Supporting Information

$E \rightarrow Z \ contra$ -Thermodynamic Isomerization of Alkenes with SEGPHOS

Margaux Riomet,^a Philippe Jubault^a and Thomas Poisson*^a

^a INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France

Email: Thomas.poisson@insa-rouen.fr

Table of Contents

١.	General information3
II.	Optimisation tables4
	Phosphine Screening4
	Other Photosensitizer Screening5
	Solvent Screening5
	Catalytic loading5
	Wavelength
	Control experiments
III.	Limitations-Unsuccessful substrates7
IV.	Starting material synthesis8
A.	General route to access vinyl sulfones8
	General procedure A:
V.	Isomerization of olefins21
	General procedure B:21
	Reaction set-up pictures
VI.	
	Mechanistic investigations
A.	Mechanistic investigations
А. В.	Mechanistic investigations
А. В. С.	Mechanistic investigations
А. В. С.	Mechanistic investigations
А. В. С.	Mechanistic investigations.36Synthesis of SEGPHOS-oxide derivatives36NMR analysis of the reaction crude mixture37Mechanistic experiments.38Impact of SEGPHOS oxidation state and atmosphere38Trapping experiments.38
A. B. C. VII.	Mechanistic investigations.36Synthesis of SEGPHOS-oxide derivatives36NMR analysis of the reaction crude mixture37Mechanistic experiments.38Impact of SEGPHOS oxidation state and atmosphere38Trapping experiments38Spectroscopic studies40
A. B. C. VII. A.	Mechanistic investigations.36Synthesis of SEGPHOS-oxide derivatives36NMR analysis of the reaction crude mixture37Mechanistic experiments.38Impact of SEGPHOS oxidation state and atmosphere38Trapping experiments38Spectroscopic studies40Absorption spectra.40
A. B. C. VII. A. B.	Mechanistic investigations.36Synthesis of SEGPHOS-oxide derivatives36NMR analysis of the reaction crude mixture37Mechanistic experiments.38Impact of SEGPHOS oxidation state and atmosphere38Trapping experiments38Spectroscopic studies40Absorption spectra.40Investigation for a potential charge-transfer complex formation.43
A. B. C. VII. A. B. C.	Mechanistic investigations.36Synthesis of SEGPHOS-oxide derivatives36NMR analysis of the reaction crude mixture37Mechanistic experiments.38Impact of SEGPHOS oxidation state and atmosphere38Trapping experiments38Spectroscopic studies40Absorption spectra.40Investigation for a potential charge-transfer complex formation.43Fluorescence and Stern-Volmer quenching studies44

I. General information

Unless otherwise stated, all glassware was flame-dried before use and all reactions were performed under an atmosphere of argon. Solvents were distilled from appropriate drying agents prior to use. Acetonitrile 99.9% extra-dry AcroSeal was used for reactions. All reagents were used as received from commercial suppliers unless otherwise stated. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminium plates coated with silica gel F254 with 0.2 mm thickness. Chromatograms were visualised by fluorescence quenching with UV light at 254 nm or by staining using potassium permanganate. Flash column chromatography was performed on an Isolera 4 medium pressure chromatography system (Biotage) using silica gel 60 (0.040-0.060 mm). Infrared spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Wavenumbers (v_{max}) are reported in cm⁻¹. Mass spectra were obtained using a JEOL AccuTof 4G spectrometer, using electronic impact ionization (EI), or an Orbitrap Exploris 120, Thermo Scientific spectrometer, using electrospray ionization, or a Waters LCT Premier spectrometer, using electrospray ionization. All ¹H NMR and ¹³C NMR spectra were recorded using a Bruker AV-400, AV-300 spectrometer at 300K. Chemical shifts are given in parts per million (ppm, δ), referenced to the solvent peak of CDCl₃, defined at δ = 7.26 ppm (¹H-NMR) and δ = 77.16 (¹³C-NMR). Coupling constants are quoted in Hz (J). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q) as they appeared in the spectrum. If the appearance of a signal differs from the expected splitting pattern, the observed pattern is designated as apparent (app). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m) or broad (br). Irradiations were performed using Evoluchem LED lamps at the mentioned wavelengths from Hepatochem. Absorption Spectra were recorded on UV Visible Agilent Cary 60 spectrophotometer. Emission spectra were recorded on a Fluorolog 3, Horiba.

II. Optimisation tables

Phosphine Screening			
Ph	Me O phosphine 5 mc MeCN, 0.1 M 15-24 h, 405 r (E)-1	Ph O Me S (Z)-1	
Entry	Phosphine	Time	Z:E
1	(S)-SEGPHOS	15h	95:5
2	(R)-BINAP	15h	87:13
3	(S)-BINOL	15h	44:56
4	(R)-Tol-BINAP	15h	7:93
5	(S)-DM-SEGPHOS	15h	31:69
6	PPh₃	15h	8:92
7	dppf	15h	3:97
8	dppbz	15h	30:70
9	(CH ₃ OC ₆ H ₄) ₃ P	24h	9:91
	PPh ₂ PPh ₂ PPh ₂ PPh ₂		$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)_2$
(S)-SEGP	PHOS (R)-BINAP (S)-BIN P P P P P P P P	IOL (<i>R</i>)-ToIBINAP	

Other Photosensitizer Screening				
	Ph Ph	hotosensitizer 5 mol% MeCN, 0.1 M 15-24 h, wavelength Me	0=%=0	
	(<i>E</i>)-1 (<i>Z</i>)-1			
Entry	Photosensitiz	ers Wavelength	Time	Z:E
1	thioxanthon	e 405 nm	15h	91:9
2	xanthone	365 nm	15h	96:4
3	xanthone	405 nm	15h	4:96
4	(–)-riboflavii	n 405 nm	15h	13:87
5	(–)-riboflavii	n 425 nm	15h	49:51
6	(–)-riboflavii	n 425 nm	22h	51:49
7	(–)-riboflavi	n 450 nm	23h	21:79
8	anthracene	365 nm	15h	74:26
9	benzophenor	ne 365 nm	15h	92:8
	thioxanthone xa	$ \begin{array}{c} $	(–)-riboflavin	
Solvent Screening				
	Ph (E)-1	EGPHOS 5 mol% solvent, 0.1 M 15-24 h, 405 nm Me		
Entry	Solvent	Time		Z:E
1	MeCN	15-24h		95:5
-	MeOH	22 22h		27.73
3	DMF	24h		12:88
4	EtOAc	23h		46:54
5	DCM	22h		95:5
6	THE	24h		94:6
Catalytic loading				
	Ph OH (E)-1	SEGPHOS x mol% MeCN, 0.1 M 15-24 h, 405 nm (Z)-		
Entry	Catalytic loading	Time		Z:E
1	2 mol%	15h		13:87
2	5 mol%	15-24h		95:5

15h

3

10 mol%

95:5

Wavelength			
	Ph (E)-1	SEGPHOS 5 mol% MeCN, 0.1 M 15-24 h, xxx nm (Z)-1	
Entry	Wavelength	Time	Z:E
1	365 nm	15h	>95:5
2	405 nm	15-24h	95:5
3	425 nm	15h	8:92

Control experiments				
	Ph (E)-1 (S)-SEGP MeC 24 h air, c	HOS 5 mol% N, 0.1 M , 405 nm losed vial	0 	
Entry	Catalyst	Activation	Time	Z:E
1	(S)-SEGPHOS	-	15h	2:98
2	-	405 nm	24h	6:94
3	(S)-SEGPHOS	55 °C	24h	0:100
4	-	55 °C	24h	0:100

III. Limitations-Unsuccessful substrates

(Z)-25, < 5:95

no selectivity observed/messy

IV. Starting material synthesis

A. General route to access vinyl sulfones

The compounds were obtained following a procedure described by Carretero and coworkers.¹

General procedure A:

To a solution of methyl sulfone (1.0 equiv.) in THF (0.2 M), cooled to -78 °C, was added a 2.5 M solution of *n*-BuLi in hexane (1.1 equiv.). The mixture was stirred at -78 °C for 30 min. The ketone/aldehyde (1.1 equiv.) was then added, and mixture was stirred at -78 °C for 90 min. The reaction was stopped by addition of aqueous saturated NH₄Cl. The organic layer was diluted with EtOAc, separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with water and brine before being dried (MgSO₄), filtered and concentrated under reduced pressure. The crude mixture was used without further purification.

