Supporting Information

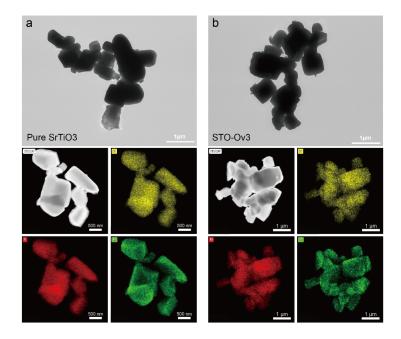
Efficient H2O2 Production from SrTiO3-based Thermoelectrocatalyst for Harvesting Low-Grade Waste Heat

Qian Yang,^{‡ab} Yuheng Gu,^{‡a} Yucen Liu,^{‡a} Xin Wang,^c Shun Li,^a Jianming Zhang,^a Weishu Liu,^{*d} Long Zhang^{*a} and Yuqiao Zhang^{*a}

^{*a.*} Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 China.

E-mail: yuqiaozhang@ujs.edu.cn (Y.Q. Zhang), longzhang@ujs.edu.cn (L. Zhang)

^{b.} Foshan (Southern China) Institute for New Materials, 528200, Foshan, Guangdong, China


^{c.} Public Experiment and Service Center, Jiangsu University, Zhenjiang, Jiangsu, 212013 China.

^{d.} Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China *E-mail: liuws@sustech.edu.cn (W. Liu)*

‡ Q. Yang, Y. Gu, and Y. Liu contributed equally to this work.

Sample preparation

All catalyst powders were synthesized by the solid-phase reaction method at 1100 °C for 3 hours. Prior to calcination, stoichiometrically weighed SrCO₃, TiO₂ and Nb₂O₃ powders (99.99%, Aladdin Co. Ltd.) were mixed via a wet ball milling process at 300 rpm for 12 hours with ethanol as the medium, followed by drying at 70 °C. To induce oxygen vacancies, the resulting pure SrTiO₃ powders were annealed at 800 °C under a flow of mixed H₂/Ar gas (5% H₂ and 95% Ar). The electron doping concentration was adjusted by varying the annealing duration to 9, 12, and 21 hours (hereafter denoted as STO-Ov1, STO-Ov2, and STO-Ov3). In case of Nb substituted SrTiO₃ powders, 2 mol%, 5 mol% and 10 mol% of Nb substitution at the Ti site was applied (SrTi_{1-x}Nb_xO₃, x = 0.02, 0.05, 0.1, hereafter denoted as STNO-0.02, STNO-0.05, and STNO-0.1).

Figure S1. Transmission electron microscopy (TEM) images of SrTiO₃ powders before (a) and after (b) post-annealing.

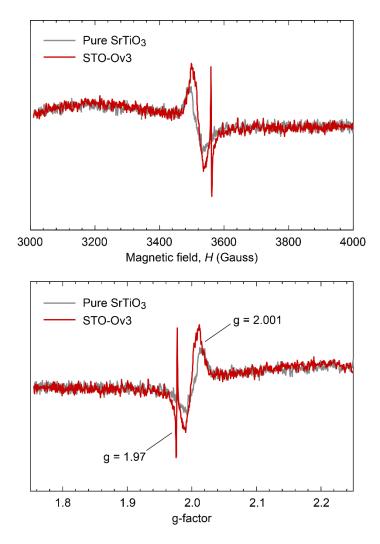
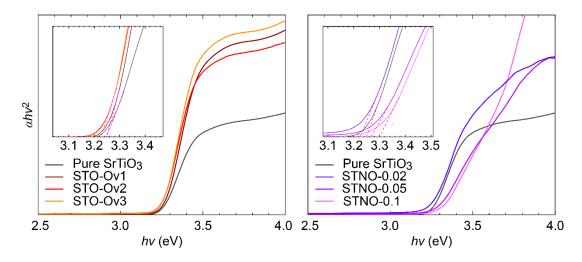
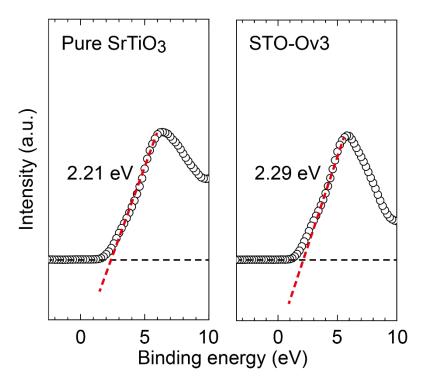



Figure S2. Electron paramagnetic resonance (EPR) spectra of pure SrTiO₃ and STO-Ov3 samples. EPR signals attributed to oxygen vacancy and Ti^{3+} can be detected at g = 2.001 and 1.97.


