Supplementary Information

Unlocking an additive-free and catalyst-free dual approach for the amide reductions to amines

Deep Chowdhury,^a and Arup Mukherjee^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Bhilai,

Durg, Chhattisgarh 491002, India

Email: arup@iitbhilai.ac.in

Table of Contents

- 1. General Information
- 2. General procedure for the reduction amides to amines with Me₂NH·BH₃
- General procedure for the synthesis of N,N-dimethylbenzylamine derivatives from primary amides and Me₂NH·BH₃
- 4. The ¹¹B NMR spectroscopy monitoring experiment
- 5. Kinetic studies
- 6. Scope of amide reduction with morpholine-borane
- 7. GC chromatogram of the reaction mixture, peak reports, and mass spectra of various products
- 8. ¹H and ¹³C NMR spectra of the isolated products
- 9. Copies of ¹H and ¹³C NMR spectra of the isolated products
- 10. Copies of ¹H NMR spectra of crude reaction mixture of secondary and tertiary amides
- 11. Plausible mechanism and computational details
- 12. References

1. General Information:

All chemicals were purchased from Sigma-Aldrich, Alfa-Aesar, Merk, Avra, Loba Chemie, and TCI at the highest purity grade and used for the amide reduction reaction without further purification. Deuterated solvents were procured from Sigma-Aldrich. Amine-boranes (unless commercially available) were synthesized as per the literature procedure.¹ Unless otherwise mentioned, all syntheses were performed in standard glassware without any special precautions taken for the removal of moisture or air. Merck precoated 0.25 mm silica gel plates (60F-254) were used to perform the analytical TLC. Visualization was achieved with shortwave UV light. NMR spectra were recorded in CDCl₃, DMSO-d₆, D₂O, Toluene-d₈, and TMS as internal standard on Bruker Avance 600 MHz spectrometers. Chemical shifts of ¹H NMR spectra were given in parts per million with respect to TMS, and the coupling constant (*J*) was measured in Hz. The following abbreviations were used to describe the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. GC-MS analyses were carried out on a Thermo Scientific Trace 1310 equipped with TG-17MS column (30 m x 0.25 mm x 0.25 mm).

2. General procedure for the reduction amides to amines with Me₂NH·BH₃:

A 15 mL thick-wall sealed tube was charged with amine-boranes (1 mmol, 2.0 equiv.), amides (0.5 mmol, 1 equiv.), and toluene (2 mL) in a N₂ filled glove-box. The tube was sealed tightly with the PTFE screw cap, and the reaction mixture was stirred at 110 °C for 24 h. After completion of the reaction, it was quenched with the addition of methanol. The methanolic solution was evaporated and again dissolved in Et₂O, and to it, 1 mL 1(N) HCl solution in Et₂O was added to get the precipitation of amines as HCl salt. The reaction mixture was filtered, and the precipitate was washed thoroughly with Et₂O, EtOAc, and CHCl₃ and dried under a high vacuum.

For secondary and tertiary amides, the methanolic solution was evaporated. Then, 1 equiv. DMF (internal standard) was added to it and dissolved in CDCl₃ for the ¹H NMR measurement of the crude reaction mixture.

3. General procedure for the synthesis of N,N-dimethyl benzylamine derivatives from primary amides and dimethylamine-boranes:

A 15 mL thick-wall sealed tube was charged with dimethylamine-boranes (1 mmol, 2.0 equiv.), primary amides (0.5 mmol, 1 equiv.), TMEDA (as per the requirement), and toluene (2 mL) in a N_2 filled glove-box. The tube was sealed tightly with the PTFE screw cap, and the reaction

mixture was stirred at 110 °C for 60 h. After completion of the reaction, it was quenched with the addition of methanol. Subsequently, 1 equiv. mesitylene was added to it as an internal standard and a small amount of aliquot was injected in GC-MS to find out the yields of the tertiary amines.

4. The ¹¹B NMR NMR spectroscopy monitoring experiment:

A screw-capped NMR tube was charged with dimethylamine-boranes (0.25 mmol, 2.0 equiv.), amides (0.125 mmol, 1 equiv.), and toluene- d_8 (0.5 mL) in a N₂ filled glove-box. The tube was sealed tightly with the screw cap and tapes. Then, the NMR tube having the reaction mixture was heated at 110 °C for 24 h. After completion of the reaction, ¹¹B NMR was recorded.