The crude mixture of the resulting alcohol (theoretical 1.0 equiv.) and DMAP (0.10 equiv.) were dissolved in CH_2Cl_2 (0.2 M) under argon. The mixture was cooled to 0 °C before Et_3N (2.0 equiv.) and TFAA (1.2 mL) were successively added. The reaction mixture was allowed to reach room temperature and stirred between 16h and 3 days. The reaction was stopped with aqueous saturated NaHCO₃ and the aqueous layer was extracted twice with CH_2Cl_2 The combined organic layers were washed with water and brine before being dried (MgSO₄), filtered and concentrated under reduced pressure. The product was purified by column chromatography (SiO₂, PE/EtOAc or pentane/EtOAc, typical gradient: from 90/10 to 20/80 over 20 CV).

¹ T. Llamas, R. G. Arrayás and J. C. Carretero, Angew. Chem. Int. Ed. 2007, 46, 3329–3332.

(E)-1: (E)-2-((2-phenylprop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 63% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine² (1.70 g, 10.8 mmol), *n*-BuLi (4.8 mL, 2.5 M, 12 mmol), and acetophenone (1.4 mL, 12 mmol) for the first step, then DMAP (132 mg, 1.08 mmol), Et₃N (3.0 mL, 21.6 mmol) and TFAA (1.8 mL, 13.0 mmol) for the second step. The product was obtained as a colourless solid (1.77 g, 63%) over two steps. Spectral properties were in accordance with those reported in the literature.¹

¹H NMR (300 MHz, CDCl₃) δ 8.75 (ddd, J = 4.7, 1.5, 0.8 Hz, 1H), 8.16 (dt, J = 7.9, 0.9 Hz, 1H), 7.96 (td, J = 7.8, 1.7 Hz, 1H), 7.53 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.40 – 7.35 (m, 3H), 6.76 (dd, J = 2.3, 1.1 Hz, 1H), 2.59 (d, J = 1.2 Hz, 3H). See spectra

(E)-2: (E)-2-((2-(4-fluorophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂FNO₂S MW: 277 g.mol⁻¹ Yield: 55% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and 4-fluoroacetophenone (668 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (758 mg, 55%) over two steps. ¹H NMR (300 MHz, CDCl₃) δ 8.79 – 8.70 (m, 1H), 8.19 – 8.13 (m, 1H), 7.97 (td, *J* = 7.8, 1.7 Hz, 1H), 7.53 (ddd, *J* = 7.7, 4.7, 1.1 Hz, 1H), 7.49 – 7.39 (m, 2H), 7.12 – 7.00 (m, 2H), 6.76 – 6.70 (m, 1H), 2.57 (d, *J* = 1.2 Hz, 3H). See spectra

¹³C NMR (75 MHz, CDCl₃) δ 163.82 (d, J = 250.8 Hz), 159.44, 154.80, 150.43, 138.24, 136.16 (d, J = 3.4 Hz), 128.48 (d, J = 8.5 Hz, 2C), 127.21, 124.89, 121.80, 115.83 (d, J = 21.8 Hz, 2C), 17.78. ¹⁹F NMR (282 MHz, CDCl₃) δ -110.49.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₃FNO₂S⁺) requires 278.0646, found 278.0647. **IR** (thin film) v 3052, 1599, 1508, 1304, 1159, 1106, 810, 770, 590 cm⁻¹.

(E)-3: (E)-2-((2-(4-chlorophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂CINO₂S MW: 293 g.mol⁻¹ Yield: 46% Beige solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 4'-chloroacetophenone (648 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a beige solid (674 mg, 46%) over two steps.

² Prepared according to: P. Mauleón and J. C. Carretero, *Chem. Commun.*, 2005, 4961.

Spectral properties were in accordance with those reported in the literature.²

¹H NMR (300 MHz, CDCl₃) δ 8.75 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.19 – 8.12 (m, 1H), 7.97 (td, J = 7.8, 1.7 Hz, 1H), 7.54 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 7.42 – 7.32 (m, 4H), 6.75 (app.dd, J = 2.3, 1.1 Hz, 1H), 2.57 (d, J = 1.2 Hz, 3H). See spectra

(E)-4: (E)-2-((2-(4-bromophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂BrNO₂S MW: 338 g.mol⁻¹ Yield: 52% Orange solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 4'-bromoacetophenone (995 mg, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as an orange solid (881 mg, 52%) over two steps. Spectral properties were in accordance with those reported in the literature.¹

¹**H NMR (300 MHz, CDCl₃)** δ 8.74 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.15 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.97 (td, *J* = 7.8, 1.7 Hz, 1H), 7.56 - 7.46 (m, 3H), 7.34 - 7.27 (m, 2H), 6.75 (app.dd, *J* = 2.3, 1.1 Hz, 1H), 2.55 (d, *J* = 1.2 Hz, 3H). <u>See spectra</u>

(E)-5: (E)-2-((2-(4-iodophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂INO₂S MW: 385 g.mol⁻¹ Yield: 31% Beige solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 4'-iodoacetophenone (995 mg, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a beige solid (598 mg, 31%) over two steps.

¹**H NMR (300 MHz, CDCl**₃) δ 8.74 (ddd, *J* = 4.7, 1.5, 0.8 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.97 (td, *J* = 7.8, 1.7 Hz, 1H), 7.74 - 7.66 (m, 2H), 7.54 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.21 - 7.12 (m, 2H), 6.80 - 6.70 (m, 1H), 2.55 (d, *J* = 1.2 Hz, 3H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 159.4, 154.9, 150.5, 139.7, 138.3, 138.0 (2C), 128.2 (2C), 127.3, 125.4, 121.9, 96.4, 17.6.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₃INO₂S⁺) requires 385.9706, found 385.9710. **IR** (thin film) v 3051, 1600, 1577, 1426, 1308, 1161, 1003, 812, 775, 642, 574 cm⁻¹.

(E)-6: (E)-2-((2-(4-(methylthio)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S₂ MW: 305 g.mol⁻¹ Yield: 57% Light yellow solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 4'-(methylthio)acetophenone (831 mg, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L,

6.0 mmol) for the second step. The product was obtained as a light yellow solid (873 mg, 57%) over two steps.

¹H NMR (400 MHz, CDCl₃) δ 8.75 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.16 (dt, *J* = 7.9, 0.9 Hz, 1H), 8.00 (td, *J* = 7.8, 1.7 Hz, 1H), 7.55 (ddd, *J* = 7.7, 4.7, 1.1 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.23 – 7.18 (m, 2H), 6.80 (q, *J* = 1.2 Hz, 1H), 2.56 (d, *J* = 1.2 Hz, 3H), 2.47 (s, 3H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 154.7, 150.1, 141.6, 138.0, 135.5, 126.9, 126.5 (2C), 125.4 (2C), 123.6, 121.4, 17.0, 14.8.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+$ ($C_{15}H_{16}NO_2S_2^+$) requires 306.0617, found 306.0617. **IR** (thin film) v 1587, 1426, 1308, 1160, 1080, 991, 816, 773, 666, 579 cm⁻¹.

