Electron-donor-acceptor (EDA) complex-driven regioselective vicinal and oxidative geminal functionalization of alkynes

Dinabandhu Barik, Nikita Chakraborty, Ashish K. Sahoo, Hirendra Nath Dhara and Bhisma

K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India. E-mail: patel@iitg.ac.in

Contents:

1.	General Information	S2
2.	Light Information and Reaction Setup	S2-S3
3.	General Procedure	S3-S6
4.	Optimization of the Reaction	S6–S9
5.	Control Experiments	S9–S12
6.	General Procedures of Mechanistic Investigation	S12–S24
7.	UV-Vis Experiments	S24–S26
8.	¹ H NMR Experiments	S26-S30
9.	Unsuccessful Substrates	S30-S32
10.	Crystallographic Information	S32–S34
11.	References	S34
12.	Author contributions	S35
13.	Spectral Data	S35-S52
14.	Spectra of all Compounds	S53–S146

1. General Information:

All the reagents were commercial grade and purified according to the established procedures. All the reagents were commercial grade and used without further purification unless otherwise stated. Thiosulfonates were prepared following the literature procedure from sodium salt of sulfinates and diphenyl disulfides. All the reactions were carried out in an oven-dried 10 mL vial (see below). Reactions were monitored by thin layer chromatography (TLC) on a 0.25 mm silica gel plates (60F₂₅₄) and visualized under UV illumination at 254 nm. Organic extracts were dried over anhydrous sodium sulfate (Na₂SO₄). Column chromatography was performed to purify the crude product on silica gel 60–120 mesh using a mixture of hexane and ethyl acetate as eluent. The isolated compounds were characterized by spectroscopic [¹H, ¹³C{¹H} NMR, and IR] techniques and HRMS analysis. NMR spectra were recorded in deuterochloroform (CDCl₃) and in some cases deuterated Methanol-d₄. ¹H, ¹³C{¹H} were recorded in 500 (125) or 400 (100) MHz spectrometer and were calibrated using tetramethylsilane or residual undeuterated solvent for ¹H NMR, deuterochloroform for ¹³C NMR as an internal reference {Si(CH₃)₄: 0.00 ppm or CHCl₃: 7.260 ppm for ¹H NMR, 77.230 ppm for ¹³C NMR}. ¹⁹F NMR was calibrated without any internal standard in CDCl₃. The chemical shifts are quoted in δ units, parts per million (ppm). ¹H NMR data is represented as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), integration and coupling constant(s) J in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a mass spectrometer using electrospray ionization-time of flight (ESI-TOF) reflection experiments. FT-IR spectra were recorded in neat and reported in the frequency of absorption (cm⁻¹). All UV experiments were performed in 3 mL quartz cuvettes of path length 1 cm at 25 °C in a UV-Vis spectrometer in HPLC grade DMSO and DMF.

2. Light Information and Reaction Setup:

Philips 2 x 10 W blue LEDs (448 nm) and 2 x 10 W white LEDs (flux 46 mW/cm²) were used as the light source for this light-promoted reaction and no filter was used. Borosilicate 10 mL vial was used as the reaction vessel. The distance from the light source to the irradiation vessel was \sim 6–8 cm. Regular fan was used to ventilate the area to maintain the room temperature (27–30 °C). The reaction set-up for this photochemical reaction is shown below (Figure S1).

Figure S1. Photochemical reaction set-up

3. General Procedure:

(A) General Procedure for the Synthesis of Thiosulfonates (a-s):

Compounds (a-s) were synthesized by following the slightly modifying literature procedures.¹

(i) **Procedure for the Synthesis of Sodium sulfinates:**

An oven-dried 50 mL round bottom flask was added 4-methylbenzenesulphonyl chloride (1.90 g, 10 mmol), sodium sulfite (2.50g, 20 mmol), sodium bicarbonate (1.68 g, 20 mmol) in 10 mL H₂O and stirred at 80 °C for 4 h. After completion of the reaction (monitored by TLC analysis) water was removed by rotary evaporator. Then the remaining solid was extracted using a vacuum pump and recrystallized using ethanol to get a white solid product (Scheme S1).

Scheme S1. Synthesis of sodium sulfinate

(ii) **Procedure for the Synthesis of Thiosulfonates (a-s):**

An oven-dried 50 mL round bottom flask was added *p*-tolyl disulfide (0.49 g, 2 mmol), 4methylbenzenesulfinate (1.06 g, 6 mmol), I_2 (1.01 g, 4 mmol) in DCM (10 mL). The reaction was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with DCM (25 mL) and washed with water (10 mL), followed by 5% sodium thiosulfate (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 5% ethyl acetate in hexane to give pure thiosulfonates (**k**) (0.505 g, 91%) (Scheme S2).

Scheme S2. Synthesis of thiosulfonates

(B) Procedure for the Synthesis of 1-Phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1k):

An oven-dried 10 mL vial was added phenylacetylene (1) (0.025 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Et₃N (0.05 g, 70 μ L, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (**1k**) in 78% yield (77 mg) (Scheme S3). The identity and purity of the product were confirmed by spectroscopic analysis.

Scheme S3. Synthesis of 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1k)

(C) Large-scale Synthesis of 1-Phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k):

An oven-dried 25 mL round bottom flask was added phenylacetylene (1) (0.255 g, 270 μ L, 2.5 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (1.391 g, 5 mmol), Et₃N (0.505 g, 700 μ L, 5 mmol) in DMSO (6 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (40 mL) and washed with ice-cooled water (20 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1**k**) in 67% yield (700 mg) (Scheme S4).

Scheme S4. Large-scale synthesis of 1-phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k)

(D) Procedure for the Synthesis of (*E*)-(2-phenyl-2-tosylvinyl)(*p*-tolyl)sulfane (1k'):

An oven-dried 10 mL vial was added phenylacetylene (1) (0.025 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Cs₂CO₃ (0.16 g, 0.5 mmol), in DMF (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W white LEDs for 36 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 5% ethyl acetate in hexane to give pure (*E*)-(2-phenyl-2-tosylvinyl)(*p*-tolyl)sulfane (1k') in 80% yield (76 mg) (Scheme S5). The identity and purity of the product was confirmed by spectroscopic analysis.

Scheme S5. Synthesis of (*E*)-(2-phenyl-2-tosylvinyl)(*p*-tolyl)sulfane (1k')

(E) Large-scale Synthesis of (*E*)-(2-phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k')

An oven-dried 50 mL round bottom flask was added phenylacetylene (1) (0.255 g, 270 μ L 2.5 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (1.391 g, 5 mmol), Cs₂CO₃ (1.629 g, 5 mmol) in DMF (6 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W white LEDs for 36 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (40 mL) and washed with ice-cooled water (20 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 5% ethyl acetate in hexane to give pure (*E*)-(2-phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k') in 70% yield (665 mg) (Scheme S6). The identity and purity of the product was confirmed by spectroscopic analysis.

Scheme S6. Large-scale synthesis of (E)-(2-phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k')

4. **Optimization of the Reaction:**

To find the optimal reaction condition for the exclusive formation of **1k** and **1k'**, various reaction parameters such as solvent, base, atmospheric condition, and light sources were screened. Initially, different solvents such as DMF, DMA, DCE, CH₃CN, DCM, 1,4-dioxane, and EtOH were screened but none of them were able to improve the yield of the trifunctionalized product **1k** (Table S1, entries 1-8). Next, different organic and inorganic bases were employed and it was

observed that the use of inorganic bases such as K_2CO_3 and KOH (Table S1, entries 9 and 10) failed to give any tri- or di- functionalized product (1k or 1k'). On the other hand, organic bases such as DBU, DABCO, and DIPEA resulted in the formation of the trifunctionalized product 1k in lower yields of 29%, 34%, and 30% respectively. However, using these bases, the difunctionalized product was not formed at all or formed in a paltry amount (Table S1, entries 11-13). To our delight, the reaction when conducted using Et_3N (2 equiv) led to an increment in the yield of 1k to 61% (Table S1, entry 14). Increasing the Et₃N loading to 4 equiv had no major impact on the product yield, however, decreasing it to 1 equiv suppressed the yield to 43% (Table S1, entries 15-16). Thus, all further reactions were carried out using 2 equiv of Et₃N. Since, product 1k is an oxidative trifunctionalized product, the oxygen atmosphere might improve the product formation. To check this, a reaction was performed under an oxygen atmosphere, and as expected the yield of 1k improved to 78%. (Table S1, entry 17). To corroborate the effect of wavelength and intensity of light on the formation of 1k, the standard reaction was carried out using 2 x 10 W white (46 mW/cm²) and green (534 nm) LEDs. A comparable yield of 70% was observed using white LEDs, but the product formation dropped to 27% with green LEDs (27%) (Table S1, entries 18 and 19). Further, the reaction in the absence of light produces a trace amount of product (1k), suggesting the essential role of light in this reaction (Table S1, entry 20). Thus, the optimized condition for the formation of tri-functionalized product 1k is the use of phenylacetylene (1, 0.25 mmol) with S-(p-tolyl) 4-methylbenzenesulfonothioate (k, 2 equiv, 0.50 mmol) in the presence of Et₃N (2 equiv, 0.50 mmol) in DMSO (2 mL) under the irradiation of $2 \times$ 10 W blue LEDs for 10 h under O₂ atmosphere at room temperature (Table S1, entry 17). The surrounding temperature of the reaction set-up was maintained using a circulating fan.

In all the above conditions there was no substantial enhancement in the yield of the difunctionalized product 1k', hence, we focused on improving its yield. Since the vicinal difunctionalized product is a non-oxidative process, thus performing the reaction in an atmosphere devoid of oxygen might enhance the yield. Hence, a reaction was performed under a nitrogen atmosphere using 2 x 10 W blue LEDs and prolonging the reaction time to 36 h due to unconsume of starting material. This improved the yield of 1k' to 44%, simultaneously suppressing the formation of oxidative trifunctionalized product 1k (Table S1, entry 21). As observed from entry 2, the vicinal difunctionalized product 1k' was obtained in a comparatively better yield using Cs_2CO_3 , hence the reaction was repeated using the same in an atmosphere of

nitrogen. As expected, the product yield improved to 52% (Table S1, entry 22). Next, for improving the yield, a reaction was performed using white LEDs instead of blue LEDs keeping all other parameters the same giving a better yield of 64% (Table S1, entry 23). Further, switching the solvent to DMF, significantly improved the yield of **1k'** to 80% (Table S1, entry 24). Further, a reaction in the absence of light gives a trace amount of product (**1k'**), suggesting the necessity of light in this protocol (Table S1, entry 25). Thus, the optimal condition for the di-functionalized product (**1k'**) is the use of phenylacetylene (**1**, 0.25 mmol) with S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**, 2 equiv, 0.50 mmol), Cs₂CO₃ (2 equiv, 0.50 mmol) in DMF (2 mL) under the irradiation of 2×10 W white LEDs for 36 h under N₂ atmosphere (Table S1, entry 24).

