Electronic Supplementary Information (ESI)

Cobalt-Catalyzed Dithiolation of Unactivated Alkenes with Thiols: A Facile Access to Diverse Vicinal Dithioethers

Jing Shi,^b Qian Xiao*a and Jian-Ji Zhong*^b

^{*a*} School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China. E-mail: xiaoqian880405@hstc.edu.cn

^b College of Chemistry and Chemical Engineering, and Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China. E-mail: jjzhong@stu.edu.cn

Table of Contents

1. Experimental section	
1) General information	
2) General procedure for the dithiolation	n reactions4
3) Procedure for the gram-scale reaction	5
4) Radical trapping experiment	6
5) References	7
2. Characterization data of the	products8
3. NMR spectra for the produc	ts34

1. Experimental section

1) General information

All chemicals, unless otherwise noted, were purchased from commercial sources and were used without further purification. Cobaloxime catalysts were synthesized according to the literature methods.¹⁻⁴

The nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AscendTM 400 MHz or Bruker AVANCE NEO 600 MHz NMR spectrometer with tetramethylsilane (TMS) as an internal standard. High resolution mass spectra were recorded using a Q Exactive (ESI) mass spectrometer (U3000 RS, Thermo Fisher Scientific, USA) or a Exactive GC (EI) mass spectrometer (Trace 1310, Thermo Fisher Scientific, USA), and the mass analyzer is Orbitrap.

2) General procedure for the dithiolation reactions

The alkenes **a** (0.2 mmol, 1.0 equiv.), thiophenols **b** or alkyl thiols **d** (0.6 mmol, 3.0 equiv.), and 10 mol% Co(dmgH)(dmgH₂)Cl₂ were dissolved in 3.0 mL HFIP and 0.5 mL DCM in a 15 mL reaction tube equipped with magnetic stirring bar, then air bubbling was carried out at room temperature for 18 h. After the completion of the reaction, the solvent was removed and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent.

The alkenes **a** (0.3 mmol, 1.5 equiv.), thiophenols **b** (0.2 mmol, 1.0 equiv.), alkyl thiols **d** (0.4 mmol, 2.0 equiv.), and 10 mol% Co(dmgH)(dmgH₂)Cl₂ were dissolved in 3.0 mL HFIP and 0.5 mL DCM in a 15 mL reaction tube equipped with magnetic stirring bar, then air bubbling was carried out at room temperature for 18 h. After the completion of the reaction, the solvent was removed and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent.

3) Procedure for the gram-scale reaction

The allylbenzene **a1** (9.0 mmol, 1.0 equiv.), 4-methoxybenzenethiol **b1** (18.0 mmol, 2.0 equiv.), and 10 mol% Co(dmgH)(dmgH₂)Cl₂ were dissolved in 60 mL HFIP and 10 mL DCM in a flask equipped with a magnetic stir bar, then air bubbling was carried out at room temperature for 36 h. After the completion of the reaction, the solvent was removed and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to afford **c1** (2.90 g, 81%).

4) Radical trapping experiment

The allylbenzene **a1** (0.2 mmol, 1.0 equiv.), 4-methoxybenzenethiol **b1** (0.6 mmol, 3.0 equiv.), TEMPO (0.8 mmol, 4.0 equiv.), and 10 mol% Co(dmgH)(dmgH₂)Cl₂ were dissolved in 3.0 mL HFIP and 0.5 mL DCM in a 15 mL reaction tube equipped with magnetic stirring bar, then air bubbling was carried out at room temperature for 18 h. After the completion of the reaction, the mixture was analyzed by HRMS.

5) References

- 1. J. H. Espenson and R. Russell, *Inorg. Chem.*, 1974, **13**, 7.
- 2. A. Bakac and J. H. Espenson, J. Am. Chem. Soc., 1984, 106, 5197.
- 3. M. Razavet, V. Artero and M. Fontecave, *Inorg. Chem.*, 2005, 44, 4786.
- Y. Z. Voloshin, A. S. Belov, A. V. Vologzhanina, G. G. Aleksandrov, A. V. Dolganov, V. V. Novikov, O. A. Varzatskii and Y. N. Bubnov, *Dalton Trans.*, 2012, 41, 6078.