(E)-7: (E)-2-((2-(2-methoxyphenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₃S MW: 289 g.mol⁻¹ Yield: 46% Colourless oil

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 2'-methoxyacetophenone (683 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless oil (670 mg, 46%) over two steps.

¹**H NMR (300 MHz, CDCl₃)** δ 8.79 – 8.73 (m, 1H), 8.16 (dd, *J* = 7.8, 0.7 Hz, 1H), 7.96 (td, *J* = 7.7, 1.6 Hz, 1H), 7.53 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.35 – 7.27 (m, 1H), 7.14 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.96 – 6.85 (m, 2H), 6.64 – 6.59 (m, 1H), 3.79 (s, 3H), 2.52 – 2.49 (m, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 156.7, 156.5, 150.4, 138.1, 130.7, 130.6, 128.9, 127.0, 126.8, 121.9, 120.7, 111.4, 55.6, 19.3.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₅H₁₆NO₃S⁺) requires 290.0845, found 290.0842. **IR** (thin film) v 2944, 1577, 1488, 1427, 1307, 1248, 1160, 1108, 1023, 827, 754, 583 cm⁻¹.

S1: 1-(2-(allyloxy)phenyl)ethan-1-one

C₁₁H₁₂O₂ MW: 176 g.mol⁻¹ Yield: 72% Colourless oil

1-(2-hydroxyphenyl)ethenone (1.20 mL, 10.0 mmol, 1.0 equiv.) and potassium carbonate (1.38 g, 10.0 mmol, 1.0 equiv.) were suspended in dry acetonitrile (40 mL, 0.25 M) under argon. Allyl bromide (865 μ L, 10.0 mmol, 1.0 equiv.) was added and the mixture was stirred at 60 °C for 16 h. Allyl bromide (865 μ L, 10.0 mmol, 1.0 equiv.) was added and the mixture was stirred at 60 °C for 36 additional hours. After cooling down to room temperature, the mixture was diluted with water and extracted thrice with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography (SiO₂, PE/Et₂O, from 100/0 to 90/10) to obtain the desired compound as a colourless oil (1.26 g, 72%). Spectral properties were in accordance with those reported in the literature.³

³ W.-H. Cheung, S.-L. Zheng, W.-Y. Yu, G.-C. Zhou and C.-M. Che, *Org. Lett.*, 2003, **5**, 2535–2538.

¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.03 – 6.92 (m, 2H), 6.09 (dtd, J = 15.9, 10.6, 5.3 Hz, 1H), 5.44 (dd, J = 17.3, 0.9 Hz, 1H), 5.32 (dd, J = 10.5, 0.8 Hz, 1H), 4.64 (d, J = 5.3 Hz, 2H), 2.64 (s, 3H). <u>See spectra</u>

(E)-8: (E)-2-((2-(allyloxy)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₇H₁₇NO₃S MW: 315 g.mol⁻¹ Yield: 51% Colourless oil

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (990 mg, 6.3 mmol), *n*-BuLi (2.8 mL, 2.5 M, 6.93 mmol), and **S1** (1.22 g, 6.93 mmol mmol) for the first step, then DMAP (77.0 mg, 0.63 mmol), Et₃N (1.8 mL, 12.6 mmol) and TFAA (1.05 mL, 7.6 mmol) for the second step. The product was obtained as a colourless oil (1.02 g, 51%) over two steps.

¹H NMR (400 MHz, CDCl₃) δ 8.78 – 8.73 (m, 1H), 8.15 (m, 1H), 7.96 (td, *J* = 7.8, 1.7 Hz, 1H), 7.52 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.15 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.93 (td, *J* = 7.5, 0.7 Hz, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.61 (q, *J* = 1.2 Hz, 1H), 5.94 (ddt, *J* = 17.2, 10.3, 5.0 Hz, 1H), 5.31 (ddd, *J* = 17.3, 3.1, 1.5 Hz, 1H), 5.24 – 5.17 (m, 1H), 4.50 (dt, *J* = 4.9, 1.5 Hz, 2H), 2.53 (d, *J* = 1.2 Hz, 3H). See spectra ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 156.7, 155.3, 150.4, 138.1, 132.7, 131.0, 130.4, 128.8, 127.0, 126.8, 121.8, 120.9, 117.3, 112.7, 69.1, 19.4.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₇H₁₇NO₃S⁺) requires 315.0924, found 315.0913. **IR** (thin film) v 3055, 1597, 1577, 1447, 1426, 1247, 1161, 1109, 991, 754, 581 cm⁻¹.

(E)-9: (E)-2-((2-(m-tolyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S MW: 273 g.mol⁻¹ Yield: 65% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 3'-methylacetophenone (680 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (886 mg, 65%) over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (br.d, *J* = 4.6 Hz, 1H), 8.16 (br.d, *J* = 7.9 Hz, 1H), 7.96 (td, *J* = 7.8, 1.7 Hz, 1H), 7.52 (ddd, *J* = 7.6, 4.7, 0.9 Hz, 1H), 7.26 – 7.18 (m, 4H), 6.74 (q, *J* = 1.1 Hz, 1H), 2.57 (d, *J* = 1.0 Hz, 3H), 2.36 (s, 3H). *See spectra*

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 156.4, 150.5, 140.2, 138.6, 138.2, 130.9, 128.7, 127.2, 127.1, 124.8, 123.7, 121.9, 21.5, 17.8.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+(C_{15}H_{16}NO_2S^+)$ requires 274.0896, found 274.0898. **IR** (thin film) v 3052, 1577, 1426, 1305, 1108, 1080, 991, 887, 770, 629, 568 cm⁻¹.

(E)-10: (E)-2-((2-(thiophen-2-yl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₂H₁₁NO₂S₂ MW: 265 g.mol⁻¹ Yield: 48% Brown solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 2-acetylthiophene (594 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a brown solid (659 mg, 48%) over two steps.

¹H NMR (300 MHz, CDCl₃) δ 8.74 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.14 (dt, J = 7.9, 1.0 Hz, 1H), 7.96 (td, J = 7.8, 1.7 Hz, 1H), 7.52 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 7.40 (dd, J = 5.1, 1.0 Hz, 1H), 7.36 (dd, J = 3.8, 1.1 Hz, 1H), 7.05 (dd, J = 5.1, 3.8 Hz, 1H), 6.84 (q, J = 1.1 Hz, 1H), 2.62 (d, J = 1.1 Hz, 3H). See spectra ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 150.5, 148.4, 143.3, 138.2, 129.0, 128.3, 128.2, 127.1, 121.9, 121.8, 17.4.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₂H₁₁NO₂S₂⁺) requires 265.0226, found 265.0231. **IR** (thin film) v 1578, 1425, 1307, 1161, 1108, 1080, 991, 815, 773, 710, 541 cm⁻¹.

(E)-11: (E)-2-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 59% Colourless solid

The compound was prepared using general procedure A from methylphenylsulfone (781 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and 2-acetylpyridine (661 µL, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 µL, 6.0 mmol) for the second step. The product was obtained as a colourless solid (769 mg, 59%) over two steps. ¹H NMR (300 MHz, CDCl₃) δ 8.59 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.72 (td, *J* = 7.8, 1.8 Hz, 1H), 7.66 – 7.50 (m, 4H), 7.31 – 7.27 (m, 2H), 2.61 (d, *J* = 1.3 Hz, 3H). See spectra ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 150.3, 149.5, 142.0, 137.1, 133.4, 129.7, 129.3 (2C), 127.5 (2C), 124.4, 121.2, 15.1.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₄NO₂S⁺) requires 260.0740, found 260.0754. **IR** (thin film) v 3056, 1580, 1446, 1302, 1141, 992, 812, 750, 696, 641 cm⁻¹.

(E)-12: (E)-3-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

Me O S O (E)-12 C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 64% Colourless solid

The compound was prepared using general procedure A from methylphenylsulfone (781 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and 3-acetylpyridine (605 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (825 mg, 64%) over two steps.