Entry	Solvent	Base (equiv)	Atmosphere	Yield (%) 1k/1k'
1	DMSO	$Cs_2CO_3(2)$	Open-air	37/21
2	DMF	$Cs_2CO_3(2)$	Open-air	27/24
3	DMA	$Cs_2CO_3(2)$	Open-air	23/15
4	DCE	$Cs_2CO_3(2)$	Open-air	N.D/N.D
5	CH ₃ CN	$Cs_2CO_3(2)$	Open-air	N.D/N.D
6	DCM	$Cs_2CO_3(2)$	Open-air	trace/trace
7	1,4-dioxane	$Cs_2CO_3(2)$	Open-air	N.D/N.D
8	Ethanol	$Cs_2CO_3(2)$	Open-air	N.D/N.D
9	DMSO	$K_{2}CO_{3}(2)$	Open-air	trace/15
10	DMSO	KOH (2)	Open-air	16/trace
11	DMSO	DBU (2)	Open-air	29/N.D
12	DMSO	DABCO (2)	Open-air	34/N.D
13	DMSO	DIPEA (2)	Open-air	30/12

14	DMSO	Et ₃ N (2)	Open-air	61/17
15	DMSO	Et ₃ N (4)	Open-air	64/19
16	DMSO	Et ₃ N (1)	Open-air	43/14
17	DMSO	Et ₃ N (2)	Oxygen	78/11
18 ^c	DMSO	Et ₃ N (2)	Oxygen	70/18
19 ^d	DMSO	Et ₃ N (2)	Oxygen	27/trace
20 ^e	DMSO	Et ₃ N (2)	Oxygen	trace/trace
21 ^f	DMSO	Et ₃ N (2)	Nitrogen	N.D/44
22 ^f	DMSO	$Cs_2CO_3(2)$	Nitrogen	N.D/52
23 ^{c,f}	DMSO	$Cs_2CO_3(2)$	Nitrogen	N.D/64
24 <i>c,f</i>	DMF	$\mathbf{Cs_2CO_3}(2)$	Nitrogen	N.D/80
25 ^{<i>e</i>,<i>f</i>}	DMF	$Cs_2CO_3(2)$	Nitrogen	N.D/trace

^{*a*}Reaction Conditions unless specified otherwise: **1** (0.25 mmol), **k** (0.5 mmol), base (2 equiv), solvent (2 mL) in 2 x 10 W blue LEDs for 10 h. ^{*b*}Isolated yield, ^{*c*}(2 x 10 W) white LEDs, ^{*d*}(2 x 10 W) green LEDs, ^{*e*}reaction in dark, ^{*f*}reaction for 36 h, N.D. = not detected.

5. Control Experiments:

(A) Control Experiments for Tri-functionalization of Alkyne:

To gain insight into the mechanistic steps involved in this photoinduced strategy, various control experiments were conducted taking phenylacetylene (1) and thiosulfonate (\mathbf{k}) as the reacting partners. Initially, we sought to investigate a plausible mechanism for the formation of trifunctionalized product 1 \mathbf{k} . The reactions when performed in the presence of radical scavengers, such as TEMPO, BHT, and 1,1'-diphenylethylene, keeping other reaction conditions fixed, suppressed the formation of product (1 \mathbf{k}), indicating the radical nature of the reaction. Further, a TEMPO-trapped tosyl radical adduct (\mathbf{P}) has been detected by the HRMS analysis of the reaction aliquots, suggesting the involvement of tosyl radical [Scheme S7(i) and Figure S2]. Next, to ascertain the source of the carbonyl oxygen (moisture or atmospheric oxygen), a reaction was performed using H₂O¹⁸ (2 equiv) under standard conditions. From the HRMS and ¹³C NMR analysis, no ¹⁸O-labelled product (1 \mathbf{k}) could be detected, confirming the non-involvement of

moisture in the reaction [Scheme S7(ii) and Figure S4 and S5]. Further, suppression of the product under N_2 atmosphere indorses atmospheric O_2 as the source of the carbonyl oxygen.

Scheme S7 Control experiments for trifunctionalization of alkyne

A retrosynthetic analysis of the product (1k) suggests β -keto sulfone (K) as one of the possible intermediates, the formation of which has also been observed by the HRMS analysis of the reaction aliquot (Figure S6). To ascertain the intermediacy of β -keto sulfone (K), a reaction between presynthesized (K) and thiosulfonate (k) was performed under standard condition. The trifunctionalized product (1k) was formed in an improved yield of 95%, supporting its intermediacy [Scheme S7(iii)a]. The enhanced yield of the product is due to the facile generation

of the β -keto sulfonate anion which attacks the S–S bond of thiosulfonate **k** displacing the better leaving tosyl anion and introducing the thiyl functionality at the germinal position. Now the question arises whether the thiyl functionality originates only from the thiosulfonate (**k**) or there is some contribution from the *in situ* generated disulphide (**E'**)?

To ascertain the participation of disulphide **E'**, β -keto sulfone (**K**) was treated with *p*tolyldiphenyl disulfide (**E'**) under the reaction condition (blue light irradiation) and the trifunctionalized product (**1k**) was isolated in a comparatively lower yield of 65% [Scheme S7(iii)b]. This suggests that in addition to thiosulfonate (**k**), the *in situ* generated disulfide (**E'**) also serves as the thiyl source. The lower yield of the product is due to the poor leaving ability of the thiolate compared to sulfonate (tosyl) during nucleophilic attack of β -keto sulfonate anion. Moreover, the same reaction proceeded with equal efficiency when performed in the absence of light (dark) suggesting the non-radical nature of this step [Scheme S7(iii)b]. Further, in another competitive reaction between (**1**) and an equimolar amount of thiosulfonate (**k**) and disulphide (**I'**) provided a mixture of (**1k**, 40%) and (**1l**, 25%), reconfirming the origin of thiol functionality from both the sources [Scheme S7(iii)c].

To gain further insight into the mechanism, UV-Vis spectroscopic measurements were performed using various combinations of phenylacetylene (1), thiosulfonate (k), and Et₃N in DMSO. No absorption band was observed individually for the reaction components (1), (k) and Et_3N in the visible region. However, when (k) was mixed with an equimolar amount of Et_3N , the mixture turned light yellow and showed a bathochromic shift in the visible region (Figures S9a and S9b). Upon the addition of phenylacetylene (1), the mixture turns to a light brown colour showing absorption in the visible region, indicating the progress of the reaction (Figures S9a and S9b). To further confirm the EDA complexation between thiosulfonate and Et_3N , a ¹H NMR titration experiment conducted between S-(4-methoxyphenyl)-4was methylbenzenesulfonothioate (I) with increasing concentrations of Et₃N. The chemical shift of the -OMe group of thiosulfonate (I) gradually shifted upfield with increasing ratios of Et₃N. This upfield shift of the -OMe group is due to the enhanced electron density on the thiosulfonate owing to EDA complexation with the base (Figure S11 and S12).

(B) Control Experiments for Di-functionalization of Alkyne:

To decipher the mechanism of the di-functionalized product (1k'), reactions were performed in the presence of radical scavengers, such as TEMPO, BHT, and 1,1-

diphenylethylene, under standard reaction condition. In all the cases, the formation of the product was drastically suppressed indicating the radical pathway. Further, a TEMPO-trapped thiyl radical adduct (Q) was detected by the HRMS analysis of the reaction mixtures (Figure S3), suggesting the involvement of this radical (Scheme 8 i). After the attack of the this radical onto the alkyne, a vinylic radical is generated. This vinyl radical may undergo cross-coupling with the other radical partner (tosyl) or it may oxidize to a vinylic carbocation which is attacked by the nucleophilic tosylate anion. To check whether the reaction proceeds via the formation of a vinylic radical or a vinylic carbocation, a reaction was performed between (1), thiosulfonate (k), and sodium salt of substituted sulfinate $(\mathbf{r'})$. The formation of a mixture of difunctionalized product having tolyl (1a', 38%) and p-trifluoro (1t', 33%) supports the intermediacy of vinyl carbocation (Scheme 8 ii). Here also the formation of EDA complex between thiosulfonate (k) and Cs₂CO₃ has been confirmed by UV-Vis spectroscopy. Appearance of a distinct yellow color having an absorption at 470 nm is consonant with the formation of an EDA complex between the thiosulfonate (k) and Cs_2CO_3 (Figure S10a and S10b). Here again, in a ¹H NMR titration of S-(4methoxyphenyl)-4-methylbenzenesulfonothioate (I) and various concentrations of Cs₂CO₃, the chemical shift of the –Me group of (I), distinctly moved upfield with increasing ratios of Cs_2CO_3 . This shift is due to increase in the electron density, confirming the formation of an EDA complex (Figure S13 and S14).

Scheme 8 Control experiments for vicinal difunctionalization strategy

6. General Procedures of Mechanistic Investigation:

(A) Radical-trapping Experiments with TEMPO or BHT or 1,1-DPE for Trifunctionalization: Three sets of oven-dried 10 mL vials were added phenylacetylene (1) (0.025 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g 0.5 mmol), Et₃N (0.05 g, 70 μ L, 0.5 mmol). To each of these three sets, a radical scavenger (i) (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (0.07 g, 2 equiv, 0.5 mmol), or (ii) BHT (0.11 g, 2 equiv, 0.5 mmol), or (iii) 1,1-diphenylethylene (DPE) (0.09 g, 2 equiv, 0.5 mmol) in DMSO (2 mL) under oxygen atmosphere. The three reaction mixtures were stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h.

In the case of TEMPO, the reaction failed to give the product (1k) which was monitored by TLC analysis. However, the reaction in the presence of BHT gave a trace amount of the product (1k) which was also monitored by TLC analysis. Whereas, in the presence of 1,1-DPE, after completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give 18% (17mg) of pure 1-phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k). These results suggest that the reaction goes through a radical pathway (Scheme S9).

In another set of identical reaction in the presence of TEMPO, the formation of TEMPOtosyl adduct (**P**) was monitored. Each time (10 μ L) of reaction aliquot was taken at a time interval of 30 minutes and subjected to HRMS analysis. A TEMPO-tosyl adduct (**P**) was detected through HRMS after 2 h, which is given in Figure S2.

Scheme S9. Reaction in the presence of radical scavengers

Figure S2. HRMS of TEMPO-tosyl adduct (P)

(B) Radical-trapping Experiments with TEMPO or BHT or 1,1-DPE for Difunctionalization:

Three sets of oven-dried 10 mL vials were added phenylacetylene (1) (0.025 g, 27 μ L 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Cs₂CO₃ (0.16 g, 0.5 mmol). To each of this three sets, a radical scavenger (i) (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (0.07 g, 2 equiv, 0.5 mmol), or (ii) BHT (0.11 g, 2 equiv, 0.5 mmol), or (iii) 1,1-diphenylethylene (DPE) (0.09 g, 2 equiv, 0.5 mmol) in DMF (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W white LEDs for 36 h.

After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using

5% ethyl acetate in hexane to give 15% (14 mg) for TEMPO, 10% (10 mg) for BHT, and 14% (13 mg) for 1,1-DPE of pure (*E*)-(2-phenyl-2-tosylvinyl)(*p*-tolyl)sulfane (1k'). These results suggest that the reaction followed a radical mechanism (Scheme S10).

In another set of identical reaction in the presence of TEMPO, the formation of TEMPOthio adduct (**Q**) was monitored. Each time (10 μ L) of reaction aliquot were withdrawn at a time interval of 1 h and subjected to HRMS analysis. A TEMPO-thio adduct (**Q**) was detected at 5 h through HRMS which is given in Figure S3.

Scheme S10	Reaction	in the	presence of	f radical	scavengers
------------	----------	--------	-------------	-----------	------------

Figure S3. HRMS of TEMPO-thio adduct (Q)

(C) Procedure for Investigation of Origin of Oxygen in Keto Functionality

(i) H_2O^{18} Labelling Experiment:

An oven-dried 10 mL vial was added with phenylacetylene (1) (0.02 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g 0.5 mmol), Et₃N (0.05 g, 70 μ L, 0.5 mmol), H₂O¹⁸ (10 equiv, 2.5 mmol, 50 mg) in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane and analyzed by HRMS analysis and ¹³C{¹H} NMR (Figure S4 and S5). The results showed that no O¹⁸ labeled **1k** was present; only 78% of pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (**1k**) was obtained (Scheme S11). This results confirms the non-involvement of moisture in the reaction.

Scheme S11. Reaction in the presence of H_2O^{18}

Figure S4. HRMS of O¹⁸ labelled experiment

DBB-AL-T&PH-O18-13C.3.fid DBB-AL-T&PH-O18-13C	145.790 1445.790 1445.790 1442.735 1442.735 1442.735 1442.735 1442.735 1442.735 1452.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.635 1253.755 1253.7555 1253.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.7555 1255.75555 1255.75555 1255.75555 1255.75555 1255.7555555 1255.75555555555555555555555555555555555	77.485 77.230 76.019	~21.960 21.444
--	--	----------------------------	-------------------

Figure S5. ¹³C{¹H} NMR spectra of O¹⁸ labeled experiment

(ii) Reaction under Nitrogen Atmosphere:

An oven-dried 10 mL vial was added phenylacetylene (1) (0.02 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Et₃N (0.05 g, 70 μ L, 0.5 mmol) in anhydrous DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), it was found that a trace amount of product 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1**k**) was formed (Scheme S12).

