Visible-light-induced cascade chromone cyclization/chalcogenation to access 3-chalcogenyl-chromones using elemental sulfur/selenium

Tao Guo,^a Chuanhu Gao,^a Zhonghui Li,^a Penghua Hu,^a Huan Chen,^b Shulei Han,*^b Yunhui Zhao,*^c and Congjun Zhu*^a

^a School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.

^b China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco

Biological Effects, Zhengzhou, 450001, China

^c School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China

Supplementary Information

Table of Content

1 General experimental	2
2 The reaction equipment of visible light catalysis	2
3 Optimization of the reaction conditions	2
4 General procedure for the synthesis of 3-chalcogenyl-chromones 3 and 5	4
5 Copies of ¹ H and ¹³ C NMR Spectra	20

1 General experimental

Unless otherwise mentioned, all materials were commercially obtained and used without further purification. Enaminones (1)¹ were synthesized according to previously described methods. The ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded at 500 MHz, 126 MHz, 471 MHz, respectively, on a Bruker AM500 MHz with chemical shift values in ppm relative to TMS (δ H 0.00 and δ C 0.0) as internal standard. The coupling constants *J*, are reported in Hertz (Hz). All melting points were determined on a SGW X-4A melting point instrument without correction. High-resolution mass spectra (HRMS) were recorded on Q-Exactive plus Orbitrap (ESI) or HP-5989A instrument.. Infrared spectra (IR) were recorded on Spectrum TWO. Reactions were monitored by thin layer chromatography (TLC), on glass plates coated with silica gel with Fluorescent indicator (Huanghai, HSGF254) and visualized with UV light at 254 nm. Flash chromatography was performed on silica gel (Huanghai, 300-400) using petroleum ether (PE)-ethyl acetate (EA) as eluent.

2 The reaction equipment of visible light catalysis

We use RLH-18 8-position Photo Reaction System, which manufactured by Beiing Rogertech Co.ltd base in Beiing PRC. This Photo reactor we used have equipped 8 bule light 10W LED. This blue light 10 WLED's energy peak wavelength is 454.9 nm, peak width at half-height is 22.9 nm, lirradiance@10 W is 172 mW/cm². Irradiation vessel is borosilicate glass test tube, LED irradiate through a high-reflection channel to the test tube, path length is 2 cm. No filter between LED and test tube.

3 Optimization of the reaction conditions

Table S1. Optimization of the sulfenylation conditions^a

Entry	Catalyst (10 mol%)	Oxidant (2 equiv.)	Base (equiv.	Solvent (mL)	Yield ^b (%)
1	CuI	KIO ₃	$Cs_2CO_3(3)$	DMF (1)	40
2	CuI	KIO ₃	^{<i>t</i>} BuOK (3)	DMF (1)	61
3	CuI	KIO ₃	$K_2CO_3(3)$	DMF (1)	48
4	CuI	KIO ₃	KOH (3)	DMF (1)	65
5	CuI	KIO ₃	KOH (2)	DMF (1)	56
6	CuI	KIO ₃	KOH (3)	DMSO(1)	61
7	CuI	KIO ₃	KOH (3)	DCM (1)	0
8	CuI	KIO ₃	KOH (3)	NMP (1)	74

9	CuI	KIO ₃	KOH (3)	CH ₃ CN (1)	65
10	CuI	KIO ₃	KOH (3)	H ₂ O (1)	0
11		KIO ₃	KOH (3)	NMP (1)	0
12	CuI		KOH (3)	NMP (1)	Trace
13	Cu(OAc) ₂	KIO ₃	KOH (3)	NMP (1)	52
14	CuBr ₂	KIO ₃	KOH (3)	NMP (1)	64
15	Cu ₂ S	KIO ₃	KOH (3)	NMP (1)	83
16	CuBr	KIO ₃	KOH (3)	NMP (1)	53
17	CuCl	KIO ₃	KOH (3)	NMP (1)	47
18	FeCl ₃	KIO ₃	KOH (3)	NMP (1)	0
19	CoCl ₂	KIO ₃	KOH (3)	NMP (1)	0
20	Cu ₂ S	KMnO ₄	KOH (3)	NMP (1)	59
21	Cu ₂ S	TBHP	KOH (3)	NMP (1)	51
22	Cu ₂ S	KIO ₃	KOH (3)	NMP (2)	76
23	Cu ₂ S	KIO ₃	KOH (3)	NMP (0.5)	62
24°	Cu ₂ S	KIO ₃	KOH (3)	NMP (1)	Trace
25 ^d	Cu ₂ S	KIO ₃	KOH (3)	NMP (1)	43
26 ^e	Cu ₂ S	KIO ₃	KOH (3)	NMP (1)	68

^{*a*} Reaction conditions: **1a** (0.2 mmol), S₈ (0.6 mmol), **2a** (0.6 mmol), catatlyst (0.1 equiv.), oxidant (2 equiv.), base, solvent (1 mL), N₂ atmosphere, Blue LEDs (10 W, λ max = 455 nm), 24 h. ^{*b*} Isolated yield. ^{*c*} Under air. ^{*d*} Under O₂. ^{*c*} KIO₃ (1.2 equiv.) was used.

Table S2. Optimization of the selenation conditions^a

Entry	Catalyst (10 mol%)	Yield ^b (%)
1	Cu(OAc) ₂	trace
2	CuBr ₂	32
3	Cu ₂ S	70
4	CuI	75
5	CuBr	45
6	CuCl	29

^{*a*} Reaction conditions: **1a** (0.2 mmol), Se (0.6 mmol), **2a** (0.6 mmol), catatlyst (0.1 equiv.), KIO₃ (2 equiv.), KOH (3 equiv.), NMP (1 mL), N₂ atmosphere, Blue LEDs (10 W, λ max = 455 nm), 24 h. ^{*b*} Isolated yield.