2. Characterization data of the products

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c1** as a light-yellow oil (78 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.36 – 7.29 (m, 2H), 7.28 – 7.25 (m, 3H), 7.24 – 7.18 (m, 4H), 6.85 – 6.75 (m, 4H), 3.82 (s, 3H), 3.82 (s, 3H), 3.29 – 3.17 (m, 2H), 3.14 – 3.07 (m, 1H), 2.94 – 2.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.9, 138.8, 135.6, 133.0, 129.4, 128.3, 126.5, 125.9, 124.2, 114.6, 114.5, 55.4, 55.3, 50.7, 40.1, 39.0. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₅O₂S₂⁺: 397.1290; found: 397.1293.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c2** as a light-yellow oil (81 mg, 99% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm = 7.21 (d, *J* = 8.8 Hz, 2H), 7.15 – 7.08 (m, 6H), 6.73 (dd, *J* = 19.1, 8.9 Hz, 4H), 3.75 (s, 3H), 3.74 (s, 3H), 3.23 – 3.14 (m, 2H), 3.10 (dd, *J* = 13.6, 4.8 Hz, 1H), 2.91 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.77 (dd, *J* = 13.9, 7.8 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ ppm = 159.6, 158.8, 137.3, 136.4, 135.8, 132.6, 130.4, 130.2, 126.6, 126.2, 125.8, 124.4, 114.6, 114.5, 55.4, 50.3, 40.6, 37.2, 19.6. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₄H₂₆O₂S₂Na⁺: 433.1266; found: 433.1264.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c3** as a light-yellow oil (84 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.29 – 7.19 (m, 5H), 6.85 – 6.77 (m, 6H), 6.76 – 6.75 (m, 1H), 3.81 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.27 – 3.15 (m, 2H), 3.15 – 3.05 (m, 1H), 2.93 – 2.79 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 159.6, 158.9, 140.4, 135.6, 133.0, 129.3, 125.9, 124.1, 121.8, 115.0, 114.6, 114.5, 111.9, 55.3, 55.1, 50.5, 40.0, 39.0. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₄H₂₇O₃S₂⁺: 427.1396; found: 427.1396.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c4** as a light-yellow oil (81 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 – 7.24 (m, 2H), 7.22 – 7.16 (m, 2H), 7.16 – 7.10 (m, 2H), 6.89 – 6.75 (m, 6H), 3.81 - 3.80 (m, 9H), 3.22 - 3.12 (m, 2H), 3.08 (dd, J = 13.6, 4.3 Hz, 1H), 2.91 – 2.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 158.9, 158.2, 135.5, 133.0, 130.8, 130.3, 126.0, 124.3, 114.6, 114.5, 113.7, 55.3, 55.2, 50.9, 39.9, 38.0. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₄H₂₇O₃S₂⁺: 427.1396; found: 427.1401.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1, v/v) afforded **c5** as a light-yellow oil (89 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 - 7.24 (m, 2H), 7.21 - 7.14 (m, 2H), 6.82 - 6.77 (m, 4H), 6.77 - 6.72 (m, 2H), 6.70 (d, J = 2.0 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.21 - 3.11 (m, 2H), 3.07 (dd, J = 13.6, 4.4 Hz, 1H), 2.90 - 2.77 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.9, 148.7, 147.6, 135.6, 132.9, 131.3, 125.9, 124.2, 121.4, 114.6, 114.5, 112.6, 111.1, 55.9, 55.8, 55.3, 50.8, 39.8, 38.4. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₅H₂₉O₄S₂⁺: 457.1502; found: 457.1500.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c6** as a light-yellow oil (74 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.24 (d, *J* = 2.2 Hz, 1H), 7.23 – 7.18 (m, 4H), 7.17 (d, *J* = 2.2 Hz, 1H), 7.15 – 7.09 (m, 2H), 6.84 – 6.73 (m, 4H), 3.81 (s, 6H), 3.24 – 3.03 (m, 3H), 2.81 (ddd, *J* = 13.4, 10.5, 7.7 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.9, 143.9, 136.2, 135.7, 135.5, 133.0, 129.9, 126.7, 125.8, 124.0, 114.6, 114.5, 55.3, 50.6, 40.0, 38.3. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₄H₂₇O₂S₃⁺: 443.1168; found: 443.1169.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c7** as a light-yellow oil (76 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.28 - 7.17 (m, 6H), 7.16 - 7.08 (m, 2H), 6.84 - 6.74 (m, 4H), 3.81 (s, 6H), 3.22 (dd, J = 14.0, 5.0 Hz, 1H), 3.17 - 3.06 (m, 2H), 2.87 - 2.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 159.0, 137.3, 135.6, 133.1, 132.2, 130.7, 128.4, 125.6, 123.8, 114.6, 114.5, 55.4, 50.6, 40.1, 38.1. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₄ClO₂S₂⁺: 431.0901; found: 431.0899.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c8** as a light-yellow oil (70 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 – 7.18 (m, 6H), 7.12 – 6.98 (m, 2H), 6.78 (d, *J* = 8.4 Hz, 4H), 3.81 (s, 6H), 3.36 – 3.20 (m, 2H), 3.11 (dd, *J* = 13.6, 4.6 Hz, 1H), 2.92 – 2.77 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 161.2 (d, *J* = 245.9 Hz), 159.5, 159.0, 135.5, 133.3, 131.7 (d, *J* = 4.8 Hz), 128.3, 128.2, 126.0, 125.9, 123.9, 115.3 (d, *J* = 22.5 Hz), 114.6, 114.5, 55.3, 49.5, 40.8, 32.8. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm = -117.04. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₄FO₂S₂⁺: 415.1196; found: 415.1195.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c9** as a light-yellow oil (81 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.28 – 7.19 (m, 5H), 7.00 – 6.88 (m, 3H), 6.80 (dd, *J* = 8.7, 4.8 Hz, 4H), 3.81 (s, 6H), 3.25 (dd, *J* = 14.0, 5.2 Hz, 1H), 3.20 – 3.08 (m, 2H), 2.83 (dt, *J* = 14.7, 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 162.8 (d, *J* = 246.6 Hz), 159.7, 159.0, 141.4 (d, *J* = 7.4 Hz), 135.6, 133.1, 129.7 (d, *J* = 8.5 Hz), 125.6, 125.0, 123.9, 116.2 (d, *J* = 21.0 Hz), 114.7, 114.6, 113.4 (d, *J* = 21.4 Hz), 55.3, 50.4, 40.2, 38.6. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm = -113.45. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₄FO₂S₂⁺: 415.1196; found: 415.1192.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c10** as a light-yellow oil (81 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 – 7.14 (m, 6H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.79 (dd, *J* = 8.8, 5.0 Hz, 4H), 3.81 (s, 6H), 3.22 (dd, *J* = 13.9, 5.3 Hz, 1H), 3.18 – 3.07 (m, 2H), 2.82 (ddd, *J* = 13.3, 7.9, 4.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 162.8 (d, *J* = 245.2 Hz), 159.6, 159.0, 135.5, 134.5, 133.0, 130.8 (d, *J* = 8.1 Hz), 125.7, 124.0, 115.1 (d, *J* = 21.4 Hz), 114.6, 114.5, 55.3, 50.8, 40.0, 38.0. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm = -116.58. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₄FO₂S₂⁺: 415.1196; found: 415.1193.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c11** as a light-yellow oil (84 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.62 (d, *J* = 7.5 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.29 (d, *J* = 3.5 Hz, 4H), 7.22 (d, *J* = 8.8 Hz, 2H), 6.90 – 6.69 (m, 4H), 3.82 (s, 3H), 3.81 (s, 3H), 3.34 – 3.18 (m, 2H), 3.13 (dd, *J* = 13.5, 4.3 Hz, 1H), 2.90 (dd, *J* = 13.4, 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.9, 140.9, 139.3, 137.9, 135.6, 133.0, 129.8, 128.8, 127.1, 127.0, 125.8, 124.1, 114.6, 114.5, 55.3, 50.7, 40.1, 38.6. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₉H₂₉O₂S₂⁺: 473.1603; found: 473.1599.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 120/1, v/v) afforded **c12** as a light-yellow oil (88 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.95 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.53 – 7.36 (m, 4H), 7.27 – 7.24 (m, 2H), 7.20 – 7.11 (m, 2H), 6.85 – 6.76 (m, 2H), 6.76 – 6.68 (m, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 3.78 – 3.71 (m, 1H), 3.44 (p, *J* = 7.8 Hz, 1H), 3.30 – 3.15 (m, 2H), 3.00 (dd, *J* = 13.7, 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.8, 135.9, 134.9, 134.0, 132.6, 131.9, 128.8, 128.0, 127.4, 126.1, 125.9, 125.5, 125.3, 124.1, 123.8, 114.6, 114.5, 55.3, 50.1, 40.6, 37.2. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₇H₂₇O₂S₂⁺: 447.1447; found: 447.1443.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c13** as a light-yellow oil (76 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.33 (ddd, *J* = 9.2, 6.3, 1.0 Hz, 2H), 7.25 (td, *J* = 6.2, 2.4 Hz, 5H), 7.13 – 7.05 (m, 2H), 6.85 – 6.77 (m, 2H), 6.77 – 6.68 (m, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.14 (dd, *J* = 13.2, 3.8 Hz, 1H), 3.02 – 2.73 (m, 4H), 2.33 (dddd, *J* = 14.3, 9.0, 7.7, 3.6 Hz, 1H), 1.80 (dtd, *J* = 14.2, 8.8, 5.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 159.0, 141.6, 135.4, 133.7, 128.6, 128.4, 125.9, 125.8, 123.9, 114.6, 114.5, 55.3, 47.9, 41.5, 33.8, 32.9. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₄H₂₇O₂S₂⁺: 411.1447; found: 411.1447.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 120/1, v/v) afforded **c14** as a light-yellow oil (68 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.40 (d, *J* = 8.8 Hz, 2H), 7.30 – 7.26 (m, 4H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.91 – 6.81 (m, 4H), 6.78 (d, *J* = 8.8 Hz, 2H), 4.21 (qd, *J* = 9.8, 5.2 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.40 – 3.22 (m, 2H), 3.17 (dd, *J* = 13.6, 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.9, 159.0, 158.4, 136.1, 133.0, 129.4, 125.8, 123.4, 121.0, 114.7, 114.6, 114.6, 68.0, 55.4, 55.3, 48.7, 37.4. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₃H₂₅O₃S₂⁺: 413.1240; found: 413.1245.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1, v/v) afforded **c15** as a light-yellow oil (70 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.29 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.79 (dd, *J* = 11.1, 8.7 Hz, 4H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 3H), 3.14 (dd, *J* = 13.4, 4.3 Hz, 1H), 2.90 (tt, *J* = 9.2, 4.0 Hz, 1H), 2.76 (dd, *J* = 13.4, 9.4 Hz, 1H), 2.64 (ddd, *J* = 14.8, 9.2, 5.6 Hz, 1H), 2.52 (ddd, *J* = 16.0, 9.0, 6.8 Hz, 1H), 2.30 (ddt, *J* = 16.0, 6.4, 3.5 Hz, 1H), 1.74 (dq, *J* = 10.3, 5.4, 4.5 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 173.1, 159.7, 159.0, 135.9, 133.3, 125.8, 123.3, 114.6, 114.5, 60.4, 55.3, 48.7, 41.2, 31.8, 27.6, 14.2. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₁H₂₇O4S₂⁺: 407.1345; found: 407.1346.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c16** as a light-yellow oil (73 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.28 – 7.26 (m, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.84 – 6.70 (m, 4H), 3.81 (s, 3H), 3.79 (s, 3H), 3.13 – 3.01 (m, 2H), 2.89 (ddd, *J* = 8.2, 5.9, 3.5 Hz, 1H), 2.02 – 1.89 (m, 1H), 1.84 – 1.72 (m, 3H), 1.68 (d, *J* = 13.1 Hz, 2H), 1.53 (qd, *J* = 12.5, 3.6 Hz, 1H), 1.36 – 1.25 (m, 1H), 1.24 – 1.04 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.2, 158.8, 135.0, 133.0, 126.3, 125.8, 114.5, 57.0, 55.3, 39.3, 38.7, 31.5, 28.2,