¹H NMR (300 MHz, CDCl₃) δ 8.68 – 8.57 (m, 2H), 8.05 – 7.94 (m, 2H), 7.72 – 7.54 (m, 4H), 7.31 (ddd, J = 8.0, 4.8, 0.7 Hz, 1H), 6.65 – 6.60 (m, 1H), 2.57 (d, J = 1.3 Hz, 3H). See spectra ¹³C NMR (75 MHz, CDCl₃) δ 150.9, 150.1, 147.4, 141.7, 135.8, 133.7, 133.6, 129.4 (2C), 129.0, 127.4 (2C), 123.5, 17.1.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+(C_{14}H_{14}NO_2S^+)$ requires 260.0740, found 260.0747. **IR** (thin film) v 3042, 1604, 1446, 1300, 1142, 1083, 1021, 812, 751, 686, 614 cm⁻¹.

(E)-13: (E)-4-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

Me O S (E)-13 C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 9% Brown oil

The compound was prepared using general procedure A from methylphenylsulfone (781 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and 4-acetylpyridine (608 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a brown oil (122 mg, 9%) over two steps.

¹H NMR (300 MHz, CDCl₃) δ 8.66 – 8.60 (m, 2H), 8.01 – 7.95 (m, 2H), 7.70 – 7.63 (m, 1H), 7.62 – 7.55 (m, 2H), 7.28 – 7.24 (m, 2H, below residual CHCl₃ peak), 6.67 (q, J = 1.3 Hz, 1H), 2.55 (d, J = 1.3 Hz, 3H).

See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 150.4, 150.3 (2C), 147.9, 141.5, 133.8, 130.3, 129.5 (2C), 127.5 (2C), 120.8 (2C), 16.7.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₄NO₂S⁺) requires 260.0740, found 260.0743. **IR** (thin film) v 3042, 1592, 1542, 1446, 1409, 1301, 1142, 1083, 995, 794, 752, 687, 621 cm⁻¹.

(E)-14: (E)-2-(((2,3-dihydro-1H-inden-1-ylidene)methyl)sulfonyl)pyridine

\int	J ü
	(<i>E</i>)-14 ^{ℕ ℕ}

C₁₅H₁₃NO₂S MW: 271 g.mol⁻¹ Yield: 69% Beige solid

The compound was prepared using modified general procedure A. For the first step, 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), dimethylchloro aluminium (5.0 mL, 1 M, 1.0 equiv.) and indanone (727 mg, 5.5 mmol) were used. Dimethylchloro aluminium was added at -78 °C prior the addition of indanone. For the second step DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) were used. The product was obtained as a beige solid (936 mg, 69%) over two steps.

Spectral properties were in accordance with those reported in the literature.¹

¹H NMR (300 MHz, CDCl₃) δ 8.75 – 8.70 (m, 1H), 8.18 – 8.12 (m, 1H), 7.94 (td, *J* = 7.8, 1.7 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.50 (ddd, *J* = 7.6, 4.7, 1.1 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.29 – 7.22 (m, 1H), 6.85 (app.t, *J* = 2.5 Hz, 1H), 3.41 (ddd, *J* = 8.8, 4.6, 2.5 Hz, 2H), 3.15 – 3.05 (m, 2H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 163.0, 159.7, 150.4, 149.8, 138.5, 138.1, 132.1, 127.1, 127.0, 125.8, 122.4, 121.6, 114.8, 30.6, 29.9.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₅H₁₄NO₂S⁺) requires 272.0729, found 272.0740.

(E)-15: (E)-2-(((3,4-dihydronaphthalen-1(2H)-ylidene)methyl)sulfonyl)pyridine

C₁₆H₁₅NO₂S MW: 285 g.mol⁻¹ Yield: 56% Off-white solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and 1-tetralone (665 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as an off-white solid (801 mg, 56%) over two steps.

¹**H NMR (300 MHz, CDCI₃)** δ 8.73 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.18 – 8.12 (m, 1H), 7.95 (td, *J* = 7.8, 1.7 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.51 (ddd, *J* = 7.6, 4.7, 1.1 Hz, 1H), 7.30 (dd, *J* = 11.1, 3.7 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.18 – 7.12 (m, 1H), 6.90 (s, 1H), 3.19 – 3.11 (m, 2H), 2.81 (t, *J* = 6.2 Hz, 2H), 1.91 – 1.79 (m, 2H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 159.8, 155.4, 150.4, 140.5, 138.2, 132.4, 130.8, 129.6, 127.0, 126.6, 125.4, 121.8, 120.6, 29.8, 27.5, 22.5.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+$ (C₁₆H₁₇NO₂S⁺) requires 286.0896, found 286.0890. **IR** (thin film) v 2936, 1576, 1426, 1306, 1158, 1106, 1080, 907, 750 cm⁻¹.

(E)-16: (E)-2-(((6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ylidene)methyl)sulfonyl)pyridine

C₁₇H₁₇NO₂S MW: 299 g.mol⁻¹ Yield: 34% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (385 mg, 2.5 mmol), *n*-BuLi (1.1 mL, 2.5 M, 2.7 mmol), and 1-benzosuberone (367 μ L, 2.5 mmol) for the first step, then DMAP (29.9 mg, 0.25 mmol), Et₃N (683 μ L, 4.90 mmol) and TFAA (409 μ L, 2.94 mmol) for the second step. The product was obtained as a colourless solid (251 mg, 34%) over two steps.

¹H NMR (400 MHz, CDCl₃) δ 8.80 – 8.72 (m, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.97 (td, *J* = 7.8, 1.7 Hz, 1H), 7.54 (ddd, *J* = 7.6, 4.7, 1.1 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.20 – 7.09 (m, 3H), 6.51 (s, 1H), 3.00 (d, *J* = 5.5 Hz, 2H), 2.77 – 2.70 (m, 2H), 1.81 – 1.72 (m, 4H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 164.2, 159.7, 150.4, 141.3, 139.8, 138.2, 129.4, 129.3, 127.5, 127.2, 126.6, 125.4, 121.8, 34.3, 30.6, 27.3, 26.8.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₇H₁₈NO₂S⁺) requires 300.1053, found 300.1044. **IR** (thin film) v 2931, 1603, 1577, 1450, 1426, 1311, 1161, 1110, 1082, 991, 757, 582 cm⁻¹.

(E)-17: (E)-((2-phenylprop-1-en-1-yl)sulfonyl)benzene

Me O S U (E)-17 C₁₅H₁₄O₂S MW: 258 g.mol⁻¹ Yield: 50% Colourless solid

The compound was prepared using general procedure A from methylphenylsulfone (781 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and acetophenone (660 μ L, 5.5 mmol) for the first step,

then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (640 mg, 50%) over two steps.

Spectral properties were in accordance with those reported in the literature.¹

¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.93 (m, 2H), 7.67 – 7.51 (m, 3H), 7.48 – 7.33 (m, 5H), 6.68 – 6.56 (m, 1H), 2.53 (d, *J* = 0.9 Hz, 3H). <u>See spectra</u>

(E)-18: (E)-(1-(methylsulfonyl)prop-1-en-2-yl)benzene

C₁₀H₁₂O₂S MW: 196 g.mol⁻¹ Yield: 75% Colourless oil

The compound was prepared using modified general procedure A from dimethylsulfone (471 mg, 5.0 mmol, 2.0 equiv.), *n*-BuLi (1.0 mL, 2.5 M, 2.5 mmol, 1.0 equiv.), and acetophenone (660 μ L, 2.75 mmol, 1.1 equiv.) for the first step, then DMAP (24.4 mg, 0.20 mmol), Et₃N (558 μ L, 4.0 mmol) and TFAA (334 μ L, 2.4 mmol) for the second step. The product was obtained as a colourless oil (734 mg, 75%) over two steps.