4 General procedure for the synthesis of 3-chalcogenyl-chromones 3

and 5

Under nitrogen, 1 mL NMP, 1 (0.2 mmol), 2 or 4 (0.6 mmol), S_8 (0.6 mmol, 19.2 mg)/Cu₂S (0.02 mmol, 3.2 mg) or Se (0.6 mmol, 47.3 mg)/CuI (0.02 mmol, 3.8 mg), KOH (0.6 mmol, 33.7 mg), and KIO₃ (0.4 mmol, 85.6 mg) were added into the dry thick-walled glass pressure tube. The mixture was stirred at room temperature under 10W blue LEDS. After the reaction was complete, the mixture was diluted with 20 mL ethyl acetate and washed with 10 mL H₂O. The aqueous layer was extracted twice with ethyl acetate (5 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by flash column chromatography (silica gel, PE–EA) to afford the desired products **3** and **5**.

3-(phenylthio)-4H-chromen-4-one²

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (42.0 mg, 83% yield); mp 103-104 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.14 (s, 1H), 7.70 – 7.67 (m, 1H), 7.47 – 7.39 (m, 4H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 157.5, 156.4, 134.1, 129.9, 129.3, 127.2, 126.5, 125.8, 123.7, 120.0, 118.3.

IR (KBr) 2922, 1643, 1609, 1458, 1305, 1083, 763, 732, 686 cm⁻¹.

HRMS for C₁₅H₁₁O₂S⁺(M⁺+H): calcd. 255.04743, found 255.04776.

3-(phenylselanyl)-4H-chromen-4-one³

Purified by flash chromatograph column (PE : EtOAc =10 : 1).

Yellow solid (45.3 mg, 75% yield); mp 69-70 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.22 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 1H), 7.67 – 7.63 (m, 1H), 7.60 – 7.58 (m, 2H), 7.42 – 7.38 (m, 2H), 7.30 – 7.27 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 156.4, 155.8, 133.9, 133.9, 129.6, 128.2, 126.3, 125.6, 123.2, 118.1, 117.9.

IR (KBr) 2921, 1609, 1461, 1308, 1067, 876, 755, 688 cm⁻¹.

3-((4-chlorophenyl)thio)-4H-chromen-4-one²

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (48.7 mg, 85% yield), mp164-166 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 – 8.22 (m, 2H), 7.72 – 7.69 (m, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.23 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.1, 158.0, 156.5, 134.3, 133.2, 132.9, 131.0, 129.4, 126.6, 126.0, 123.8, 119.3, 118.3.

IR (KBr) 3050, 1636, 1464, 1311, 1087, 756 cm⁻¹.

HRMS for C₁₅H₁₀ClO₂S⁺(M⁺+H): calcd.289.00845, found 289.00894.

3-((3-bromophenyl)thio)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (52.9 mg, 80% yield); mp 118-120 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.27 (s, 1H), 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.73 – 7.69 (m, 1H), 7.50 – 7.48 (m, 1H), 7.46 – 7.42 (m, 2H), 7.31 – 7.27 (m, 2H), 7.11 (dd, *J* = 8.0, 1.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 174.9, 158.7, 156.4, 136.9, 134.3, 131.3, 130.4, 129.9, 127.5, 126.5, 126.0, 123.8, 123.0, 118.4, 118.3.

IR (KBr) 2922, 1655, 1607, 1558, 1456, 1305, 1080, 764 cm⁻¹.

HRMS for C₁₅H₁₀BrO₂S⁺(M⁺+H): calcd.332.95794, found 332.95856.

3-((4-fluorophenyl)thio)-4H-chromen-4-one⁶

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (46.1 mg, 85% yield); mp134-135 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.14 (s, 1H), 7.70 – 7.67 (m, 1H), 7.47 – 7.41 (m, 4H), 7.01 – 6.97 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 162.4 (d, ¹*J*_{C-F} = 246.3 Hz), 157.1, 156.4, 134.2, 132.9 (d, ³*J*_{C-F} = 8.3 Hz), 128.9 (d, ⁴*J*_{C-F} = 3.3 Hz), 126.5, 125.9, 123.7, 120.6, 118.3, 116.4 (d, ²*J*_{C-F} = 22.5 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -114.0.

IR (KBr) 2906, 1635, 1489, 1216, 1085, 756, 625 cm⁻¹.

HRMS for C₁₅H₁₀FO₂S⁺(M⁺+H): calcd.273.03801, found 273.03760.

3-((4-fluorophenyl)selanyl)-4H-chromen-4-one⁵ Purified by flash chromatograph column (PE : EtOAc = 10 : 1). colorless oil (40.4 mg, 63% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.23 (dd, J = 8.0, 1.0 Hz, 1H), 7.90 (s, 1H), 7.69 – 7.61 (m, 3H), 7.42 (t, J = 8.5 Hz, 2H), 7.02 – 6.99 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.3, 163.1 (d, ¹*J*_{C-F} = 246.4 Hz), 156.5, 155.7, 136.5 (d, ³*J*_{C-F} = 7.9 Hz), 134.0, 126.4, 125.7, 123.2, 122.6 (d, ⁴*J*_{C-F} = 3.4 Hz), 118.2, 118.1, 116.8 (d, ²*J*_{C-F} = 21.4 Hz). IR (KBr) 2972, 1631, 1462, 1214, 1047, 755 cm⁻¹.

HRMS for C₁₅H₁₀FO₂Se⁺(M⁺+H): calcd. 320.98246, found 320.98242.

3-((4-(trifluoromethyl)phenyl)thio)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (40.5 mg, 63% yield); mp165-166 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.29 (s, 1H), 8.18 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.68 – 7.65 (m, 1H), 7.46 – 7.38 (m, 4H), 7.30 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 174.9, 159.5, 156.5, 140.2, 134.5, 128.4 (q, *J* = 32.9 Hz), 127.7, 126.6, 126.2, 125.9 (q, *J* = 3.5 Hz), 124.1 (q, *J* = 272.7 Hz), 123.9, 118.4, 117.4.

¹⁹F NMR (471 MHz, CDCl₃) δ -62.5.

IR (KBr) 2920, 1643, 1463, 1324, 1105, 822, 753 cm⁻¹.

HRMS for C₁₆H₁₀F₃O₂S ⁺(M⁺+H): calcd. 323.03481, found 323.03473.

3-(p-tolylthio)-4H-chromen-4-one²

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (47.9 mg, 89% yield); mp 106-108 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.23 (d, *J* = 8.0 Hz, 1H), 8.03 (s, 1H), 7.68- 7.65 (m, 1H), 7.45 – 7.39 (m, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 156.4, 137.7, 134.0, 131.1, 130.1, 129.9, 126.4, 125.7, 123.6, 121.2, 118.2, 21.2.