26.5, 26.4. HRMS (ESI) (m/z) for $[M+H]^+$ calculated for $C_{22}H_{29}O_2S_2^+$: 389.1603; found: 389.1605.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c17** as a light-yellow oil (45 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.40 – 7.31 (m, 4H), 6.87 – 6.78 (m, 4H), 3.82 (s, 6H), 3.01 (dt, *J* = 5.9, 2.6 Hz, 2H), 2.22 – 2.09 (m, 2H), 1.68 – 1.62 (m, 2H), 1.58 – 1.49 (m, 2H), 1.38 – 1.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.45, 135.63, 124.67, 114.38, 55.31, 50.80, 30.69, 23.96. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₀H₂₅O₂S₂⁺: 361.1290; found: 361.1292.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **c18** as a light-yellow oil (52 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.44 – 7.34 (m, 4H), 6.82 (d, *J* = 8.3 Hz, 4H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.80 (d, *J* = 1.1 Hz, 6H), 3.54 – 3.49 (m, 1H), 3.04 (dd, *J* = 15.9, 5.3 Hz, 1H), 2.92 (ddd, *J* = 8.9, 6.5, 4.3 Hz, 1H), 2.60 (dd, *J* = 16.0, 8.9 Hz, 1H), 2.03 – 1.92 (m, 1H), 1.64 – 1.53 (m, 1H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.06 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.6, 159.7, 159.4, 135.8, 135.3, 125.3, 124.3, 114.5, 114.5, 60.6, 57.1, 55.3, 51.2, 38.4, 25.3, 14.2, 11.9. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₂H₂₉O₄S₂⁺: 421.1502; found: 421.1501.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c19** as a light-yellow oil (62 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.39 – 7.34 (m, 2H), 7.32 – 7.19 (m, 7H), 7.17 – 7.10 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 3.48 – 3.35 (m, 2H), 3.24 (dd, J = 13.6, 3.9 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.41 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 140.4, 138.6, 138.3, 134.8, 133.7, 132.6, 130.5, 130.3, 129.5, 128.9, 128.4, 127.4, 126.6, 126.5, 126.4, 126.2, 49.1, 39.2, 37.6, 20.7, 20.5. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₃H₂₄S₂Na⁺: 387.1212; found: 387.1219.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c20** as a light-yellow oil (72 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.40 – 7.34 (m, 2H), 7.32 – 7.27 (m, 3H), 7.22 – 7.13 (m, 4H), 7.12 – 7.02 (m, 4H), 3.47 (tt, *J* = 8.8, 4.8 Hz, 1H), 3.32 (ddd, *J* = 26.9, 13.9, 5.0 Hz, 2H), 3.00 (ddd, *J* = 17.4, 13.9, 8.3 Hz, 2H), 2.34 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.8, 138.6, 135.4, 134.0, 133.2, 130.4, 129.5, 129.5, 128.8, 128.8, 128.4, 128.2, 127.2, 126.8, 126.6, 49.8, 39.1, 38.4, 21.4, 21.3. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₃H₂₄S₂Na⁺: 387.1212; found: 387.1219.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c21** as a light-yellow oil (63 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.39 - 7.32 (m, 2H), 7.31 - 7.24 (m, 5H), 7.20 - 7.03 (m, 6H), 3.44 - 3.26 (m, 2H), 3.22 (dd, J = 13.6, 4.5 Hz, 1H), 2.96 (td, J = 13.6, 8.1 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.73, 137.48, 136.37, 133.16, 132.03, 130.39, 130.32, 129.74, 129.48, 128.36, 126.56, 50.11, 39.05, 38.93, 21.17, 21.07. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₃H₂₄S₂Na⁺: 387.1212; found: 387.1215.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c22** as a light-yellow oil (89 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 – 7.34 (m, 3H), 7.34 – 7.27 (m, 8H), 7.23 – 7.16 (m, 2H), 3.46 (dq, *J* = 13.1, 4.6, 4.2 Hz, 1H), 3.33 (ddd, *J* = 30.6, 13.9, 4.8 Hz, 2H), 3.03 – 2.96 (m, 2H), 2.38 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 150.6, 149.6, 138.7, 132.6, 132.2, 130.64, 129.9, 129.6, 128.4, 126.6, 126.0, 49.8, 39.0, 38.7, 34.6, 34.5, 31.4. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₉H₃₇S₂⁺: 449.2331; found: 449.2330.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c23** as a light-yellow oil (65 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.40 – 7.33 (m, 2H), 7.31 – 7.27 (m, 3H), 6.98 (s, 2H), 6.89 (t, *J* = 10.7 Hz, 4H), 3.52 – 3.40 (m, 1H), 3.30 (ddd, *J* = 18.8, 13.9, 5.1 Hz, 2H), 3.00 (ddd, *J* = 20.2, 13.9, 8.2 Hz, 2H), 2.29 (s, 6H), 2.27 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.7, 138.5, 135.2, 133.7, 130.2, 129.6, 129.2, 128.4, 128.2, 127.4, 126.6, 49.8, 39.2, 38.4, 21.2. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₅H₂₈S₂Na⁺: 415.1525; found: 415.1529.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c24** as a light-yellow oil (77 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.39 – 7.33 (m, 2H), 7.32 – 7.27 (m, 3H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.0 Hz, 2H), 6.94 (d, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 7.2 Hz, 1H), 3.45 – 3.28 (m, 2H), 3.18 (dd, *J* = 13.4, 3.9 Hz, 1H), 2.98 – 2.91 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 140.6, 138.8, 138.6, 137.5, 136.2, 133.5, 131.4, 131.2, 130.0, 129.9, 129.5, 128.3, 127.2, 127.1, 126.5, 49.5, 39.3, 38.1, 21.1, 21.0, 20.6, 20.4. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₅H₂₈S₂Na⁺: 415.1525; found: 415.1525.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c25** as a light-yellow oil (65 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 (t, *J* = 7.0 Hz, 2H), 7.36 – 7.26 (m, 6H), 7.14 (ddt, *J* = 36.4, 22.3, 6.8 Hz, 5H), 3.61 (tt, *J* = 9.0, 5.0 Hz, 1H), 3.41 (dd, *J* = 14.2, 5.4 Hz, 1H), 3.26 (dd, *J* = 13.6, 4.2 Hz, 1H), 3.10 – 2.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.0, 136.8, 134.8, 134.7, 133.5, 133.3, 130.1, 130.0, 129.9, 129.5, 128.5, 128.4, 127.4, 127.2, 126.8, 48.5, 39.1, 37.5. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₁H₁₈Cl₂S₂Na⁺: 427.0119; found: 427.0112.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c26** as a light-yellow oil (34 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.39 – 7.34 (m, 2H), 7.32 – 7.29 (m, *J* = 2.6 Hz, 2H), 7.28 – 7.21 (m, 5H), 7.21 – 7.15 (m, 3H), 7.13 – 7.04 (m, 1H), 3.49 – 7.42 (m, 1H), 3.25 (ddd, *J* = 34.0, 14.0, 5.3 Hz, 2H), 3.01 (ddd, *J* = 29.6, 13.9, 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.0, 137.6, 136.3, 134.8, 134.7, 131.8, 130.1, 129.4, 129.2, 128.6, 127.6, 127.6, 126.9, 126.7, 50.0, 39.2, 38.2. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₁H₁₈Cl₂S₂Na⁺: 427.0119; found: 427.0119.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c27** as a light-yellow oil (54 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.36 – 7.33 (m, 2H), 7.31 – 7.20 (m, 9H), 7.11 (d, *J* = 8.6 Hz, 2H), 3.34 (ddd, *J* = 13.1, 7.9, 5.1 Hz, 1H), 3.19 (ddd, *J* = 46.6, 13.9, 5.4 Hz, 2H), 3.02 – 2.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.2, 134.1, 134.0, 133.7, 132.6, 132.5, 131.2, 129.4, 129.2, 128.5, 126.8, 50.5, 39.3, 38.7. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₁H₁₈Cl₂S₂Na⁺: 427.0119; found: 427.0121.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c28** as a light-yellow oil (56 mg, 75% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm = 7.28 (t, *J* = 7.4 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.18 – 7.12 (m, 4H), 6.91 (dt, *J* = 13.4, 8.6 Hz, 4H), 3.24 – 3.17 (m, 2H), 3.05 (dd, *J* = 13.7, 4.7 Hz, 1H), 2.93 – 2.83 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ ppm = 162.5 (d, *J* = 248.6 Hz), 161.9 (d, *J* = 247.5 Hz), 138.4, 135.4 (d, *J* = 8.2 Hz), 132.6 (d, *J* = 8.2 Hz), 130.51, 129.4, 129.0, 128.5, 126.8, 116.1 (d, *J* = 21.8 Hz), 116.0 (d, *J* = 21.8 Hz), 50.9, 39.6, 39.2. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm = -113.39, -114.78. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₁H₁₉F₂S₂⁺: 373.0891; found: 373.0891.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c29** as a light-yellow oil (71 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.84 – 7.72 (m, 3H), 7.65 (dd, *J* = 19.7, 8.6 Hz, 2H), 7.60 – 7.37 (m, 7H), 7.36 – 7.27 (m, 7H), 3.59 (tt, *J* = 9.3, 4.9 Hz, 1H), 3.45 – 3.35 (m, 2H), 3.08 (ddd, *J* = 40.8, 14.1, 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 138.5, 133.7, 133.6, 132.9, 132.4, 131.9, 131.6, 131.2, 129.8, 129.5, 128.6, 128.5, 128.4, 127.7, 127.7, 127.6, 127.4, 127.1, 126.7, 126.5, 126.3, 125.8, 49.9, 39.2, 38.3. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₂₉H₂₅S₂⁺: 437.1392; found: 437.1398.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 500/1, v/v) afforded **c30** as a light-yellow oil (68 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.37 – 7.20 (m, 5H), 3.15 (dd, *J* = 13.6, 6.0 Hz, 1H), 3.05 – 2.95 (m, 1H), 2.91 – 2.76 (m, 2H), 2.69 (dd, *J* = 13.1, 7.8 Hz, 1H), 2.55 (t, *J* = 7.5 Hz, 2H), 2.50 (t, *J* = 7.4 Hz, 2H), 1.63 – 1.50 (m, 4H), 1.44 – 1.23 (m, 12H), 0.91 (q, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 139.2, 129.4, 128.2, 126.4, 47.4, 40.3, 37.5, 33.1, 31.5, 31.4, 29.7, 28.6, 28.6, 22.6, 14.1. HRMS (EI) (m/z) for [M]⁺ calculated for C₂₁H₃₆S₂⁺: 352.2253; found: 352.2246.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 500/1, v/v) afforded **c31** as a light-yellow oil (48 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.23 - 7.19 (m, 1H), 7.17 - 7.14 (m, 3H), 3.19 (dd, J = 13.9, 6.4 Hz, 1H), 3.00 (p, J = 7.2 Hz, 1H), 2.93 - 2.66 (m, 3H), 2.55 (t, J = 7.5 Hz, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.38 (s, 3H), 1.61 - 1.47 (m, 4H), 1.42 - 1.20 (m, 12H), 0.90 (q, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 137.6, 136.3, 130.3, 126.5, 125.7, 46.5, 38.1, 33.3, 31.4, 31.4, 29.7, 29.6, 28.6, 22.6, 22.5, 19.7, 14.1. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₂H₃₈S₂Na⁺: 389.2307; found: 389.2307.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 500/1, v/v) afforded **c32** as a light-yellow oil (62 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 2.84 (dd, *J* = 12.2, 4.3 Hz, 1H), 2.77 – 2.59 (m, 2H), 2.53 (t, *J* = 7.2 Hz, 4H), 1.81 (tt, *J* = 9.9, 5.7 Hz, 1H), 1.63 – 1.54 (m, 4H), 1.53 – 1.44 (m, 2H), 1.43 – 1.25 (m, 15H), 0.93 – 0.87 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 45.8, 38.4, 33.2, 33.1, 31.4, 30.9, 29.8, 28.9, 28.7, 28.6, 22.6, 14.0. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₁₈H₃₉S₂⁺: 319.2488; found: 319.2487.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 500/1, v/v) afforded **c33** as a light-yellow oil (57 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 2.77 (dt, *J* = 5.9, 2.6 Hz, 2H), 2.57 (t, *J* = 7.5 Hz, 4H), 2.21 – 2.15 (m, 2H), 1.68 (tt, *J* = 5.3, 2.7 Hz, 2H), 1.63 – 1.49 (m, 6H), 1.43 – 1.34 (m, 6H), 1.34 – 1.22 (m, 8H), 0.89 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 48.4, 31.7, 31.5, 29.8, 28.7, 24.0, 22.6, 14.0. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₈H₃₆S₂⁺: 316.2253; found: 316.2254.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 500/1, v/v) afforded **c34** as a light-yellow oil (65 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.37 – 7.28 (m, 2H), 7.28 – 7.19 (m, 3H), 3.15 (dd, *J* = 13.6, 6.1 Hz, 1H), 3.06 - 2.94 (m, 1H), 2.91 - 2.76 (m, 2H), 2.69 (dd, *J* = 13.1, 7.8 Hz, 1H), 2.54 (t, *J* = 7.4 Hz, 2H), 2.49 (t, *J* = 7.4 Hz, 2H), 1.61 – 1.49 (m, 4H), 1.41 – 1.24 (m, 28H), 0.90 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 139.1, 129.4, 128.2, 126.4, 47.4, 40.2, 37.5, 33.1, 31.9, 31.4, 29.8, 29.7, 29.6, 29.5, 29.3, 29.2, 28.9, 22.7, 14.1. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₉H₅₂S₂Na⁺: 487.3403; found: 487.3406.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c35** as a light-yellow oil (40 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 3.01 (dt, *J* = 9.3, 4.7 Hz, 1H), 2.66 (dt, *J* = 9.7, 5.0 Hz, 1H), 2.54 (t, *J* = 7.5 Hz, 2H), 1.88 – 1.73 (m, 2H), 1.67 – 1.53 (m, 4H), 1.42 – 1.34 (m, 2H), 1.31 – 1.24 (m, 4H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.1, 134.9, 126.6, 114.4, 58.6, 55.3, 52.9, 32.7, 31.5, 29.8, 28.7, 26.2, 25.1, 22.6, 14.1, 12.2, 12.1. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₁₉H₃₂OS₂Na⁺: 363.1787; found: 363.1786.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c36** as a light-yellow oil (36 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 3.01 (dt, *J* = 9.3, 4.7 Hz, 1H), 2.66 (dt, *J* = 9.7, 5.0 Hz, 1H), 2.54 (t, *J* = 7.5 Hz, 2H), 1.88 – 1.73 (m, 2H), 1.67 – 1.53 (m, 4H), 1.42 – 1.34 (m, 2H), 1.31 – 1.24 (m, 4H), 1.06 (t, *J* = 7.3 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.1, 134.9, 126.6, 114.4, 58.6, 55.3, 52.9, 32.7, 31.5, 29.8, 28.7, 26.2, 25.1, 22.6, 14.1, 12.2, 12.1. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₈H₂₈OS₂⁺: 324.1576; found: 324.1574.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c37** as a light-yellow oil (41 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.44 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 3.09 (td, *J* = 7.3, 4.0 Hz, 1H), 2.73 (td, *J* = 7.5, 4.0 Hz, 1H), 2.49 (tt, *J* = 7.8, 4.0 Hz, 2H), 2.32 - 2.20 (m, 1H), 2.14 - 2.01 (m, 1H), 1.72 - 1.63 (m, 2H), 1.58 - 1.47 (m, 4H), 1.39 - 1.25 (m, 8H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 145.8, 135.8, 114.4, 55.3, 52.4, 46.9, 31.5, 31.3, 29.8, 28.7, 24.0, 23.8, 22.6, 14.0. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₁₉H₃₁OS₂⁺: 339.1811; found: 339.1807.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c38** as a light-yellow oil (38 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.79 (s, 3H), 3.30 (dt, *J* = 8.2, 4.0 Hz, 1H), 2.96 (dt, *J* = 7.9, 4.1 Hz, 1H), 2.42 – 2.22 (m, 2H), 2.18 – 1.99 (m, 2H), 1.81 – 1.70 (m, 4H), 1.61 – 1.51 (m, 4H), 1.45 – 1.37 (m, 2H), 1.30 – 1.20 (m, 6H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 135.6, 125.9, 114.5, 56.4, 55.3, 49.7, 31.8, 31.4, 30.9, 30.6, 29.6, 28.9, 28.7, 24.2, 24.1, 22.6, 14.0. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₂₀H₃₂OS₂Na⁺: 375.1787; found: 375.1787.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c39** as a light-yellow oil (33 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.41 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.25 (t, *J* = 7.1 Hz, 1H), 2.90 (t, *J* = 7.1 Hz, 1H), 2.55 – 2.38 (m, 2H), 2.24 – 2.01 (m, 2H), 1.90 – 1.75 (m, 4H), 1.62 – 1.47 (m, 7H), 1.38 – 1.24 (m, 7H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.3, 135.4, 126.1, 114.4, 55.8, 55.3, 49.0, 32.0, 31.5, 29.6, 29.4, 29.3, 28.8, 26.3, 26.2, 25.4, 22.6, 14.0. HRMS (EI) (m/z) for [M]⁺ calculated for C₂₁H₃₄OS₂⁺: 366.2046; found: 366.2046.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c40** as a light-yellow oil (37 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.45 – 7.36 (m, 1H), 7.23 – 7.09 (m, 3H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.28 (td, *J* = 6.9, 4.0 Hz, 1H), 2.88 – 2.74 (m, 3H), 2.52 (t, *J* = 7.3 Hz, 2H), 2.44 (s, 3H), 2.34 – 2.21 (m, 1H), 2.14 – 2.01 (m, 1H), 1.71 – 1.64 (m, 2H), 1.63 – 1.52 (m, 2H), 1.46 – 1.32 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.9, 140.1, 134.4, 132.3, 130.3, 127.0, 126.4, 60.6, 50.5, 47.5, 34.9, 30.9, 30.4, 26.5, 23.7, 23.6, 20.9, 14.2. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₈H₂₆O₂S₂⁺: 338.1369; found: 338.1368.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c41** as a light-yellow oil (37 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.29 – 7.14 (m, 3H), 7.04 (d, *J* = 7.5 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.27 (td, *J* = 7.1, 4.0 Hz, 1H), 2.86 – 2.74 (m, 3H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.30 – 2.20 (m, 1H), 2.18 – 2.05 (m, 1H), 1.70 – 1.64 (m, 2H), 1.61 – 1.51 (m, 2H), 1.44 – 1.31 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.9, 138.7, 134.6, 133.0, 129.4, 128.7, 127.9, 60.6, 51.1, 47.4, 34.9, 30.9, 30.7, 26.4, 23.8, 23.7, 21.3, 14.2. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₈H₂₆O₂S₂⁺: 338.1369; found: 338.1366.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c42** as a light-yellow oil (39 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.35 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.23 – 3.13 (m, 1H), 2.83 – 2.74 (m, 3H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.30 – 2.18 (m, 1H), 2.14 – 2.02 (m, 1H), 1.71 – 1.62 (m, 2H), 1.60 – 1.46 (m, 2H), 1.43 – 1.30 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.9, 137.4, 133.2, 130.9, 129.7, 60.6, 51.6, 47.3, 34.9, 31.1, 30.9, 26.3, 23.9, 23.8, 21.1, 14.2. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₈H₂₆O₂S₂⁺: 338.1369; found: 338.1369.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c43** as a light-yellow oil (41 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.50 – 7.40 (m, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.11 (td, *J* = 7.7, 4.0 Hz, 1H), 2.82 – 2.69 (m, 3H), 2.58 – 2.45 (m, 2H), 2.29 – 2.17 (m, 1H), 2.12 – 2.00 (m, 1H), 1.71 – 1.61 (m, 2H), 1.58 – 1.45 (m, 2H), 1.40 – 1.29 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.8, 162.4 (d, *J* = 248.5 Hz), 135.5 (d, *J* = 8.1 Hz), 129.6, 116.0 (d, *J* = 21.7 Hz), 60.6, 52.2, 47.4, 34.8,

