Supporting Information

Intrinsically Photosensitive Polyimide Photoresist and Its Double Cross-linking Mechanism

Peng Yang,^{Δ*a} Haiping Yu,^{Δa} Yuting Zhu,^a Xiaonuo Liu,^a Pin Liu,^b Xu Wang,^{*a} and Bo Tang^{*a}

^aShandong Provincial Key Laboratory of Photoresistors, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
 ^bSuntific Materials, Ltd. Weifang, 261061, China.

Table of contents

1. General information	2
2. Synthesis of monomer	3
3. Synthesis of photosensitive polyimide (PSPI)	8
4. Characterization of photosensitive polyimide (PSPI)	9
4.1. ¹ H NMR spectra	9
4.2. FT-IR absorption spectra	11
4.3. Solubility	11
4.4. Molecular weight	
4.5. TGA and DSC curves	
4.6. UV-Vis absorption spectra	13
4.7. Photosensitivity curve	
4.8. Dielectric properties	14
4.9. Photolithographic formability properties	15
5. Mimic the photoreaction of polyimide with small molecules	16
6. References	21

1. General information

All NMR spectra were acquired on Bruker AV 400 MHz NMR spectrometers. ¹H NMR chemical shifts were recorded relative to SiMe₄ (δ 0.00). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet). The number of protons (n) for a given resonance was indicated by nH. Coupling constants were reported as a J value in Hz. ¹³C NMR chemical shifts were recorded relative to solvent resonance (CDCl₃: δ 77.00). High-resolution mass spectrometry (HRMS) were recorded on a Bruck micro-TOF mass spectrometer using electrospray ionization (ESI), positive ion mode. Fourier transform infrared (FT-IR) Spectra were recorded on the Bruker ALPHA FT-IR Spectrometer, ranging from 500 to 4000 cm⁻¹. Thermogravimetric analysis/differential scanning calorimeter (TGA/DSC) was carried out on TA/Q600 in N2 atmosphere at 10°C min⁻¹ from 30°C to 800°C. Ultraviolet-visible (UV-Vis) spectra were performed on a Shimadzu UV-6100 spectrophotometer. Gel permeation chromatography (GPC) analysis was performed on Agilent 1260 equipped PLgel MIXED-C using DMA (HPLC grade) as the eluent at 35°C with a flow rate of 1 mL·min⁻¹. Scanning electron microscope (SEM) images were recorded on a SU8010 instrument. Electrical properties were measured on a Keysight Agilent E4980A precision LCR meter.

Reagents 4,4'-dinitro-[1,1'-biphenyl]-2,2'-dicarboxylic acid, 2-hydroxyethyl methacrylate (HEMA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) were purchased from Bide Pharmaceutical Technology Co. Ltd. (China) and stored in a N₂-filled glove-box before use. N-methyl pyrrolidone (NMP) were dried over 4 Å molecular sieves. Unless noted otherwise, commercially available chemicals were used as received without purification. Flash column chromatographies were performed using the indicated solvent system on silica gel (200-300 mesh).

2. Synthesis of monomer

Under nitrogen atmosphere, a suspension of 4,4'-dinitro-[1,1'-biphenyl]-2,2'-dicarboxylic acid 1 (5.0 g, 15 mmol) in excess SOCl₂ (150 mL) were heated to reflux until the disappearance of diacid 1. The reaction mixture was cooled and concentrated under reduced pressure until all the SOCl₂ had been removed to obtain crude product 2 as a white solid. Yield: 99 %. The product was directly used for the next step.

¹H NMR (400 MHz, DMSO-d₆) δ 8.68 (d, *J* = 2.5 Hz, 2H), 8.45 (dd, *J* = 8.4, 2.5 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 165.4, 148.0, 146.9, 131.6, 131.2, 126.0, 124.4

HRMS (ESI): calculated for C₁₄H₆Cl₂N₂O₆Na [M+Na]⁺: 390.9501, found: 390.9506.

Figure S1. ¹H NMR spectrum of compound 2.

