Electronic Supplementary Information for

AmorphousandoutstandinglystableNi(OH)2·0.75H2O@Ni(OH)2/FeOOHheterojunctionnanosheetsforefficient oxygen evolutionperformance

Tingyi Huang[‡], Yawen Liu[‡], Ziyu Zhao, Yuchan Liu, Rongkai Ye * and Jianqiang Hu*

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China. E-mail: jqhusc@scut.edu.cn, kairyscut@scut.edu.cn

[‡] Tingyi Huang and Yawen Liu contributed equally to this work.

1. Experimental section

1.1 Chemicals

Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, 98%), ferric chloride hexahydrate (FeCl₃·6H₂O, 98%), urea (CH₄N₂O, 98%), ammonium fluoride (NH₄F, 99%), sodium hydroxide (NaOH) and commercial ruthenium dioxide (RuO₂, 99.9%) were purchased from Aladdin (Shanghai, China), and used without any further purification. The solutions in present work were prepared by ultra-pure water (>18.0 MΩ·cm).

1.2 Preparation of electrocatalysts

1.2.1 Preparation of Ni(NO₃)₂·0.75H₂O@Ni(OH)₂ nanosheets

Ni foam (NF) was cut into rectangular pieces (3*2 cm²) and then carefully pretreated through complying following steps before each experiment: firstly, the NF slices were ultrasonicated in 3.0 M HCl for 20 min to remove oxide layer on surface. Then the NF slices were successively ultrasonicated in acetone, ethanol and water for 10 min, respectively.

 $0.491 \text{ g Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, 0.451 g urea and 0.111 g NH₄F were dissolved in 30 mL ultrapure water. Then, a piece of treated NF was completely immersed into the solution, and the reaction was heated in a sealed stainless steel autoclave at 100 °C for 6 h. After the reaction, the autoclave was cooled naturally to room temperature. Subsequently, the NF was removed from the react solution and washed three times with water and ethanol. The as-prepared electrocatalyst was dried under vacuum at 60 °C to obtain the Ni(OH)₂ $\cdot 0.75\text{H}_2\text{O}@\text{Ni}(\text{OH})_2$ nanosheets *in situ* grown on NF, which would be cut into 1*1 cm² for further use.

1.2.2 Preparation of the Ni(OH)₂·0.75H₂O@Ni(OH)₂/FeOOH nanosheets

Amorphous FeOOH was electrodeposited on the surface of as-prepared $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ nanosheets through using Pt sheet and saturated calomel electrode as counter electrode and reference electrode, respectively. The electrodeposition was performed in 0.1 M Fe(NO₃)₃ aqueous solution at -1.0 V (*vs.* saturated calomel electrode).

1.2.3 Preparation of RuO₂/NF

The commercial RuO₂ (10 mg) was dispersed into a mixture of 980 μ L ethanol and 20 μ L Nafion (5%), and the mixture was ultrasonicated for 30 min to form homogeneous ink. Then, a certain amount ink was loaded onto nickel foam and dried at room temperature. The loading amount of RuO₂ on the 1*1 cm² NF was about 2.5 mg·cm⁻², which was the same amount with the as-prepared electrocatalysts.

1.3 Characterization

The morphology and structure of the samples were characterized by scanning electron microscopy (SEM, Hitachi SU8010, 5kV) and transmission electron microscopy (TEM, JEOL, JEM-1400, 120 kV). The crystallinity and purity of the materials was evaluated qualitatively by thin film powder X-ray diffraction (XRD, Bruker, D8 Advance, Germany) equipped with a Cu K α radiation source (λ =1.5406 Å), and the test conditions were set as 2 θ range from 5° to 50° at scanning rate of 5°·min⁻¹. The surface properties of the products were analyzed with X-ray photoelectron spectroscopy (XPS, Nexsa, Thermo Fisher Scientific, America) with a Mg K α X-ray source. The content of Ni and Fe in different specimens was determined by inductively couple plasma-mass spectrometer (ICP-MS, iCAP Qc, Thermo Fisher Scientific).