31.3, 31.1, 26.2, 24.0, 23.9, 14.2. 19F NMR (376 MHz, CDCl₃) δ ppm = -114.02. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₇H₂₃FO₂S₂⁺: 342.1118; found: 342.1121.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c44** as a light-yellow oil (41 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.42 – 7.32 (m, 2H), 7.30 – 7.20 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.20 (td, *J* = 7.6, 4.0 Hz, 1H), 2.84 – 2.70 (m, 3H), 2.58 – 2.47 (m, 2H), 2.28 – 2.17 (m, 1H), 2.13 – 2.04 (m, 1H), 1.72 – 1.62 (m, 2H), 1.58 – 1.46 (m, 2H), 1.44 – 1.32 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.8, 133.9, 133.3, 133.2, 129.0, 60.7, 51.7, 47.5, 34.9, 31.3, 31.1, 26.3, 24.0 23.9, 14.2. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₇H₂₃ClO₂S₂⁺: 358.0823; found: 358.0821.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c45** as a light-yellow oil (44 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.46 – 7.37 (m, 2H), 7.33 – 7.28 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.21 (td, *J* = 7.6, 4.0 Hz, 1H), 2.86 – 2.71 (m, 3H), 2.54 (t, *J* = 7.4 Hz, 2H), 2.29 – 2.17 (m, 1H), 2.14 – 2.04 (m, 1H), 1.71 – 1.60 (m, 2H), 1.59 – 1.46 (m, 2H), 1.42 – 1.30 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 171.8, 134.0, 132.0,