Figure S2. ¹³C NMR spectrum of compound 2.

Synthesis of bis(2-(methacryloyloxy)ethyl) 4,4'-dinitro-[1,1'-biphenyl]-2,2'-dicarboxylate (3)²

4,4'-Dinitro-[1,1'-biphenyl]-2,2'-dicarbonyl dichloride **2** (5.5 g, 15 mmol) and pyridine (1.2 mL, 15 mmol) were added to 7.2 mL of acetone at 0 °C. At the same temperature, 2-hydroxyethyl methacrylate (HEMA, 3.7 mL, 30 mmol) was added in drop-wise. Then the mixture was kept refluxing for 2 hours. After being cooled to room temperature, the reaction was quenched with water. The reaction mixture was extracted 3 times with dichloromethane (DCM) and dried by anhydrous Na₂SO₄. Solvent was removed and the residue was purified by silica gel column chromatography using ethyl acetate/hexane (5/1) as eluent. The product **3** is a yellow viscous liquid. Yield: 80%.

¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, J = 2.3 Hz, 2H), 8.43 (dd, J = 8.4, 2.3 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 6.08 (s, 2H), 5.61 (s, 2H), 4.41-4.38 (m, 4H), 4.28-4.26 (m, 4H), 1.93 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 163.9, 147.7, 147.4, 135.7, 130.8, 129.9, 126.4, 126.2, 125.5, 63.5, 61.9, 18.1.

HRMS (ESI): calculated for $C_{26}H_{24}N_2O_{12}Na$ [M+Na]⁺: 579.1227, found: 579.1226.

Synthesis of BMADA (4)²

Under nitrogen atmosphere, compound **3** (3.9 g, 7 mmol), iron powder (3.9 g, 70 mmol, 100 mesh) and concentrated HCl (70 μ L) were added to *i*-PrOH/water (11.2 mL/2.8 mL) and the mixture was heated to reflux for 15 minutes. After cooled to room temperature, an additional concentrated HCl (70 μ L) and iron powder (3.9g, 70 mmol, 100 mesh) were added to the reaction mixture. The reaction mixture was heated to reflux for one hour. After the full consumption of **3**, the mixture was filtered to remove the excess iron powder. Then the mixture was extracted 3 times with dichloromethane (DCM) and dried by anhydrous Na₂SO₄. Solvent was removed and the residue was purified by silica gel column chromatography using ethyl acetate/hexane (1/1) as eluent. The product **4** is a yellow viscous liquid. Yield: 76%.

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 2.3 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.77 (dd, *J* = 8.1, 2.4 Hz, 2H), 6.07 (s, 2H), 5.57 (s, 2H), 4.26-4.22 (m, 4H), 4.07-4.03 (m, 4H), 3.78 (s, 4H), 1.92 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 167.0, 145.2, 135.9, 133.3, 131.6, 130.2, 125.9, 118.1, 116.1, 62.4, 62.0, 18.2.

HRMS (ESI): calculated for C₂₆H₂₈N₂O₈Na [M+Na]⁺ : 519.1743, found: 519.1741. FT-IR (cm⁻¹): 3370, 3461 (H-N-H, NH₂), 1702 (C=O, COOR), 1626 (C=C), 1164 (C-O-C)

Figure S5. FT-IR spectrum of compound 4 (BMADA).

Figure S6. ¹H NMR spectrum of compound 4 (BMADA).

Figure S7. ¹³C NMR spectrum of compound 4 (BMADA).

3. Synthesis of photosensitive polyimide (PSPI)³

Synthesis of poly(amic acid ester) 6 (PAAE)

Under nitrogen atmosphere, BMADA 4 (3.0 g, 6 mmol) was added into a 100 mL flask containing ultra-dry NMP (20 mL). Transparent BMADA 4 solution was then obtained after stirring at 10 °C for 30 minutes. Then BTDA 5 (2.0 g, 6 mmol) was added with an additional NMP (7.6 mL) to give a reaction mixture with 15 wt% solid content. The temperature of the reaction mixture was increased to room temperature (25 °C) and the polymerization system was stirred at such temperature for 20 h to afford a highly viscous solution. The homogeneous PAAE 6 solution was then successively poured into aqueous ethanol solution (200 mL, 75 vol%) to afford the filament resin. The reaction was filtered and washed three times with methanol to obtain a yellow viscous solid. Then the yellow viscous solid was collected and dried at 60°C in vacuum overnight. The product 6 is a yellow solid.