Figure S1. ¹¹B NMR of the reaction: a) at the start of the reaction and b) after 24 h heating of the crude reaction mixture. The asterisk indicates unidentified species generated in situ.

Reaction in the presence of TMEDA:

A 15 ml thick-wall sealed tube was charged with dimethylamine-boranes (0.25 mmol, 2.0 equiv.), amides (0.125 mmol, 1 equiv.), TMEDA (5/10 equiv.) and toluene (1 mL) in a N₂ filled glove-box. The tube was sealed tightly with the cap and tapes. Then, the reaction tube was heated at 110 °C for 24 h, and then a small aliquot was taken in the NMR tube, dissolved in

CDCl₃, and ¹¹B NMR was recorded. A broad quartet at δ –8.77 ppm was observed, which may be correlated to the formation of BH₃-TMEDA adduct.²

Figure S2. ¹¹B NMR of the crude reaction mixture using TMEDA as additive.

5. Kinetic studies:

The reduction of **1a** to **2a** under the optimized conditions was monitored kinetically (Figure S3). To start off, the formation of **3a** was observed as the major product. However, with the progress of time, slowly the yield of **2a** was increased with the simultaneous decrease of 1a. Notably, after 15 h, almost 54% of **2a** was obtained with 76% consumption of **1a**. When the reaction mixture was analyzed after 24 h, the formation of 67% of **2a** resulted, along with 23% of **3a**.

Figure S3. Reaction kinetics for the reduction of 1a to 2a.

6. Scope of amide reduction with morpholine-borane:

Herein, morpholine-borane was employed as the reducing agent instead of DMAB under the optimized reaction (Table S1).

Table S1. Substrate scope of transfer hydrogenation of amides to amines with morpholineborane.^{a,b}

^{*a*}Reaction conditions: benzamide (0.5 mmol), and morpholine borane (2 equiv.) were loaded in a thick-wall sealed tube inside the N₂-filled glove box and heated in a preheated oil-bath; ^{*b*}yield was calculated by GC-MS using mesitylene as internal standard.

7. GC chromatogram of the reaction mixture, peak reports and mass spectra of various products:

(i) GC Chromatogram of the reaction mixture of Table 3, compound 3a:

Peak Report

Peak	Retention Time (min)	Peak Area	Name
1	4.21	27975233	N,N-dimethylbenzylamine
2	3.41	44291926	Mesitylene

ESI-MS Spectra of N,N-dimethylbenzylamine

(ii) GC Chromatogram of the reaction mixture of Table 3, compound 3b:

Peak	Retention Time (min)	Peak Area	Name
1	6.52	16450648	4-methoxy-N,N- dimethylbenzylamine
2	3.41	39248180	Mesitylene

ESI-MS Spectra of 4-methoxy-N,N-dimethylbenzylamine

(iii) GC Chromatogram of the reaction mixture of Table 3, compound 3c:

Peak	Retention Time (min)	Peak Area	Name
1	5.05	15081622	4-methyl-N,N- dimethylbenzylamine
2	3.42	38632783	Mesitylene

ESI-MS Spectra of 4-methyl-N,N-dimethylbenzylamine

(iv) GC Chromatogram of the reaction mixture of Table 3, compound 3d:

Peak	Retention Time (min)	Peak Area	Name
1	6.91	67396071	4-ethoxy-N,N- dimethylbenzylamine
2	3.41	178471504	Mesitylene

ESI-MS Spectra of 4-ethoxy-N,N-dimethylbenzylamine

Peak	Retention Time (min)	Peak Area	Name
1	4.13	23363311	4-fluoro-N,N- dimethylbenzylamine
2	3.42	47012889	Mesitylene

ESI-MS Spectra of 4-fluoro-N,N-dimethylbenzylamine

(vi) GC Chromatogram of the reaction mixture of Table 3, compound 3f:

Peak Report

Peak	Retention Time (min)	Peak Area	Name
1	5.81	53708021	4-chloro-N,N- dimethylbenzylamine
2	3.42	203425639	Mesitylene

ESI-MS Spectra of 4-chloro-N,N-dimethylbenzylamine

(vii) GC Chromatogram of the reaction mixture of Table 3, compound 3g:

Peak	Retention Time (min)	Peak Area	Name
1	6.63	29040441	4-bromo-N,N- dimethylbenzylamine
2	3.42	46592324	Mesitylene