Fig. S2 shows the electron paramagnetic resonance (EPR) results of pure $SrTiO_3$ and STO-Ov3 samples. The g factor can be calculated by following relations from magnetic field (*H*),

$$g = hv / \beta H$$

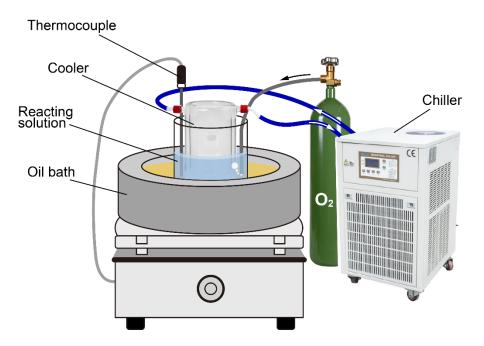
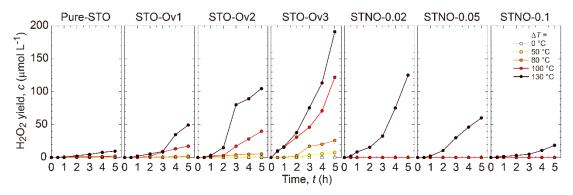
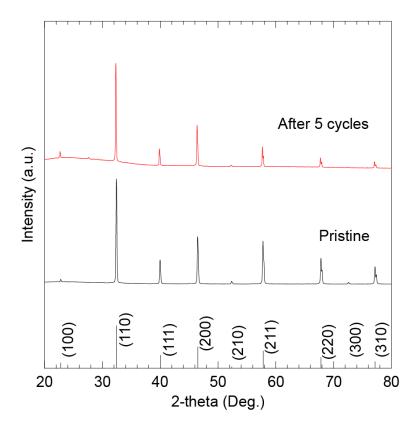
where *h* is Plank constant (= 6.63×10^{-34} J s), *v* is frequency, β is Bohr magneton (9.27 × 10⁻²⁴ A m²) and H is magnetic field strength.

Figure S3. Solid UV characterization of $SrTiO_3$ powders with different oxygen vacancies (Pure-STO, STO-Ov1, STO-Ov2 and STO-Ov3) and Nb substitutions (2 mol%, 5 mol% and 10 mol% substitutions abbreviated as STNO-0.02, STNO-0.05 and STNO-0.1, respectively). All the samples show an almost constant optical band gap of ~3.2 eV, corresponding to the pristine $SrTiO_3$.

Figure S4. XPS valence band spectra of pure SrTiO₃ and STO-Ov3 powders. The valence band energies are measured to be 2.21 eV for pure SrTiO₃ and 2.29 eV for STO-Ov3, showing minimal variation between these two samples.

Sample No.	Specific area (m ² g ⁻¹)
Pure-SrTiO ₃	13.57
STO-Ov1	11.93
STO-Ov2	12.08
STO-Ov3	13.63
STNO-0.02	6.87
STNO-0.05	13.99
STNO-0.1	8.11

Table S1. Specific area and porosity of electron doped SrTiO₃ powders.

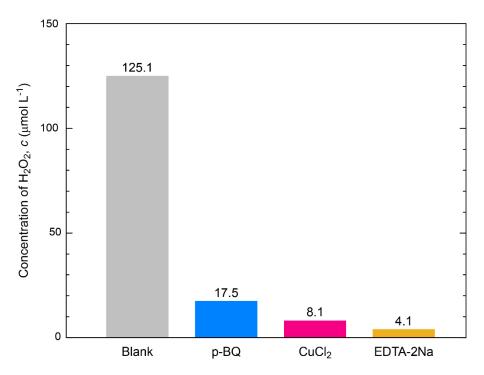

Figure S5. Schematic illustration of the custom-designed thermoelectrocatalytic (TECatal) reactor.

Figure S6. Time-dependent TECatal H₂O₂ production rate of SrTiO₃ powders with different oxygen vacancies (Pure-STO, STO-Ov1, STO-Ov2 and STO-Ov3) and Nb substitutions (2 mol%, 5 mol% and 10 mol% substitutions abbreviated as STNO-0.02, STNO-0.05 and STNO-0.1, respectively) at the temperature gradient (ΔT) ranging from 0 to 130 °C.

Figure S7. X-ray diffraction (XRD) patterns of oxygen vacancy doped SrTiO₃ **powders before and after 5 cycles' thermoelectrocatalysis (TECatal).** No obvious phase change can be detected suggesting a good composition stability of SrTiO₃ powders.

Figure S8. H_2O_2 yield of 2 mol% Nb substituted SrTiO₃ powder (STNO-0.02) with EDTA-2Na, CuCl₂ and p-benzoquinone (p-BQ) as hole scavenger, electron scavenger and superoxide ($\cdot O_2^-$) scavenger, respectively. Significant suppression of H_2O_2 production can be observed at the presence of scavengers.a