)
F(1)#1-Ba(1)-S(3)#3	115.4(2)	S(1)#6-Ba(2)-S(2)#10	78.13(10)
F(2)-Ba(1)-S(3)#3	122.5(2)	F(1)#9-Ba(2)-S(1)#10	71.7(2)
F(1)#2-Ba(1)-S(3)#3	131.4(2)	F(2)#7-Ba(2)-S(1)#10	68.65(19)
F(2)#1-Ba(1)-S(3)#3	123.48(19)	F(1)-Ba(2)-S(1)#10	141.5(2)
F(1)#1-Ba(1)-S(1)#4	141.6(2)	F(2)-Ba(2)-S(1)#10	136.1(2)
F(2)-Ba(1)-S(1)#4	135.6(2)	S(4)-Ba(2)-S(1)#10	63.40(12)

Table S2(a). Selected bond distances (Å) and angles (degrees) for Ba_2GeF_2S3 .

F(1)#2-Ba(1)-S(1)#4	68.1(2)	S(2)#5-Ba(2)-S(1)#10	81.99(9)
F(2)#1-Ba(1)-S(1)#4	71.9(3)	S(1)#6-Ba(2)-S(1)#10	136.45(14)
S(3)#3-Ba(1)-S(1)#4	74.41(14)	S(2)#10-Ba(2)-S(1)#10	87.47(10)
F(1)#1-Ba(1)-S(2)#5	137.2(2)	S(1)-Ge(1)-S(1)#10	129.5(3)
F(2)-Ba(1)-S(2)#5	67.69(19)	S(1)-Ge(1)-S(3)	106.34(13)
F(1)#2-Ba(1)-S(2)#5	69.88(19)	S(1)#10-Ge(1)-S(3)	106.34(13)
F(2)#1-Ba(1)-S(2)#5	139.3(2)	S(1)-Ge(1)-S(4)	106.39(16)
S(3)#3-Ba(1)-S(2)#5	74.65(12)	S(1)#10-Ge(1)-S(4)	106.39(16)
S(1)#4-Ba(1)-S(2)#5	80.78(10)	S(3)-Ge(1)-S(4)	97.3(2)
F(1)#1-Ba(1)-S(2)#6	71.08(18)	S(2)-Ge(2)-S(2)#10	132.1(2)
F(2)-Ba(1)-S(2)#6	141.4(2)	S(2)-Ge(2)-S(3)	105.54(15)
F(1)#2-Ba(1)-S(2)#6	136.0(2)	S(2)#10-Ge(2)-S(3)	105.53(15)
F(2)#1-Ba(1)-S(2)#6	67.73(17)	S(2)-Ge(2)-S(4)	105.73(11)
S(3)#3-Ba(1)-S(2)#6	64.05(11)	S(2)#10-Ge(2)-S(4)	105.73(11)
S(1)#4-Ba(1)-S(2)#6	82.62(10)	S(3)-Ge(2)-S(4)	96.7(2)

 Symmetry transformations used to generate equivalent atoms:

 #1 -x-1/2,-y,z-1/2
 #2 x,y,z-1
 #3 x-1/2,y,-z+1/2

 #4 x-1/2,-y+1/2,-z-1/2
 #5 x,-y+1/2,z-1
 #6 x-1/2,-y+1/2,-z+1/2

 #7 -x,-y,-z
 #8 -x-1/2,-y,z+1/2
 #9 -x,-y,-z+1

 #10 x,-y+1/2,z
 #11 x+1/2,-y+1/2,-z-1/2
 #12 x+1/2,-y+1/2,-z+1/2

 #13 x,-y+1/2,z+1
 #14 x+1/2,y,-z+1/2
 #15 x,y,z+1

Ba(1)-F(2)#1	2.666(4)	Se(1)#5-Ba(1)-Se(1)#4	136.98(4)
Ba(1)-F(1)	2.701(4)	F(2)#1-Ba(1)-Se(2)#4	71.03(8)
Ba(1)-F(1)#2	2.702(4)	F(1)-Ba(1)-Se(2)#4	135.47(10)
Ba(1)-F(2)#3	2.703(4)	F(1)#2-Ba(1)-Se(2)#4	142.69(10)
Ba(1)-Se(2)	3.3587(9)	F(2)#3-Ba(1)-Se(2)#4	66.23(8)
Ba(1)-Se(4)#4	3.3769(9)	Se(2)-Ba(1)-Se(2)#4	136.61(4)
Ba(1)-Se(1)#5	3.3816(11)	Se(4)#4-Ba(1)-Se(2)#4	65.00(3)
Ba(1)-Se(1)#4	3.5521(11)	Se(1)#5-Ba(1)-Se(2)#4	77.29(2)
Ba(1)-Se(2)#4	3.5895(9)	Se(1)#4-Ba(1)-Se(2)#4	88.58(2)
Ba(1)-Ba(1)#6	4.2575(11)	F(2)#7-Ba(2)-F(1)#8	73.98(16)
Ba(1)-Ba(2)#1	4.2987(10)	F(2)#7-Ba(2)-F(1)#2	74.15(15)
Ba(1)-Ba(2)#2	4.2989(10)	F(1)#8-Ba(2)-F(1)#2	116.11(8)
Ba(2)-F(2)#7	2.640(4)	F(2)#7-Ba(2)-F(2)	115.59(8)
Ba(2)-F(1)#8	2.686(4)	F(1)#8-Ba(2)-F(2)	73.71(15)
Ba(2)-F(1)#2	2.702(4)	F(1)#2-Ba(2)-F(2)	72.65(16)
Ba(2)-F(2)	2.709(4)	F(2)#7-Ba(2)-Se(1)#4	142.09(10)
Ba(2)-Se(1)#4	3.3660(9)	F(1)#8-Ba(2)-Se(1)#4	134.94(10)
Ba(2)-Se(3)	3.3741(8)	F(1)#2-Ba(2)-Se(1)#4	70.56(8)
Ba(2)-Se(2)#8	3.3778(11)	F(2)-Ba(2)-Se(1)#4	66.08(8)
Ba(2)-Se(2)	3.5527(11)	F(2)#7-Ba(2)-Se(3)	117.51(8)
Ba(2)-Se(1)	3.5805(10)	F(1)#8-Ba(2)-Se(3)	121.29(8)
Ba(2)-Ba(2)#7	4.3063(10)	F(1)#2-Ba(2)-Se(3)	122.45(8)
Ge(1)-Se(2)	2.2957(11)	F(2)-Ba(2)-Se(3)	126.90(8)
Ge(1)-Se(2)#9	2.2957(11)	Se(1)#4-Ba(2)-Se(3)	72.55(3)
Ge(1)-Se(3)	2.4092(14)	F(2)#7-Ba(2)-Se(2)#8	137.08(10)
Ge(1)-Se(4)	2.4093(14)	F(1)#8-Ba(2)-Se(2)#8	66.82(9)
Ge(2)-Se(1)	2.2946(11)	F(1)#2-Ba(2)-Se(2)#8	139.25(10)
Ge(2)-Se(1)#9	2.2947(11)	F(2)-Ba(2)-Se(2)#8	69.61(9)
Ge(2)-Se(4)	2.4112(15)	Se(1)#4-Ba(2)-Se(2)#8	80.48(2)
Ge(2)-Se(3)	2.4137(14)	Se(3)-Ba(2)-Se(2)#8	72.08(3)
F(2)#1-Ba(1)-F(1)	115.61(11)	F(2)#7-Ba(2)-Se(2)	71.91(10)
F(2)#1-Ba(1)-F(1)#2	74.15(15)	F(1)#8-Ba(2)-Se(2)	143.06(10)
F(1)-Ba(1)-F(1)#2	72.76(17)	F(1)#2-Ba(2)-Se(2)	67.07(9)
F(2)#1-Ba(1)-F(2)#3	75.06(16)	F(2)-Ba(2)-Se(2)	134.93(9)
F(1)-Ba(1)-F(2)#3	73.18(15)	Se(1)#4-Ba(2)-Se(2)	81.864(19)
F(1)#2-Ba(1)-F(2)#3	116.76(11)	Se(3)- $Ba(2)$ - $Se(2)$	65.28(3)
F(2)#1-Ba(1)-Se(2)	141.42(10)	Se(2)#8-Ba(2)-Se(2)	137.00(4)
F(1)-Ba(1)-Se(2)	66.99(8)	F(2)#7-Ba(2)-Se(1)	70.74(8)
F(1)#2-Ba(1)-Se(2)	70.23(8)	F(1)#8-Ba(2)-Se(1)	66.79(8)
F(2)#3-Ba(1)-Se(2)	135.08(9)	F(1)#2-Ba(2)-Se(1)	142.16(9)
F(2)#1-Ba(1)-Se(4)#4	117.01(8)	F(2)-Ba(2)-Se(1)	136.34(9)
F(1)-Ba(1)-Se(4)#4	127.38(8)	Se(1)#4-Ba(2)-Se(1)	136.68(4)