Scheme S12. Reaction under N₂ atmosphere

(D) Intermediacy of β -keto sulfone:

(i) Intermediacy of β -keto sulfone (K) from reaction mixture:

An oven-dried 10 mL vial was added phenylacetylene (1) (0.025 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Et₃N (0.05 g, 70 μ L, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs. Each time (10 μ L) of reaction aliquot was withdrawn at a time interval of 30 minutes and subjected to HRMS analysis. The results suggest that β -keto sulfone is one of the intermediates of the trifunctionalized protocol, which is detected from HRMS analysis (Figure S6).

Figure S6. HRMS of reaction mixture for detection of β -keto sulfone

(ii) Reaction of β -keto sulfone (K) with S-(*p*-tolyl) 4-methylbenzenesulfonothioate (k):

An oven-dried 10 mL vial was added β -keto sulfone (**K**) (0.07 g, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g, 0.5 mmol), Et₃N (0.05 g, 70 µL, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (**1k**) in 95% yield (90 mg) (Scheme S13).

Scheme S13. Synthesis of 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1k) from β -keto sulfone and thiosufonate (K)

(iii) Reaction of β -keto sulfone (K) with 1,2-di-*p*-tolyldisulfane (E'):

An oven-dried 10 mL vial was added β -keto sulfone (**K**) (0.07 g, 0.25 mmol), 1,2-di-*p*-tolyldisulfane (**E'**) (0.12 g, 0.5 mmol), Et₃N (0.05 g, 70 µL, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (**1k**) in 65% yield (61 mg) (Scheme S14).

Scheme S14. Synthesis of 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1k) from from β -keto sulfone and diphenyldisulfide (E')

(iii) Reaction of β -keto sulfone (K) with 1,2-Di-*p*-tolyldisulfane (E') in Dark Condition:

An oven-dried 10 mL vial was added β -keto sulfone (**K**) (0.07 g, 0.25 mmol), 1,2-di-*p*tolyldisulfane (**E'**) (0.12 g, 0.5 mmol), Et₃N (0.05 g, 70 µL, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred in a dark condition at room temperature for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give pure 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (1**k**) in 65% yield (61 mg) (Scheme S15). This result suggests that the reaction follows the nucleophilic mechanism and the thiyl source originated from both thiosulfonate (**k**), and the *in situ* generated disulfide (**E'**).

Scheme S15. Reaction of β -keto sulfone (K) with 1,2-di-*p*-tolyldisulfane (E') in dark

(E) Procedure for Competitive Reaction of Phenylacetylene (1), S-(*p*-tolyl) 4methylbenzenesulfonothioate (k), 1,2-Bis(4-methoxyphenyl)disulfane (l'):

An oven-dried 10 mL vial was added phenylacetylene (1) (0.025 g, 27 μ L, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (k) (0.14 g, 0.5 mmol), 1,2-bis(4methoxyphenyl)disulfane (**I'**) (0.14 g, 0.5 mmol), Et₃N (0.05 g, 70 µL, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs for 10 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 15% ethyl acetate in hexane to give 1-phenyl-2-(*p*-tolylthio)-2-tosylethan-1-one (**1k**) in 40% yield (40 mg) and 2-((4-methoxyphenyl)thio)-1-phenyl-2-tosylethan-1-one (**1l**) in 25% yield (26 mg) (Scheme S16). The identity and purity of the product were confirmed by spectroscopic analysis. The result confirms the origin of thiol functionality from both the sources of (**k**) and (**l'**).

Scheme S16. Competitive Reaction of (1), (k), and (l')

(F) Procedure for Competitive Reaction of Phenylacetylene (1), S-phenyl 4methylbenzenesulfonothioate (a), Sodium 4-(trifluoromethyl)benzenesulfinate (r'):

An oven-dried 10 mL vial was added phenylacetylene (1) (0.02 g, 27 µL, 0.25 mmol), Sphenyl 4-methylbenzenesulfonothioate **(a)** (0.13)0.5 mmol), sodium 4g, (trifluoromethyl)benzenesulfinate (r') (0.12 g, 0.5 mmol), Cs₂CO₃ (0.16 g, 0.5 mmol), in DMF (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6-8 cm from two 10 W white LEDs for 36 h. After completion of the reaction (monitored by TLC analysis), the reaction mixture was admixed with ethyl acetate (20 mL) and washed with ice-cooled water (10 mL). The organic layer was dried over anhydrous sodium sulfate (Na_2SO_4), and the solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel using 5% ethyl acetate in hexane to give (E)-phenyl(2-phenyl-2-tosylvinyl)sulfane (1a') in 38% yield (35 mg) and (E)phenyl(2-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)vinyl)sulfane (1t') in 33% yield (34 mg)

(Scheme S17). The identity and purity of the product were confirmed by spectroscopic analysis. The formation of a mixture of difunctionalized products having tolyl (1a', 38%) and *p*-trifluoro (1t', 33%) supports the intermediacy of vinyl carbocation.

Scheme S17. Competitive reaction of (1), (a), and (r')

(G) H_2O_2 Detection in the reaction mixture:

(i) H_2O_2 detection by Mohr's Salt:

An oven-dried 10 mL vial was charged with phenylacetylene (1) (0.02 g, 27 μ L 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.13 g 0.5 mmol), Et₃N (0.05 g, 70 μ L 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs. After around 4 hours, a 100 μ L solution of Mohr's Salt (10 mg in 100 μ L H₂O) was added through a syringe to the reaction mixture. After 10 min, a rapid setting of Fe(OH)₃ floc was observed [Figure S7 (b)]. The floc observed was because of the rapid oxidation of Fe(II) to Fe(III) due to the presence of hydrogen peroxide, and H₂O₂ in the medium.

Figure S7. (a) Reaction mixture before addition of Fe(II) solution (Mohr's Salt) (b) Reaction mixture after addition of Fe(II) solution (Mohr's Salt)

(ii) H_2O_2 detection in a reaction with KMnO₄:

An oven-dried 10 mL vial was added with phenylacetylene (1) (0.0255 g, 0.25 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (**k**) (0.1391 g 0.5 mmol), Et₃N (0.0505 g, 0.5 mmol), in DMSO (2 mL) under oxygen atmosphere. The reaction mixture was stirred at room temperature, maintaining an approximate distance of ~6–8 cm from two 10 W blue LEDs. A small portion of the reaction mixture was taken out from the reaction vial using a syringe which was added to a separately prepared KMnO₄ solution (300 μ M) in H₂O (10 mL). Instantly, the aqueous KMnO₄ solution of turned to pale yellow colour [Figure S8 (b)] indicating the presence of H₂O₂.

Figure S8. (a) KMnO₄ solution (b) KMnO₄ solution after adding a portion of the reaction mixture

7. UV-vis Experiments:

(i) UV-vis Experiments for Tri-functionalized Condition:

10 mL stock solutions of phenylacetylene (1, 50 mM), S-(*p*-tolyl) 4methylbenzenesulfonothioate (k, 50 mM), and Et₃N (50 mM) were prepared separately in DMSO. At first, the UV absorption of 1, k, and Et₃N each of 3 mL were taken individually, none of which showed any absorption in the visible region (Figure S9). Next, the combinations of (1 + k), (k +Et₃N), and $(1 + Et_3N)$ were taken separately each ratio of 1:1 (1.5 mL : 1.5 mL) in 3 mL cuvette. The combination of (1 + k) and $(1 + Et_3N)$ showed no absorption in the visible region. However, with the combination of $(k + Et_3N)$, the solution turned to light yellow colour and showed absorption in the visible region, suggesting the formation of an EDA complex between k and Et₃N. Next, a combination of 1, k, and Et₃N (1 mL each) was taken in a 3 mL UV cuvette. The solution turned yellow, with an absorption maximum in the visible region, suggesting the formation of an electron donor-acceptor complex (Figure S9). These results indicate that the combinations of $(\mathbf{k} + \text{Et}_3\text{N})$ and $(\mathbf{1} + \mathbf{k} + \text{Et}_3\text{N})$ absorb light and show absorption in the visible region, whereas $(\mathbf{1} + \text{Et}_3\text{N})$ does not. This confirms that an EDA complex is formed between \mathbf{k} and Et₃N (Figure S9).

Figure S9. (a) UV-Vis spectra for the tri-functionalized protocol (b) Colour change for the formation of EDA complex

(ii) UV-Vis Experiments for Di-functionalized Condition:

10 mL stock solutions of phenylacetylene (1, 50 mM), S-(*p*-tolyl) 4methylbenzenesulfonothioate (k, 50 mM), and Cs_2CO_3 (50 mM) were prepared separately in DMF. At first, the UV absorption of 1, k, and Cs₂CO₃ were taken individually, none of which showed any absorption in the visible region (Figure S10). Next, the combinations of (1 + k), (k + k) Cs_2CO_3), and $(1 + Cs_2CO_3)$ were taken separately each ratio of 1:1 (1.5 mL : 1.5 mL) in a 3 mL cuvette. The combination of (1 + k) and $(1 + Cs_2CO_3)$ showed no absorption in the visible region. Whereas, the combination of $(\mathbf{k} + Cs_2CO_3)$ solution turned a light yellow colour and showed absorption in the visible region suggesting the formation of an EDA complex between \mathbf{k} and $C_{2}CO_{3}$. Next, a combination of 1, k, and $C_{2}CO_{3}$ (1 mL each of 1, k, and $C_{2}CO_{3}$) was taken in a 3 mL UV cuvette, which was also turned to yellow with an absorption maximum in the visible region, suggesting the formation of an electron donor-acceptor complex (Figure S10). From these results, the combinations of $(\mathbf{k} + Cs_2CO_3)$ and $(\mathbf{1} + \mathbf{k} + Cs_2CO_3)$ absorb light and show absorption in the visible region, whereas $(1 + Cs_2CO_3)$ does not. This confirms that an EDA complex is formed only between \mathbf{k} and Cs_2CO_3 (Figure S10).

Figure S10. (a) UV-Vis spectra for di-functionalized protocol (b) Colour change for the formation of EDA complex

8. ¹H NMR Experiments:

(i) ¹H NMR Titration for Tri-functionalized Condition:

Further to confirm the formation of the EDA complex ¹H NMR experiment was performed by the preparation of CDCl₃ solutions containing S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (I) and Et₃N in different ratios, keeping the amount of S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (I) constant (0.02 mmol) and increasing the amount of Et₃N (I : Et₃N = 1 : 0, 1 : 1, 1 : 2, 1 : 3, 1 : 4, and 1 : 5). Each of the six ratios was prepared separately in 2 mL microcentrifuge tubes. Initially, 5.88 mg (~6 mg) of compound (I) was added to each tube. Microcentrifuge tube 1 contained only compound (I), maintaining a 1:0 ratio. Varying amounts of Et₃N were then added to other tubes to achieve the desired ratios: 2 mg (3.0 µL) for a 1:1 ratio, 4 mg (6.0 µL) for a 1:2 ratio, 6 mg (8.0 µL) for a 1:3 ratio, 8 mg (11 µL) for a 1:4 ratio, and 10 mg (14 µL) for a 1:5 ratio. Each ratio was prepared in CDCl₃, with the volume of each solution fixed at 400 µL. The solutions were then transferred to NMR tubes, and the data was recorded. Due to the interaction between (I) and Et₃N, the chemical shift of the –OMe group of (I) progressively shifted upfield with increasing amounts of Et₃N, as shown in Figures S11 and S12.