Spectral properties were in accordance with those reported in the literature.⁴

¹**H NMR (300 MHz, CDCl₃)** δ 7.48 – 7.38 (m, 5H), 6.55 (d, *J* = 1.1 Hz, 1H), 3.06 (s, 3H), 2.58 (d, *J* = 1.2 Hz, 2.14)

3H). <u>See spectra</u>

(E)-19: (E)-2-((2-phenylbut-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S MW: 273 g.mol⁻¹ Yield: 15% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and propiophenone (738 mg, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (203 mg, 15%) over two steps. Spectral properties were in accordance with those reported in the literature.¹

¹**H NMR (300 MHz, CDCl₃)** δ 8.75 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.16 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.96 (td, *J* = 7.8, 1.7 Hz, 1H), 7.52 (ddd, *J* = 7.6, 4.7, 1.1 Hz, 1H), 7.44 – 7.34 (m, 5H), 6.64 (s, 1H), 3.12 (q, *J* = 7.5 Hz, 2H), 0.99 (t, *J* = 7.5 Hz, 3H). See spectra

(*E*)-20: (*E*)-2-(styrylsulfonyl)pyridine

(E)-20

C₁₃H₁₁NO₂S MW: 245 g.mol⁻¹ Yield: 49% Colourless solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.2 mL, 2.5 M, 5.5 mmol), and benzaldehyde (561 μ L, 5.5 mmol) for the first step,

⁴ H.-M. Guo, B.-Q. He and X. Wu, Org. Lett., 2022, **24**, 3199–3204.

then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (605 mg, 49%) over two steps.

Spectral properties were in accordance with those reported in the literature.⁵

¹**H NMR (300 MHz, CDCl₃)** δ 8.74 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.15 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.96 (td, *J* = 7.8, 1.7 Hz, 1H), 7.78 (d, *J* = 15.5 Hz, 1H), 7.58 - 7.48 (m, 3H), 7.47 - 7.35 (m, 3H), 7.12 (d, *J* = 15.5 Hz, 1H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 150.5, 145.2, 138.3, 132.4, 131.5, 129.2 (2C), 128.8 (2C), 127.2, 124.7, 122.0.

S2: 2-(allyloxy)benzaldehyde

C₁₀H₁₀O₂ MW: 162 g.mol⁻¹ Yield: 94% Colourless oil

Salicylaldehyde (2.16 mL, 20.0 mmol, 1.0 equiv.) and potassium carbonate (2.76 g, 20.0 mmol, 1.0 equiv.) were suspended in dry acetonitrile (80 mL, 0.25 M) under argon. Allyl bromide (1.73 mL, 20.0 mmol, 1.0 equiv.) was added and the mixture was stirred at 60 °C for 16 h. Allyl bromide (1.73 mL, 20.0 mmol, 1.0 equiv.) was added and the mixture was stirred at 60 °C for 36 additional hours. After cooling down to room temperature, the mixture was diluted with water and extracted thrice with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography (SiO₂, PE/Et₂O, from 100/0 to 90/10) to obtain the desired compound as a colourless oil (3.24 g, 94%). Spectral properties were in accordance with those reported in the literature.⁶

¹H NMR (300 MHz, CDCl₃) δ 10.54 (d, J = 0.7 Hz, 1H), 7.85 (dd, J = 7.7, 1.8 Hz, 1H), 7.53 (ddd, J = 8.5, 7.4, 1.9 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.08 (ddt, J = 17.2, 10.4, 5.1 Hz, 1H), 5.46 (ddd, J = 17.3, 3.1, 1.6 Hz, 1H), 5.34 (dq, J = 10.5, 1.4 Hz, 1H), 4.67 (dt, J = 5.1, 1.5 Hz, 2H). See spectra

(E)-21: (E)-2-((2-(allyloxy)styryl)sulfonyl)pyridine

C₁₆H₁₅NO₃S MW: 301 g.mol⁻¹ Yield: 62% Colourless oil

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.4 mL, 2.34 M, 5.5 mmol), and mr-xxx (892 mg, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a colourless solid (933 mg, 62%) over two steps.

⁵ J.-N. Desrosiers, W. S. Bechara and A. B. Charette, Org. Lett., 2008, **10**, 2315–2318.

⁶ K. M. McQuaid, J. Z. Long and D. Sames, *Org. Lett.*, 2009, **11**, 2972–2975.

¹**H NMR (400 MHz, CDCl₃)** δ 8.64 (ddd, *J* = 4.7, 1.4, 0.7 Hz, 1H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.93 (d, *J* = 15.6 Hz, 1H), 7.87 (td, *J* = 7.8, 1.7 Hz, 1H), 7.43 (ddd, *J* = 7.7, 4.7, 1.1 Hz, 1H), 7.36 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.29 - 7.22 (m, 2H), 6.87 (td, *J* = 7.6, 0.6 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 5.94 (ddt, *J* = 17.2, 10.5, 5.2 Hz, 1H), 5.30 (ddd, *J* = 17.3, 3.0, 1.5 Hz, 1H), 5.19 (ddd, *J* = 10.6, 2.6, 1.2 Hz, 1H), 4.51 (dt, *J* = 5.2, 1.4 Hz, 2H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 157.6, 150.1, 140.6, 138.1, 132.6, 132.3, 130.6, 126.9, 125.1, 121.6, 121.1, 120.8, 117.9, 112.5, 69.0.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₆H₁₅NO₃S⁺) requires 301.0767, found 301.0783. **IR** (thin film) v 3058, 1599, 1577, 1487, 1453, 1426, 1309, 1161, 1108, 991, 754, 571 cm⁻¹.

(Z)-22: (Z)-1-((2-chloro-2-phenylvinyl)sulfonyl)-4-methylbenzene

C₁₅H₁₃NO₂SCl MW: 292 g.mol⁻¹ Yield: 72% Colourless solid

(Z)-22 was obtained as a colourless solid (212 mg, 72%) using a reported procedure performed on 1.0 mmol scale.

Spectral properties were in accordance with those reported.⁷

¹**H NMR (300 MHz, CDCl₃)** δ 7.94 (d, J = 8.3 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.49 – 7.32 (m, 5H), 7.13 (s, 1H), 2.46 (s, 3H). See spectra

(Z)-23: (Z)-1-((2-bromo-2-phenylvinyl)sulfonyl)-4-methylbenzene

C₁₅H₁₃NO₂SBr MW: 336 g.mol⁻¹ Yield: 67% Colourless solid

(Z)-23 was obtained as a colourless solid (225 mg, 67%) using a reported procedure performed on 1.0 mmol scale.

Spectral properties were in accordance with those reported.⁷

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 2H), 7.58 – 7.53 (m, 2H), 7.46 – 7.34 (m, 5H), 7.31 (s, 1H), 2.46 (s, 3H). See spectra

(Z): (Z)-2-((3,3,3-trifluoro-2-phenylprop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₀F₃NO₂S MW: 313 g.mol⁻¹ Yield: 37% Beige solid

The compound was prepared using general procedure A from 2-(methylsulfonyl)pyridine (786 mg, 5.0 mmol), *n*-BuLi (2.3 mL, 2.4 M, 5.5 mmol), and 2,2,2-trifluoroacetophenone (772 μ L, 5.5 mmol) for the first step, then DMAP (61.1 mg, 0.50 mmol), Et₃N (1.4 mL, 10.0 mmol) and TFAA (834 μ L, 6.0 mmol) for the second step. The product was obtained as a beige solid (584 mg, 37%) over two steps.

⁷ B. Chen, X. Xia, X. Zeng and B. Xu, *Tetrahedron Lett.* 2018, **59**, 3950–3954.