Table S2(b). Selected bond distances (Å) and angles (degrees) for Ba_2GeF_2Se3 .

F(1)#2-Ba(1)-Se(4)#4	122.63(8)	Se(3)-Ba(2)-Se(1)	65.16(3)
F(2)#3-Ba(1)-Se(4)#4	120.49(8)	Se(2)#8-Ba(2)-Se(1)	78.19(2)
Se(2)-Ba(1)-Se(4)#4	72.64(3)	Se(2)-Ba(2)-Se(1)	88.71(2)
F(2)#1-Ba(1)-Se(1)#5	137.05(10)	Se(2)-Ge(1)-Se(2)#9	130.80(6)
F(1)-Ba(1)-Se(1)#5	69.90(9)	Se(2)-Ge(1)-Se(3)	105.23(3)
F(1)#2-Ba(1)-Se(1)#5	139.57(10)	Se(2)#9-Ge(1)-Se(3)	105.23(3)
F(2)#3-Ba(1)-Se(1)#5	65.89(9)	Se(2)-Ge(1)-Se(4)	105.56(3)
Se(2)-Ba(1)-Se(1)#5	81.29(2)	Se(2)#9-Ge(1)-Se(4)	105.56(3)
Se(4)#4-Ba(1)-Se(1)#5	71.93(3)	Se(3)-Ge(1)-Se(4)	100.75(5)
F(2)#1-Ba(1)-Se(1)#4	70.99(9)	Se(1)-Ge(2)-Se(1)#9	130.90(6)
F(1)-Ba(1)-Se(1)#4	135.92(10)	Se(1)-Ge(2)-Se(4)	105.27(3)
F(1)#2-Ba(1)-Se(1)#4	67.52(9)	Se(1)#9-Ge(2)-Se(4)	105.27(3)
F(2)#3-Ba(1)-Se(1)#4	142.88(9)	Se(1)-Ge(2)-Se(3)	105.52(3)
Se(2)-Ba(1)-Se(1)#4	81.98(2)	Se(1)#9-Ge(2)-Se(3)	105.52(3)
Se(4)#4-Ba(1)-Se(1)#4	65.29(3)	Se(4)-Ge(2)-Se(3)	100.57(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x-3/2,-y-1,z+1/2 #2 -x-2,-y-1,-z+1 #3 x-1/2,y,-z+3/2 #4 x,y,z+1 #5 x-1/2,y,-z+1/2 #6 -x-2,-y-1,-z+2 #7 -x-3/2,-y-1,z-1/2 #8 x+1/2,y,-z+1/2 #9 x,-y-1/2,z #10 x,y,z-1 #11 x,-y-1/2,z-1