IR (KBr) 2921, 1644, 1555, 1462, 1305, 1080, 755 cm⁻¹.

HRMS for C₁₆H₁₃O₂S⁺(M⁺+H): calcd. 269.06308, found 269.06351.

3-(p-tolylselanyl)-4H-chromen-4-one⁴

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (46.6 mg, 74% yield); mp 90-92 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.22 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.77 (s, 1H), 7.64 (td, *J* = 8.0, 1.5 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.38 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.4, 156.5, 155.0, 138.6, 134.8, 133.9, 130.6, 126.4, 125.6, 124.0, 123.2, 118.7, 118.1, 21.3.

IR (KBr) 2921, 2852, 1655, 1455, 1303, 1080, 765, 685 cm⁻¹.

HRMS for C₁₆H₁₃O₂Se⁺(M⁺+H): calcd. 317.00753, found 317.00748.

3-(m-tolylthio)-4H-chromen-4-one7

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (38.6 mg, 72% yield); mp 109-111 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.23 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.11 (s, 1H), 7.69 – 7.66 (m, 1H), 7.46 – 7.40 (m, 2H), 7.22 – 7.14 (m, 3H), 7.02 (d, *J* = 7.0 Hz, 1H), 2.29 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 157.2, 156.4, 139.2, 134.0, 133.7, 130.7, 129.1, 128.2, 127.2, 126.5, 125.8, 123.8, 120.3, 118.2, 21.4.

IR (KBr) 2920, 2359, 1655, 1606, 1457, 1304, 1113, 763, 685 cm⁻¹.

HRMS for $C_{16}H_{13}O_2S^+(M^++H)$: calcd. 269.06308, found 269.06317.

3-((4-methoxyphenyl)thio)-4H-chromen-4-one⁶

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (45.8 mg, 81% yield); mp 108-110 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.21 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.89 (s, 1H), 7.66 – 7.63 (m, 1H), 7.47 (d, *J* = 9.0 Hz, 2H), 7.42 – 7.37 (m, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 3.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.1, 159.9, 156.3, 155.0, 134.3, 133.8, 126.3, 125.5, 123.4, 123.1, 122.6, 118.1, 115.0, 55.4.

IR (KBr) 2957, 2923, 1647, 1491, 1462, 1243, 825, 755 cm⁻¹.

HRMS for C₁₆H₁₃O₃S⁺(M⁺+H): calcd. 285.05799, found 285.05792.

3-(thiophen-2-ylthio)-4H-chromen-4-one7

Purified by flash chromatograph column (PE : EtOAc = 3 : 1).

Yellow solid (34.5 mg, 66% yield); mp 82-84 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.25 – 8.23 (m, 1H), 7.87 (s, 1H), 7.68 – 7.65 (m, 1H), 7.43 – 7.40 (m, 3H), 7.36 (d, *J* = 3.0 Hz, 1H), 7.03 – 7.02 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 174.9, 156.3, 154.6, 135.9, 134.0, 131.2, 130.1, 128.0, 126.3, 125.7, 123.4, 123.2, 118.2.

IR (KBr) 2920, 1643, 1461, 1344, 1211, 754, 692 cm⁻¹.

HRMS for $C_{13}H_9O_2S_2^+(M^++H)$: calcd. 261.00385, found 261.00388.

3-(naphthalen-1-ylselanyl)-4H-chromen-4-one7

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (48.7 mg, 69% yield); mp 79-80 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.39 (d, *J* = 8.0 Hz, 1H), 8.23 (dd, *J* = 9.0, 1.5 Hz, 1H), 7.95 (dd, *J* = 7.0, 0.5 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.63 – 7.59 (m, 1H), 7.56 – 7.50 (m, 2H), 7.42 – 7.37 (m, 2H), 7.33 – 7.31 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.5, 156.3, 153.4, 135.4, 134.4, 134.3, 133.8, 130.3, 128.9, 127.8, 127.5, 126.7, 126.2, 126.2, 126.0, 125.5, 122.8, 118.4, 118.1.

IR (KBr) 2921, 1627, 1459, 1312, 1107, 1067, 755, 690 cm⁻¹.

HRMS for C₁₉H₁₃O₂Se⁺(M⁺+H): calcd. 353.00753, found 353.00751.

6-chloro-3-(phenylselanyl)-4H-chromen-4-one⁵

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (45.5 mg, 68% yield); mp 110-111 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 2.5 Hz, 1H), 7.74 (s, 1H), 7.52 – 7.49 (m, 3H), 7.29 (d, J = 9.0 Hz, 1H), 7.23 – 7.21 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 174.2, 155.5, 154.8, 134.3, 134.2, 131.6, 129.8, 128.5, 127.7, 125.8, 124.0, 120.0, 118.3.

IR (KBr) 2921, 1640, 1478, 1308, 1115, 1066, 741, 691 cm⁻¹.

HRMS for C₁₅H₁₀ClO₂Se⁺(M⁺+H): calcd. 336.95291, found 336.95258.

7-bromo-3-(phenylthio)-4H-chromen-4-one7

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (48.2 mg, 73% yield); mp 135-137 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.08 (d, J = 8.5 Hz, 1H), 8.04 (s, 1H), 7.65 (d, J = 1.0 Hz, 1H), 7.53 (dd, J = 8.5, 1.5 Hz, 1H), 7.40 (d, J = 7.0 Hz, 2H), 7.30 (t, J = 7.0 Hz, 2H), 7.24 (t, J = 7.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ174.4, 156.7, 156.4, 133.4, 130.5, 129.4, 129.4, 128.4, 127.9, 127.5, 122.5, 121.3, 121.1.

IR (KBr) 2921, 1645, 1600, 1417, 1117, 777, 735, 685 cm⁻¹.

HRMS for C₁₅H₁₀BrO₂S⁺(M⁺+H): calcd. 332.95794, found 332.95798.