121.2, 60.7, 51.5, 47.5, 34.9, 31.3, 31.1, 26.3, 24.0, 23.9, 14.2. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₁₇H₂₃BrO₂S₂Na⁺: 425.0215; found: 425.0217.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **c46** as a light-yellow oil (44 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.43 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.12 (q, *J* = 6.5 Hz, 1H), 2.87 – 2.78 (m, 1H), 2.60 (q, *J* = 6.7 Hz, 1H), 2.33 – 2.20 (m, 1H), 2.11 – 2.01 (m, 1H), 1.88 – 1.68 (m, 4H), 1.65 – 1.47 (m, 5H), 1.40 – 1.18 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 135.8, 125.2, 114.4, 55.3, 52.9, 44.6, 43.4, 33.9, 31.0, 30.1, 26.2, 25.8, 23.7, 23.4. HRMS (EI) (m/z) for [M]⁺ calculated for C₁₉H₂₈OS₂⁺: 336.1576; found: 336.1576.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v) afforded **c47** as a light-yellow oil (87 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.25 - 7.22 (m, 2H), 7.15 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 7.9 Hz, 1H), 6.76 (dd, J = 12.1, 8.8 Hz, 4H), 6.71 - 6.62 (m, 2H), 5.63 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 3.18 - 2.99 (m, 3H), 2.89 - 2.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.6, 158.9, 146.3, 144.2, 135.6, 132.9, 130.6, 125.9, 124.2, 122.1, 114.6,