#12 x+1/2,y,-z+3/2

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ba(1)-F(2)	2.598(5)	F(2)-Ba(2)-Se(1)#6	128.43(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ba(1)- $F(1)$	2.611(5)	F(1)#5-Ba(2)-Se(1)#6	75.48(10)
Ba(1)-Sc(4)#2 $3.3350(10)$ $F(1)#5-Ba(2)-Sc(2)#6$ $103.42(10)$ Ba(1)-Sc(4)#3 $3.4058(10)$ Sc(1)#6-Ba(2)-Sc(2)#6 $69.05(2)$ Ba(1)-Sc(3)#3 $3.4421(11)$ $F(2)-Ba(2)-Sc(3)$ $74.99(10)$ Ba(1)-Sc(1)#2 $3.4462(9)$ $F(1)#5-Ba(2)-Sc(3)$ $80.86(10)$ Ba(1)-Sc(2)#4 $3.4667(11)$ Sc(1)#6-Ba(2)-Sc(3) $125.47(2)$ Ba(1)-Gc(1)#3 $3.7645(11)$ Sc(2)#6-Ba(2)-Sc(2) $88.99(12)$ Ba(1)-Ba(1)#1 $4.0164(10)$ $F(2)-Ba(2)-Sc(2)$ $88.99(12)$ Ba(1)-Ba(2)#4 $4.3765(8)$ Sc(1)#6-Ba(2)-Sc(2) $140.87(3)$ Ba(2)-F(2) $2.540(5)$ Sc(2)#6-Ba(2)-Sc(2) $139.146(19)$ Ba(2)-F(1)#5 $2.725(5)$ Sc(3)-Ba(2)-Sc(2) $69.30(2)$ Ba(2)-Sc(1)#6 $3.3124(10)$ $F(2)-Ba(2)-Sc(1)#7$ $71.39(10)$ Ba(2)-Sc(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)-Sc(1)#7$ $71.39(10)$ Ba(2)-Sc(2) $3.3733(10)$ Sc(2)#6-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(2) $3.3733(10)$ Sc(2)#6-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(4)#2 $3.5944(9)$ Sc(2)-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(1)#7 $3.4443(11)$ Sc(3)-Ba(2)-Sc(4)#2 $66.54(10)$ Ba(3)-F(2) $2.522(5)$ $F(1)#5-Ba(2)-Sc(4)#2$ $140.07(10)$ Ba(3)-Sc(1) $3.2941(10)$ Sc(2)-Ba(2)-Sc(4)#2 $131.20(3)$ Ba(3)-Sc(3) $3.4417(11)$ Sc(2)-Ba(2)-Sc(4)#2 $130.2(2)$ Ba(3)-Sc(3)#8 $3.5003(9)$ $F(2)-Ba(3)-Sc(1)$ $101.47(13)$ Gc(1)-Sc(3) $2.3457(12)$ <td< td=""><td>Ba(1)-F(1)#1</td><td>2.653(4)</td><td>F(2)-Ba(2)-Se(2)#6</td><td>79.00(12)</td></td<>	Ba(1)-F(1)#1	2.653(4)	F(2)-Ba(2)-Se(2)#6	79.00(12)
Ba(1)-Se(4)#3 $3.4058(10)$ Se(1)#6-Ba(2)-Se(2)#6 $69.05(2)$ Ba(1)-Se(3)#3 $3.4421(11)$ $F(2)$ -Ba(2)-Se(3) $74.99(10)$ Ba(1)-Se(1)#2 $3.4462(9)$ $F(1)#5$ -Ba(2)-Se(3) $80.86(10)$ Ba(1)-Se(2)#4 $3.4667(11)$ Se(1)#6-Ba(2)-Se(3) $125.47(2)$ Ba(1)-Ge(1)#3 $3.7645(11)$ Se(2)#6-Ba(2)-Se(3) $69.88(2)$ Ba(1)-Ba(1)#1 $4.0164(10)$ $F(2)$ -Ba(2)-Se(2) $88.99(12)$ Ba(1)-Ba(3) $4.1882(7)$ $F(1)#5-Ba(2)$ -Se(2) $140.87(3)$ Ba(2)-F(2) $2.540(5)$ Se(1)#6-Ba(2)-Se(2) $149.87(3)$ Ba(2)-F(2) $2.540(5)$ Se(2)#6-Ba(2)-Se(2) $199.146(19)$ Ba(2)-F(2) $2.540(5)$ Se(3)-Ba(2)-Se(2) $199.146(19)$ Ba(2)-F(2) $2.540(5)$ Se(3)-Ba(2)-Se(1)#7 $126.91(11)$ Ba(2)-Se(1)#6 $3.3124(10)$ $F(2)$ -Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(1)#6 $3.3571(10)$ $F(1)#5$ -Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(2) $3.3733(10)$ Se(2)#6-Ba(2)-Se(1)#7 $131.90(2)$ Ba(2)-Se(2) $3.3733(10)$ Se(2)-Ba(2)-Se(1)#7 $147.71(3)$ Ba(2)-Se(4)#2 $3.5944(9)$ Se(2)-Ba(2)-Se(4)#2 $140.07(10)$ Ba(3)-F(2) $2.522(5)$ $F(1)#5-Ba(2)$ -Se(4)#2 $140.07(10)$ Ba(3)-F(1)#1 $2.850(5)$ Se(1)#6-Ba(2)-Se(4)#2 $140.07(10)$ Ba(3)-Se(1) $3.2941(10)$ Se(2)-Ba(2)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3) $3.4417(11)$ Se(2)-Ba(3)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3) $3.4417(11)$ Se(2)-Ba(3)-	Ba(1)-Se(4)#2	3.3350(10)	F(1)#5-Ba(2)-Se(2)#6	103.42(10)
Ba(1)-Sc(3)#3 $3.4421(11)$ F(2)-Ba(2)-Sc(3) $74.99(10)$ Ba(1)-Sc(1)#2 $3.4462(9)$ F(1)#5-Ba(2)-Sc(3) $80.86(10)$ Ba(1)-Sc(2)#4 $3.4667(11)$ Sc(1)#6-Ba(2)-Sc(3) $125.47(2)$ Ba(1)-Gc(1)#3 $3.7645(11)$ Sc(2)#6-Ba(2)-Sc(3) $69.88(2)$ Ba(1)-Ba(1)#1 $4.0164(10)$ F(2)-Ba(2)-Sc(2) $88.99(12)$ Ba(1)-Ba(3) $4.1882(7)$ F(1)#5-Ba(2)-Sc(2) $140.87(3)$ Ba(2)-F(2) $2.540(5)$ Sc(2)#6-Ba(2)-Sc(2) $140.87(3)$ Ba(2)-F(2) $2.540(5)$ Sc(2)#6-Ba(2)-Sc(2) $199.146(19)$ Ba(2)-F(1)#5 $2.725(5)$ Sc(3)-Ba(2)-Sc(1)#7 $126.91(11)$ Ba(2)-Sc(1)#6 $3.3124(10)$ F(2)-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(2)#6 $3.3571(10)$ F(1)#5-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(2) $3.3733(10)$ Sc(2)#6-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(2) $3.3733(10)$ Sc(2)#6-Ba(2)-Sc(1)#7 $71.39(10)$ Ba(2)-Sc(4)#2 $3.5944(9)$ Sc(2)-Sa(1)#7 $86.18(2)$ Ba(2)-Sc(1)#7 $3.4443(11)$ Sc(3)-Ba(2)-Sc(1)#7 $86.18(2)$ Ba(2)-Sc(1)#7 $3.4443(11)$ Sc(3)-Sc(4)#2 $140.07(10)$ Ba(3)-F(2) $2.522(5)$ F(1)#5-Ba(2)-Sc(4)#2 $140.07(10)$ Ba(3)-Sc(1) $3.2941(10)$ Sc(2)-Ba(2)-Sc(4)#2 $131.20(3)$ Ba(3)-Sc(1) $3.2941(10)$ Sc(3)-Ba(2)-Sc(4)#2 $131.20(3)$ Ba(3)-Sc(3) $3.4417(11)$ Sc(2)-Ba(3)-Sc(1) $74.24(9)$ Gc(1)-Sc(3) $2.3457(12)$ F(2)-Ba(3)-Sc(1) $74.24(9)$ </td <td>Ba(1)-Se(4)#3</td> <td>3.4058(10)</td> <td>Se(1)#6-Ba(2)-Se(2)#6</td> <td>69.05(2)</td>	Ba(1)-Se(4)#3	3.4058(10)	Se(1)#6-Ba(2)-Se(2)#6	69.05(2)
Ba(1)-Se(1)#2 $3.4462(9)$ $F(1)#5-Ba(2)-Se(3)$ $80.86(10)$ Ba(1)-Se(2)#4 $3.4667(11)$ $Se(1)#6-Ba(2)-Se(3)$ $125.47(2)$ Ba(1)-Ge(1)#3 $3.7645(11)$ $Se(2)#6-Ba(2)-Se(3)$ $69.88(2)$ Ba(1)-Ba(1)#1 $4.0164(10)$ $F(2)-Ba(2)-Se(2)$ $88.99(12)$ Ba(1)-Ba(3) $4.1882(7)$ $F(1)#5-Ba(2)-Se(2)$ $140.87(3)$ Ba(2)-F(2) $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $140.87(3)$ Ba(2)-F(2) $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $69.30(2)$ Ba(2)-F(1)#5 $2.725(5)$ $Se(3)-Ba(2)-Se(1)#7$ $126.91(11)$ Ba(2)-Se(1)#6 $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(3) $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(3) $3.3593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $71.39(10)$ Ba(3)-Se(1)#7 $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $71.47.71(3)$ Ba(2)-Se(4)#2 $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ Ba(3)-F(1)#1 $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $74.19(2)$ Ba(3)-F(1)#1 $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $74.19(2)$ Ba(3)-Se(1) $3.2941(10)$ $Se(3)-Ba(2)-Se(4)#2$ $74.19(2)$ Ba(3)-Se(3)#8 </td <td>Ba(1)-Se(3)#3</td> <td>3.4421(11)</td> <td>F(2)-Ba(2)-Se(3)</td> <td>74.99(10)</td>	Ba(1)-Se(3)#3	3.4421(11)	F(2)-Ba(2)-Se(3)	74.99(10)