7-bromo-3-(phenylselanyl)-4H-chromen-4-one⁵ Purified by flash chromatograph column (PE : EtOAc = 10 : 1). Yellow solid (48.7 mg, 64% yield); mp 115-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.5 Hz, 1H), 7.76 (s, 1H), 7.61 – 7.59 (m, 3H), 7.50 (dd, *J* = 9.5, 1.5 Hz, 1H), 7.31 – 7.30 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 156.5, 155.1, 134.4, 129.8, 129.3, 128.5, 128.3, 127.9, 127.6, 122.0, 121.3, 118.9.

IR (KBr) 2924, 2360, 1616, 1435, 1238, 1078, 1022, 852, 739 cm⁻¹.

HRMS for C₁₅H₁₀BrO₂Se⁺(M⁺+H): calcd. 380.90239, found 380.90204.

6-methyl-3-(phenylthio)-4H-chromen-4-one7

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (43.3 mg, 81% yield); mp 102-103 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.10 (s, 1H), 7.98 (s, 1H), 7.45 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.24 (t, *J* = 7.5 Hz, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.2, 157.5, 154.6, 135.9, 135.3, 134.3, 129.7, 129.2, 127.0, 125.7, 123.4, 119.5, 117.9, 21.0.

IR (KBr) 2920, 1639, 1558, 1478, 1307, 1122, 820, 748 cm⁻¹.

HRMS for C₁₆H₁₃O₂S⁺(M⁺+H): calcd. 269.06308, found 269.06351.

6-methyl-3-(phenylselanyl)-4H-chromen-4-one⁵

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (45.4 mg, 72% yield); mp 100-102 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.91 (s, 1H), 7.79 (s, 1H), 7.50 – 7.48 (m, 2H), 7.37 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.22 – 7.18 (m, 4H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ175.3, 156.0, 154.7, 135.7, 135.2, 133.7, 129.6, 128.5, 128.1, 125.7,

122.9, 117.9, 117.5, 21.0.

IR (KBr) 2922, 2359, 1643, 1475, 1311, 1117, 1066, 820, 742 cm⁻¹.

HRMS for C₁₆H₁₃O₂Se⁺(M⁺+H): calcd. 317.00753, found 317.00742.

7-methoxy-3-(phenylthio)-4H-chromen-4-one⁷

Purified by flash chromatograph column (PE : EtOAc = 15 : 1).

Yellow solid (45.0 mg, 79% yield); mp 103-105 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.11 (d, *J* = 9.0 Hz, 1H), 8.05 (s, 1H), 7.37 (d, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.95 (dd, *J* = 9.0, 2.0 Hz, 1H), 6.81 (d, *J* = 7.0 Hz, 1H), 3.87 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 174.4, 164.4, 158.2, 157.0, 134.4, 129.8, 129.2, 127.9, 127.1, 119.8, 117.6, 115.1, 100.4, 56.0.

IR (KBr) 2959, 1616, 1437, 1270, 1235, 1081, 831, 688 cm⁻¹.

HRMS for C₁₆H₁₃O₃S⁺(M⁺+H): calcd. 285.05799, found 285.05774.

5a

3-(methylthio)-4H-chromen-4-one²

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (28.7 mg, 75% yield); mp 87-92 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.26 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.06 (s, 1H), 7.70 – 7.66 (m, 1H), 7.47 – 7.41 (m, 2H), 2.41 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.8, 156.4, 154.1, 133.9, 126.3, 125.6, 123.3, 122.0, 118.2, 16.4.

IR (KBr) 3070, 2922, 1597, 1463, 1253, 1109, 754, 693 cm⁻¹.

HRMS for C₁₀H₉O₂S⁺(M⁺+H): calcd. 193.03178, found 193.03192.

Se 5b

3-(methylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (31.8 mg, 66% yield); mp 44-45 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.25 (d, *J* = 9.0 Hz, 1H), 8.06 (s, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 2.41 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.8, 156.4, 154.0, 133.9, 126.2, 125.6, 123.3, 122.0, 118.2, 16.4. IR (KBr) 2920, 2851, 1625, 1597, 1463, 1080, 892, 756 cm⁻¹.

HRMS for C₁₀H₉O₂Se⁺(M⁺+H): calcd.240.97623, found 240.97635.

3-(ethylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (31.4 mg, 62% yield); mp 42-43 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.19 (s, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 2.92 (q, *J* = 2.5 Hz, 2H), 1.40 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.0, 156.6, 156.5, 133.9, 126.4, 125.6, 123.3, 118.2, 114.5, 19.9, 15.5.

IR (KBr) 2958, 2922, 1610, 1502, 1308, 1069, 769, 689 cm⁻¹.

HRMS for C₁₁H₁₁O₂Se⁺(M⁺+H): calcd.254.99188, found 254.99178.

3-(propylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (36.1 mg, 67% yield); mp 41-42 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.25 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.19 (s, 1H), 7.80 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 2.89 (t, *J* = 7.5 Hz, 2H), 1.73 – 1.66 (m, 2H), 1.00 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.1, 156.5, 133.8, 126.5, 125.6, 123.4, 118.2, 114.8, 28.5, 23.5, 14.4. IR (KBr) 2924, 2869, 1607, 1554, 1461, 1342, 1058, 752 cm⁻¹.

HRMS for C₁₂H₁₃O₂Se⁺(M⁺+H): calcd. 269.00753, found 269.00766.

3-(allylselanyl)-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (41.6 mg, 78% yield); mp 56-57 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.08 (s, 1H), 7.63 – 7.59 (m, 1H), 7.39 –

7.35 (m, 2H), 5.85 – 5.76 (m, 1H), 4.86 – 4.79 (m, 2H), 3.44 (d, *J* = 7.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.9, 157.9, 156.5, 134.2, 133.9, 126.5, 125.7, 123.5, 118.2, 117.4, 114.1, 28.7.

IR (KBr) 2922, 1608, 1461, 1307, 1108, 1070, 755, 691 cm⁻¹.

HRMS for C₁₂H₁₁O₂Se⁺(M⁺+H): calcd. 266.99188, found 266.99197.

3-((2-methylallyl)selanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (40.9 mg, 73% yield); mp 59-60 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.05 (s, 1H), 7.62 – 7.59 (m, 1H), 7.38 – 7.34 (m, 2H), 4.63 (s, 1H), 4.52 (s, 1H), 3.43 (s, 2H), 1.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.7, 157.8, 156.5, 141.4, 133.8, 126.4, 125.6, 123.5, 118.2, 114.5, 114.2, 33.9, 21.1.