¹H NMR (300 MHz, CDCl₃) δ 8.71 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 7.71 (td, *J* = 7.8, 1.7 Hz, 1H), 7.57 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.51 − 7.43 (m, 2H), 7.41 − 7.33 (m, 1H), 7.31 − 7.24 (m, 2H), 7.18 − 7.12 (m, 2H). <u>See spectra</u>

¹³C NMR (**75** MHz, CDCl₃) δ 157.3, 150.4, 142.77 (q, *J* = 31.9 Hz), 138.0, 134.59 (q, *J* = 5.2 Hz), 130.1, 129.3 (2C), 128.2 (2C), 128.1, 127.6, 122.70, 121.66 (q, *J* = 276.4 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ -67.80.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+(C_{14}H_{11}F_3NO_2S^+)$ requires 314.0457, found 314.0456. **IR** (thin film) v 3058, 1579, 1428, 1325, 1251, 1136, 950, 772, 580 cm⁻¹.

(Z)-25: (Z)-(2-chloro-2-(phenylsulfonyl)vinyl)benzene

C₁₄H₁₁ClO₂S MW: 278 g.mol⁻¹ Yield: 15% Beige solid

Phenyl-*trans*-styrylsulfone (489 mg, 2.0 mmol, 1.0 equiv.) was dissolved in dry THF (12 mL, 0.17 M) under argon. The mixture was cooled down to -78 °C and a solution of *n*-butyllithium (2.34 M in hexane, 0.86 mL, 2.0 mmol, 1.0 equiv.) was added dropwise. The mixture was stirred for 30 minutes at this temperature and *N*-chlorosuccinimide was added (267 mg, 2.0 mmol, 1.0 equiv.), the cooling bath was removed and the mixture was further stirred for 1 h. The reaction was stopped by addition of a saturated solution of NH₄Cl. The mixture was extracted thrice with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography (SiO₂, PE/EtOAc, from 100/0 to 80/20) to obtain the desired compound as a beige solid (86 mg, 15%).

Spectral properties were in accordance with those reported in the literature.⁸

¹H NMR (300 MHz, CDCl₃) δ 8.06 (s, 1H), 8.03 – 7.97 (m, 2H), 7.83 – 7.76 (m, 2H), 7.71 – 7.60 (m, 1H), 7.62 – 7.54 (m, 2H), 7.47 – 7.40 (m, 3H). <u>See spectra</u>

(E)-26: (E)-((1-phenylprop-1-en-2-yl)sulfonyl)benzene

C₁₅H₁₄O₂S MW: 258 g.mol⁻¹ Yield: 81% Colourless solid

(*E*)-26 was obtained as a colourless solid (417 mg, 81%) using a reported procedure performed on 2.0 mmol scale.

Spectral properties were in accordance with those reported.⁹

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.83 (q, J = 1.3 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.58 – 7.52 (m, 2H), 7.44 – 7.34 (m, 5H), 2.11 (d, J = 1.4 Hz, 3H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 139.2, 137.6, 137.3, 133.8, 133.4, 129.7 (2C), 129.5, 129.3 (2C), 128.8 (2C), 128.3 (2C), 13.3.

⁸ J. N. Dominguez, C. Leon, J. Rodrigues, N. Gamboa De Dominguez, J. Gut and P. J. Rosenthal, *Eur. J. Med. Chem.* 2009, **44**, 1457–1462.

⁹ M. Yamamoto, K. Suzuki, S. Tanaka and K. Yamada, BCSJ 1987, 60, 1523–1524.

(E)-28: (E)-3-phenylbut-2-enenitrile

C₁₀H₉N MW: 143 g.mol⁻¹ Yield: 88% Colourless oil

(*E*)-28 was obtained as a colourless oil (1.43 g, 88%) using a reported procedure performed on 10.0 mmol scale.¹⁰

Spectral properties were in accordance with those reported.¹¹

¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.35 (m, 5H), 5.62 (q, J = 1.0 Hz, 1H), 2.48 (d, J = 1.0 Hz, 3H). See spectra

¹⁰ M. Skvorcova, L. T. Lukasevics and A. Jirgensons, *J. Org. Chem.* 2019, **84**, 3780–3792.

¹¹T. Nishimura, Y. Nishiguchi, Y. Maeda and S. Uemura, J. Org. Chem. 2004, **69**, 5342–5347.

V. Isomerization of olefins

General procedure B:

Each reaction was run as a duplicate. An oven-dried HPLC vial (1.5 mL) equipped with a magnetic stir bar was charged with the substrate (0.10 mmol, 1.0 equiv.) and (*S*)-SEGPHOS (3.1 mg, 5.0 μ mol, 5.0 mol%) under air. Dry CH₃CN (1.0 mL, 0.1 M) was then added to the vial and the reaction vessel was placed on a stirring plate, 5 cm away from the appropriate LED. The reaction was stirred for 24 hours under visible light irradiation (405 nm, 18 kW). The reaction mixture was then transferred to a round bottom flask using EtOAc and concentrated under reduced pressure. The *Z/E* isomer-ratio was determined by ¹H-NMR analysis. The reaction duplicates were then combined and purified by a single column chromatography (SiO₂, PE/EtOAc or pentane/EtOAc, typical gradient: from 85/15 to 40/60 over 10 CV). The combined isolated yield was calculated considering 0.20 mmol of starting *E*-isomer.

Reaction set-up pictures

Figure 1: Reaction vessels. On the left: for 0.1 mmol scale. On the right: for 1 mmol scale

Figure 2: Reaction vessels ready for irradiation. On the left: for 0.1 mmol scale. On the right: for 1 mmol scale

Figure 3: Reaction set up before illumination. On the left: for 0.1 mmol scale. On the right: for 1 mmol scale

Figure 4: View from the top after the reaction was started

(Z)-1: (Z)-2-((2-phenylprop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 86% Colourless oil

The compound was prepared using general procedure B from **(E)-1** (25.9 mg) from two experiments (d.r. 95:5, 95:5) and isolated in 86% yield (44.7 mg) after purification of the combined crude mixtures.

<u>Scale-up (for pictures, vide supra)</u>: An oven-dried vial (12 mL) equipped with a magnetic stir bar was charged with the substrate (1.0 mmol, 1.0 equiv.) and (*S*)-SEGPHOS (30.5 mg, 50 μ mol, 5.0 mol%) under air. Dry CH₃CN (10 mL, 0.1 M) was then added to the vial and the reaction vessel was placed on a stirring plate, 5 cm away from the 405 nm LED lamp. The reaction was stirred for 24 hours under visible light irradiation (405 nm, 18 kW). The reaction mixture was then transferred to a round bottom flask using EtOAc and concentrated under reduced pressure. The reaction was purified by column chromatography (SiO₂, PE/EtOAc or pentane/EtOAc, from 85/15 to 40/60 over 10 CV). (*Z*)-1 was isolated in 83% yield as a colourless oil (214 mg, 83%).

¹H NMR (300 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 7.62 (td, *J* = 7.7, 1.7 Hz, 1H), 7.49 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.36 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.24 – 7.13 (m, 3H), 7.09 – 7.01 (m, 2H), 6.74 (q, *J* = 1.4 Hz, 1H), 2.20 (d, *J* = 1.5 Hz, 3H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 158.8, 156.2, 150.0, 137.7, 137.5, 128.5, 128.0 (2C), 127.3 (2C), 127.0, 126.7, 122.5, 27.8.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₄H₁₃NO₂S⁺) requires 259.0662, found 259.0679. **IR** (thin film) v 3054, 1577, 1427, 1303, 1161, 1148, 1107, 845, 763, 699, 607 cm⁻¹.