Ba(1)-Se(2)#4 $3.4667(11)$ Se(1)#6-Ba(2)-Se(3) $125.47(2)$ Ba(1)-Ge(1)#3 $3.7645(11)$ Se(2)#6-Ba(2)-Se(3) $69.88(2)$ Ba(1)-Ba(1)#1 $4.0164(10)$ $F(2)$ -Ba(2)-Se(2) $88.99(12)$ Ba(1)-Ba(3) $4.1882(7)$ $F(1)#5$ -Ba(2)-Se(2) $71.65(10)$ Ba(1)-Ba(2)#4 $4.3765(8)$ Se(1)#6-Ba(2)-Se(2) $140.87(3)$ Ba(2)-F(2) $2.540(5)$ Se(2)#6-Ba(2)-Se(2) $139.146(19)$ Ba(2)-F(1)#5 $2.725(5)$ Se(3)-Ba(2)-Se(1)#7 $126.91(11)$ Ba(2)-Se(1)#6 $3.3124(10)$ $F(2)$ -Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)$ -Se(1)#7 $71.39(10)$ Ba(2)-Se(2) $3.3733(10)$ Se(2)#6-Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(2) $3.3733(10)$ Se(2)#6-Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(1)#7 $3.4443(11)$ Se(3)-Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ Se(2)#6-Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ Se(2)#6-Ba(2)-Se(1)#7 $71.39(10)$ Ba(2)-Se(4)#2 $3.593(10)$ Se(2)#6-Ba(2)-Se(1)#7 $71.39(10)$ Ba(3)-Se(1)#7 $3.4443(11)$ Se(3)-Ba(2)-Se(4)#2 $66.54(10)$ Ba(3)-F(1)#1 $2.850(5)$ Se(1)#6-Ba(2)-Se(4)#2 $66.54(10)$ Ba(3)-F(1)#1 $2.850(5)$ Se(1)#6-Ba(2)-Se(4)#2 $74.19(2)$ Ba(3)-Se(1) $3.2941(10)$ Se(3)-Ba(2)-Se(4)#2 $74.19(2)$ Ba(3)-Se(1) $3.2941(10)$ Se(3)-Ba(2)-Se(4)#2 $81.03(2)$ Ba(3)-Se(3) $3.4417(11)$	Ba(1)-Se(1)#2	3.4462(9)	F(1)#5-Ba(2)-Se(3)	80.86(10)
Ba(1)-Ge(1)#3 $3.7645(11)$ $Se(2)#6-Ba(2)-Se(3)$ $69.88(2)$ $Ba(1)$ -Ba(1)#1 $4.0164(10)$ $F(2)$ -Ba(2)-Se(2) $88.99(12)$ $Ba(1)$ -Ba(3) $4.1882(7)$ $F(1)#5-Ba(2)$ -Se(2) $71.65(10)$ $Ba(1)$ -Ba(2)#4 $4.3765(8)$ $Se(1)#6-Ba(2)$ -Se(2) $140.87(3)$ $Ba(2)$ -F(2) $2.540(5)$ $Se(2)#6-Ba(2)$ -Se(2) $139.146(19)$ $Ba(2)$ -F(2) $2.540(5)$ $Se(2)#6-Ba(2)$ -Se(2) $69.30(2)$ $Ba(2)$ -F(1)#5 $2.725(5)$ $Se(3)$ -Ba(2)-Se(2) $69.30(2)$ $Ba(2)$ -Se(1)#6 $3.3124(10)$ $F(2)$ -Ba(2)-Se(1)#7 $126.91(11)$ $Ba(2)$ -Se(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)$ -Se(1)#7 $71.39(10)$ $Ba(2)$ -Se(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)$ -Se(1)#7 $71.39(10)$ $Ba(2)$ -Se(2) $3.3733(10)$ $Se(2)#6-Ba(2)$ -Se(1)#7 $131.90(2)$ $Ba(2)$ -Se(2) $3.3733(10)$ $Se(2)#6-Ba(2)$ -Se(1)#7 $147.71(3)$ $Ba(2)$ -Se(4)#2 $3.5944(9)$ $Se(2)$ -Ba(2)-Se(1)#7 $86.18(2)$ $Ba(2)$ -Se(4)#2 $3.5944(9)$ $Se(2)$ -Ba(2)-Se(4)#2 $140.07(10)$ $Ba(3)$ -F(2) $2.522(5)$ $F(1)#5-Ba(2)$ -Se(4)#2 $140.07(10)$ $Ba(3)$ -F(2) $2.522(5)$ $F(1)#5-Ba(2)$ -Se(4)#2 $140.07(10)$ $Ba(3)$ -Se(1) $3.2941(10)$ $Se(3)$ -Ba(2)-Se(4)#2 $131.20(3)$ $Ba(3)$ -Se(1) $3.2941(10)$ $Se(3)$ -Ba(2)-Se(4)#2 $131.20(3)$ $Ba(3)$ -Se(3) $3.4417(11)$ $Se(2)$ -Ba(3)-Se(4)#2 $131.20(3)$ $Ba(3)$ -Se(3) $3.4417(11)$ $Se(2)$ -Ba(3)-Se(4)#2 $131.20(3)$	Ba(1)-Se(2)#4	3.4667(11)	Se(1)#6-Ba(2)-Se(3)	125.47(2)
Ba(1)-Ba(1)#1 $4.0164(10)$ $F(2)-Ba(2)-Se(2)$ $88.99(12)$ $Ba(1)-Ba(3)$ $4.1882(7)$ $F(1)#5-Ba(2)-Se(2)$ $71.65(10)$ $Ba(1)-Ba(2)#4$ $4.3765(8)$ $Se(1)#6-Ba(2)-Se(2)$ $140.87(3)$ $Ba(2)-F(2)$ $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $139.146(19)$ $Ba(2)-F(1)#5$ $2.725(5)$ $Se(3)-Ba(2)-Se(2)$ $69.30(2)$ $Ba(2)-Se(1)#6$ $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(1)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(2)#6$ $3.3573(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(4)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(4)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)$ $3.2941(10)$ $Se(2)=Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(3)-Se(4)#2$ $132.61(2)$ $Ba(3)-Se(4)#4$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ <	Ba(1)-Ge(1)#3	3.7645(11)	Se(2)#6-Ba(2)-Se(3)	69.88(2)
Ba(1)-Ba(3) $4.1882(7)$ $F(1)#5-Ba(2)-Se(2)$ $71.65(10)$ $Ba(1)-Ba(2)#4$ $4.3765(8)$ $Se(1)#6-Ba(2)-Se(2)$ $140.87(3)$ $Ba(2)-F(2)$ $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $139.146(19)$ $Ba(2)-F(1)#5$ $2.725(5)$ $Se(3)-Ba(2)-Se(2)$ $69.30(2)$ $Ba(2)-Se(1)#6$ $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(1)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $63.33(3)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(4)$ $3.3593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(1)#7$ $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(4)#4$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $130.3(2)$ $Ba(3)-Se(4)#4$ $3.6028(11)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$	Ba(1)-Ba(1)#1	4.0164(10)	F(2)-Ba(2)-Se(2)	88.99(12)
Ba(1)-Ba(2)#4 $4.3765(8)$ $Se(1)#6-Ba(2)-Se(2)$ $140.87(3)$ $Ba(2)-F(2)$ $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $139.146(19)$ $Ba(2)-F(1)#5$ $2.725(5)$ $Se(3)-Ba(2)-Se(2)$ $69.30(2)$ $Ba(2)-Se(1)#6$ $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(2)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(2)#6$ $3.3573(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $73.3(3)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(4)$ $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(4)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $130.3(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10$	Ba(1)- $Ba(3)$	4.1882(7)	F(1)#5-Ba(2)-Se(2)	71.65(10)
