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1. Experimental section

1.1  Chemicals

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, 98%), ferric chloride hexahydrate 

(FeCl3·6H2O, 98%), urea (CH4N2O, 98%), ammonium fluoride (NH4F, 99%), sodium 

hydroxide (NaOH) and commercial ruthenium dioxide (RuO2, 99.9%) were purchased 

from Aladdin (Shanghai, China), and used without any further purification. The 

solutions in present work were prepared by ultra-pure water (>18.0 MΩ·cm). 

1.2 Preparation of electrocatalysts
1.2.1 Preparation of Ni(NO3)2·0.75H2O@Ni(OH)2 nanosheets

Ni foam (NF) was cut into rectangular pieces (3*2 cm2) and then carefully 

pretreated through complying following steps before each experiment: firstly, the NF 

slices were ultrasonicated in 3.0 M HCl for 20 min to remove oxide layer on surface. 

Then the NF slices were successively ultrasonicated in acetone, ethanol and water for 

10 min, respectively.

0.491 g Ni(NO3)2·6H2O, 0.451 g urea and 0.111 g NH4F were dissolved in 30 mL 

ultrapure water. Then, a piece of treated NF was completely immersed into the solution, 

and the reaction was heated in a sealed stainless steel autoclave at 100 °C for 6 h. After 

the reaction, the autoclave was cooled naturally to room temperature. Subsequently, the 

NF was removed from the react solution and washed three times with water and ethanol. 

The as-prepared electrocatalyst was dried under vacuum at 60 °C to obtain the 

Ni(OH)2·0.75H2O@Ni(OH)2 nanosheets in situ grown on NF, which would be cut into 

1*1 cm2 for further use.

1.2.2 Preparation of the Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets

Amorphous FeOOH was electrodeposited on the surface of as-prepared 

Ni(OH)2·0.75H2O@Ni(OH)2 nanosheets through using Pt sheet and saturated calomel 

electrode as counter electrode and reference electrode, respectively. The 

electrodeposition was performed in 0.1 M Fe(NO3)3 aqueous solution at -1.0 V (vs. 

saturated calomel electrode). 
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1.2.3 Preparation of RuO2/NF

The commercial RuO2 (10 mg) was dispersed into a mixture of 980 μL ethanol 

and 20 μL Nafion (5%), and the mixture was ultrasonicated for 30 min to form 

homogeneous ink. Then, a certain amount ink was loaded onto nickel foam and dried 

at room temperature. The loading amount of RuO2 on the 1*1 cm2 NF was about 2.5 

mg·cm-2, which was the same amount with the as-prepared electrocatalysts.

1.3 Characterization

The morphology and structure of the samples were characterized by scanning 

electron microscopy (SEM, Hitachi SU8010, 5kV) and transmission electron 

microscopy (TEM, JEOL, JEM-1400, 120 kV). The crystallinity and purity of the 

materials was evaluated qualitatively by thin film powder X-ray diffraction (XRD, 

Bruker, D8 Advance, Germany) equipped with a Cu Kα radiation source (λ=1.5406 Å), 

and the test conditions were set as 2θ range from 5° to 50° at scanning rate of 5°·min-1. 

The surface properties of the products were analyzed with X-ray photoelectron 

spectroscopy (XPS, Nexsa, Thermo Fisher Scientific, America) with a Mg Kα X-ray 

source. The content of Ni and Fe in different specimens was determined by inductively 

couple plasma-mass spectrometer (ICP-MS, iCAP Qc, Thermo Fisher Scientific).