ESI-MS Spectra of 4-bromo-N,N-dimethylbenzylamine

(viii) GC Chromatogram of the reaction mixture of Table 3, compound 3h:

Peak	Retention Time (min)	Peak Area	Name
1	7.91	16466598	3-nitro-N,N- dimethylbenzylamine
2	3.42	78178739	Mesitylene

ESI-MS Spectra of 3-nitro-N,N-dimethylbenzylamine

(ix) GC Chromatogram of the reaction mixture of Table 3, compound 3i:

Peak	Retention Time (min)	Peak Area	Name
1	6.54	46321725	2-bromo-N,N- dimethylbenzylamine
2	3.41	154347569	Mesitylene

ESI-MS Spectra of 2-bromo-N,N-dimethylbenzylamine

8. ¹H and ¹³C NMR spectra of the isolated products:

Phenylmethanamine hydrochloride³**:** ¹H NMR (600 MHz, DMSOd₆) δ 8.57 (s, 1H), 7.50 (d, *J* = 7.1 Hz, 2H), 7.37 (ddd, *J* = 10.9, 9.7, 5.8 Hz, 3H), 3.99 (s, 1H). ¹³C NMR (151 MHz, DMSO-d₆) δ 134.53, 129.41, 129.02, 128.86, 42.60.

(4-methoxyphenyl)methanamine hydrochloride³: ¹H NMR (600 MHz, DMSO-d₆) δ 8.52 (s, 3H), 7.44 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.2 Hz, 2H), 3.92 (s, 2H), 3.75 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆)

δ 159.78, 131.04, 126.43, 114.35, 55.66, 42.09.

p-tolylmethanamine hydrochloride³: ¹H NMR (600 MHz, DMSO-d₆) δ 8.53 (s, 3H), 7.47 (t, *J* = 9.9 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 4.06 (s, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 138.22, 131.54, 7 21 21

129.54, 129.38, 42.37, 21.21.

(4-ethoxyphenyl)methanamine hydrochloride: ¹H NMR (600 MHz, DMSO-d₆) δ 8.33 (s, 3H), 7.40 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 4.03 (q, *J* = 7.0 Hz, 2H), 3.93 (s, 2H), 1.33 (t, *J* = 7.0 Hz, 3H). ¹³C

NMR (151 MHz, DMSO-d₆) δ 159.10, 130.98, 126.28, 114.87, 63.56, 42.16, 15.05. HRMS (ESI) calcd for [M-Cl]⁺: 152.1070, found: 152.1053

(**4-fluorophenyl**)**methanamine hydrochloride**³**:** ¹H NMR (600 MHz, DMSO-d₆) δ 8.55 (s, 4H), 7.74 – 7.56 (m, 3H), 7.41 – 7.29 (m, 3H), 4.09 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 163.37, 131.79, 130.87, 115.92, 41.87.

(4-chlorophenyl)methanamine hydrochloride³: ¹H NMR (600 MHz, DMSO-d₆) δ 8.64 (s, 3H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 4.01 (s, 2H). ¹³C NMR (151 MHz, DMSO-d₆) δ 133.57, 133.5,

131.47, 128.94, 41.85.

(4-bromophenyl)methanamine hydrochloride³: ¹H NMR (600 MHz, DMSO-d₆) δ 8.62 (s, 3H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 3.99 (s, 2H). ¹³C NMR (151 MHz, DMSO-d₆) δ 134.02, 131.88,

131.77, 122.15, 41.90.

(4-(trifluoromethyl)phenyl)methanamine hydrochloride⁴: ¹H NMR (600 MHz, DMSO-d₆) δ 8.63 (s, 3H), 7.93 (dd, *J* = 21.4, 8.2 Hz, 2H), 7.83 (d, *J* = 8.1 Hz, 2H), 4.24 (s, 2H). ¹³C NMR (151 MHz, DMSO-d₆) 57 – 120 44 (w) 125 00, 42 00

 $\delta \ 139.28, \ 130.20, \ 129.57 - 129.44 \ (m), \ 125.90, \ 42.09.$

(3-methoxyphenyl)methanamine hydrochloride⁵: ¹H NMR (600 MHz, DMSO-d₆) δ 8.52 (d, J = 58.8 Hz, 3H), 7.32 (td, J = 8.0, 4.2 Hz, 1H), 7.23 – 7.12 (m, 1H), 7.08 – 7.04 (m, 1H), 6.94 (dd, J = 8.2, 2.6 Hz,

1H), 3.98 (d, J = 3.8 Hz, 2H), 3.78 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 159.80, 136.04, 130.16, 121.40, 114.95, 114.39, 55.66, 42.54.