1.4 Electrochemical measurements

Electrochemical measurements were performed on a CHI 760E electrochemistry workstation with a three-electrode system. The saturated Ag/AgCl and Pt plate electrode were used as the reference and counter electrode, respectively. The asprepared catalysts on NF were used as working electrodes. The measured potentials were converted to reversible hydrogen electrode (RHE), $E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.21 + 0.059 \times \text{pH}$. Linear sweep voltammetry (LSV) curves were recorded in 1.0 M KOH (pH=13.4) aqueous solutions with 95% iR-compensation at a scan rate of 2 mV·s⁻¹. Tafel slopes were calculated by linear regression using the equation $\eta = b \cdot \log |j| + a$, where η (V) is the overpotential, j is the current density $(mA \cdot cm^{-2})$, respectively. The electrochemically active surface areas were investigated by double-layer capacitance (C_{dl}) in the potential range from 0-0.1 V vs. $E_{Ag/AgCl}$ with

different scan rates (20, 40, 80, 120, 160 and 200 mV·s⁻¹). The electrochemical impedance spectroscopy (EIS) was measured in 1.0 M KOH aqueous solutions with a frequency range from 10^5 to 0.01 Hz at 1.45 V *vs*. RHE. The stability measurements were conducted in 1 M KOH solution at room temperature and the current density of 100 mA·cm⁻².

2. Supplementary figures

Fig. S1 (a,b) HRTEM images and (c) selected area electron diffraction pattern of $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH nanosheets. (d) Selected area electron diffraction pattern of FeOOH/NF.

Fig. S2 EDX pattern of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH heterojunction nanosheets fabricated by the present method.

Fig. S3 (a) XRD patterns and (b) OER performance in 1.0 M KOH of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH nanosheets prepared using different time of electrodeposition.

Fig. S4 The positive and negative LSV curves of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2/FeOOH$ nanosheets in 1.0 M KOH.

Fig. S5 CV curves of (a) $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$, (b) FeOOH and (c) $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH nanosheets. (d) Plots of current density difference (Δj) at 1.08 V (*vs.* RHE) against scan rates for calculation of double layer capacitance (C_{dl}).

Fig. S6 OER performance of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2/FeOOH$ nanosheets before and after stability measurement in 1.0 M KOH.

Fig. S7 XRD patterns of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH nanosheets before and after stability measurement for 100 h.

Fig. S8 SEM images of $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2$ /FeOOH (a) before and (b) after stability measurements.

Fig. S9 XPS high-resolution spectra of (a) Ni 2p, (b) Fe 2p and (c) O 1s of the $Ni(OH)_2 \cdot 0.75H_2O@Ni(OH)_2/FeOOH$ nanosheets before and after stability measurements.

Catalysta	Solution impedance	Charge transfer impedance	
	$R_{s}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	
FeOOH	1.94	1.22	
Ni(OH) ₂ ·0.75H ₂ O@Ni(OH) ₂	1.98	13.35	
Ni(OH) ₂ ·0.75H ₂ O@Ni(OH) ₂ /FeOOH	1.97	0.43	

Table S1	EIS results	of different	electrocatal	vsts.
	LIS ICOURCE		eree croeatar	,

	Overpot	Tafal alama	Substrates	Refs.	
Catalyst	ential				
	(mV)	(mV dec ⁻¹)			
Ni(OH)2·0.75H2O@Ni(OH)2/	η ₅₀ =256	4.4	Ni foam	This work	
FeOOH	$\eta_{100}=270$	44			
(Ni, Fe)Se@NiFe-LDH	H ₁₀₀ =253	42	Ni foam	1	
NiFe ₃ Nb ₂ -OH	η ₁₀₀ =294	47	Ni foam	2	
NiFe-HD/pre-NF	η ₁₀₀ =256	81	Ni foam	3	
CoP/P-NiO/NF	η ₁₀₀ =265	101.8	Ni foam	4	
NiCo _{1.09} BDC-Fc _{0.25} /NF	$\eta_{100}=278$	43	Ni foam	5	
W-Ni ₃ S ₂ /Ni ₇ S ₆	H ₁₀₀ =202	55	Ni foam	6	
Ni-Fe-Se/NF	η ₁₀₀ =222	39	Ni foam	7	
Fe ₄ Ni-Se/NF	η ₁₀ =207	36.7	Ni foam	8	
Ni(OH) ₂ -Fe H-STs-Ni ₃ Fe ₁ /NF	η ₁₀ =200	53	Ni foam	9	
Fe _{0.5} Ni _{0.5} Pc-CP	η ₁₀ =317	116	carbon paper	10	
NiFe _{0.05} -N-CP	η ₁₀ =238	76	carbon paper	11	
α -Ni(OH) ₂ thin films	<i>H</i> ₁₀ =310	42.6	GCE	12	
Ni(OH) ₂ NPs@CSZ	η ₁₀ =212	64.2	GCE	13	
Ni _{0.25} Co _{0.75} (OH) ₂	η ₁₀ =352	72	GCE	14	
Ni–N@5min nanoclusters	η ₁₀₀ =294	42.5	GCE	15	