¹H NMR (400 MHz, DMSO-d₆) δ 13.50 (brs, 2H), 10.78 (s, 2H), 8.30-8.26 (m, 3H), 8.11-8.06 (m, 2H), 8.01-7.94 (m, 2H), 7.87-7.81 (m, 3H), 7.19 (s, 2H), 5.97 (s, 2H), 5.65 (s, 2H), 4.25 (s, 4H), 4.09 (s, 4H), 1.84 (s, 6H).

FT-IR (cm⁻¹): 1707 (C=O, COOH), 1655 (C=O, CONH), 1523 (C-N).

Synthesis of polyimide ester 7(PIE)

Under nitrogen atmosphere, BMADA 4 (3.0 g, 6 mmol) was added into a 100 mL flask containing ultra-dry NMP (20 mL). Transparent diamine 4 solution was then obtained after stirring at 10 °C for 30 minutes. Then BTDA 5 (2.0 g, 6 mmol) was added with an additional NMP (7.6 mL) to give a reaction mixture with 15 wt% solid content. The temperature of the reaction mixture was increased to room temperature (25° C) and the polymerization system was stirred at such temperature for 20 h to afford a highly viscous solution. Then, the dehydration system of acetic anhydride (Ac₂O) (2.8 mL, 30 mmol), pyridine (1.9 mL, 24 mmol) and extra ultra-dry NMP (20 mL) were added to the solution, and the reaction mixture was stirred at 50 °C for another 24 h. The homogeneous PIE 7 solution was then successively poured into aqueous ethanol solution (200 mL, 75 vol%) to afford the filament resin. The resin was filtered and washed three times with methanol to obtain a yellow solid. Then the yellow solid.

¹H NMR (400 MHz, DMSO-d₆) δ 8.33-8.31 (m, 2H), 8.27-8.21 (m, 4H), 8.13 (s, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 7.6 Hz, 2H), 5.96 (s, 2H), 5.64 (s, 2H), 4.28-4,27 (m, 2H), 4.13 (s, 2H), 1.81 (s, 6H).

FT-IR (cm⁻¹): 1776 (C=O), 1707 (C=O), 1363 (C-N-C), 717 (imide ring).

4. Characterization of photosensitive polyimide (PSPI)

4.1. ¹H NMR spectra

Figure S8. ¹H NMR spectrum of 6.

Figure S9. ¹H NMR spectrum of 7 in DMSO-d₆.

Figure S11. (a) FT-IR spectrum of 6; (b) FT-IR spectrum of 7.

Figure S12. FT-IR spectra of PAAE 6 and PIE 7 films before and after 365 nm UV-light irradiation

4.3. Solubility

Table S1. Dissolution performance of 6 and 7.								
	Solubility							
	NMP	HFIP	DMA	DMF	DMSO	H_2O	MeOH	EtOH
PAAE	++	+-	+-	+-	+-			
PIE	++	++	+-	+-	+-			

Qualitative solubility was determined with 5 mg of polymer in 0.5 mL of solvent.

++: dissolved completely; +-: dissolved partly; --: insoluble completely.

NMP: N-methyl-2-pyrrolidone; HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol;

DMA: N,N-dimethylacetamide; DMF: N,N-dimethylformamide; DMSO: dimethyl sulfoxide;

H₂O: primary water; MeOH: methanol; EtOH: ethanol.

4.4. Molecular weight

sample	M_n (g/mol)	$M_w(g/mol)$	PDI
6	13355	29696	2.22
7	8336	12007	1.44

Table S2. Molecular weight of 6 and 7.