IR (KBr) 2922, 1608, 1459, 1305, 1059, 759, 689 cm⁻¹.

HRMS for C₁₃H₁₃O₂Se⁺(M⁺+H): calcd. 281.00753, found 281.00754.

3-(hexylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (42.5 mg, 69% yield); mp 78-80 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.17 (s, 1H), 7.69 – 7.65 (m, 1H), 7.45 – 7.40 (m, 2H), 2.88 (t, *J* = 7.5 Hz, 2H), 1.69 – 1.63 (m, 2H), 1.42 – 1.36 (m, 2H), 1.29 – 1.26 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.9, 156.4, 156.2, 133.7, 126.3, 125.5, 123.2, 118.1, 114.8, 31.3, 30.1, 29.4, 26.3, 22.6, 14.0.

IR (KBr) 2922, 2853, 1705, 1606, 1461, 1069, 751, 689 cm⁻¹.

HRMS for C₁₅H₁₉O₂Se⁺(M⁺+H): calcd. 311.05448, found 311.05444.

5h

3-(butylthio)-4H-chromen-4-one⁶

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (34.8 mg, 74% yield); mp 48-50 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.25 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.15 (s, 1H), 7.70 – 7.67 (m, 1H), 7.47 – 7.42 (m, 2H), 2.86 (t, *J* = 7.0 Hz, 2H), 1.59 – 1.53 (m, 2H), 1.46 – 1.39 (m, 2H), 0.90 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.1, 156.4, 156.1, 133.9, 126.3, 125.6, 123.5, 119.8, 118.2, 32.5, 31.5, 21.8, 13.7.

IR (KBr) 2953, 2868, 1609, 1462, 1352, 1112, 751, 691 cm⁻¹.

HRMS for C₁₃H₁₅O₂S⁺(M⁺+H): calcd. 235.07873, found 235.07903.

3-(butylselanyl)-4H-chromen-4-one8

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (37.7 mg, 67% yield); mp 50-51 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.18 (s, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 2.89 (t, *J* = 7.5 Hz, 2H), 1.68 – 1.62 (m, 2H), 1.46 – 1.38 (m, 2H), 0.90 (t, *J* = 7.5 Hz, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 176.1, 156.4, 133.9, 126.5, 125.6, 123.4, 118.2, 114.9, 36.6, 32.3, 26.1, 22.9, 13.7.

IR (KBr) 2954, 2868, 1723, 1607, 1462, 1113, 750 691 cm⁻¹.

3-(cinnamylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (44.2 mg, 65% yield); mp 82-83 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.79 (s, 1H), 7.66 – 7.63 (m, 1H), 7.44 – 7.35 (m, 4H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.38 – 6.32 (m, 1H), 3.40 (d, *J* = 7.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 177.6, 156.6, 152.8, 137.2, 133.6, 132.4, 128.6, 127.4, 126.4, 126.3, 126.0, 125.1, 123.9, 123.4, 118.2, 29.1.

IR (KBr) 2958, 2922, 1609, 1452, 1259, 1071, 745, 689 cm⁻¹.

HRMS for C₁₈H₁₅O₂Se⁺(M⁺+H): calcd. 343.02318, found 343.02252.

3-(benzylselanyl)-4H-chromen-4-one⁵

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (49.4 mg, 78% yield); mp 103-105 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.27 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.88 (s, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 7.24 – 7.15 (m, 5H), 4.11 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 176.0, 157.8, 156.5, 138.6, 133.9, 129.1, 128.6, 127.0, 126.5, 125.8, 123.5, 118.2, 114.4, 29.9.

IR (KBr) 2920, 1701, 1610, 1463, 1346, 1111, 1072, 754, 690 cm⁻¹.

HRMS for C₁₆H₁₃O₂Se⁺(M⁺+H): calcd. 317.00753, found 317.00751.

51

3-((4-methylbenzyl)selanyl)-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 5 : 1). Yellow solid (48.0 mg, 73% yield); mp 101-103 °C ¹**H NMR (500 MHz, CDCl₃)** δ 8.18 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.81 (s, 1H), 7.60 – 7.57 (m, 1H), 7.37 – 7.32 (m, 2H), 7.01 – 6.93 (m, 4H), 4.00 (s, 2H), 2.19 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.9, 157.5, 156.4, 136.6, 135.4, 133.8, 129.2, 129.0, 126.4, 125.7, 123.4, 118.2, 114.5, 29.6, 21.2.

IR (KBr) 2919, 1628, 1461, 1343, 1072, 752, 689 cm⁻¹

HRMS for C₁₇H₁₅O₂Se⁺(M⁺+H): calcd. 331.02318, found 331.02298.

3-((3-phenylpropyl)selanyl)-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 5 : 1). Yellow oil (40.1 mg, 58% yield).

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.16 (s, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.41 (m, 2H), 7.26 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.15 (m, 3H), 2.90 (t, *J* = 7.5 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.02 – 1.96 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 176.0, 156.6, 156.5, 141.4, 133.9, 128.6, 128.5, 126.5, 126.1, 125.7, 123.4, 118.2, 114.6, 35.8, 31.8, 25.7

IR (KBr) 2922, 1612, 1458, 1340, 1136, 1050, 742, 698 cm⁻¹.

HRMS for C₁₈H₁₇O₂Se⁺(M⁺+H): calcd. 345.03883, found 345.03882.

3-(isopropylthio)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (31.2 mg, 71% yield); mp 45-46 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.25 (m, 2H), 7.71 – 7.67 (m, 1H), 7.48 – 7.42 (m, 2H), 3.35 – 3.27 (m, 1H), 1.35 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 175.6, 156.4, 155.9, 134.1, 126.3, 125.8, 123.6, 123.2, 118.3, 41.8, 22.6.

IR (KBr) 2920, 2861, 1610, 1544, 1442, 1339, 1050, 748 cm⁻¹

HRMS for C₁₂H₁₃O₂S⁺(M⁺+H): calcd. 221.06308, found 221.06300.