114.5, 114.2, 111.9, 55.8, 55.4, 50.9, 39.7, 38.6. HRMS (ESI) (m/z) for $[M+H]^+$ calculated for $C_{24}H_{27}O_4S_2^+$: 443.1345; found: 443.1343.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c48** as a light-yellow oil (66 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 – 7.23 (m, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.16 (dq, *J* = 8.4, 3.1 Hz, 2H), 7.08 (d, *J* = 7.4 Hz, 2H), 6.83 – 6.71 (m, 4H), 4.14 – 3.97 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.68 (qd, *J* = 7.2, 2.1 Hz, 1H), 3.09 (dd, *J* = 13.4, 3.7 Hz, 1H), 2.88 – 2.77 (m, 1H), 2.69 (dd, *J* = 13.3, 9.4 Hz, 1H), 2.43 (d, *J* = 6.6 Hz, 2H), 1.98 – 1.66 (m, 4H), 1.52 – 1.35 (m, 4H), 0.88 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 174.7, 159.7, 159.0, 140.5, 137.8, 135.8, 133.2, 133.1, 129.3, 127.2, 125.9, 123.6, 114.6, 114.5, 64.3, 55.3, 48.8, 45.2, 45.0, 41.1, 30.2, 28.6, 26.0, 22.4, 18.5. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₃₂H₄₀O₄S₂Na⁺: 575.2260; found: 575.2264.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c49** as a light-yellow oil (80 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.27 – 7.24 (m, 2H), 7.19 – 7.12 (m, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.85 – 6.71 (m, 6H), 4.16 (td, *J* = 5.9, 2.7 Hz, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 3.08 (dd, *J* = 13.4, 3.9 Hz, 1H), 2.86 – 2.75 (m, 2H), 2.67 (dd, *J* = 13.3, 9.6 Hz, 1H), 2.00 – 1.83 (m, 3H), 1.79 – 1.69 (m, 2H), 1.61 (s, 6H), 1.47 – 1.32 (m, 1H). ¹³C NMR (101 MHz, **31**/87