Entry	l (mmol)	Et ₃ N (mmol)	l : Et ₃ N	δ_{OMe} (ppm)
1	0.02	0	1:0	3.8324
2	0.02	0.02	1:1	3.8222
3	0.02	0.04	1:2	3.8022
4	0.02	0.06	1:3	3.7991
5	0.02	0.08	1:4	3.7924
6	0.02	0.10	1:5	3.7869

Table S2: ¹H NMR δ_{OMe} (ppm) value for the ratio of l, Et₃N

Figure S11. Full ¹H NMR spectra of S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (**l**) and Et₃N in different ratios

Figure S12. Evidence for the formation of EDA complex through ¹H NMR

(ii) ¹H NMR Titration for Di-functionalized Condition:

Further to confirm the formation of the EDA complex in case of di-functionalization, ¹H NMR experiment was performed by the preparation of CD₃OD solutions containing S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (I) and Cs₂CO₃ in different ratios keeping the amount of S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (I) constant (0.02 mmol) and increasing the amount of Cs₂CO₃ ($\mathbf{1}$: Cs₂CO₃ = 1 : 0, 1 : 1, 1 : 2, 1 : 3, and 1 : 4). The five ratios were prepared separately in 2 mL microcentrifuge tubes. Initially, 5.88 mg (~6 mg) of compound (I) was added to each tube. Microcentrifuge tube 1 contained only compound (I), maintaining a 1:0 ratio. Varying amounts of Cs₂CO₃ were then added to other tubes to achieve the desired ratios: 6.5 mg for a 1:1 ratio, 13 mg for a 1:2 ratio, 19.5 mg for a 1:3 ratio, and 26 mg for a 1:4 ratio. Each ratio was prepared in Methanol-d₄, with the volume of each solution fixed at 400 µL. The solutions were then transferred to NMR tubes, and the data was recorded. Due to the formation of the EDA complex between I and Cs₂CO₃, the chemical shift of –Me group of I

progressively shifted upfield with increasing amounts of Cs_2CO_3 , as shown in Figures S13 and S14.

Entry	l (mmol)	Cs_2CO_3 (mmol)	$l: Cs_2CO_3$	$\delta_{ m Me}$ (ppm)
1	0.02	0	1:0	2.2928
2	0.02	0.02	1:1	2.2246
3	0.02	0.04	1:2	2.1335
4	0.02	0.06	1:3	2.0947
5	0.02	0.08	1:4	2.0375

Table S3: ¹H NMR δ_{Me} (ppm) value for the ratio of l, Cs₂CO₃

Figure S13. Full ¹H-NMR spectra of S-(4-methoxyphenyl) 4-methylbenzenesulfonothioate (I) and Cs₂CO₃ in different ratios

Figure S14. Evidence for the formation of EDA complex through ¹H-NMR

9. Unsuccessful Substrates

(i) Unsuccessful Substrates under Tri-functionalization Statergy:

Aliphatic alkynes **15** and **16** failed to react under this tri-functionalized condition, giving no products (**15a**, 00%) and (**16a**, 00%). This is possibly because of their inability to stabilize the generated aliphatic vinyl radical intermediates. Moreover, a strong electron-withdrawing group ($-CF_3$) (**r**) on the sulfonyl side and pyridyl (**s**) system on the thiol side of thiosulfonate, both failed to react. This is possibly because of their poor ability to form an EDA complex with Et₃N. No significant bathochromic shift in the UV-Vis spectra were observed for these thiosulfonates (**r**) and (**s**) on treatment with Et₃N, endorsing their inability to form EDA complex essential for driving this reaction. To confirm the reason for unsuccessful substrates (**r** and **s**), an UV-Vis experiment was conducted. A 10 mL stock solution of phenylacetylene (**1**, 50 mM), S-Phenyl 4-(trifluoromethyl)benzenesulfonothioate (**r**, 50 mM), and Et₃N (50 mM) were prepared separately in DMSO. The UV spectra with equal ratios of the combinations of **r**, (**r** + Et₃N), and (**1** + **r** + Et₃N) were recorded in a 3 mL cuvette. No significant bathochromic shift was observed in the visible region which is shown in Figure S15(a). The result suggests an inability of EDA complexation between (**r**) and Et₃N.

Similarly, A 10 mL stock solution of phenylacetylene (1, 50 mM), S-(pyridin-2-yl) 4methylbenzenesulfonothioate (s, 50 mM), and Et₃N (50 mM) were prepared separately in DMSO. The UV spectra with equal ratios of the combinations of s, ($s + Et_3N$), and ($1 + s + Et_3N$) were recorded in a 3 mL cuvette. No significant bathochromic shift was observed in the visible region which is shown in Figure S15(b). The result suggests an inability of EDA complexation between (s) and Et₃N.

Figure S15. (a) UV-Vis spectra of the combibation of \mathbf{r} , ($\mathbf{r} + \text{Et}_3N$), and ($\mathbf{1} + \mathbf{r} + \text{Et}_3N$) (b) UV-Vis spectra of the combibation of \mathbf{s} , ($\mathbf{s} + \text{Et}_3N$), and ($\mathbf{1} + \mathbf{s} + \text{Et}_3N$)

(ii) Unsuccessful Substrates under Di-functionalization Statergy:

The di-functionalized statergy was unsuccessful for ethynylcyclopropane (16) which may be attributed to poor vinyl radical stability after the attack of thiyl radical at the terminal position of alkyne. Though thiosulfonates derived from aliphatic thiol (**o**) is capable of EDA complexation with base to deliver trifunctionalized product (**1o**) (Scheme 2), it fails to provide the difunctionalized product. This is possibly because of their inability to undergo S–S bond cleavage owing to the poor radical stability of the resulting thiyl radical (MeCH₂CH₂S[•]) essential for this difunctionalization.

10. Crystallographic Information:

(A) Crystallographic Information of 1-(3-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1one (12a):

(i) Sample Preparation: The single crystal of compound 12a was prepared by the slow evaporation method for which 10 mg of the compound (12a) was dissolved in 1 mL ethyl acetate. The mouth of the glass vial was covered with a cap having a small hole and kept for slow evaporation at room temperature. Crystals of 12a were obtained as light-yellow crystals after around 4–5 days.

(ii) Data Collection: Diffraction data were collected at 298 K with MoK α radiation ($\lambda = 0.71073$ Å) using a Bruker Nonius SMART APEX CCD diffractometer equipped with a graphite monochromator and Apex CD camera. The SMART software was used for data collection for indexing the reflections and determining the unit cell parameters. Data reduction and cell refinement were performed using SAINT^{2,3} software and the space groups of these crystals were determined from systematic absences by XPREP and further justified by the refinement results. The structures were solved by direct methods and refined by full-matrix least-squares calculations using SHELXTL-97⁴ software. All the non-H atoms were refined in the anisotropic approximation against F² of all reflections.

(iii) Crystallographic Description of 1-(3-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1one (12a):

C₂₁H₁₇ClO₃S₂, crystal dimensions 0.24 x 0.20 x 0.15 mm, $M_r = 69.49$, triclinic, space group P -1, a = 8.2512 (5), b = 11.5639 (8), c = 11.6055 (8) Å, a = 117.3240 (10), $\beta = 97.055$ (2), $\gamma = 94.082$ (2), V = 966.08 (11) Å³, Z = 12, $\rho_{calcd} = 1.433$ g/cm³, $\mu = 0.433$ mm⁻¹, F(000) = 432.0, reflection collected / unique = 3336 / 2935, refinement method = full-matrix least-squares on F^2 , final Rindices [$I > 2 \le (I)$]: $R_1 = 0.0433$, $wR_2 = 0.1605$, R indices (all data): $R_1 = 0.0506$, $wR_2 = 0.1735$, goodness of fit = 1.421. CCDC-2372790 for 1-(3-chlorophenyl)-2-(phenylthio)-2-tosylethan-1one (12a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S16. ORTEP diagram of 1-(3-chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (12a) with 50% ellipsoid probability (CCDC 2372790)

(A) Crystallographic Information of (*E*)-2-(2-(phenylthio)-1-tosylvinyl)pyridine (18a'):

(i) Sample Preparation: The single crystal of compound 18a' was prepared by the slow evaporation method for which 10 mg of the compound (18a') was dissolved in 1 mL ethyl acetate. The mouth of the glass vial was covered with a cap having a small hole and kept for slow evaporation at room temperature. Crystals of 18a' were obtained as colourless crystals after around 4–5 days.

(ii) Data Collection: Diffraction data were collected at 298 K with MoK α radiation ($\lambda = 0.71073$ Å) using a Bruker Nonius SMART APEX CCD diffractometer equipped with a graphite monochromator and Apex CD camera. The SMART software was used for data collection for indexing the reflections and determining the unit cell parameters. Data reduction and cell refinement were performed using SAINT^{2,3} software and the space groups of these crystals were determined from systematic absences by XPREP and further justified by the refinement results. The structures were solved by direct methods and refined by full-matrix least-squares calculations using SHELXTL-97⁴ software. All the non-H atoms were refined in the anisotropic approximation against F² of all reflections.

(iii) Crystallographic Description of (*E*)-2-(2-(phenylthio)-1-tosylvinyl)pyridine (18a'): $C_{20}H_{17}NO_2S_2$, crystal dimensions 0.20 x 0.17 x 0.14 mm, $M_r = 61.24$, orthorhombic, space group P n a 21, a = 11.753 (6), b = 8.710 (5), c = 17.811 (9) Å, a = 90, $\beta = 90$, $\gamma = 90$, V = 1823.3 (17) Å³, Z = 24, $\rho_{calcd} = 1.339$ g/cm³, $\mu = 0.305$ mm⁻¹, F(000)=768, reflection collected / unique = 4019 / 3227, refinement method = full-matrix least-squares on F^2 , final *R* indices [*I*> 2\s(*I*)]: $R_1 = 0.0621$, $wR_2 = 0.1592$, *R* indices (all data): $R_1 = 0.0945$, $wR_2 = 0.1939$, goodness of fit = 1.266. CCDC-2374121 for (*E*)-2-(2-(phenylthio)-1-tosylvinyl)pyridine (18a') contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S17. ORTEP diagram of (*E*)-2-(2-(phenylthio)-1-tosylvinyl)pyridine (**18a'**) with 50% ellipsoid probability (CCDC 2374121)

11. References:

- 1. (a) B. Du, P. Qian, Y. Wang, H. Mei, J. Han and Y. Pan, Org. Lett., 2016, 18, 4144-4147.
- (b) Z. Tan, F. Chen, G. Huang, Y. Li, H. Jiang and W. Zeng, Org. Lett., 2023, 25, 2846-2851.
- 2. R. H. Blessing, Acta Crystallogr., 1995, A51, 33-38.
- 3. SMART and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
- 4. G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., 2008, A64, 112–122.

12. Author contributions

D.B.– conceptualization, investigation, data curation, methodology, writing original work; N.C., A.K.S., and H.N.D.– investigation, characterization, validation, writing- review and editing; B.K.P.– supervision, resources, funding acquisition, writing- review, and editing.

13. Spectral Data:

1-Phenyl-2-(phenylthio)-2-tosylethan-1-one (1a):

As yellow liquid (71 mg, 74% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (dd, $J_1 = 8.2$ Hz, $J_2 = 4.2$ Hz, 4H), 7.60 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.0 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.34–7.28 (m, 5H), 5.82 (s, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.5, 145.8, 135.3, 134.4, 133.6, 133.4, 132.4, 130.8, 129.6, 129.5, 129.4, 129.3, 129.0, 75.7, 21.9; IR (neat, cm⁻¹): 3062, 2916, 2850, 1682, 1579, 1474, 1322, 1265, 1152, 1081, 733; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₉O₃S₂, [M + H]⁺: 383.0770, found: 383.0760.