3-(sec-butylthio)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow oil (27.3 mg, 58% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.25 (m, 2H), 7.71 – 7.68 (m, 1H), 7.48 – 7.42 (m, 2H), 3.11 – 3.05 (m, 1H), 1.80 – 1.73 (m, 1H), 1.62 – 1.54 (m, 1H), 1.35 (d, *J* = 7.5 Hz, 3H), 0.98 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.6, 156.4, 155.7, 134.1, 126.3, 125.8, 123.5, 123.2, 118.3, 48.5, 29.0, 20.0, 11.5.

IR (KBr) 2925, 1612, 1452, 1335, 1101, 1032, 744, 702 cm⁻¹.

HRMS for C₁₃H₁₅O₂S⁺(M⁺+H): calcd. 235.07873, found 235.07904.

3-((1-phenylethyl)thio)-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 10 : 1). Yellow oil (28.9 mg, 51% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.81 (s, 1H), 7.69 – 7.65 (m, 1H), 7.44 – 7.41 (m, 2H), 7.36 (d, *J* = 7.5 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.18 (t, *J* = 7.0 Hz, 1H), 4.91 (q, *J* = 7.0 Hz,

1H), 1.72 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.4, 156.2, 156.2, 141.8, 134.0, 128.6, 128.0, 127.7, 126.3, 125.7, 123.6, 122.1, 118.2, 50.6, 20.9.

IR (KBr) 2953, 2916, 1642, 1609, 1555, 1462, 755, 691 cm⁻¹.

HRMS for C₁₇H₁₅O₂S⁺(M⁺+H): calcd. 283.07873, found 283.07693.

3-(cyclohexylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow oil (33.0 mg, 54% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.24 (m, 2H), 7.70 – 7.67 (m, 1H), 7.47 – 7.42 (m, 2H), 7.46 – 3.41 (m, 1H), 2.01 – 1.99 (m, 2H), 1.74 – 1.71 (m, 2H), 1.61 – 1.59 (m, 1H), 1.52 – 1.45 (m, 2H), 1.34 – 1.24 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.3, 158.1, 156.6, 133.9, 126.6, 125.7, 123.6, 118.2, 114.2, 41.4, 34.2, 26.8, 25.8.

IR (KBr) 2924, 2848, 1610, 1453, 1342, 1214, 755, 699 cm⁻¹.

HRMS for C₁₅H₁₇O₂Se⁺(M⁺+H): calcd. 309.03883, found 309.03876.

3-(isopropylthio)-6-methyl-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (33.5 mg, 72% yield); mp 47-48 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.23 (s, 1H), 8.02 (s, 1H), 7.49 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.36 (d, *J* = 8.5 Hz, 1H), 3.35 – 3.27 (m, 1H), 2.46 (s, 3H), 1.35 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 175.7, 156.0, 154.7, 135.9, 135.3, 125.5, 123.3, 122.8, 118.0, 41.8, 22.6, 21.1.

IR (KBr) 2924, 1607, 1548, 1452, 1324, 1035, 735 cm⁻¹.

HRMS for C₁₃H₁₅O₂S⁺(M⁺+H): calcd. 235.07873, found 235.07878.

3-(isopropylthio)-7-methyl-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 10 : 1).

Yellow solid (33.4 mg, 71% yield); mp 45-46 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.15 – 8.12 (m, 2H), 7.25 – 7.23 (m, 2H), 3.58 – 3.50 (m, 1H), 2.49 (s, 3H), 1.25 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 176.3, 157.5, 156.6, 145.4, 127.2, 126.2, 121.5, 119.0, 117.9, 36.2, 23.1, 21.9.

IR (KBr) 2958, 2922, 2863, 1620, 1550, 1419, 1347, 776, 693 cm⁻¹.

HRMS for C₁₃H₁₅O₂S⁺(M⁺+H): calcd. 235.07873, found 235.07899.

3-(butylselanyl)-6-methyl-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (40.7 mg, 69% yield); mp 39-40 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 8.02 (s, 1H), 7.48 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.46 (s, 3H), 1.67 – 1.61 (m, 2H), 1.45 – 1.37 (m, 2H), 0.90 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.1, 156.4, 154.8, 135.6, 135.1, 125.7, 123.0, 117.9, 114.5, 32.3, 26.1, 22.9, 21.1, 13.7.

IR (KBr) 2955, 2868, 1615, 1480, 1307, 1068, 924, 771 cm⁻¹

HRMS for C₁₄H₁₇O₂Se⁺(M⁺+H): calcd. 297.03883, found 297.03888.

6-bromo-3-(butylselanyl)-4H-chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 20 : 1).

Yellow solid (45.8 mg, 64% yield); mp 74-76 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.28 (s, 1H), 8.09 (s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 9.0 Hz, 1H), 2.81 (t, J = 7.0 Hz, 2H), 1.60 – 1.54 (m, 2H), 1.38 – 1.30 (m, 2H), 0.83 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 156.3, 155.2, 136.8, 129.0, 124.5, 120.2, 119.0, 115.1, 32.2,

26.2, 22.9, 13.7.

IR (KBr) 2926, 2865, 1622, 1549, 1457, 1363, 1117, 1067, 893, 813 cm⁻¹.

HRMS for C₁₃H₁₄BrO₂Se⁺(M⁺+H): calcd. 360.93369, found 360.93347.

3-(butylselanyl)-6-methoxy-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 5 : 1). Yellow solid (45.6 mg, 73% yield); mp 44-46 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (s, 1H), 7.58 (d, *J* = 3.0 Hz, 1H), 7.38 (d, *J* = 9.5 Hz, 1H), 7.26 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.90 (s, 3H), 2.89 (t, *J* = 7.5 Hz, 2H), 1.68 – 1.62 (m, 2H), 1.45 – 1.38 (m, 2H), 0.90 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.9, 157.2, 156.3, 151.3, 124.0, 123.9, 119.6, 113.8, 105.3, 56.0, 32.3, 26.1, 22.9, 13.7.

IR (KBr) 2927, 2867, 1610, 1480, 1307, 1067, 825, 715 cm⁻¹.

HRMS for C₁₄H₁₇O₃Se⁺(M⁺+H): calcd. 313.03374, found 313.03357.