CDCl₃) δ ppm = 174.2, 159.7, 159.0, 155.0, 135.8, 133.1, 129.7, 128.1, 125.8, 123.5, 118.6, 114.6, 79.2, 65.1, 60.9, 55.3, 48.8, 41.0, 34.8, 28.6, 26.0, 25.8, 25.5. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₃₂H₃₆Cl₂O₅S₂Na⁺: 657.1273; found: 657.1273.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1, v/v) afforded **c50** as a light-yellow oil (73 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm = 7.74 (d, *J* = 8.9 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.13 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 4.17 (tt, *J* = 11.0, 5.8 Hz, 2H), 3.79 (s, 3H), 3.77 (s, 3H), 3.08 (dd, *J* = 13.4, 3.9 Hz, 1H), 2.87 – 2.75 (m, 1H), 2.66 (dd, *J* = 13.4, 9.7 Hz, 1H), 2.02 – 1.82 (m, 2H), 1.69 (s, 7H), 1.46 – 1.32 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 194.1, 173.7, 159.7, 159.0, 138.3, 136.4, 135.8, 133.0, 132.1, 131.2, 130.4, 129.9, 128.5, 125.7, 123.4, 117.3, 114.9, 114.6, 113.8, 79.4, 65.4, 55.3, 48.7, 41.0, 28.5, 26.0, 25.5. HRMS (ESI) (m/z) for [M+Na]⁺ calculated for C₃₆H₃₇ClO₆S₂Na⁺: 687.1612; found: 687.1611.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 150/1, v/v) afforded **c51** as a light-yellow oil (76 mg, 64% yield). ¹H NMR (400 MHz, **32**/87