2-(Phenylthio)-1-(*p*-tolyl)-2-tosylethan-1-one (2a):

As yellow liquid (75mg, 76% yield); purified over a column of silica gel (15% EtOAc in Hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 4H), 7.30 (s, 1H), 7.25 (d, J = 5.5 Hz, 2H), 5.77 (s, 1H), 2.44 (s, 3H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.2, 145.8, 145.7, 133.7, 133.4, 132.8 132.6, 130.9, 129.8, 129.63, 129.60, 129.5, 129.4, 75.8, 22.0, 21.9; IR (neat, cm⁻¹): 2956, 2924, 2869, 1676, 1604, 1441, 1321, 1275, 1150, 1082, 748; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₃S₂, [M + H]⁺: 397.0927, found: 397.0918.

1-(4-Ethylphenyl)-2-(phenylthio)-2-tosylethan-1-one (3a):

As yellow gummy (75 mg, 73% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.35–7.32 (m, 3H), 7.28 (q, J = 7.8 Hz, 4H), 5.80 (s, 1H), 2.71 (q, J = 7.5 Hz, 2H), 2.45 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.2, 151.8, 145.8, 133.6, 133.4, 133.0, 132.6, 130.9, 129.7, 129.6, 129.5, 129.4, 128.6, 75.8, 29.2, 21.9, 15.2; IR (neat, cm⁻¹): 2965, 2874, 1676, 1602, 1441, 1321, 1270, 1182, 1149, 1082, 729; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₃H₂₃O₃S₂, [M + H]⁺: 411.1083, found: 411.1085.

1-(4-(Tert-butyl)phenyl)-2-(phenylthio)-2-tosylethan-1-one (4a):

As yellow gummy (77 mg, 70% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.86 (t, J = 7.8 Hz, 4H), 7.55 (d, J = 6.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.35–7.30 (m, 5H), 5.80 (s, 1H), 2.45 (s, 3H), 1.34 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.2, 158.6, 145.8, 133.6, 133.3, 132.7, 131.0, 129.6, 129.5, 129.4, 129.3, 128.8, 126.1, 75.8, 35.5, 31.2, 22.0; IR (neat, cm⁻¹): 3059, 2965, 1677, 1602, 1475, 1321, 1266, 1196, 1082, 733; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₅H₂₆O₃S₂Na, [M + Na]⁺: 461.1216, found: 461.1224.

1-(4-Pentylphenyl)-2-(phenylthio)-2-tosylethan-1-one (5a):

As reddish liquid (83 mg, 73% yield); purified over a column of silica gel (15 % EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.5 Hz, 2H), 7.33 (d, J = 9.5 Hz, 4H), 7.30 (s, 1H), 7.26 (d, J = 7.0 Hz, 2H), 5.79 (s, 1H), 2.66 (t, J = 7.8 Hz, 2H), 2.45 (s, 3H), 1.34–1.32 (m, 5H), 0.89 (t, J = 6.8 Hz, 4H); ¹³C{¹H} NMR (125
MHz, CDCl₃): δ 189.2, 150.7, 145.8, 133.6, 133.4, 133.1, 132.7, 130.9, 129.7, 129.6, 129.5, 129.4, 129.1, 75.8, 36.2, 31.6, 30.8, 22.7, 21.9, 14.2; IR (neat, cm⁻¹): 2927, 2857, 1676, 1601, 1414, 1321, 1269, 1150, 1082, 746; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₆H₂₉O₃S₂, [M + H]⁺: 453.1553, found: 453.1555.

1-(4-Methoxyphenyl)-2-(phenylthio)-2-tosylethan-1-one (6a):

As yellow liquid (71 mg, 69% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.35–7.28 (m, 5H), 6.92 (d, J = 9.0 Hz, 2H), 5.77 (s, 1H), 3.86 (s, 3H), 2.44 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 187.9, 164.7, 145.7, 133.5, 133.4, 132.7, 132.0, 130.8, 129.5, 129.4, 129.3, 128.2, 114.3, 75.9, 55.8, 21.9; IR (neat, cm⁻¹): 3058, 2916, 2844, 1668, 1573, 1440, 1318, 1262, 1170, 1081, 735; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₄S₂, [M + H]⁺: 413.0876, found: 413.0882

1-(4-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (7a):

As gummy (67 mg, 67% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.96–7.93 (m, 2H), 7.86 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 7.5 Hz, 3H), 7.31 (t, J = 7.0 Hz, 2H), 7.14 (t, J =8.0 Hz, 2H), 5.70 (s, 1H), 2.46 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 188.2, 166.7 (d, J = 256.1 Hz), 146.0, 133.7, 133.2, 132.43, 132.41, 132.3, 131.7 (d, J = 2.9 Hz), 130.9, 129.6 (d, J =12.1 Hz), 129.5, 116.3 (d, J = 22 Hz), 76.2, 22.0. ¹⁹F NMR (471 MHz, CDCl₃): δ –102.4 (s); IR (neat, cm⁻¹): 2917, 2850, 1683, 1589, 1440, 1322, 1274, 1148, 1081, 749; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₈FO₃S₂, [M + H]⁺: 401.0676, found: 401.0681.

1-(4-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (8a):

As yellow gummy (74 mg, 71% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.85 (t, J = 8.0 Hz, 4H), 7.50 (d, J = 7.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 3H), 7.30 (t, J = 7.3 Hz, 2H), 5.70 (s, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 188.6, 146.1, 141.3, 133.7, 133.6, 133.3, 132.3, 131.7, 130.9, 129.7, 129.6, 129.4, 129.2, 76.1 22.0; IR (neat, cm⁻¹): 3060, 2921, 1680, 1587, 1440, 1320, 1264, 1148, 980, 736; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₈O₃S₂Cl, [M + H]⁺: 417.0380, found: 417.0380.

1-(4-Bromophenyl)-2-(phenylthio)-2-tosylethan-1-one (9a):

As yellow gummy (71 mg, 62% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 7.0 Hz, 2H), 7.35–7.29 (m, 5H), 5.69 (s, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 188.8, 146.1, 135.5, 134.1, 133.7, 133.3, 132.4, 132.3, 130.9, 130.8, 130.1, 129.7, 129.6, 76.1, 22.0; IR (neat, cm⁻¹): 3059, 2917, 1680, 1582, 1481, 1396, 1264, 1148, 1071, 735; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₇O₃S₂BrNa, [M + Na]⁺: 482.9695, found: 482.9695.

2-(Phenylthio)-1-(m-tolyl)-2-tosylethan-1-one (10a):

As yellow gummy (69 mg, 70% yield); m.p. 128–130 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 7.5 Hz, 1H), 7.65 (s, 1H), 7.54 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.36–7.30 (m, 6H), 5.78 (s, 1H), 2.45 (s, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.8, 145.8, 138.9, 135.4, 135.3, 133.7, 133.4, 132.6, 131.0, 129.9, 129.6, 129.5, 129.4, 128.9, 126.7, 75.7, 21.9, 21.5; IR (neat, cm⁻¹): 2917, 2850, 1680, 1597, 1440, 1321, 1275, 1148, 1082, 748; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₃S₂, [M + H]⁺: 397.0927, found: 397.0931.

1-(3-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (11a):

As brown gummy (64 mg, 64% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 9.5 Hz, 1H), 7.51 (d, J = 7.0 Hz, 2H), 7.47–7.43 (m, 1H), 7.35 (d, J = 8.5 Hz, 3H), 7.32 (t, J = 7.3 Hz, 3H), 5.70 (s, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 188.6 (d, J = 2.3 Hz), 163.0 (d, J = 7.8 Hz), 146.1, 137.4 (d, J = 6.4 Hz), 133.8, 133.3, 132.2, 130.9, 130.7 (d, J = 7.6 Hz), 129.7, 129.67, 129.6, 125.3 (d, J = 3.3 Hz), 121.6 (d, J = 21.4 Hz), 116.1 (d, J = 22.9 Hz), 76.0, 22.0; ¹⁹F NMR (471 MHz, CDCl₃): δ –110.9 (s); IR (neat, cm⁻¹): 2917, 2850, 1683, 1589, 1440, 1322, 1274, 1148, 1081, 749; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₈FO₃S₂, [M + H]⁺: 401.0676, found: 401.0682.

1-(3-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (12a):

As yellow gummy (72 mg, 69% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 10.0 Hz, 2H), 7.82 (s, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 7.8 Hz, 1H), 7.36–7.31 (m, 5H), 5.69 (s, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 188.6, 146.1, 136.8, 135.5, 134.4, 133.8, 133.2, 132.1, 130.9, 130.3, 129.74, 129.72, 129.6, 129.3, 127.5, 75.9, 22.0; IR (neat, cm⁻¹): 3069, 2918, 2850, 1685, 1596, 1470, 1320, 1148, 1084, 749; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₇O₃S₂ClNa, [M + Na]⁺: 439.0200, found: 439.0196.

1-(Naphthalen-2-yl)-2-(phenylthio)-2-tosylethan-1-one (13a):

As white solid (59 mg, 55% yield); m.p. 112–114 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.36 (s, 1H), 7.95–7.87 (m, 6H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 3H), 7.37–7.31 (m, 5H), 5.94 (s, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.6, 145.9, 136.2, 133.9, 133.4, 132.65, 132.63, 132.4, 131.9, 131.0, 130.1, 129.7, 129.6, 129.1, 128.0, 127.3, 124.3, 76.1, 21.9; IR (neat, cm⁻¹): 3058, 2923, 2854, 1674, 1595, 1440, 1320, 1279, 1149, 1081, 734; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₅H₂₀O₃S₂Na, [M + Na]⁺: 455.0746, found: 455.0742.

2-(Phenylthio)-1-(thiophen-3-yl)-2-tosylethan-1-one (14a):

As black solid (61 mg, 63% yield); m.p. 72–74 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.14 (s, 1H), 7.85 (d, J = 8.5 Hz, 2H), 7.52–7.50 (m, 3H), 7.34–7.29 (m, 6H), 5.52 (s, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 183.3, 145.9, 140.1, 135.5, 133.6, 133.4, 132.6, 130.7, 129.6, 129.5, 129.4, 127.7, 127.0, 78.1, 21.9; IR (neat, cm⁻¹): 3105, 2925, 1667, 1595, 1508, 1440, 1320, 1263, 1147, 1080, 732; HRMS (ESI/Q-TOF) (m/z): calcd. for C₁₉H₁₇O₃S₃, [M + H]⁺: 389.0334, found: 389.0340.

1-Phenyl-2-(phenylsulfonyl)-2-(phenylthio)ethan-1-one (1b):

As white solid (64 mg, 70% yield); m.p. 135–137 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 7.5Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.3 Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 7.0 Hz, 1H), 7.31 (t, J = 7.3 Hz, 2H), 5.81 (s, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.5, 136.5, 135.3, 134.7, 134.6, 133.8, 132.3, 130.9, 129.7, 129.6, 129.4, 129.1, 128.9, 75.7; IR (neat, cm⁻¹): 2918, 2850, 1682, 1596, 1448, 1322, 1268, 1150, 1082, 746; HRMS (ESI/Q-TOF) (m/z): calcd. for $C_{20}H_{16}O_3S_2Na$, [M + Na]⁺: 391.0433, found: 391.0443.

2-((4-(*Tert*-butyl)phenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1c):

As yellow gummy (76 mg, 72% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 8.5 Hz, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.0 Hz, 4H), 7.32 (d, J = 7.0 Hz, 1H), 7.28 (d, J = 7.5 Hz, 2H), 5.80 (s, 1H), 1.35 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.6, 158.7, 135.4, 134.4, 133.7, 133.6, 132.4, 130.7, 129.6, 129.5, 129.4, 129.0, 125.9, 75.7, 35.5, 31.2; IR (neat, cm⁻¹): 3060, 2963, 2919, 1683, 1593, 1474, 1320, 1263, 1151, 1081, 735; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₄H₂₅O₃S₂, [M + H]⁺: 425.1240, found: 425.1244.