1.4 Electrochemical measurements

Electrochemical measurements were performed on a CHI 760E electrochemistry 

workstation with a three-electrode system. The saturated Ag/AgCl and Pt plate 

electrode were used as the reference and counter electrode, respectively. The as-

prepared catalysts on NF were used as working electrodes. The measured potentials 

were converted to reversible hydrogen electrode (RHE), 

ERHE = EAg/AgCl + 0.21+ 0.059 × pH. Linear sweep voltammetry (LSV) curves were 

recorded in 1.0 M KOH (pH=13.4) aqueous solutions with 95% iR-compensation at a 

scan rate of 2 mV·s-1. Tafel slopes were calculated by linear regression using the 

equation η = b·log|j| + a, where η (V) is the overpotential, j is the current density 

(mA·cm-2), respectively. The electrochemically active surface areas were investigated 

by double-layer capacitance (Cdl) in the potential range from 0-0.1 V vs. EAg/AgCl with 
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different scan rates (20, 40, 80, 120, 160 and 200 mV·s-1). The electrochemical 

impedance spectroscopy (EIS) was measured in 1.0 M KOH aqueous solutions with a 

frequency range from 105 to 0.01 Hz at 1.45 V vs. RHE. The stability measurements 

were conducted in 1 M KOH solution at room temperature and the current density of 

100 mA·cm-2.
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2. Supplementary figures

Fig. S1 (a,b) HRTEM images and (c) selected area electron diffraction pattern of 

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets. (d) Selected area electron diffraction 

pattern of FeOOH/NF.
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Fig. S2 EDX pattern of the Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH heterojunction 

nanosheets fabricated by the present method.
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Fig. S3 (a) XRD patterns and (b) OER performance in 1.0 M KOH of the 

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets prepared using different time of 

electrodeposition.
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Fig. S4 The positive and negative LSV curves of the 

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets in 1.0 M KOH.
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Fig. S5 CV curves of (a) Ni(OH)2·0.75H2O@Ni(OH)2, (b) FeOOH and (c) 

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets. (d) Plots of current density 

difference (Δj) at 1.08 V (vs. RHE) against scan rates for calculation of double layer 

capacitance (Cdl).
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Fig. S6 OER performance of the Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets 

before and after stability measurement in 1.0 M KOH.
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Fig. S7 XRD patterns of the Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets before 

and after stability measurement for100 h.
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Fig. S8 SEM images of Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH (a) before and (b) after 

stability measurements.
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Fig. S9 XPS high-resolution spectra of (a) Ni 2p, (b) Fe 2p and (c) O 1s of the 

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH nanosheets before and after stability 

measurements.
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Table S1 EIS results of different electrocatalysts.

 Catalysts
Solution impedance

Rs (Ω)

Charge transfer impedance

Rct (Ω)

FeOOH 1.94 1.22

Ni(OH)2·0.75H2O@Ni(OH)2 1.98 13.35

Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH 1.97 0.43
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Table S2 Comparison of OER activities of art non-noble-metal electrocatalysts.

Catalyst

Overpot

ential 

(mV)

Tafel slope

(mV dec-1)
Substrates Refs.

Ni(OH)2·0.75H2O@Ni(OH)2/

FeOOH

η50=256

η100=270
44 Ni foam This work

(Ni, Fe)Se@NiFe-LDH Η100=253 42 Ni foam 1

NiFe3Nb2-OH η100=294 47 Ni foam 2

NiFe-HD/pre-NF η100=256 81 Ni foam 3

CoP/P-NiO/NF η100=265 101.8 Ni foam 4

NiCo1.09BDC-Fc0.25/NF η100=278 43 Ni foam 5

W-Ni3S2/Ni7S6 Η100=202 55 Ni foam 6

Ni–Fe–Se/NF η100=222 39 Ni foam 7

Fe4Ni-Se/NF η10=207 36.7 Ni foam 8

Ni(OH)2-Fe H-STs-Ni3Fe1/NF η10=200 53 Ni foam 9

Fe0.5Ni0.5Pc-CP η10=317 116 carbon paper 10

NiFe0.05-N-CP η10=238 76
carbon 
paper

11

 α-Ni(OH)2 thin films Η10=310 42.6 GCE 12

Ni(OH)2 NPs@CSZ η10=212 64.2 GCE 13

Ni0.25Co0.75(OH)2 η10=352 72 GCE 14

Ni–N@5min nanoclusters η100=294 42.5 GCE 15
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