(3-nitrophenyl)methanamine hydrochloride: ¹H NMR (600 MHz, DMSO-d₆) δ 8.68 (s, 3H), 8.45 (t, J = 1.8 Hz, 1H), 8.27 - 8.20 (m, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.75 - 7.67 (m, 1H), 4.18 (d, J = 5.3 Hz, 2H).

HRMS (ESI) calcd for [M-Cl]⁺: 153.0659, found: 153.0638.

o-tolylmethanamine hydrochloride⁶: ¹H NMR (600 MHz, DMSO-d₆) δ 8.48 (s, 3H), 7.41 (dd, J = 6.0, 2.9 Hz, 1H), 7.25 (dtd, J = 12.7, 7.4, 1.6 Hz, 3H), 3.99 (d, J = 18.1 Hz, 2H), 2.34 (s, 3H), ¹³C NMR (151 MHz, DMSO-

d₆) δ 137.13, 132.77, 130.78, 129.63, 128.95, 126.52, 19.27.

(2-bromophenyl)methanamine hydrochloride⁶: ¹H NMR (600 MHz, DMSO-d₆) δ 8.77 (s, 3H), 7.73 – 7.63 (m, 2H), 7.54 – 7.41 (m, 1H), 7.39 – 7.28 (m, 1H), 4.12 – 4.07 (m, 2H).

Thiophen-2-ylmethanamine hydrochloride³: ¹H NMR (600 MHz, NH₂ HCI DMSO-d₆) δ 8.54 (s, 3H), 7.59 (ddd, J = 30.3, 5.1, 1.2 Hz, 1H), 7.36 – 7.20 $\overline{(m, 1H)}, 7.15 - 7.02 (m, 1H), 4.20 (s, 2H).^{13}$ C NMR (151 MHz, DMSO-d₆) δ 135.77, 129.58, 127.75, 127.71, 37.12.

Hexan-1-amine hydrochloride⁴: ¹H NMR (600 MHz, DMSO-d₆) δ 8.10 (s, 3H), 2.72 (dd, J = 16.7, 9.8 Hz, 2H), 1.62 - 1.47 (m, 2H),

1.37 - 1.19 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H).¹³C NMR (151 MHz, DMSO-d₆) δ 39.16, 31.19, 27.31, 26.00, 22.35, 14.30.

N-benzyl-1-(4-methoxyphenyl)methanamine: ¹H NMR (600 MHz, DMSO-d₆) δ 9.72 (d, J = 105.1 Hz, 2H), 7.58 (d, J = 5.7 Hz, 2H), 7.50 (t, J = 10.3 Hz, 2H), 7.42 (d, J = 2.2 Hz, 3H), 7.03 – 6.94

(m, 2H), 4.08 (d, J = 17.6 Hz, 4H), 3.77 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.13, 132.46, 132.24, 130.59, 129.29, 129.04, 124.1, 114.39, 55.68, 49.65. HRMS (ESI) calcd for [M-Cl]+: 212.3155, found: 212.3149

N-benzyl-N-ethylethanamine⁴: ¹H NMR (600 MHz, D₂O) δ 7.41 – 7.31 (m, 5H), 4.17 (s, 2H), 3.05 (q, J = 7.3 Hz, 4H), 1.18 – 1.13 (m, 6H).¹³C NMR (151 MHz, D₂O) δ 130.79, 129.99, 129.37, 129.31, 55.94, 46.74, 8.03.