2-((4-Methoxyphenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1d):

As yellow liquid (73 mg, 73% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 7.5, 2H), 7.89 (d, J = 8.0, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.35–7.29 (m, 3H), 7.00 (d, J = 8.5 Hz, 2H), 5.81 (s, 1H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.9, 164.7, 135.4, 134.5, 133.6, 133.2, 132.6, 129.6, 129.43, 129.41, 129.0, 127.7, 114.1, 75.7, 55.9; IR (neat, cm⁻¹): 3060, 2944, 2842, 1681, 1592, 1577, 1495, 1260, 1143, 1083, 736; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₉O₄S₂, [M + H]⁺: 399.0719, found: 399.0718.

2-((4-Chlorophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1e):

As yellow gummy (69 mg, 69% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 7.0 Hz, 2H), 7.63 (t, J =

7.3 Hz, 1H), 7.54–7.52 (m, 4H), 7.48 (t, J = 7.8 Hz, 2H), 7.38–7.32 (m, 3H), 5.82 (s, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.5, 141.7, 135.2, 134.7, 133.7, 132.5, 132.1, 129.8, 129.7, 129.4, 129.2, 75.6; IR (neat, cm⁻¹): 3062, 2916, 2850, 1682, 1578, 1474, 1322, 1265, 1175, 1081, 734; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₆O₃S₂Cl, [M + H]⁺: 403.0224, found: 403.0223.

2-((3-Chlorophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1f):

As yellow gummy (66 mg, 66% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.01 (s, 1H), 7.89 (t, J = 9.0 Hz, 3H), 7.63 (t, J = 6.8 Hz, 2H), 7.52 (t, J = 6.3 Hz, 2H), 7.48 (t, J = 7.3 Hz, 3H), 7.37–7.31 (m, 3H), 5.83 (s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.2, 138.2, 135.1, 135.0, 134.74, 134.72, 133.8, 131.9, 130.9, 130.1, 129.8, 129.7, 129.4, 129.2, 129.1, 75.7; IR (neat, cm⁻¹): 3063, 2927, 1682, 1570, 1440, 1323, 1265, 1150, 1075, 732; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₅O₃S₂ClNa, [M + Na]⁺: 425.0043, found: 425.0034.

2-((4-Bromophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1g):

As white solid (71 mg, 64% yield); m.p. 98–100 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (dd, $J_1 = 8.2$ Hz, $J_2 = 4.3$ Hz, 4H), 7.70 (d, J = 8.5 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.0Hz, 2H), 7.48 (t, J = 7.8 Hz, 2H), 7.38–7.31 (m, 3H), 5.82 (s, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.4, 135.3, 135.2, 134.7, 133.7, 132.5, 132.2, 132.1, 130.4, 129.8, 129.7, 129.4, 129.2, 75.6; IR (neat, cm⁻¹): 3060, 2917, 1682, 1595, 1440, 1321, 1266, 1176, 1080, 735; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₆BrO₃S₂, [M + H]⁺: 446.9716, found: 446.9718.

2-(Naphthalen-2-ylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1h):

As white solid (62 mg, 59% yield); m.p. 112–114 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.59 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.98 (s, 2H), 7.94 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 2H), 7.70 (t, J = 7.0 Hz, 1H), 7.64 (t, J = 6.0 Hz, 1H), 7.61 (t, J = 6.3 Hz, 1H), 7.52 (d, J = 7.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 7.0 Hz, 1H), 7.28 (d, J = 7.5 Hz, 2H), 5.91 (s, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.5, 135.9, 135.3, 134.5, 133.7, 133.6, 133.2, 132.3, 132.0, 129.9, 129.8, 129.6, 129.5, 129.4, 129.1, 128.9, 128.1, 127.7, 125.1, 76.0; IR (neat, cm⁻¹): 3058, 2923, 2853, 1681, 1593, 1446, 1318, 1263, 1125, 1023, 734; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₄H₁₈O₃S₂Na, [M + Na]⁺: 441.0590, found: 441.0583.

2-(Methylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1i):

As yellow gummy (57 mg, 75% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, *J* = 7.5 Hz, 2H), 7.67–7.64 (m, 3H), 7.50 (t, *J* = 8.0 Hz, 2H), 7.42–7.37 (m, 3H), 5.57 (s, 1H), 3.31 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 190.4, 134.95, 134.91, 134.1, 131.8, 130.1, 129.9, 129.4, 129.3, 73.2, 38.1; IR (neat, cm⁻¹): 3060, 2918, 2851, 1679, 1595, 1448, 1309, 1276, 1113, 1024, 686; HRMS (ESI/Q-TOF) (m/z): calcd. for C₁₅H₁₄O₃S₂Na, [M + Na]⁺: 329.0277, found: 329.0276.

2-(Cyclopropylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1j):

As yellow gummy (60 mg, 72% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 6.5 Hz, 3H), 7.48 (t, J = 7.8 Hz, 2H), 7.38–7.33 (m, 3H), 5.70 (s, 1H), 2.97–2.92 (m, 1H), 1.49–1.43 (m, 1H), 1.32–1.26 (m, 1H), 1.22–1.16 (m, 1H),

1.10–1.04 (m, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 190.0, 135.2, 134.7, 133.9, 132.4, 129.7, 129.6, 129.4, 129.1, 74.2, 28.6, 6.7, 4.9; IR (neat, cm⁻¹): 3060, 2920, 2852, 1681, 1596, 1446, 1320, 1266, 1136, 1072, 687; HRMS (ESI/Q-TOF) (m/z): calcd. for C₁₇H₁₆O₃S₂Na, [M + Na]⁺: 355.0433, found: 355.0440.

1-Phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k):

As red gummy (77 mg, 78% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 8.0 Hz, 4H), 7.60 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.5Hz, 2H), 5.74 (s, 1H), 2.45 (s, 3H), 2.34 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.6, 145.8, 140.0, 135.4, 134.4, 134.2, 133.6, 130.9, 130.4, 129.5, 129.4, 129.0, 128.7, 75.9, 21.9, 21.4; IR (neat, cm⁻¹): 2923, 2853, 1681, 1596, 1448, 1303, 1321, 1267, 1151, 1084, 739; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₀O₃S₂Na , [M + Na]⁺: 419.0746, found: 419.0762.

2-((4-Methoxyphenyl)thio)-1-phenyl-2-tosylethan-1-one (11):

As yellow gummy (75 mg, 73% yield); purified over a column of silica gel (20% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.46–7.43 (m, 4H), 7.35 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 5.65 (s, 1H), 3.81 (s, 3H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.6, 161.2, 145.8, 136.8, 135.5, 134.4, 133.7, 130.9, 129.5, 129.4, 129.0, 122.5, 115.1, 76.3, 55.6, 22.0; IR (neat, cm⁻¹): 2918, 2850, 1682, 1592, 1493, 1465, 1321, 1249, 1149, 1082, 742; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₀O₄S₂Na , [M + Na]⁺: 435.0695, found: 435.0684.

2-((4-Chlorophenyl)thio)-1-phenyl-2-tosylethan-1-one (1m):

As white solid (74 mg, 71% yield); m.p. 96–98 °C; purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 7.5 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.49–7.46 (m, 4H), 7.34 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.75 (s, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.3, 146.0, 136.1, 135.3, 135.2, 134.6, 133.3, 130.9, 130.7, 129.8, 129.6, 129.4, 129.1, 75.6, 22.0; IR (neat, cm⁻¹): 3064, 2921, 1681, 1594, 1475, 1448, 1321, 1267, 1148, 1082, 738; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₈ClO₃S₂, [M + H]⁺: 417.0380, found: 417.0374.

2-((4-Bromophenyl)thio)-1-phenyl-2-tosylethan-1-one (1n):

As yellow gummy (80 mg, 69% yield); purified over a column of silica gel (15 % EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 7.0 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.49–7.39 (m, 6H), 7.33 (d, J = 8.5 Hz, 2H), 5.76 (s, 1H), 2.45 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.3, 146.0, 135.4, 135.2, 134.6, 133.3, 132.7, 131.3, 130.9, 129.6, 129.4, 129.1, 124.2, 75.4, 21.9; IR (neat, cm⁻¹): 3064, 2919, 2852, 1682, 1595, 1473, 1448, 1321, 1263, 1149, 1082, 736; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₇BrO₃S₂Na, [M + Na]⁺: 482.9695, found: 482.9696.

1-Phenyl-2-(propylthio)-2-tosylethan-1-one (1o):

As yellow gummy (63 mg, 72% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.56 (s, 1H), 2.91–2.85 (m, 1H), 2.76–2.71 (m, 1H), 2.44 (s, 3H), 1.62–1.53 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.4, 145.7, 135.3, 134.4, 133.4, 130.8, 129.5, 129.2, 129.0, 70.9, 34.9, 22.5, 21.9, 13.4; IR (neat, cm⁻¹): 3063,

2963, 2932, 1682, 1595, 1448, 1318, 1268, 1082, 735; HRMS (ESI/Q-TOF) (m/z): calcd. for $C_{18}H_{20}O_3S_2Na$, $[M + Na]^+$: 371.0746, found: 371.0751.

2-(Phenethylthio)-1-phenyl-2-tosylethan-1-one (1p):

As gummy (72 mg, 70% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 7.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.28 (d, J = 7.0 Hz, 1H), 7.21 (d, J = 7.0 Hz, 2H), 5.58 (s, 1H), 3.30–3.24 (m, 1H), 3.15–3.11 (m, 1H), 2.96–2.89 (m, 2H), 2.51 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.4, 145.7, 139.4, 135.3, 134.5, 133.1, 130.8, 129.5, 129.3, 129.0, 128.8, 128.7, 126.9, 70.8, 35.7, 33.9, 21.9; IR (neat, cm⁻¹): 2918, 2852, 1682, 1596, 1496, 1320, 1265, 1148, 1082, 733; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₃H₂₂O₃S₂Na, [M + Na]⁺: 433.0903, found: 433.0902.

1-phenyl-2-(thiophen-2-ylthio)-2-tosylethan-1-one (1q):

As black gummy (60 mg, 61% yield); purified over a column of silica gel (15% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.90 (t, J = 8.5 Hz, 4H), 7.62 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.43 (d, J = 7.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 5.5 Hz, 1H), 6.96 (dd, $J_1 = 5.5$ Hz, $J_2 = 3.5$ Hz, 1H), 5.70 (s, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.2, 145.9, 138.0, 135.4, 134.6, 133.4, 132.8, 131.0, 129.6, 129.4, 129.2, 129.1, 128.1, 76.8, 21.9; IR (neat, cm⁻¹): 3063, 2923, 2851, 1681, 1593, 1448, 1322, 1263, 1146, 1083, 743; HRMS (ESI/Q-TOF) (m/z): calcd. for C₁₉H₁₆O₃S₃Na, [M + Na]⁺: 411.0154, found: 411.0152.

(E)-phenyl(2-phenyl-2-tosylvinyl)sulfane (1a'):

As white solid (69 mg, 75% yield); m.p. 112–114 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H), 7.50–7.46 (m, 4H), 7.38–7.33 (m, 6H), 7.22–7.17 (m, 4H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.2, 143.6, 136.6, 133.1, 131.3, 130.9, 130.4, 129.8, 129.7, 129.6, 129.0, 128.8, 128.8, 128.4, 21.8; IR (neat, cm⁻¹): 2963, 2929, 2854, 1572, 1461, 1310, 1271, 1152, 1083, 755; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₉O₂S₂, [M + H]⁺: 367.0821, found: 367.0813.

(E)-phenyl(2-(p-tolyl)-2-tosylvinyl)sulfane (2a'):

As white solid (70 mg, 74% yield); m.p. 109–111 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.09 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 7.5 Hz, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.11–7.09 (m, 2H), 2.38 (s, 3H), 2.35 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.1, 143.4, 139.6, 136.7, 136.6, 133.2, 131.3, 130.2, 129.7, 129.6, 129.6, 128.7, 128.4, 127.8, 21.8, 21.6; IR (neat, cm⁻¹): 2960, 2926, 2859, 1574, 1464, 1300, 1261, 1142, 1081, 750; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₂S₂, [M + H]⁺: 381.0977, found: 381.0974.