3-(butylselanyl)-7-methyl-4H-chromen-4-one Purified by flash chromatograph column (PE : EtOAc = 5 : 1). Yellow oil (36.5 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.11 (m, 2H), 7.24 – 7.22 (m, 2H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.48 (s, 3H), 1.67 – 1.63 (m, 2H), 1.43 – 1.39 (m, 2H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 156.6, 156.2, 145.2, 127.1, 126.2, 121.1, 117.9, 114.7, 32.3,

26.1, 22.9, 21.9, 13.7.

IR (KBr) 2955, 1641, 1609, 1550, 1462, 1306, 1112, 843, 751cm⁻¹.

HRMS for C₁₄H₁₇O₂Se⁺(M⁺+H): calcd. 297.03883, found 297.03864.

3-(butylselanyl)-4H-benzo[h]chromen-4-one

Purified by flash chromatograph column (PE : EtOAc = 5 : 1).

Yellow solid (34.3 mg, 52% yield); mp 84-85 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.47 (d, *J* = 8.5 Hz, 1H), 8.33 (s, 1H), 8.18 (d, *J* = 9.0 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.74 – 7.67 (m, 2H), 2.95 (t, *J* = 7.5 Hz, 2H), 1.72 – 1.66 (m, 2H), 1.48 – 1.41 (m, 2H), 0.92 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.9, 155.0, 154.0, 135.9, 129.6, 128.3, 127.4, 125.8, 124.1, 122.4, 121.3, 119.5, 116.8, 32.3, 25.9, 23.0, 13.7.

IR (KBr) 2922, 2853, 1720, 1462, 1354, 1080, 759, 690 cm⁻¹.

HRMS for C₁₇H₁₇O₂Se⁺(M⁺+H): calcd. 333.03883, found 333.03888.

References

1. H.-Y. Liu, J.-R. Zhang, G.-B. Huang, Y.-H. Zhou, Y.-Y. Chen, Y.-L. Xu, *Adv. Synth. Catal.* 2021, 363, 1656-1661.

2. Q. Tang, Z. Bian, W. Wu, J. Wang, P. Xie, C. U. Pittman, Jr., A. Zhou, J. Org. Chem. 2017, 82, 10617-10622.

3. J. Zhu, B. Xu, J. Yu, Y. Ren, J. Wang, P. Xie, C. U. Pittman, Jr., A. Zhou, Org. Biomol. Chem., 2018, 16, 5999-6005.

4. H.-Y. Liu, J.-R. Zhang, G.-B. Huang, Y.-H. Zhou, Y.-Y. Chen, Y.-L. Xu, *Adv. Synth. Catal.* 2021, 363, 1656-1661

5. C. Ding, Y. Yu, Q. Yu, Z. Xie, Y. Zhou, J. Zhou, G. Liang, Z. Song, *ChemCatChem*, 2018, 10, 5397-5401.

6. P. Xu, Z. Zhong, H. Huang, W. Pan, Y. Zhang, A. Zhou, *Tetrahedron*, 2022, 124, 133018.

7. T. Guo, Synthetic Commun., 2017, 47, 2053-2061

8. C. V. Doerner, J. S. S. Neto, C. R. Cabreira, S. Saba, L. P. Sandjo, J. Rafique, A. L. Braga, F. F. de Assis, *New J. Chem.*, 2023, 47, 5598–5602

5 Copies of ¹H and ¹³C NMR Spectra

¹H NMR (500 MHz, CDCl₃) of **3a**

1

¹³C NMR (126 MHz, CDCl₃) of **3a**

¹H NMR (500 MHz, CDCl₃) of **3b**

¹H NMR (500 MHz, CDCl₃) of 3c

¹H NMR (500 MHz, CDCl₃) of **3d**

¹H NMR (500 MHz, CDCl₃) of **3e**

¹³C NMR (126 MHz, CDCl₃) of **3e**

¹⁹F NMR (471 MHz, CDCl₃) of **3e**

--114.049

¹H NMR (500 MHz, $CDCl_3$) of **3f**

¹³C NMR (126 MHz, CDCl₃) of **3f**

¹H NMR (500 MHz, CDCl₃) of 3g

13 C NMR (126 MHz, CDCl₃) of **3g**

*	90 65	~	- 4 9 0 5 -
-	P- C3	- 000000-0040-4	100400 1003
- m	7 10	0 70000-00000	0.01000000 0.400
S	10 10		
	H H		
T			Y Y

-62.496

¹H NMR (500 MHz, CDCl₃) of 3h

0.0

¹³C NMR (126 MHz, CDCl₃) of **3h**

21.174

¹³C NMR (126 MHz, CDCl₃) of **3i**

172	240 12242 12	202
6.4	04000040 000	4 <u>1</u> 8
15	TT 2222333	77777
17	N N N N	Y

Se 3i

-21.300

¹H NMR (500 MHz, CDCl₃) of **3**j

¹³C NMR (126 MHz, CDCl₃) of **3**j

---21.407

¹H NMR (500 MHz, CDCl₃) of **3k**

¹³C NMR (126 MHz, CDCl₃) of **3k**

101	863 952	287 838	247 517 110 564 116 034 034	92 92	79
175.	159. 156.	134.	125. 125. 115. 115.	77.4	55, 3
1	1 51	Y	$\forall \forall \vee $	\checkmark	1

¹H NMR (500 MHz, CDCl₃) of **3**l

¹H NMR (500 MHz, CDCl₃) of **3m**

¹H NMR (500 MHz, CDCl₃) of 3n

13 C NMR (126 MHz, CDCl₃) of **3n**

20	22	26 33 33 33 33 33 33 33 33 33 33 33 33 33	000
174.	155.	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	77.4 77.1
1	12	V1111111	\vee

¹H NMR (500 MHz, CDCl₃) of **30**

¹³C NMR (126 MHz, CDCl₃) of **30**

¹H NMR (500 MHz, CDCl₃) of **3p**

¹³C NMR (126 MHz, CDCl₃) of **3p**

174. 649	156, 467 155, 117	134.368 1239.775 1239.775 1288.532 1288.532 1288.552 1288.552 1287.636 1227.636 1227.636 1227.636 1227.004 1128.848	77, 405 77, 150 76, 896
1	17	Show VI	\vee