 Table S2 Comparison of OER activities of art non-noble-metal electrocatalysts.

References

- 1 J. Hu, Y. Q. Liang, S. L. Wu, Z. Y. Li, C. S. Shi, S. Y. Luo, H. J. Sun, S. L. Zhu and Z. D. Cui, *Mater. Today Nano*, 2022, **17**, 100150.
- 2 D. Hu, X. Wang, X. Chen, Y. Wang, A. N. Hong, J. Zhong, X. Bu, P. Feng and T. Wu, J. Mater. Chem. A, 2020, 8, 11255–11260.
- 3 B. Wu, Z. Yang, X. Dai, X. Yin, Y. Gan, F. Nie, Z. Ren, Y. Cao, Z. Li and X. Zhang, *Dalton Trans.*, 2021, 50, 12547–12554.
- 4 F. Nie, Z. Yang, X. Dai, Z. Ren, X. Yin, Y. Gan, B. Wu, Y. Cao, R. Cai and X. Zhang, J. Colloid Interface Sci., 2022, 621, 213–221.
- 5 Q. Liang, Y. Liu, Z. Xue, Z. Zhao, G. Li and J. Hu, Chem. Commun., 2022, 58, 6966–6969.
- 6 Z. Xue, Y. Liu, Q. Liu, Y. Zhang, M. Yu, Q. Liang, J. Hu and G. Li, J. Mater. Chem. A, 2022, 10, 3341–3345.
- 7 X. Yi, X. He, F. Yin, B. Chen, G. Li and H. Yin, Dalton Trans., 2020, 49, 6764–6775.
- 8 C. Jin, M. Hou, X. Li, D. Liu, D. Qu, Y. Dong, Z. Xie and C. Zhang, J. Electroanal. Chem., 2022, 906, 116014.
- 9 Y. Ding, B.-Q. Miao, Y. Zhao, F.-M. Li, Y.-C. Jiang, S.-N. Li and Y. Chen, *Chin. J. Catal.*, 2021, 42, 271–278.
- 10 D. Qi, X. Chen, W. Liu, C. Liu, W. Liu, K. Wang and J. Jiang, *Inorg. Chem. Front.*, 2020, 7, 642–646.
- 11 Y. Xu, Z. Cheng, J. Jiang, J. Du and Q. Xu, Chem. Commun., 2021, 57, 13170-13173.
- 12 S. Tao, Q. Wen, W. Jaegermann and B. Kaiser, ACS Catal., 2022, 12, 1508–1519.
- 13 D. Hu, X. Wang, X. Chen, Y. Wang, A. N. Hong, J. Zhong, X. Bu, P. Feng and T. Wu, J. Mater. Chem. A, 2020, 8, 11255–11260.
- 14 Y. Wang, C. Yang, Y. Huang, Z. Li, Z. Liang and G. Cao, J. Mater. Chem. A, 2020, 8, 6699– 6708.
- 15 T. Yu, Y. Hou, P. Shi, Y. Yang, M. Chen, W. Zhou, Z. Jiang, X. Luo, H. Zhou and C. Yuan, *Inorg. Chem.*, 2022, **61**, 2360–2367.