Ba(2)-F(2) $2.540(5)$ $Se(2)#6-Ba(2)-Se(2)$ $139.146(19)$ $Ba(2)-F(1)#5$ $2.725(5)$ $Se(3)-Ba(2)-Se(2)$ $69.30(2)$ $Ba(2)-Se(1)#6$ $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(2)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(2)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $63.33(3)$ $Ba(2)-Se(2)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(2)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-Se(4)#2$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ <td>Ba(1)-Ba(2)#4</td> <td>4.3765(8)</td> <td>Se(1)#6-Ba(2)-Se(2)</td> <td>140.87(3)</td>	Ba(1)-Ba(2)#4	4.3765(8)	Se(1)#6-Ba(2)-Se(2)	140.87(3)
Ba(2)-F(1)#5 $2.725(5)$ $Se(3)-Ba(2)-Se(2)$ $69.30(2)$ $Ba(2)-Se(1)#6$ $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(2)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(2)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $63.33(3)$ $Ba(2)-Se(2)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(1)#7$ $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-Se(4)#2$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(4)#4$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(3)$ $73.65(11)$ </td <td>Ba(2)-F(2)</td> <td>2.540(5)</td> <td>Se(2)#6-Ba(2)-Se(2)</td> <td>139.146(19)</td>	Ba(2)-F(2)	2.540(5)	Se(2)#6-Ba(2)-Se(2)	139.146(19)
Ba(2)-Se(1)#6 $3.3124(10)$ $F(2)-Ba(2)-Se(1)#7$ $126.91(11)$ $Ba(2)-Se(2)#6$ $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $63.33(3)$ $Ba(2)-Se(2)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(1)#7$ $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-Se(4)#2$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)=Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#4$ $3.6028(11)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ 73	Ba(2)-F(1)#5	2.725(5)	Se(3)-Ba(2)-Se(2)	69.30(2)
Ba(2)-Se(2)#6 $3.3571(10)$ $F(1)#5-Ba(2)-Se(1)#7$ $71.39(10)$ $Ba(2)-Se(3)$ $3.3593(10)$ $Se(1)#6-Ba(2)-Se(1)#7$ $63.33(3)$ $Ba(2)-Se(2)$ $3.3733(10)$ $Se(2)#6-Ba(2)-Se(1)#7$ $131.90(2)$ $Ba(2)-Se(1)#7$ $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-Se(4)#3$ $4.5388(8)$ $F(2)-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)=Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#4$ $3.6028(11)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ 73.6	Ba(2)-Se(1)#6	3.3124(10)	F(2)-Ba(2)-Se(1)#7	126.91(11)
Ba(2)-Se(3) $3.3593(10)$ Se(1)#6-Ba(2)-Se(1)#7 $63.33(3)$ Ba(2)-Se(2) $3.3733(10)$ Se(2)#6-Ba(2)-Se(1)#7 $131.90(2)$ Ba(2)-Se(1)#7 $3.4443(11)$ Se(3)-Ba(2)-Se(1)#7 $147.71(3)$ Ba(2)-Se(4)#2 $3.5944(9)$ Se(2)-Ba(2)-Se(1)#7 $86.18(2)$ Ba(2)-Ba(3) $4.5388(8)$ F(2)-Ba(2)-Se(4)#2 $66.54(10)$ Ba(3)-F(2) $2.522(5)$ F(1)#5-Ba(2)-Se(4)#2 $40.07(10)$ Ba(3)-F(1)#1 $2.850(5)$ Se(1)#6-Ba(2)-Se(4)#2 $66.40(2)$ Ba(3)-Se(1) $3.2941(10)$ Se(2)#6-Ba(2)-Se(4)#2 $74.19(2)$ Ba(3)-Se(2)#4 $3.3468(10)$ Se(3)-Ba(2)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3) $3.4417(11)$ Se(2)-Ba(2)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3) $3.4417(11)$ Se(2)-Ba(2)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3)#8 $3.5003(9)$ F(2)-Ba(3)-F(1)#1 $63.26(15)$ Ba(3)-Se(4)#4 $3.4710(11)$ Se(1)#7-Ba(2)-Se(4)#2 $81.03(2)$ Ba(3)-Se(4)#8 $3.6028(11)$ F(2)-Ba(3)-Se(1) $101.47(13)$ Ge(1)-Se(1) $2.3360(13)$ F(1)#1-Ba(3)-Se(1) $74.24(9)$ Ge(1)-Se(4) $2.3451(12)$ F(2)-Ba(3)-Se(2)#4 $78.87(12)$ Ge(1)-Se(3) $2.3457(12)$ F(1)#1-Ba(3)-Se(2)#4 $73.58(10)$ Ge(1)-Se(2) $2.3640(13)$ Se(1)-Ba(3)-Se(3) $73.65(11)$ F(2)-Ba(1)-F(1) $137.65(16)$ F(2)-Ba(3)-Se(3) $73.65(11)$	Ba(2)-Se(2)#6	3.3571(10)	F(1)#5-Ba(2)-Se(1)#7	71.39(10)
Ba(2)-Se(2) $3.3733(10)$ Se(2)#6-Ba(2)-Se(1)#7 $131.90(2)$ Ba(2)-Se(1)#7 $3.4443(11)$ Se(3)-Ba(2)-Se(1)#7 $147.71(3)$ Ba(2)-Se(4)#2 $3.5944(9)$ Se(2)-Ba(2)-Se(1)#7 $86.18(2)$ Ba(2)-Ba(3) $4.5388(8)$ $F(2)$ -Ba(2)-Se(4)#2 $66.54(10)$ Ba(3)-F(2) $2.522(5)$ $F(1)#5$ -Ba(2)-Se(4)#2 $140.07(10)$ Ba(3)-F(1)#1 $2.850(5)$ Se(1)#6-Ba(2)-Se(4)#2 $66.40(2)$ Ba(3)-Se(1) $3.2941(10)$ Se(2)#6-Ba(2)-Se(4)#2 $74.19(2)$ Ba(3)-Se(2)#4 $3.3468(10)$ Se(3)-Ba(2)-Se(4)#2 $131.20(3)$ Ba(3)-Se(3) $3.4417(11)$ Se(2)-Ba(2)-Se(4)#2 $135.61(2)$ Ba(3)-Se(3) $3.4417(11)$ Se(1)#7-Ba(2)-Se(4)#2 $81.03(2)$ Ba(3)-Se(3)#8 $3.5003(9)$ $F(2)$ -Ba(3)-F(1)#1 $63.26(15)$ Ba(3)-Se(4)#4 $3.6028(11)$ $F(2)$ -Ba(3)-Se(1) $101.47(13)$ Ge(1)-Se(1) $2.3360(13)$ $F(1)#1$ -Ba(3)-Se(1) $74.24(9)$ Ge(1)-Se(4) $2.3457(12)$ $F(2)$ -Ba(3)-Se(2)#4 $78.87(12)$ Ge(1)-Se(3) $2.3457(12)$ $F(1)#1$ -Ba(3)-Se(2)#4 $73.58(10)$ Ge(1)-Se(2) $2.3640(13)$ Se(1)-Ba(3)-Se(2)#4 $73.65(11)$ F(2)-Ba(1)-F(1) $137.65(16)$ $F(2)$ -Ba(3)-Se(3) $73.65(11)$ F(2)-Ba(1)-F(1) $65.24(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(2)-Se(3)	3.3593(10)	Se(1)#6-Ba(2)-Se(1)#7	63.33(3)
Ba(2)-Se(1)#7 $3.4443(11)$ $Se(3)-Ba(2)-Se(1)#7$ $147.71(3)$ $Ba(2)-Se(4)#2$ $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Ba(3)$ $4.5388(8)$ $F(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)$ #8 $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#4$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(1)#1-Ba(3)-Se(3)$ $73.65(11)$	Ba(2)-Se(2)	3.3733(10)	Se(2)#6-Ba(2)-Se(1)#7	131.90(2)