(E)-(2-(4-(tert-butyl)phenyl)-2-tosylvinyl)(phenyl)sulfane (4a'):

As colourless solid (74 mg, 70% yield); m.p. 148–150 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 6.5 Hz, 2H), 7.38–7.33 (m, 5H), 7.19 (d, J = 8.0Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 2.39 (s, 3H), 1.31 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.7, 144.1, 143.5, 136.9, 136.6, 133.3, 131.3, 129.9, 129.7, 129.6, 128.7, 128.4, 127.8, 125.8, 34.9, 31.4, 21.8; IR (neat, cm⁻¹): 2957, 2916, 2869, 1578, 1463, 1302, 1265, 1143, 1084, 744; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₅H₂₇O₂S₂, [M + H]⁺: 423.1447, found: 423.1451.

(E)-phenyl(2-tosyl-2-(4-(trifluoromethyl)phenyl)vinyl)sulfane (17a'):

As gummy yellow solid (61 mg, 60% yield); purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.16 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.48–7.46 (m, 2H), 7.40–7.39 (m, 3H), 7.35 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 2.39 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.9, 144.6, 136.3, 135.2, 134.8, 132.5, 131.5, 130.9, 129.93, 129.90, 129.8, 129.1, 128.4, 127.8, 125.8 (q, J = 3.8 Hz), 21.8; ¹⁹F NMR (471 MHz, CDCl₃): δ –62.8 (s); IR (neat, cm⁻¹): 2919, 1617, 1579, 1441, 1321, 1303, 1276, 1144, 1066, 746; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₁₈F₃O₂S₂, [M + H]⁺: 435.0695, found: 435.0695.

(E)-2-(2-(phenylthio)-1-tosylvinyl)pyridine (18a'):

As colourless solid (56 mg, 61% yield); m.p. 177–179 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.61 (d, J = 5.0 Hz, 1H), 8.46 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.69–7.65 (m, 3H), 7.56 (d, J = 7.0Hz, 2H), 7.41–7.37 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 7.18–7.15 (m, 1H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 150.2, 149.2, 148.8, 144.1, 137.6, 136.6, 135.7, 132.8, 131.3, 129.8, 129.7, 128.8, 127.7, 123.5, 122.8, 21.6; IR (neat, cm⁻¹): 2957, 2920, 1580, 1463, 1275, 1260, 1144, 1086, 764; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₈NO₂S₂, [M + H]⁺: 368.0773, found: 368.0776.

(E)-(2-((4-(tert-butyl)phenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1c'):

As white solid (74 mg, 73% yield); m.p. 110–112 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500

MHz, CDCl₃): δ 8.11 (s, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.39–7.33 (m, 6H), 7.22 (d, J = 7.5 Hz, 2H), 1.30 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.2, 143.7, 136.6, 136.5, 133.1, 131.3, 130.9, 130.4, 129.8, 129.6, 128.8, 128.7, 128.2, 126.0, 35.4, 31.2; IR (neat, cm⁻¹): 3057, 2964, 2869, 1593, 1488, 1313, 1291, 1146, 1083, 939; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₄H₂₅O₂S₂, [M + H]⁺: 409.1290, found: 409.1283.

(*E*)-(2-((4-methoxyphenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1d'):

As white solid (66 mg, 69% yield); m.p. 139–141°C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 1H), 7.53 (d, J = 9.0 Hz, 2H), 7.47 (d, J= 6.0 Hz, 2H), 7.38–7.34 (m, 6H), 7.20 (d, J = 6.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.5, 143.0, 136.9, 133.1, 131.3, 131.0, 130.6, 130.4, 129.8, 129.6, 128.9, 128.8, 114.2, 55.8; IR (neat, cm⁻¹): 3066, 2926, 2844, 1594, 1496, 1313, 1203, 1140, 1086, 734; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₉O₃S₂, [M + H]⁺: 383.0770, found: 383.0747.

(*E*)-(2-((3-chlorophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1f'):

As white solid (65 mg, 67% yield); m.p. 130–132 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.15 (s, 1H), 7.62 (s, 1H), 7.49–7.45 (m, 5H), 7.40–7.36 (m, 5H), 7.32 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 7.0 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.4, 141.3, 135.5, 135.3, 133.4, 132.8, 131.5, 130.45, 130.40, 130.2, 129.9, 129.8, 129.0, 128.3, 126.6; IR (neat, cm⁻¹): 3060, 2853, 1578, 1480, 1441, 1318, 1275, 1148, 1106, 941; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₆ClO₂S₂, [M + H]⁺: 387.0275, found: 387.0248.

(E)-(2-((4-bromophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1g'):

As white solid (69 mg, 64% yield); m.p. 150–152 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.13 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.46 (t, J= 7.8 Hz, 4H), 7.40–7.36 (m, 6H), 7.22 (d, J = 7.5 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.1, 138.6, 135.6, 132.8, 132.3, 131.5, 130.5, 130.4, 129.9, 129.8, 129.0, 128.9, 128.6; IR (neat, cm⁻¹): 2916, 2849, 1572, 1469, 1309, 1265, 1142, 1083, 940; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₀H₁₆BrO₂S₂, [M + H]⁺: 430.9770, found: 430.9770.

(E)-phenyl(2-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)vinyl)sulfane (1t'):

As white solid (57 mg, 54% yield); m.p. 116–118 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.5 Hz, 2H), 7.41–7.35 (m, 6H), 7.23 (d, J = 7.5 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 146.2, 143.3, 136.8, 135.1, 134.8, 132.7, 131.5, 130.5, 130.3, 130.0, 129.9, 129.1, 129.0, 128.9, 126.14 (q, J = 3.6 Hz); ¹⁹F (471 MHz, CDCl₃): δ –63.1 (s); IR (neat, cm⁻¹): 3058, 2850, 1606, 1567, 1481, 1403, 1321, 1169, 1147, 1081, 708; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₁H₁₆F₃O₂S₂, [M + H]⁺: 421.0538, found: 421.0538.

(E)-(2-(methylsulfonyl)-2-phenylvinyl)(phenyl)sulfane (1i'):

As yellow gummy (37 mg, 51% yield); purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.99 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.51–7.46 (m, 5H), 7.37 (d, J = 5.0 Hz, 3H), 2.80 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.7, 135.2, 132.8, 131.6, 130.9, 130.1, 130.0, 129.8, 129.4, 128.9, 41.1; IR (neat, cm⁻¹): 3056, 2852, 1603, 1561, 1479, 1423, 1325, 1159, 1130, 1079, 728; HRMS (ESI/Q-TOF)

(m/z): calcd. for $C_{15}H_{15}O_2S_2$, [M + H]⁺: 291.0508, found: 291.0501.

(E)-(2-phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k'):

As white solid (76 mg, 80% yield); m.p. 168–170 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.07 (s, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 9.0 Hz, 5H), 7.22–7.17 (m, 6H), 2.38 (s, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.6, 144.1, 139.1, 136.6, 135.9, 131.6, 130.9, 130.5, 130.4, 129.6, 129.5, 129.4, 128.8, 128.4, 21.8, 21.3; IR (neat, cm⁻¹): 2914, 2852, 1572, 1491, 1315, 1275, 1260, 1141, 1085, 764; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₂S₂, [M + H]⁺: 381.0977, found: 381.0975.

(E)-(4-methoxyphenyl)(2-phenyl-2-tosylvinyl)sulfane (11'):

As white solid (71 mg, 72% yield); m.p. 174–176 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.00 (s, 1H), 7.48 (d, *J* =8.0 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.35–7.31 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.6, 145.5, 144.1, 136.7, 135.4, 134.0, 130.9, 130.4, 129.6, 129.5, 128.8, 128.4, 123.4, 115.3, 55.7, 21.8; IR (neat, cm⁻¹): 3033, 2837, 1592, 1572, 1493, 1300, 1249, 1142, 1086, 764; HRMS (ESI/Q-TOF) (m/z): calcd. for C₂₂H₂₁O₃S₂, [M + H]⁺: 397.0927, found: 397.0927.

(E)-(4-bromophenyl)(2-phenyl-2-tosylvinyl)sulfane (1n'):

As white solid (79 mg, 71% yield); m.p. 170–172 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.01 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.48 (d, J= 8.5 Hz, 2H), 7.37–7.32 (m, 5H), 7.19 (d, J = 7.0 Hz, 4H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.3, 142.3, 137.4, 136.4, 132.9, 132.8, 132.2, 130.7, 130.3, 129.7, 128.9, 128.5, 123.2, 21.8; IR (neat, cm⁻¹): 2956, 2917, 1597, 1579, 1473, 1313, 1142, 1085, 753; HRMS (ESI/Q-TOF) (m/z): calcd. for $C_{21}H_{18}O_2S_2Br$, $[M + H]^+$: 444.9926, found: 444.9931.

(*E*)-2-((2-phenyl-2-tosylvinyl)thio)thiophene (1q'):

As white solid (60 mg, 64% yield); m.p. 138–140 °C; purified over a column of silica gel (5% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.91 (s, 1H), 7.47 (t, J = 7.8 Hz, 3H), 7.36–7.32 (m, 3H), 7.24 (d, J = 3.5 Hz, 1H), 7.19–7.18 (m, 4H), 7.04 (t, J = 4.5 Hz, 1H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.2, 144.3, 136.4, 136.2, 135.3, 131.4, 130.5, 130.4, 129.7, 129.6, 128.9, 128.5, 128.2, 21.8; IR (neat, cm⁻¹): 3034, 2956, 2916, 1577, 1489, 1310, 1218, 1141, 1084, 766; HRMS (ESI/Q-TOF) (m/z): calcd. for C₁₉H₁₇O₂S₃, [M + H]⁺: 373.0385, found: 373.0385.

14. Spectra of all compounds:

1-Phenyl-2-(phenylthio)-2-tosylethan-1-one (1a): ¹H NMR (CDCl₃, 500 MHz)

1-Phenyl-2-(phenylthio)-2-tosylethan-1-one (1a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

	Å	

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

2-(Phenylthio)-1-(p-tolyl)-2-tosylethan-1-one (2a): ¹H NMR (CDCl₃, 500 MHz)

2-(Phenylthio)-1-(p-tolyl)-2-tosylethan-1-one (2a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

1-(4-Ethylphenyl)-2-(phenylthio)-2-tosylethan-1-one (3a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

Ó

1-(4-(tert-Butyl)phenyl)-2-(phenylthio)-2-tosylethan-1-one (4a): ¹H NMR (CDCl₃, 500 MHz)

1-(4-Pentylphenyl)-2-(phenylthio)-2-tosylethan-1-one (5a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

1-(4-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (7a): ¹H NMR (CDCl₃, 500 MHz)

1-(4-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (7a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

1-(4-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (7a): ¹⁹F NMR (CDCl₃, 471 MHz)

DBB-AI-4F-TS-PH-19F.1.fid DBB-AI-4F-TS-PH-19F

0,0 0 Me

-100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -16 f1 (ppm) -95 -90

1-(4-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (8a): ¹H NMR (CDCl₃, 500 MHz)

DBB-AL-4CL-TS-SPH-1H.17.fid DBB-AL-4CL-TS-SPH-1H	850 850 850 850 855 833 855 833 855 855 855 855 855 855	701	460
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, M	Ci.
			1





# 1-(4-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (8a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

188,576	146.056 133,715 133,715 133,263 131,728 131,728 131,728 130,897 130,897 130,897 132,513 131,728 130,897 132,513 132,523 122,523 129,523	77.484 77.230 76.977 76.140	21.986
1		Y	















1-(4-Bromophenyl)-2-(phenylthio)-2-tosylethan-1-one (9a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)



2-(Phenylthio)-1-(m-tolyl)-2-tosylethan-1-one (10a): ¹H NMR (CDCl3, 500 MHz)