- 9. Copies of ¹H and ¹³C NMR spectra of the isolated products:
- (i) ¹H and ¹³C spectra of 2a:

¹H spectrum of 2a in DMSO-d₆

¹³C spectrum of 2a in DMSO-d₆

(ii) ¹H and ¹³C spectra of 2b:

¹³C spectrum of 2b in DMSO-d₆

¹³C spectrum of 2c in DMSO-d₆

(iv) ¹H and ¹³C spectra of 2d:

¹H spectrum of 2d in DMSO-d₆

(v) ¹H and ¹³C spectra of 2e:

¹³C spectrum of 2e in DMSO-d₆

(vi) ¹H and ¹³C spectra of 2f:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C spectrum of 2g in DMSO-d₆

(viii) ¹H and ¹³C spectra of 2h:

¹H spectrum of 2h in DMSO-d₆

¹³C spectrum of 2h in DMSO-d₆

(ix) ¹H and ¹³C spectra of 2i:

¹³C spectrum of 2i in DMSO-d₆

¹H spectrum of 2j in DMSO-d₆

(xi) ¹H and ¹³C spectra of 2k:

¹³C spectrum of 2k in DMSO-d₆

(xiii) ¹H and ¹³C spectra of 2m:

¹H spectrum of 2m in DMSO-d₆

¹³C spectrum of 2m in DMSO-d₆

(xiv) ¹H and ¹³C spectra of 2n:

¹H spectrum of 2n in DMSO-d₆

¹³C spectrum of 2n in DMSO-d₆

(xv) ¹H and ¹³C spectra of 2t:

¹³C spectrum of 2t in DMSO-d₆

(xvi) ¹H and ¹³C spectra of 2y:

¹³C spectrum of 2y in D₂O

- 10. Copies of ¹H NMR spectra of crude reaction mixture of secondary and tertiary amides
- (i) ¹H NMR of the reaction mixture of Table 2, compound 20':

(ii) ¹H NMR of the reaction mixture of Table 2, compound 2p':

(iii) ¹H NMR of the reaction mixture of Table 2, compound 2q':

(iv) ¹H NMR of the reaction mixture of Table 2, compound 2r':

(v) ¹H NMR of the reaction mixture of Table 2, compound 2s':

(vi) ¹H NMR of the reaction mixture of Table 2, compound 2u':

(vii) ¹H NMR of the reaction mixture of Table 2, compound 2v':

(viii) ¹H NMR of the reaction mixture of Table 2, compound 2w':

(ix)¹H NMR of the reaction mixture of Table 2, compound 2x':

11. Plausible mechanism and Computational details:

Scheme S1. Plausible reaction mechanism for the reduction of amides with DMAB.

Based on the preliminary NMR studies and previous reports⁷, a plausible mechanism is proposed in Scheme S1 (other possibilities cannot be ruled out). At the outset, DMAB

could undergo the decomposition to dimethylamine (Me₂NH) and BH₃. Following this, the activation of the carbonyl group of the less electrophilic amide moieties could take place in the presence of the Lewis acidic BH₃ via a 6-member (**A**) or a 4-member (**B**) intermediate to facilitate the hydride transfer. Notably, both processes could lead to the formation of the same intermediate (**C**), having a B–O bond. The formation of such a bond has been detected through ¹¹B NMR spectroscopy. Subsequently, intermediate **C** could lead to the formation of **E** via the iminium ion intermediate (**D**). In the last step, intermediate **D** could undergo a spontaneous reduction⁸ in the presence of DMAB to form the desired primary amine.

Additionally, we have calculated the energy associated with the amide reduction in the present protocol and found that the reaction is facile and exothermic in nature and releases 29 kcal/mole energy.

Scheme S2. Energy associated with the transformation of benzamide (1a) to benzylamine (2a).

The DFT calculations were carried out using the Gaussian 16 software package.⁹ Geometric structures were optimized by employing wB97X-D functional.¹⁰ Frequency analysis was performed to verify the minima or saddle point. The free energy reported in this study is at SMD _(toluene)/wb97X-D /def2TZVPP// SMD _(toluene)/wb97X-D /def2SVP.

BH₃

Number of imaginary frequencies : 0 Electronic energy :HF=-26.5770859Zero-point correction=0.025992 (Hartree/Particle)Thermal correction to Energy=0.028885Thermal correction to Enthalpy=0.029829Thermal correction to Gibbs Free Energy=0.008408Sum of electronic and zero-point Energies=-26.551094

S37

Sum o	of electronic	and thermal	Energies=	-26.548201	
Sum o	of electronic	and thermal	Enthalpies=	-26.547257	
Sum o	of electronic	and thermal	Free Energies=	-26.568678	
Cartes	ian Coordin	ates			
5	0.000000	0.000000	0.000000		
1	0.000000	1.205395	0.000000		
1	-1.043903	-0.602698	0.000000		
1	1.043903	-0.602698	-0.000000		

BH₂OH

Number of imaginary frequencies : 0 E	Electroni	c energy :	HF=-101.8014026
Zero-point correction=	0.03552	29 (Hartree/Pa	rticle)
Thermal correction to Energy=	0.0	38574	
Thermal correction to Enthalpy=	0.0	39519	
Thermal correction to Gibbs Free Ener	gy=	0.013341	
Sum of electronic and zero-point Energy	gies=	-101.7658	74
Sum of electronic and thermal Energie	es=	-101.76282	8
Sum of electronic and thermal Enthalp	ies=	-101.76188	34
Sum of electronic and thermal Free En	ergies=	-101.7880	061

.....