Ba(2)-Se(4)#2 $3.5944(9)$ $Se(2)-Ba(2)-Se(1)#7$ $86.18(2)$ $Ba(2)-Ba(3)$ $4.5388(8)$ $F(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)+7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$	Ba(2)-Se(1)#7	3.4443(11)	Se(3)-Ba(2)-Se(1)#7	147.71(3)
Ba(2)-Ba(3) $4.5388(8)$ $F(2)-Ba(2)-Se(4)#2$ $66.54(10)$ $Ba(3)-F(2)$ $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(2)#4$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $F(1)#1-Ba(3)-Se(3)$ $F(1)=16.27(11)$	Ba(2)-Se(4)#2	3.5944(9)	Se(2)-Ba(2)-Se(1)#7	86.18(2)
Ba(3)-F(2) $2.522(5)$ $F(1)#5-Ba(2)-Se(4)#2$ $140.07(10)$ $Ba(3)-F(1)#1$ $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(2)#4$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $65.24(14)$ $F(1)#1-Ba(3)-Se(3)$ $73.65(11)$	Ba(2)-Ba(3)	4.5388(8)	F(2)-Ba(2)-Se(4)#2	66.54(10)
Ba(3)-F(1)#1 $2.850(5)$ $Se(1)#6-Ba(2)-Se(4)#2$ $66.40(2)$ $Ba(3)-Se(1)$ $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(4)#4$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$	Ba(3)-F(2)	2.522(5)	F(1)#5-Ba(2)-Se(4)#2	140.07(10)
Ba(3)-Se(1) $3.2941(10)$ $Se(2)#6-Ba(2)-Se(4)#2$ $74.19(2)$ $Ba(3)-Se(2)#4$ $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-F(1)#1	2.850(5)	Se(1)#6-Ba(2)-Se(4)#2	66.40(2)
Ba(3)-Se(2)#4 $3.3468(10)$ $Se(3)-Ba(2)-Se(4)#2$ $131.20(3)$ $Ba(3)-Se(3)$ $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(3)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $524(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-Se(1)	3.2941(10)	Se(2)#6-Ba(2)-Se(4)#2	74.19(2)
Ba(3)-Se(3) $3.4417(11)$ $Se(2)-Ba(2)-Se(4)#2$ $135.61(2)$ $Ba(3)-Se(4)#4$ $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $524(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-Se(2)#4	3.3468(10)	Se(3)-Ba(2)-Se(4)#2	131.20(3)
Ba(3)-Se(4)#4 $3.4710(11)$ $Se(1)#7-Ba(2)-Se(4)#2$ $81.03(2)$ $Ba(3)-Se(3)#8$ $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $524(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-Se(3)	3.4417(11)	Se(2)-Ba(2)-Se(4)#2	135.61(2)
Ba(3)-Se(3)#8 $3.5003(9)$ $F(2)-Ba(3)-F(1)#1$ $63.26(15)$ $Ba(3)-Se(4)#8$ $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $524(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-Se(4)#4	3.4710(11)	Se(1)#7-Ba(2)-Se(4)#2	81.03(2)
Ba(3)-Se(4)#8 $3.6028(11)$ $F(2)-Ba(3)-Se(1)$ $101.47(13)$ $Ge(1)-Se(1)$ $2.3360(13)$ $F(1)#1-Ba(3)-Se(1)$ $74.24(9)$ $Ge(1)-Se(4)$ $2.3451(12)$ $F(2)-Ba(3)-Se(2)#4$ $78.87(12)$ $Ge(1)-Se(3)$ $2.3457(12)$ $F(1)#1-Ba(3)-Se(2)#4$ $73.58(10)$ $Ge(1)-Se(2)$ $2.3640(13)$ $Se(1)-Ba(3)-Se(2)#4$ $143.47(3)$ $F(2)-Ba(1)-F(1)$ $137.65(16)$ $F(2)-Ba(3)-Se(3)$ $73.65(11)$ $F(2)-Ba(1)-F(1)$ $65.24(14)$ $F(1)#1-Ba(3)-Se(3)$ $116.27(11)$	Ba(3)-Se(3)#8	3.5003(9)	F(2)-Ba(3)-F(1)#1	63.26(15)
Ge(1)-Se(1) $2.3360(13)$ $F(1)\#1$ -Ba(3)-Se(1) $74.24(9)$ Ge(1)-Se(4) $2.3451(12)$ $F(2)$ -Ba(3)-Se(2)#4 $78.87(12)$ Ge(1)-Se(3) $2.3457(12)$ $F(1)\#1$ -Ba(3)-Se(2)#4 $73.58(10)$ Ge(1)-Se(2) $2.3640(13)$ Se(1)-Ba(3)-Se(2)#4 $143.47(3)$ F(2)-Ba(1)-F(1) $137.65(16)$ $F(2)$ -Ba(3)-Se(3) $73.65(11)$ F(2)-Ba(1)-F(1)#1 $65.24(14)$ $F(1)\#1$ -Ba(3)-Se(3) $116.27(11)$	Ba(3)-Se(4)#8	3.6028(11)	F(2)-Ba(3)-Se(1)	101.47(13)
Ge(1)-Se(4) $2.3451(12)$ $F(2)$ -Ba(3)-Se(2)#4 $78.87(12)$ Ge(1)-Se(3) $2.3457(12)$ $F(1)$ #1-Ba(3)-Se(2)#4 $73.58(10)$ Ge(1)-Se(2) $2.3640(13)$ Se(1)-Ba(3)-Se(2)#4 $143.47(3)$ F(2)-Ba(1)-F(1) $137.65(16)$ $F(2)$ -Ba(3)-Se(3) $73.65(11)$ E(2)-Ba(1)-F(1) $65.24(14)$ $F(1)$ #1-Ba(3)-Se(3) $116.27(11)$	Ge(1)-Se(1)	2.3360(13)	F(1)#1-Ba(3)-Se(1)	74.24(9)
Ge(1)-Se(3) $2.3457(12)$ $F(1)\#1$ -Ba(3)-Se(2)#4 $73.58(10)$ Ge(1)-Se(2) $2.3640(13)$ Se(1)-Ba(3)-Se(2)#4 $143.47(3)$ F(2)-Ba(1)-F(1) $137.65(16)$ $F(2)$ -Ba(3)-Se(3) $73.65(11)$ F(2)-Ba(1)-F(1)#1 $65.24(14)$ $F(1)\#1$ -Ba(3)-Se(3) $116.27(11)$	Ge(1)-Se(4)	2.3451(12)	F(2)-Ba(3)-Se(2)#4	78.87(12)
Ge(1)-Se(2)2.3640(13)Se(1)-Ba(3)-Se(2)#4143.47(3)F(2)-Ba(1)-F(1)137.65(16) $F(2)$ -Ba(3)-Se(3)73.65(11)F(2)-Ba(1)-F(1)#165.24(14) $F(1)$ #1-Ba(3)-Se(3)116.27(11)	Ge(1)-Se(3)	2.3457(12)	F(1)#1-Ba(3)-Se(2)#4	73.58(10)
F(2)-Ba(1)-F(1)137.65(16) $F(2)$ -Ba(3)-Se(3)73.65(11) $F(2)$ -Ba(1)-F(1)#165.24(14) $F(1)$ #1-Ba(3)-Se(3)116.27(11)	Ge(1)-Se(2)	2.3640(13)	Se(1)-Ba(3)-Se(2)#4	143.47(3)
$F(2)_{-}B_{2}(1)_{-}F(1)\#1$ 65 24(14) $F(1)\#1_{-}B_{2}(3)_{-}S_{e}(3)$ 116 27(11)	F(2)-Ba(1)-F(1)	137.65(16)	F(2)-Ba(3)-Se(3)	73.65(11)
$1(2) - Da(1) - 1(1) \pi 1 = 0.5.2 - 1(1) \pi 1 - Da(5) - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -$	F(2)-Ba(1)-F(1)#1	65.24(14)	F(1)#1-Ba(3)-Se(3)	116.27(11)
F(1)-Ba(1)-F(1)#1 80.54(15) Se(1)-Ba(3)-Se(3) 70.94(2)	F(1)-Ba(1)-F(1)#1	80.54(15)	Se(1)-Ba(3)-Se(3)	70.94(2)
F(2)-Ba(1)-Se(4)#2 70.56(11) $Se(2)#4-Ba(3)-Se(3)$ 140.47(3)	F(2)-Ba(1)-Se(4)#2	70.56(11)	Se(2)#4-Ba(3)-Se(3)	140.47(3)
F(1)-Ba(1)-Se(4)#2 142.10(10) F(2)-Ba(3)-Se(4)#4 131.85(11)	F(1)-Ba(1)-Se(4)#2	142.10(10)	F(2)-Ba(3)-Se(4)#4	131.85(11)
F(1)#1-Ba(1)-Se(4)#2 135.12(10) F(1)#1-Ba(3)-Se(4)#4 73.32(11)	F(1)#1-Ba(1)-Se(4)#2	135.12(10)	F(1)#1-Ba(3)-Se(4)#4	73.32(11)
F(2)-Ba(1)-Se(4)#3 141.15(13) Se(1)-Ba(3)-Se(4)#4 85.04(2)	F(2)-Ba(1)-Se(4)#3	141.15(13)	Se(1)-Ba(3)-Se(4)#4	85.04(2)
F(1)-Ba(1)-Se(4)#3 77.25(11) Se(2)#4-Ba(3)-Se(4)#4 69.53(2)	F(1)-Ba(1)-Se(4)#3	77.25(11)	Se(2)#4-Ba(3)-Se(4)#4	69.53(2)
F(1)#1-Ba(1)-Se(4)#3 120.09(11) Se(3)-Ba(3)-Se(4)#4 149.08(2)	F(1)#1-Ba(1)-Se(4)#3	120.09(11)	Se(3)-Ba(3)-Se(4)#4	149.08(2)