¹H NMR (500 MHz, CDCl₃) of **3**q

¹³C NMR (126 MHz, CDCl₃) of **3**q

150	535 646	852 1657 1657 1666 1666 1666 1666 1666 1666	104 195
175.	157.	135. 134. 1119. 1119.	77.4 77.1 76.8
1		NZ X722 17	\forall

¹H NMR (500 MHz, CDCl₃) of 3r

13 C NMR (126 MHz, CDCl₃) of **3r**

727	707 7198 0881 0881 0881 0881 0881 0881 0881 0	86.05
52.5	17. 22.58.233.355	5,7,1
37	5725722252	V

O Se 3r

-21, 026

¹³C NMR (126 MHz, CDCl₃) of **3s**

174.435	164.384	158.217 157.046	134.370 134.370 129.228 129.228 127.969	119.840 117.643 115.066	100.415	77.404 77.150 76.896	55, 982
ī	ī	37	1772	777	ī	Y	Ĩ

¹H NMR (500 MHz, CDCl₃) of 5a

¹³C NMR (126 MHz, CDCl₃) of **5a**

f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of **5b**

¹³C NMR (126 MHz, CDCl₃) of **5b**

156. 386 154. 024	133, 909	126, 218 125, 581 121, 958 118, 1958 118, 1958	77, 404 77, 150 76, 895 76, 895
		17771	\vee

¹H NMR (500 MHz, CDCl₃) of **5c**

¹³C NMR (126 MHz, CDCl₃) of **5**c

. 02	. 48	. 85	. 32	. 16	. 48	90	6	20	51
-176	-156	-133	-126	-118	-114	77.7	6 	ň,	-15.
	\vee		177			\vee			1

Se Sc

¹H NMR (500 MHz, CDCl₃) of **5d**

`O´ **5d**

¹H NMR (500 MHz, CDCl₃) of **5e**

¹³C NMR (126 MHz, CDCl₃) of **5e**

-28.742

f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of **5f**

¹³C NMR (126 MHz, CDCl₃) of **5**f

f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of **5g**

¹³C NMR (126 MHz, CDCl₃) of **5g**

✓ ^{156. 385}		\sim 126.317 \sim 125.514 \sim 123.219			
-----------------------	--	--	--	--	--

¹H NMR (500 MHz, CDCl₃) of **5h**

¹³C NMR (126 MHz, CDCl₃) of **5h**

76. 088	56. 432 56. 136	33, 899	26, 329 25, 564 19, 803 18, 219 18, 219	7, 404 5, 896 6, 896	2.487 1.499	1,806	3.747
-		-		~ ~ ~ ~	CO CO	CN	-
1	\vee	1	12211	\forall	17		

¹H NMR (500 MHz, CDCl₃) of **5i**

¹³C NMR (126 MHz, CDCl₃) of **5**i

¹H NMR (500 MHz, CDCl₃) of 5j

 $<_{3,395}^{3,409}$

¹³C NMR (126 MHz, CDCl₃) of **5**j

-29, 10

¹H NMR (500 MHz, CDCl₃) of **5**k

¹³C NMR (126 MHz, CDCl₃) of **5**k

¹H NMR (500 MHz, CDCl₃) of **5**l

¹³C NMR (126 MHz, CDCl₃) of **5**l

		✓ 157, 494 ✓ 156, 403	L136.637 135.637 135.422 135.422 129.214 128.952 128.952 126.426 128.952 126.426	— 118. 170 — 114. 547	$\sum_{77.160}^{77.404}$	- 29. 636		21.177
--	--	-----------------------	---	--------------------------	--------------------------	-----------	--	--------

¹H NMR (500 MHz, CDCl₃) of **5m**

¹³C NMR (126 MHz, CDCl₃) of **5m**

Я	20 21	36	23590 ± 1520	56	μΩ		12
		-			-	66	6
ž	2 2	7	8 8 8 8 8 8 8 8 8	2	LO.		LO.
-		÷.		-	c0	CD	CN
	Y		INK	1			

¹H NMR (500 MHz, CDCl₃) of **5n**

¹³C NMR (126 MHz, CDCl₃) of **5n**

-175.63	-156.44	-134.09	-126, 33 -125, 80 -125, 80 -123, 59 -118, 31 -118, 31	-77.40 -77.15 -76.90	-41.80	-22, 58
	\mathbf{Y}			\vee		1

¹H NMR (500 MHz, CDCl₃) of **50**

¹³C NMR (126 MHz, CDCl₃) of **50**

¹H NMR (500 MHz, CDCl₃) of **5q**

¹³C NMR (126 MHz, CDCl₃) of **5q**

¹H NMR (500 MHz, CDCl₃) of **5r**

¹³C NMR (126 MHz, CDCl₃) of **5**r

\sim 155, 969 \sim 151, 711 \sim 151, 711 \sim 151, 711 \sim 153, 323 \sim 154, 711 \sim 125, 520 \sim 125, 520 \sim 128, 861 \sim 118, 032 \sim 118, 032	$ \underbrace{\leftarrow}^{77, 405}_{77, 150} $		-22,563 -21,069
--	---	--	--------------------

¹³C NMR (126 MHz, CDCl₃) of **5**s

¹H NMR (500 MHz, CDCl₃) of 5t

¹³C NMR (126 MHz, CDCl₃) of **5**t

¹H NMR (500 MHz, CDCl₃) of **5u**

13 C NMR (126 MHz, CDCl₃) of **5u**

- 174.80	~156.30 ~155.20	- 136.84	128.93 124.93 112.146 115.10	⊂77.40 −77.15 ⊂76.90	- 32.23	-26.16 -22.90	- 13.66
	17		21515	\checkmark	1		

¹H NMR (500 MHz, $CDCl_3$) of **5**v

¹³C NMR (126 MHz, CDCl₃) of **5v**

¹³C NMR (126 MHz, CDCl₃) of **5**w

	~156.218 —145.241	√ 127, 142 √ 126, 191	¹²¹ . 134 ¹²¹ . 134 ¹¹⁷ . 854 ¹¹⁷ . 696 ¹¹⁴ . 696	$\overbrace{77.16}^{77.404}$		-26.086 -22.907 -21.932	
--	----------------------	--------------------------	--	------------------------------	--	-------------------------------	--

¹H NMR (500 MHz, CDCl₃) of **5**x

¹³C NMR (126 MHz, CDCl₃) of **5**x