Cartesian Coordinates

5 -0.709418 0.0	31629 0.000077
-----------------	----------------

- 1 -1.376684 -0.975670 -0.000349
- 1 -1.207229 1.137380 -0.000010

8 0.627082 -0.127884 0.000048

1 1.114349 0.703219 -0.000414

1a

Number of imaginary frequencies : 0 E	Electroni	c energy :	HF=-400.5455797
Zero-point correction=	0.1291	53 (Hartree/Pa	rticle)
Thermal correction to Energy=	0.1	36570	
Thermal correction to Enthalpy=	0.1	37514	
Thermal correction to Gibbs Free Ener	gy=	0.097050	
Sum of electronic and zero-point Energy	gies=	-400.41642	27
Sum of electronic and thermal Energies	s=	-400.40900	9
Sum of electronic and thermal Enthalph	ies=	-400.40806	55
Sum of electronic and thermal Free En	ergies=	-400.4485	529

.....

Cartesian Coordinates

6	0.513714	1.205360	0.126188
6	1.904923	1.170234	0.151850
6	2.575583	-0.046536	0.021068
6	1.850097	-1.226486	-0.138804
6	0.456760	-1.192240	-0.155524
6	-0.221578	0.023794	-0.013235
1	-0.028027	2.149058	0.213329
1	2.470455	2.097157	0.270318
1	3.667594	-0.074358	0.036703
1	2.371177	-2.178863	-0.258818
1	-0.097572	-2.121534	-0.308364

6	-1.724539	0.134615	-0.037085
8	-2.281838	1.181285	-0.313117
7	-2.410517	-0.999655	0.260852
1	-1.964877	-1.798046	0.690847
1	-3.420192	-0.938553	0.308210

Me₂N=BH₂

Number of imaginary frequencies : 0 I	Electronic	energy :	HF=-160.488621
Zero-point correction=	0.10505	1 (Hartree/Pa	rticle)
Thermal correction to Energy=	0.110	0413	
Thermal correction to Enthalpy=	0.11	1358	
Thermal correction to Gibbs Free Ener	rgy=	0.077790	
Sum of electronic and zero-point Ener	gies=	-160.38357	70
Sum of electronic and thermal Energie	ès=	-160.37820	8
Sum of electronic and thermal Enthalp	oies=	-160.37726	53
Sum of electronic and thermal Free Er	ergies=	-160.4108	331

Cartesian Coordinates

.....

5	-0.000212	1.537186	0.000000
1	-0.000300	2.129032	-1.055797
1	-0.000300	2.129032	1.055797
7	0.000056	0.147351	0.000000
6	0.000056	-0.648440	1.211832
6	0.000056	-0.648440	-1.211832
1	-0.000679	0.002187	-2.095141
1	0.890843	-1.299022	-1.256673

 1
 -0.889864
 -1.300246
 -1.255933

 1
 -0.889864
 -1.300246
 1.255933

 1
 0.890843
 -1.299022
 1.256673

 1
 -0.000679
 0.002187
 2.095141

Me₂NH·BH₃

Number of imaginary frequencies : 0 E	lectron	ic energy :	HF=-161.6771859
Zero-point correction=	0.1274	77 (Hartree/Pa	rticle)
Thermal correction to Energy=	0.1	33362	
Thermal correction to Enthalpy=	0.	134306	
Thermal correction to Gibbs Free Energy	gy=	0.099568	
Sum of electronic and zero-point Energy	gies=	-161.5497	09
Sum of electronic and thermal Energies	s=	-161.54382	4
Sum of electronic and thermal Enthalpi	ies=	-161.54288	30
Sum of electronic and thermal Free End	ergies=	-161.5770	518

.....