Table S2(c). Selected bond distances (Å) and angles (degrees) for Ba₃GeF₂Se₄.

Se(4)#2-Ba(1)-Se(4)#3	90.067(12)	F(2)-Ba(3)-Se(3)#8	145.57(11)
F(2)-Ba(1)-Se(3)#3	78.65(13)	F(1)#1-Ba(3)-Se(3)#8	135.50(9)
F(1)-Ba(1)-Se(3)#3	120.75(11)	Se(1)-Ba(3)-Se(3)#8	67.65(2)
F(1)#1-Ba(1)-Se(3)#3	80.28(12)	Se(2)#4-Ba(3)-Se(3)#8	129.85(3)
Se(4)#2-Ba(1)-Se(3)#3	84.03(3)	Se(3)-Ba(3)-Se(3)#8	71.93(3)
Se(4)#3-Ba(1)-Se(3)#3	65.74(2)	Se(4)#4-Ba(3)-Se(3)#8	81.20(2)
F(2)-Ba(1)-Se(1)#2	129.83(12)	F(2)-Ba(3)-Se(4)#8	120.75(13)
F(1)-Ba(1)-Se(1)#2	72.56(10)	F(1)#1-Ba(3)-Se(4)#8	145.73(11)
F(1)#1-Ba(1)-Se(1)#2	149.88(12)	Se(1)-Ba(3)-Se(4)#8	130.64(2)
Se(4)#2-Ba(1)-Se(1)#2	69.60(2)	Se(2)#4-Ba(3)-Se(4)#8	74.20(2)
Se(4)#3-Ba(1)-Se(1)#2	67.14(2)	Se(3)-Ba(3)-Se(4)#8	96.10(2)
Se(3)#3-Ba(1)-Se(1)#2	125.19(3)	Se(4)#4-Ba(3)-Se(4)#8	84.770(13)
F(2)-Ba(1)-Se(2)#4	75.64(13)	Se(3)#8-Ba(3)-Se(4)#8	63.08(2)
F(1)-Ba(1)-Se(2)#4	71.25(12)	Se(1)-Ge(1)-Se(4)	111.59(4)
F(1)#1-Ba(1)-Se(2)#4	73.83(12)	Se(1)-Ge(1)-Se(3)	113.29(5)
Se(4)#2-Ba(1)-Se(2)#4	102.77(3)	Se(4)-Ge(1)-Se(3)	104.82(4)
Se(4)#3-Ba(1)-Se(2)#4	142.84(3)	Se(1)-Ge(1)-Se(2)	107.09(4)
Se(3)#3-Ba(1)-Se(2)#4	149.25(2)	Se(4)-Ge(1)-Se(2)	111.35(5)
Se(1)#2-Ba(1)-Se(2)#4	84.72(2)	Se(3)-Ge(1)-Se(2)	108.74(4)
F(2)-Ba(2)-F(1)#5	153.27(14)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1 #2 x+1,y,z #3 -x+3/2,y+1/2,-z+1/2 #4 x+1/2,-y+1/2,z+1/2 #5 x-1/2,-y+1/2,z-1/2 #6 -x+3/2,y-1/2,-z+1/2 #7 x+1/2,-y+1/2,z-1/2 #8 -x+1,-y,-z+1 #9 x-1/2,-y+1/2,z+1/2 #10 x-1,y,z