CDCl₃) δ ppm = 7.27 (d, *J* = 8.8 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 7.09 (s, 4H), 6.84 – 6.71 (m, 4H), 3.79 (s, 3H), 3.78 (s, 3H), 3.11 (dd, *J* = 13.1, 4.0 Hz, 1H), 2.87 (tt, *J* = 8.3, 4.0 Hz, 1H), 2.76 (dd, *J* = 13.2, 9.4 Hz, 1H), 2.41 (tt, *J* = 12.1, 3.4 Hz, 1H), 2.31 (s, 3H), 1.98 – 1.71 (m, 9H), 1.52 – 1.20 (m, 6H), 1.17 – 1.07 (m, 4H), 1.04 – 0.85 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 159.5, 158.9, 144.9, 135.6, 135.2, 133.1, 129.0, 126.7, 126.2, 124.2, 114.6, 114.5, 55.3, 49.5, 44.3, 43.4, 42.9, 41.1, 37.8, 34.7, 34.4, 33.8, 33.3, 30.4, 30.1, 30.0, 29.8, 21.0, 14.2. HRMS (ESI) (m/z) for [M+H]⁺ calculated for C₃₇H₄₉O₂S₂⁺: 589.3168; found: 589.3165.

3. NMR spectra for the products

¹H NMR spectra of compound **c1** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c2** in CDCl₃(600 MHz):

 ^1H NMR spectra of compound **c3** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c3** in CDCl₃(101 MHz):

¹H NMR spectra of compound **c4** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c4** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c5** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c6** in CDCl₃ (400 MHz):

7.2423 7.2268 7.2268 7.2203 7.1870 7.1870 7.1870 7.1870 7.1668 7.1668 7.11244 7.1268 7.12688 6.7026 6.7038 6.7721 6.7721 6.7721 6.7721 6.7721 6.7721

¹³C NMR spectra of compound **c6** in CDCl₃(101 MHz):

¹³C NMR spectra of compound **c7** in CDCl₃(101 MHz):

¹H NMR spectra of compound **c8** in CDCl₃ (400 MHz):

7,7,2468 7,7,72046 7,7,2046 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,2045 7,7,0455 7,0457 7,04

¹³C NMR spectra of compound **c8** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **c8** in CDCl₃(376 MHz):

¹³C NMR spectra of compound **c9** in CDCl₃(101 MHz):

 $^{19}\mathrm{F}$ NMR spectra of compound **c9** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **c10** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c10** in CDCl₃ (101 MHz):

 ^{19}F NMR spectra of compound **c10** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **c11** in CDCl₃ (400 MHz):

 ^{13}C NMR spectra of compound **c11** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c12** in CDCl₃ (400 MHz):

77, 9822 77, 9822 77, 9822 77, 9822 77, 9862 77, 9862 77, 9862 77, 9862 77, 9862 77, 9862 77, 9862 77, 9862 77, 9862 77, 4865 77, 48

 ^{13}C NMR spectra of compound **c12** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c13** in CDCl₃ (400 MHz):

7, 34,713

 ^{13}C NMR spectra of compound **c13** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c14** in CDCl₃ (400 MHz):

0.0

8.0

¹H NMR spectra of compound **c16** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c17** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c18** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c19** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c19** in CDCl₃(101 MHz):

¹³C NMR spectra of compound **c20** in CDCl₃ (101 MHz):

 ^{13}C NMR spectra of compound **c22** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c23** in CDCl₃ (400 MHz):

58 / 87

¹H NMR spectra of compound **c26** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c26** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c28** in CDCl₃ (600 MHz):

¹³C NMR spectra of compound **c28** in CDCl₃(151 MHz):

¹⁹F NMR spectra of compound **c28** in CDCl₃ (565 MHz):

¹H NMR spectra of compound **c29** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c29** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c30** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c32** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c32**in CDCl₃ (101 MHz):

46.77 33.25 33.25 29.145 29.145 29.145 29.145 29.145 29.145 29.145 29.145 29.145 29.145 29.17 29.156 20.11 20.145 20.156 20.145

¹H NMR spectra of compound **c33** in CDCl₃ (400 MHz):

2 2 28014 2 2 28014 2 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 2 7805 1 820 2 7805 1 8205 2 7805 2

¹H NMR spectra of compound **c34** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c35** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c36** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c37** in CDCl₃ (400 MHz):

7.17.1.7.1.4.82 7.6.8615 7.6.9616 7.6.

¹H NMR spectra of compound **c38** in CDCl₃ (400 MHz):

<7.4224 <7.4010 <6.8512 6.8298 c39 μ F-79.0 1.97<u>-</u>T 3.03-I 1.95-1.05-2.04 3.09-≖ 7.11 7.10-2.04--01 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 1.5 1.0 0.5 0.0 2.0 ¹³C NMR spectra of compound **c39** in CDCl₃(101 MHz): -126.06 55.79 55.27 -48.98 31.95 31.47 31.47 29.64 29.64 29.63 29.63 29.64 20.19 20.10 20.19 20.100 c39 170 50 40 30 20 10 Ó 160 150 140 120 110 100 70 60 130 90 80

¹H NMR spectra of compound **c40** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c41** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c42** in CDCl₃ (400 MHz):

¹H NMR spectra of compound **c43** in CDCl₃ (400 MHz):

¹⁹F NMR spectra of compound **c43** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **c45** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound c47 in CDCl₃ (101 MHz):

¹H NMR spectra of compound **c48** in CDCl₃ (400 MHz):

77. 2015. 7. 2015.</

84 / 87

¹³C NMR spectra of compound **c49** in CDCl₃(101 MHz):

¹H NMR spectra of compound **c51** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **c51** in CDCl₃ (101 MHz):