(Z)-2: (Z)-2-((2-(4-fluorophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂FNO₂S MW: 277 g.mol⁻¹ Yield: 85% Colourless oil

The compound was prepared using general procedure B from (*E*)-2 (27.7 mg) from two experiments (d.r. 96:4, 95:5) and isolated in 85% yield (47.0 mg) after purification of the combined crude mixtures. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.7 Hz, 1H), 7.60 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.40 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.14 – 7.05 (m, 2H), 6.93 – 6.83 (m, 2H), 6.72 (q, *J* = 1.4 Hz, 1H), 2.19 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 162.8 (d, J = 248.6 Hz), 158.8, 155.0, 150.1, 137.7, 133.6 (d, J = 3.4 Hz), 129.4 (d, J = 8.5 Hz, 2C), 127.1, 126.9, 122.3, 115.0 (d, J = 21.7 Hz, 2C), 27.7.

¹⁹F NMR (377 MHz, CDCl₃) δ -112.4.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+(C_{14}H_{13}FNO_2S^+)$ requires 278.0646, found 278.0646. **IR** (thin film) v 3051, 1602, 1507, 1427, 1306, 1224, 1162, 1109, 991, 839, 775, 606, 540 cm⁻¹.

(Z)-3: (Z)-2-((2-(4-chlorophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂CINO₂S MW: 293 g.mol⁻¹ Yield: 73% Colourless oil

The compound was prepared using general procedure B from (*E*)-3 (29.4 mg) from two experiments (d.r. 92:8, 95:5) and isolated in 73% yield (42.7 mg) after purification of the combined crude mixtures. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.7 Hz, 1H), 7.61 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.42 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.10 – 7.00 (m, 2H), 6.73 (q, *J* = 1.4 Hz, 1H), 2.19 (d, *J* = 1.5 Hz, 3H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 158.8, 154.8, 150.1, 137.7, 136.1, 134.7, 128.9 (2C), 128.2 (2C), 127.2, 126.9, 122.3, 27.6.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₃ClNO₂S⁺) requires 294.0350, found 294.0351. **IR** (thin film) v 3051, 1620, 1490, 1427, 1308, 1163, 1109, 11092, 829, 777, 608, 529 cm⁻¹.

(Z)-4: (Z)-2-((2-(4-bromophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂BrNO₂S MW: 337 g.mol⁻¹ Yield: 77% Colourless solid

The compound was prepared using general procedure B from (*E*)-3 (33.8 mg) from two experiments (d.r. 94:6, 95:5) and isolated in 77% yield (52.4 mg) after purification of the combined crude mixtures. ¹H NMR (300 MHz, CDCl₃) δ 8.66 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 7.73 (td, *J* = 7.7, 1.7 Hz, 1H), 7.61 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.37 – 7.30 (m, 2H), 7.04 – 6.93 (m, 2H), 6.72 (q, *J* = 1.4 Hz, 1H), 2.18 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 154.7, 150.1, 137.7, 136.6, 131.2 (2C), 129.1 (2C), 127.2, 126.9, 122.9, 122.4, 27.5.

HRMS (EI⁺): exact mass calculated for $[M]^+$ (C₁₄H₁₂⁷⁹BrNO₂S⁺) requires 336.9767, found 336.9762; for $[M]^+$ (C₁₄H₁₂⁸¹BrNO₂S⁺) requires 338.9747, found 338.9743.

IR (thin film) v 3051, 1578, 1484, 1426, 1303, 1304, 1147, 1107, 1008, 991, 775, 734, 606 cm⁻¹.

(Z)-5: (Z)-2-((2-(4-iodophenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₄H₁₂INO₂S MW: 385 g.mol⁻¹ Yield: 92% Colourless oil

The compound was prepared using general procedure B from **(***E***)-5** (38.5 mg) from two experiments (d.r. 86:14, 90:10) and isolated in 92% yield (71.1 mg) after purification of the combined crude mixtures.

¹H NMR (300 MHz, CDCl₃) δ 8.66 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 7.73 (td, *J* = 7.7, 1.7 Hz, 1H), 7.61 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.57 - 7.51 (m, 2H), 7.42 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 6.89 - 6.78 (m, 2H), 6.72 (q, *J* = 1.5 Hz, 1H), 2.18 (d, *J* = 1.5 Hz, 3H). See spectra

¹³C NMR (75 MHz, CDCl₃) δ 158.7, 154.8, 150.1, 137.7, 137.2, 137.1 (2C), 129.2 (2C), 127.2, 126.9, 122.4, 94.7, 27.5.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+(C_{14}H_{13}INO_2S^+)$ requires 385.9706, found 385.9708.

IR (thin film) v 3050, 1615, 1578, 1481, 1426, 1306, 1162, 1108, 1080, 1004, 820, 775, 732, 606 cm⁻¹.

(Z)-6: (Z)-2-((2-(4-(methylthio)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S₂ MW: 305 g.mol⁻¹ Yield: 74% Beige oil

The compound was prepared using general procedure B from **(***E***)-6** (30.5 mg) from two experiments (d.r. 88:12, 88:12) and isolated in 74% yield (45.1 mg) after purification of the combined crude mixtures.

¹H NMR (300 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.62 – 7.57 (m, 1H), 7.39 (ddd, *J* = 7.5, 4.7, 1.3 Hz, 1H), 7.08 – 7.00 (m, 4H), 6.70 (q, *J* = 1.4 Hz, 1H), 2.45 (s, 3H), 2.18 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 155.5, 150.0, 139.8, 137.6, 134.1, 128.0 (2C), 126.73, 126.65, 125.4 (2C), 122.4, 27.5, 15.5.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₅H₁₅NO₂S₂⁺) requires 305.0539, found 305.0541. **IR** (thin film) v 2921, 1577, 1492, 1426, 1300, 1160, 1080, 818, 785, 525 cm⁻¹.

(Z)-7: (Z)-2-((2-(2-methoxyphenyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₃S MW: 289 g.mol⁻¹ Yield: 79% Colourless oil

The compound was prepared using general procedure B from (*E*)-7 (28.9 mg) from two experiments (d.r. 96:4, 96:4) and isolated in 79% yield (46.0 mg) after purification of the combined crude mixtures. ¹H NMR (300 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 7.60 (td, *J* = 7.7, 1.7 Hz, 1H), 7.42 – 7.32 (m, 2H), 7.18 (ddd, *J* = 8.3, 7.5, 1.8 Hz, 1H), 7.01 (dd, *J* = 7.5, 1.7 Hz, 1H), 6.84 (td, *J* = 7.5, 0.9 Hz, 1H), 6.75 (q, *J* = 1.4 Hz, 1H), 6.57 (d, *J* = 8.3 Hz, 1H), 3.51 (s, 3H), 2.15 (d, *J* = 1.5 Hz, 3H). See spectra ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 155.2, 155.1, 149.7, 137.2, 129.9, 129.4, 127.7, 126.32, 126.28, 122.2, 120.0, 110.1, 55.0, 26.1.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₅H₁₅NO₃S⁺) requires 289.0767, found 289.0779. **IR** (thin film) v 2952, 1597, 1578, 1491, 1427, 1307, 1247, 1161, 1108, 1026, 846, 755, 554 cm⁻¹.