 M_n : Number average molecular weight; M_w : Weight average molecular weight, PDI: Polydispersity index, PDI= M_w/M_n .

4.5. TGA and DSC curves

Figure S13. Thermogravimetric analysis (TGA) curves of PAAE 6 and PIE 7. (The heating rate is 10 °C/min. PAAE-T_{5%} = 195 °C, PAAE-T_{10%} = 250 °C, PAAE-R_{W800} = 41% PIE-T_{5%} = 405 °C, PIE-T_{10%} = 430 °C, PIE-R_{W800} = 44%.)

Figure S14. Differential Scanning Calorimetry (DSC) curve of 7. (The second round heating. The heating rate is 20 °C/min.)

Figure S15. UV-vis absorption spectra of 6 and 7. PAAE- $\lambda_{max} = 296$ nm, PIE- $\lambda_{max} = 299$ nm.

4.7. Photosensitivity curve

Figure S16. Characteristic UV-exposure curve of 6 (PAAE).

The photosensitivity was evaluated by the irradiation of the films with 365 nm UV-light and subsequent determination of the insoluble fraction after development as a function of exposure dose. The exposure energy to attain a 0.5 gel fraction is about 420 mJ/cm²

4.8. Dielectric properties

Figure S17. The dielectric constant curves of PAAE 6 and PIE 7.

4.9. Photolithographic formability properties

Preparation of photoresist

PAAE **6** (1.0 g), OXE-1 (BASF, 0.01 g), dipentaerythritol hexaacrylate (0.03 g) and vinyltrimethoxysilane (0.1 g) were added to 9 g NMP solvent. The solution was sonicated for 1 hour. The photosensitive polymer solution was filtered through a 0.45 μ m polytetrafluoroethylene membrane to remove impurities and obtain a completely dissolved homogeneous solution. (note: in our lab, a pure solution of **PAAE 6** in NMP without any additives was used to demonstrate its photolithographic formability properties. But in industry, a small amount crosslinker (1%) and photoinitiator (0.1%) were added to the photoresist solution in order to compliant with industrial process/equipment and make better photolithographic patterns. The amount of additives is much lower than that of commercial photoresist.)

Process	Parameters
Spin-coating	1000 r/20 s
Soft-bake	100 °C×3 min 480 nm
Exposure	i-line, 600 mj/cm ²
Develop	1% Na ₂ CO ₃ , 14s
(a) SU8010 5 0KV 10.0mm x1 20k 8/28/2024	100um (b) SUSO10 5 0XV 10 6mm x500 8/28/2024
(C) SU8010 5.0KV 10.6mm x300 8/29/2024	100um (d) SU8010 5 0KV 10 6mm x200 6/26/2024
(a) SUB010 5.0kV 10.0mm x1 20k 8/28/2024 (c) SUB010 5.0kV 10.6mm x300 8/29/2024	10 0um (b) SUB010 5 0kV 10 8mm x500 8/29/2024 100um 100um (d) SUB010 5 0kV 10 8mm x200 8/29/2024 200um 100um (f) SUB010 5 0kV 10 8mm x100 8/29/2024 100um

Table S3. Photolithographic process and the corresponding parameters.

Figure S18. SEM photos of micro-patterns with different line width formed by PAAE 6. (a) 5 μ m line width; (b) 10 μ m line width; (c) 20 μ m line width; (d) 40 μ m line width; (e) 60 μ m line width; (f) 80 μ m line width.

5. Mimic the photoreaction of polyimide with small molecules

(1) neat conditions:

Under nitrogen atmosphere, benzophenone **8** (0.6 mmol, 109.4 mg) was dissolved in butyl methacrylate **9** (1.2 mmol, 191 μ L). The homogeneous solution was exposed to a high-pressure ultraviolet lamp for 1 h. After completion of the reaction, the reaction mixture was diluted with 1 mL of ethyl acetate (EA) and separated by preparative TLC using ethyl acetate/hexane (1/10) as eluent. Three main products including poly(butyl methacrylate) **13** (Rf = 0.06, generally on the starting line of the TLC plate), benzopinacole **11** (Rf = 0.38), and phenylethanol **12** (Rf = 0.25) were obtained. The structures were determined by ¹H and ¹³C NMR analysis.