Atom	Х	у	Z	U(eq)	BVS
Ba(1)	-2519(1)	789(1)	-2445(1)	10(1)	1.92
Ba(2)	22(1)	786(1)	2530(1)	10(1)	1.90
Ge(1)	2094(2)	2500	3286(3)	14(1)	4.00
Ge(2)	405(2)	2500	6686(3)	14(1)	4.02
S (1)	2606(4)	3539(2)	2262(6)	20(1)	1.99
S(2)	-84(4)	3566(2)	7686(5)	12(1)	2.02
S(3)	2211(4)	2500	6877(10)	19(1)	2.06
S(4)	287(4)	2500	3059(10)	18(1)	2.10
F(1)	-1251(6)	14(3)	5030(20)	14(1)	0.99
F(2)	-1238(6)	10(3)	10(20)	13(1)	1.11

Table S3(a). Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² ×10³) for Ba₂GeF₂S3. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U(eq)	BVS
Ba(1)	-9965(1)	-4256(1)	7548(1)	12(1)	2.01
Ba(2)	-7534(1)	-4255(1)	2403(1)	11(1)	2.20
Ge(1)	-9589(1)	-2500	1678(1)	13(1)	3.97
Ge(2)	-7911(1)	-2500	-1717(1)	13(1)	4.09
Se(1)	-7395(1)	-3592(1)	-2776(1)	15(1)	1.98
Se(2)	-10105(1)	-3592(1)	2740(1)	16(1)	1.96
Se(3)	-7726(1)	-2500	2003(2)	18(1)	2.00
Se(4)	-9776(1)	-2500	-2035(2)	19(1)	2.19
F(1)	-11244(4)	-4988(2)	5039(6)	16(1)	1.03
F(2)	-6269(4)	-4981(2)	4973(6)	16(1)	0.98

Table S3(b). Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² ×10³) for Ba₂GeF₂Se3. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U(eq)	BVS
Ba(1)	10896(1)	3662(1)	3954(1)	13(1)	1.84
Ba(2)	8431(1)	536(1)	1927(1)	15(1)	2.01
Ba(3)	7403(1)	1722(1)	5384(1)	15(1)	1.92
Ge(1)	4503(1)	1676(1)	3025(1)	12(1)	3.97
Se(1)	4522(1)	3340(1)	4426(1)	14(1)	1.98
Se(2)	5630(1)	2735(1)	1540(1)	15(1)	2.03
Se(3)	5717(1)	-417(1)	3488(1)	15(1)	2.10
Se(4)	2176(1)	953(1)	2550(1)	16(1)	2.12
F(1)	11656(5)	5595(5)	5368(5)	18(1)	1.01
F(2)	8951(5)	1717(5)	3746(5)	22(1)	1.00

Table S3(c). Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² ×10³) for Ba₃GeF₂Se₄. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Compounds	Polyhedras	Δρ	Δn (at 1064 nm)
[Ba ₂ F ₂][GeS ₃]	Ge ₂ S ₆	0.391	0.109
[Ba ₂ F ₂][GeSe ₃]	Ge ₂ Se ₆	0.264	0.103
[Ba ₃ F ₂][GeSe ₄]	GeSe ₄	0.027	0.063

Table S4. Comparison of response electron distribution anisotropy (REDA) for $Ge_2Q_6(Q=S, Se)$ and $GeSe_4$ units.

compound	Ge-based oligomers
Na ₄ MgGe ₂ Se ₆	GeSe ₃
Sr ₂ GeSe ₄	GeSe ₄
$Ba_3GeF_2Se_4$	GeSe ₄
$Ba_2Ge_2Se_5$	Ge ₂ Se ₅
Cs ₂ GeSe ₃	Ge ₂ Se ₆
$Ba_2GeF_2Se_3$	Ge ₂ Se ₆
Na ₆ Ge ₂ Se ₇	Ge ₂ Se ₇
$Ba_4Ge_3Se_9Cl_2$	Ge ₃ Se ₉
$Cs_2MgGe_3Se_8$	$[Ge_3Se_8]_{\infty}$ chain

 Table S5. Ge-based compounds containing alkali metals or alkaline earth metals.

Fig. S1. Experimental and calculated XRD patterns for $Ba_2GeF_2Q_3$ (Q = S, Se) and $Ba_3GeF_2Se_4$

Fig. S2. Arrangement of Ba-F layer and Ge-based polyhedra in $Ba_2GeF_2Se_3$ and $Ba_3GeF_2Se_4$. (Δd is defined as distance of a single Ba-F layer).

Fig. S3. Different Ge-based configuration in Ge-based compounds containing alkali metals or alkaline earth metals.

Fig. S4. Powder XRD patterns: calculated one for $Ba_3GeF_2Se_4$, annealed at 800, 850 and 900 °C for $Ba_3GeF_2S_4$, respectively.