Cartesian Coordinates

5	0.103719	-1.565308	0.000000
1	-0.371627	-2.060190	1.018716
1	1.332812	-1.586000	0.000000
1	-0.371627	-2.060190	-1.018716
7	-0.331973	-0.003429	-0.000000
1	-1.354101	-0.012118	-0.000000
6	0.103719	0.698182	-1.218331
6	0.103719	0.698182	1.218331
1	-0.291488	0.174605	2.096807

1	-0.291488	0.174605	-2.096807
1	1.200703	0.679801	-1.262062
1	-0.246645	1.741023	-1.216214
1	-0.246645	1.741023	1.216214
1	1.200703	0.679801	1.262062

2a

Number of imaginary frequencies : 0 E	Electronic	e energy :	HF=-326.5777048
Zero-point correction=	0.14742	29 (Hartree/Pa	rticle)
Thermal correction to Energy=	0.15	54494	
Thermal correction to Enthalpy=	0.1	55438	
Thermal correction to Gibbs Free Ener	gy=	0.115785	
Sum of electronic and zero-point Energy	gies=	-326.43027	76
Sum of electronic and thermal Energies	s=	-326.42321	1
Sum of electronic and thermal Enthalp	ies=	-326.42226	57
Sum of electronic and thermal Free En	ergies=	-326.4619	920

Cartesian Coordinates

.....

6	0.427878	0.267221	-0.093385
6	-0.022378	-1.056530	-0.128764
6	-1.384446	-1.346872	-0.051216
6	-2.318251	-0.317493	0.060970
6	-1.879006	1.006128	0.100114
6	-0.517071	1.293235	0.027417
1	0.716006	-1.856452	-0.213173
1	-1.718634	-2.387071	-0.079296

1	-3.383108	-0.343082	0.122217
1	-2.601586	1.820525	0.194188
1	-0.180505	2.333616	0.067406
6	1.901999	0.596904	-0.218198
1	2.118352	0.796466	-1.282534
1	2.088360	1.554108	0.310003
7	2.755987	-0.495235	0.210286
1	3.730229	-0.283271	0.008221
1	2.688631	-0.621753	1.219333

0 545000 0 100017

2 205100

12. References:

- 1. P. V. Ramachandran, H. J. Hamann, S. Choudhary, Org. Lett., 2020, 22, 8593-8597.
- (a) A. D. Bage, K. Nicholson, T. A. Hunt, T. Langer and S. P. Thomas, ACS Catal. 2020, 10, 13479–13486; (b) A. D. Bage, T. A. Hunt and S. P. Thomas, Org. Lett. 2020, 22, 4107–4112.
- H. S. Das, S. Das, K. Dey, B. Singh, R. K. Haridasan, A. Das, J. Ahmed and Mandal, S.K., *Chem. Commun.*, 2019, 55, 11868-11871.
- 4. P. Pandey and J. K. Bera, Chem. Commun., 2021, 57, 9204–9207.
- 5. K. Sarkar, K. Das, A. Kundu, D. Adhikari and B. Maji, ACS Catal., 2021, 11, 2786-2794.
- S. F. Hou, J. Y. Chen, M. Xue, M. Jia, X. Zhai, R. Z. Liao, C. H. Tung, C.H. and Wang, ACS Catal., 2020, 10, 380-390.
- 7. (a) S. Kumawat, S. Dey and K. Natte, J. Org. Chem. 2024, 89, 10719-10728; (b) M. T. Nguyen, V. S. Nguyen, M. H. Matus, G. Gopakumar and D. A. Dixon, J. Phys. Chem. A, 2007, 111, 679-690; (c) C. A. Morrison and M. M. Siddick, Angew.Chem., Int. Ed., 2004, 43, 4780-4782; (d) A. D. Bage, K. Nicholson, T. A. Hunt, T. Langer and S. P. Thomas, ACS Catal., 2020, 10, 13479-13486.
- (a) X. Yang, L. Zhao, T. Fox, Z. Wang and H. Berke, *Angew Chem. Int. Ed.*, 2010, 49, 2058-2062; (b) D. Chowdhury, R. Sutradhar, A. Paul and A. Mukherjee, *Chem.-Eur. J.*, 2024, 30, e202400942; (c) D. Chowdhury, K. Gupta, R. K. Gamidi, G. Jindal, and A. Mukherjee, *ACS Catal.*, 2024, 14, 15777-15789.

- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 10. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.