				100					1.0											
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										



#### 1-(3-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (11a): ¹H NMR (CDCl₃, 500 MHz)

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0 f1 (ppm) 4.5

4.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0

3.0



#### 1-(3-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (11a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

## 1-(3-Fluorophenyl)-2-(phenylthio)-2-tosylethan-1-one (11a): ¹⁹F NMR (CDCl₃, 471 MHz)

DBB-AL-3F-TS-PH-19F.8.fid DBB-AL-3F-TS-PH-19F





- K - 6		6 E)	S 1 1	2 - 2 <b>1</b>	3.0 4.0 2		S. 11	5 1 2	S 10	50 AV 3	5 (H (A)		A 4 2		S 10	8 04 00	50 K. I	6 A 2	2 D D D	- E
-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-16
										f1 (ppm)										



#### 1-(3-Chlorophenyl)-2-(phenylthio)-2-tosylethan-1-one (12a): ¹H NMR (CDCl₃, 500 MHz)







6.0

6.5

5.5

5.0 f1 (ppm)

4.5

4.0

1-(Naphthalen-2-yl)-2-(phenylthio)-2-tosylethan-1-one (13a): ¹H NMR (CDCl₃, 500 MHz)

10.0

9.5

8.5

9.0

8.0

7.5

7.0



2.5

3.5

3.0

2.0

1.5

1

0.0

0.5

1.0



1-(Naphthalen-2-yl)-2-(phenylthio)-2-tosylethan-1-one (13a): ¹³C¹_{ H} NMR (CDCl₃, 125 MHz)

2-(Phenylthio)-1-(thiophen-3-yl)-2-tosylethan-1-one (14a): ¹H NMR (CDCl₃, 500 MHz)







## 2-(Phenylthio)-1-(thiophen-3-yl)-2-tosylethan-1-one (14a): ¹³C{¹H} NMR (CDCl₃, 125 MHz)











1-Phenyl-2-(phenylsulfonyl)-2-(phenylthio)ethan-1-one (1b): ¹³C{¹H} NMR (CDCl₃, 125 MHz)



77.484 77.230 76.976 75.717







2-((4-(tert-Butyl)phenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1c): ¹H NMR (CDCl₃, 500 MHz)

## 2-((4-(tert-Butyl)phenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1c): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

74	69	4492444 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 81282 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 8128 812 812	NO NO	4 4
ы	Q	witionitic nition	64 CL CC	12 2
66	83	0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1.0
÷	त्त्	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	() () ()
1	1			1 1





2-((4-Methoxyphenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1d): ¹H NMR (CDCl₃, 500 MHz)















2-((4-Chlorophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1e): ¹³C{¹H} NMR (CDCl₃, 125 MHz)



77.485 77.230 76.976 75.589







2-((3-Chlorophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1f): ¹H NMR (CDCl₃, 500 MHz)

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2	82
	20
	1







2-((3-Chlorophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1f): ¹³C NMR (CDCl₃, 125 MHz)

2-((4-Bromophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1g): ¹H NMR (CDCl₃, 500 MHz)

889 881 887 887 887 887 887 887 887 887 886 888 887 886 888 886 888 886 888 886 888 886 888 887 886 888 887 886 888 887 886 887 887	816
~~~~~	5
	1

2-((4-Bromophenyl)sulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1g): ¹³C NMR (CDCl₃, 125 MHz)

2-(Naphthalen-2-ylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1h): ¹³C NMR (CDCl₃, 125 MHz)

DBB-AL-TSINAP-PH-13C.6.fid	4 m 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DBB-AL-TSNAP-PH-13C	
8	\mathcal{M}
-18	

77.485 77.230 76.977 75.969

2-(Methylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1i): ¹³C NMR (CDCl₃, 125 MHz)

|--|--|

2-(Cyclopropylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1j): ¹H NMR (CDCl₃, 500 MHz)

2-(Cyclopropylsulfonyl)-1-phenyl-2-(phenylthio)ethan-1-one (1j): ¹³C^{{1}H} NMR (CDCl₃, 125 MHz)

DBB-AL-@YSO2-PH-13C.3.fid DBB-AL-@YSO2-PH-13C	135.166 134.674 132.360 129.740 129.440 129.148	77.485 77.230 76.977 74.192		~6.734
--	--	--------------------------------------	--	--------

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

1-Phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k): ¹H NMR (CDCl₃, 500 MHz)

1-Phenyl-2-(p-tolylthio)-2-tosylethan-1-one (1k): ¹³C^{{1}H} NMR (CDCl₃, 125 MHz)

		S 10 1	S. 3. 3		8 4 8		A 4 5		25 UL 03		60 A 0		S - A - S	S 24	50 1 6 3	2 U	5 1 1	6	2
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1 (ppm)										

2-((4-Methoxyphenyl)thio)-1-phenyl-2-tosylethan-1-one (11): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

2-((4-Chlorophenyl)thio)-1-phenyl-2-tosylethan-1-one (1m): ¹³C NMR (CDCl₃, 125 MHz)

f1 (ppm) Ó

	S 10 0		SI 10	S 3 1	6 D.C.			50 E E	63 Al- 2	1 15			25 10 1			N 8 9	2	5 10 1	A 14 14	2 E
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

L.

0.0

2-(Phenethylthio)-1-phenyl-2-tosylethan-1-one (1p): ¹H NMR (CDCl₃, 500 MHz)

2-(Phenethylthio)-1-phenyl-2-tosylethan-1-one (1p): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

1-Phenyl-2-(thiophen-2-ylthio)-2-tosylethan-1-one (1q): ¹H NMR (CDCl₃, 500 MHz)

916 882 882 882 882 882 882 882 882 882 88	89	.460

1-Phenyl-2-(thiophen-2-ylthio)-2-tosylethan-1-one (1q): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-Phenyl(2-phenyl-2-tosylvinyl)sulfane (1a'): ¹H NMR (CDCl₃, 500 MHz)

DBB-P2-AL-TS-PH-1H.1.fid DBB-P2-AL-TS-PH-1H

105 502 486	461	370	348	345	334	260	218	214	194	178
00 M M	7 7	1	N	~	N	~	P	~	5	N
1	1	1	1	-	1	1	_	-	-	_
. 23	-	n)(r	1.11				-			

-2.379

(E)-Phenyl(2-phenyl-2-tosylvinyl)sulfane (1a'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

DBB-P2-AL-TS-PH-13C.3.fid DBB-P2-AL-TS-PH-13C

144.201 143.542 133.574 133.574 130.519 130.919 129.654 129.657 129.657 129.657 129.657 128.758 128.758 128.758 128.758	76.975
---	--------

-21.788

(E)-Phenyl(2-(p-tolyl)-2-tosylvinyl)sulfane (2a'): ¹H NMR (CDCl₃, 500 MHz)

DBB-P2-AL-4ME-1H.1.fid DBB-P2-AL-4ME-1H

8.087	7.501	7.473	7.457	7.379	7.364	7.260	7.199	7.183	7.155	7.138	7.110	7.094
Ĩ		-	-	F	1	-	2	2	-	-	1	1

(E)-Phenyl(2-(p-tolyl)-2-tosylvinyl)sulfane (2a'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

0091 368 6633 7031 703 703 703 703 703 703 703 84 703	75	62
44 22 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	4.0.2	21.5
		$\langle \nabla \rangle$

(E)-(2-(4-(tert-Butyl)phenyl)-2-tosylvinyl)(phenyl)sulfane (4a'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(2-(4-(tert-Butyl)phenyl)-2-tosylvinyl)(phenyl)sulfane (4a'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-Phenyl(2-tosyl-2-(4-(trifluoromethyl)phenyl)vinyl)sulfane (17a'): ¹H NMR (CDCl₃, 500 MHz)

161 608 592 592 478 478 473 473 467 467 467 467	402 3391 3387 3383 3387 3383 3387 3383 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3387 3391 3391 3391 3391 3391 3391 3391 339	
8		

-2.394

(E)-Phenyl(2-tosyl-2-(4-(trifluoromethyl)phenyl)vinyl)sulfane (17a'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-Phenyl(2-tosyl-2-(4-(trifluoromethyl)phenyl)vinyl)sulfane (17a'): ¹⁹F NMR (CDCl₃, 471 MHz)

1		1					10 1	8 0				1	· · ·	10 10	<u>0</u>		1.21
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-15
								f1 ((ppm)								

(E)-2-(2-(Phenylthio)-1-tosylvinyl)pyridine (18a'): ¹H NMR (CDCl₃, 500 MHz)

(E)-2-(2-(Phenylthio)-1-tosylvinyl)pyridine (18a'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-(2-((4-(tert-Butyl)phenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1c'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(2-((4-Methoxyphenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1d'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(2-((3-Chlorophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1f'): ¹H NMR (CDCl3, 500 MHz)

DBB-P2-TS-3CL-1H.1.fid DBB-P2-TS-3CL-1H

(E)-(2-((3-Chlorophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1f'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

DBB-P2-TS-3CL-13C.3.fid DBB-P2-TS-3CL-1H

444	225 255 255 255 255 255 255 255 255 255	
45	222222222222222222222222222222222222222	
ī		

(E)-(2-((4-Bromophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1g'): ¹H NMR (CDCl₃, 500 MHz)

DBB-P2-TS-4-BR-1H.3.fid DBB-P2-TS-4-BR-1H

-8.128 7.539 7.47 7.447 7.447 7.447 7.447 7.7.397 7.7.393 7.7.333 7.7.333 7.7.333 7.7.333 7.7.333 7.7.333 7.7.333 7.7.333 7.7.260 7.7.228

(E)-(2-((4-Bromophenyl)sulfonyl)-2-phenylvinyl)(phenyl)sulfane (1g'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

f1 (ppm) -10

DBB-P2-TS-4CF3-1H.4.fid

CF₃

11

0.0

1.0

0.5

(E)-Phenyl(2-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)vinyl)sulfane (1t'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-Phenyl(2-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)vinyl)sulfane (1t'): ¹⁹F NMR (CDCl₃, 471 MHz)

-----63.138

(E)-(2-(Methylsulfonyl)-2-phenylvinyl)(phenyl)sulfane (1i'): ¹H NMR (CDCl₃, 500 MHz)

DBB-P2-MESO2-1H.1.fid	
DBB-P2-MESO2-1H	

510 510 510	474 474 473 473	365 365 260
	11111	177

-2.801

(E)-(2-(Methylsulfonyl)-2-phenylvinyl)(phenyl)sulfane (1i'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

DBB-P2-MESO2-13C.3.fid DBB-P2-MESO2-13C	-144.750 135.181 132.796 132.796 130.924 130.038 130.038 130.038 129.817 129.817 128.985	77,483 77.230 76.975	-41.085
		\sim	

(E)-(2-Phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(2-Phenyl-2-tosylvinyl)(p-tolyl)sulfane (1k'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

3	мом	
Ů – – Ň Ũ Ň Ũ Ž Ă Ň Ũ Ž Ŵ Ŵ	3 3 48	2 2
4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
	ファブ	20
	\checkmark	\checkmark

(E)-(4-Methoxyphenyl)(2-phenyl-2-tosylvinyl)sulfane (11'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(4-Methoxyphenyl)(2-phenyl-2-tosylvinyl)sulfane (11'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-(4-Bromophenyl)(2-phenyl-2-tosylvinyl)sulfane (1n'): ¹H NMR (CDCl₃, 500 MHz)

(E)-(4-Bromophenyl)(2-phenyl-2-tosylvinyl)sulfane (1n'): ¹³C{¹H} NMR (CDCl₃, 125 MHz)

(E)-2-((2-Phenyl-2-tosylvinyl)thio)thiophene (1q'): ¹H NMR (CDCl₃, 500 MHz)

(E)-2-((2-Phenyl-2-tosylvinyl)thio)thiophene (1q'): ${}^{13}C_{\ell}^{(1}H_{\ell}^{3} NMR$ (CDCl₃, 125 MHz)

and the second	*	·	the sections	1	and the	V salar i	100000	and the second second	·	· · · · ·	C allo	·	·	·	·	- alie	all of the	1.18	the second second	<u></u>
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm))									