(2) diluted conditions:

Under nitrogen atmosphere, benzophenone **8** (0.3 mmol, 54.7 mg), butyl methacrylate **9** (0.6 mmol, 95.4 μ L), Et₃N (0.3 mmol, 41.7 μ L) and acetonitrile (2 mL) were charged in a glass vial. The reaction mixture was exposed to a high-pressure ultraviolet lamp for 1 h. After completion of the reaction, the solvent was partially removed and the residue was purified by preparative TLC using ethyl acetate/hexane (1/10) as eluent. Three main products including benzophenone-methacrylate copolymer **10** (Rf = 0.01-0.5, the Rf of unknown polymer **10** varies in different experiment batches), benzopinacole **11** (Rf = 0.38), and phenylethanol **12** (Rf = 0.25) were obtained.

The poly(butyl methacrylate) **13** is a sticky gel. The NMR data is consistent with the literature reports.⁴

¹H NMR (400 MHz, CDCl₃) δ 3.95-3.94 (m, 2H), 1.91-1.81 (m, 2H), 1.67-1.61 (m, 2H), 1.41-1.39 (m, 2H), 1.03-1.87 (m, 6H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 176.5, 63.7, 53.1, 43.7, 29.2, 18.3, 12.7, 12.7.

Figure S20. ¹³C NMR spectrum of 13.

The polymer **10** is a colorless liquid. We carried out numerous rounds of experiments and discovered that the structure of **10** obtained each time was diverse. In the ¹H NMR spectrum of **10**, the ratio of hydrogen numbers in the aromatic part to those in the aliphatic part varies each time. The molecular weight (Mn) of co-polymer **10** in a batch was measured by GPC to be 2191 g/mol.

Figure S21. ¹H NMR spectra of 10 obtained from three separate batches.

Benzopinacole **11** is a white solid. The NMR data is consistent with the literature reports.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.28 (m, 8H), 7.20–7.15 (m, 12H), 3.03 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 128.6, 127.3, 126.9, 83.0. HRMS (ESI): calculated for C₂₆H₂₂O₂Na [M+Na]⁺ : 389.1517, found: 389.1518.

Figure S23. ¹³C NMR spectrum of 11.

The phenylethanol **12** is a white solid. The NMR data is consistent with the literature reports.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.32 (m, 8H), 7.29–7.24 (m, 2H), 5.85 (d, *J* = 3.5Hz, 1H), 2.23 (d, *J* = 3.5Hz, 1H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 143.8, 128.5, 127.6, 126.5, 76.3.

HRMS (ESI): calculated for $C_{13}H_{12}ONa \ [M+Na]^+$: 207.0786, found: 207.0787.

Figure S24. ¹H NMR spectrum of 12.

Figure S25. ¹³C NMR spectrum of 12.

6. References

[1] A. M. Costero, J. Sanchis, S. Peransi, S. Gil, V. Sanz and A. Domenech, *Tetrahedron*. 2004, 60, 4683-4691.

[2] S. M. Choi, S.-H. Kwon and M. H. Yi, J. Appl. Polym. 2006, 100, 2252-2258.

- [3] Y. Gao, H. Wang, J. Jia, Z. Pan, X. Ren, X. Zhi, Y. Zhang, X. Du, X. Wang and J. Liu, *Polymers*. 2022, **14**, 3733.
- [4] D.-H. Wang and G. C. Levy, Acta. Polym. Sin. 1988, 2, 157-160.
- [5] J. Chen, Q. Lian, X. Jiang, J. Zhang, X. Luo, J. Fang and W. Wei, *Green Chem.* 2024, 26, 5471-5476.
- [6] Q. Yu, D. Zhou, Y. Liu, X. Huang, C. Song, J. Ma and J. Li, Org. Lett. 2023, 25, 47-52.