The compound was prepared using general procedure B from (*E*)-8 (31.5 mg) from two experiments (d.r. 93:7, 97:3) and isolated in 62% yield (39.2 mg) after purification of the combined crude mixtures. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 4.5 Hz, 1H), 7.59 (td, *J* = 7.7, 1.6 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.18 (td, *J* = 8.4, 1.7 Hz, 1H), 7.04 (dd, *J* = 7.5, 1.7 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 7.38 – 7.33 (m, 2000) (m, 1H), 6.76 (q, J = 1.3 Hz, 1H), 6.58 (d, J = 8.3 Hz, 1H), 5.93 – 5.80 (m, 1H), 5.28 (dq, J = 17.3, 1.6, 1.6 Hz, 1H), 5.20 (dq, J = 10.6, 1.4, 1.4 Hz, 1H), 4.23 (d, J = 4.8 Hz, 2H), 2.17 (d, J = 1.3 Hz, 3H). See spectra ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 155.4, 154.3, 149.8, 137.2, 132.8, 129.8, 129.7, 127.8, 126.6, 126.3, 122.2, 120.2, 117.2, 111.4, 68.5, 26.1.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₇H₁₈NO₃S⁺) requires 316.1001, found 316.1004. **IR** (thin film) v 3054, 2919, 1621, 1596, 1578, 1488, 1426, 1305, 1242, 1159, 1106, 991, 846, 753, 553 cm⁻¹.

(Z)-9: (Z)-2-((2-(m-tolyl)prop-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S MW: 273 g.mol⁻¹ Yield: 86% Colourless oil

The compound was prepared using general procedure B from (*E*)-9 (27.3 mg) from two experiments (d.r. >95:5, 95:5) and isolated in 86% yield (46.0 mg) after purification of the combined crude mixtures. ¹H NMR (300 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 7.60 (td, *J* = 7.7, 1.7 Hz, 1H), 7.47 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.36 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.12 – 6.97 (m, 2H), 6.90 – 6.83 (m, 1H), 6.72 (m, 2H), 2.20 (s, 3H), 2.18 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (**75** MHz, CDCl₃) δ 158.9, 156.4, 149.9, 137.7, 137.5, 137.3, 129.3, 127.9, 127.7, 127.0, 126.5, 124.5, 122.5, 27.7, 21.4.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₅H₁₅NO₂S⁺) requires 273.0818, found 273.0833. **IR** (thin film) v 3047, 1578, 1427, 1302, 1146, 1107, 991, 840, 774, 705, 625 cm⁻¹.

(Z)-10: (Z)-2-((2-(thiophen-2-yl)prop-1-en-1-yl)sulfonyl)pyr	idine
	C ₁₂ H ₁₁ NO ₂ S ₂ MW: 265 g.mol ⁻¹ Yield: 80% Brown oil
(∠)-10	

The compound was prepared using general procedure B from **(***E***)-10** (26.5 mg) from two experiments (d.r. 66:34, 66:34) and isolated in 80% yield (42.2 mg) after purification of the combined crude mixtures.

The E-isomer could not be entirely separated during the purification.

¹H NMR (300 MHz, CDCl₃) δ 8.65 (ddd, *J* = 4.7, 1.5, 0.9 Hz, 1H), 7.82 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.76 (td, *J* = 7.6, 1.7 Hz, 1H), 7.53 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.40 (ddd, *J* = 7.4, 4.7, 1.4 Hz, 1H), 7.31 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.94 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.68 (q, *J* = 1.2 Hz, 1H), 2.28 (d, *J* = 1.4 Hz, 3H). See spectra ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 150.1, 147.0, 137.8, 137.6, 131.1, 128.6, 127.2, 126.9, 125.9, 122.5, 28.1.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₄H₁₁NO₂S₂⁺) requires 266.0304, found 266.0314. **IR** (thin film) v 3050, 1578, 1426, 1307, 1295, 1164, 1107, 1080, 991, 843, 774, 713, 623 cm⁻¹.

(Z)-11: (Z)-2-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 89% Colourless oil

The compound was prepared using general procedure B from **(***E***)-11** (25.9 mg) from two experiments (d.r. 93:7, 94:6) and isolated in 89% yield (46.1 mg) after purification of the combined crude mixtures. ¹H NMR **(300 MHz, CDCl₃)** δ 8.56 – 8.48 (m, 1H), 7.76 – 7.65 (m, 3H), 7.57 – 7.49 (m, 1H), 7.48 – 7.38 (m, 3H), 7.26 – 7.21 (m, 1H), 6.52 (q, *J* = 1.4 Hz, 1H), 2.22 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u> ¹³C NMR **(75 MHz, CDCl₃)** δ 155.8, 152.8, 149.2, 141.3, 136.0, 133.2, 129.0 (3C), 127.7 (2C), 124.1, 123.3, 25.8.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₄H₁₃NO₂S⁺) requires 259.0662, found 259.0661. **IR** (thin film) v 3057, 1584, 1446, 1302, 1141, 1083, 992, 842, 785, 719, 606 cm⁻¹.

(Z)-12: (Z)-3-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 64% Colourless solid

The compound was prepared using general procedure B from **(***E***)-12** (25.9 mg) from two experiments (d.r. 90:10, 89:11) and isolated in 86% yield (44.4 mg) after purification of the combined crude mixtures.

¹H NMR (300 MHz, CDCl₃) δ 8.56 (dd, J = 4.9, 1.6 Hz, 1H), 8.28 (d, J = 1.7 Hz, 1H), 7.61 – 7.49 (m, 4H), 7.44 – 7.37 (m, 2H), 7.28 – 7.23 (m, 1H), 6.62 (q, J = 1.3 Hz, 1H), 2.16 (d, J = 1.5 Hz, 3H). <u>See spectra</u> ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 149.6, 147.4, 141.3, 135.3, 133.7, 133.4, 130.7, 129.1 (2C), 127.6 (2C), 122.9, 27.7.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₄H₁₃NO₂S⁺) requires 259.0662, found 259.0666. **IR** (thin film) v 3034, 1617, 1585, 1446, 1302, 1140, 1084, 811, 713, 688, 611 cm⁻¹.

(Z)-13: (Z)-4-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

C₁₄H₁₃NO₂S MW: 259 g.mol⁻¹ Yield: 98% Brown oil

The compound was prepared using general procedure B from **(E)-13** (25.9 mg) from two experiments (d.r. 95:5, 95:5) and isolated in 98% yield (50.6 mg) after purification of the combined crude mixtures. ¹H NMR **(300 MHz, CDCl₃)** δ 8.53 (d, J = 5.5 Hz, 2H), 7.60 – 7.50 (m, 3H), 7.43 – 7.36 (m, 2H), 7.04 – 6.98 (m, 2H), 6.56 (q, J = 1.5 Hz, 1H), 2.12 (d, J = 1.5 Hz, 3H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 151.1, 149.5 (2C), 146.0, 141.1, 133.4, 130.2, 129.1 (2C), 127.7 (2C), 122.0 (2C), 27.2.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₄H₁₃NO₂S⁺) requires 259.0662, found 259.0678.

IR (thin film) v 1592, 1446, 1409, 1305, 1148, 1086, 821, 758 cm⁻¹.

(Z)-14: (Z)-2-(((2,3-dihydro-1H-inden-1-ylidene)methyl)sulfonyl)pyridine

(Z)-14

C₁₅H₁₃NO₂S MW: 271 g.mol⁻¹ Yield: 69% Beige solid

The compound was prepared using general procedure B from (*E*)-14 (27.1 mg) from two experiments (d.r. 46:54, 47:53) and isolated in 93% yield (50.7 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (47:53).

¹H NMR (300 MHz, CDCl₃) δ 8.74 – 8.66 (m, 0.53H + 0.47H), 8.58 (d, *J* = 7.9 Hz, 0.47H), 8.18 (m, 0.47H), 8.13 (m, 0.53H), 7.93 (m, 0.47H + 0.53H), 7.55 – 7.44 (m, 1.06H + 0.47H), 7.42 – 7.20 (m, 1.41H + 1.59H), 6.84 (t, *J* = 2.5 Hz, 0.53H), 6.62 (m, 0.47H), 3.39 (m, 1.06H), 3.12 – 3.05 (m, 1.06H), 2.99 (m, 1.88H). <u>See spectra</u>

¹³C NMR (**75** MHz, CDCl₃) δ 163.0, 160.8, 159.8, 159.6, 151.7, 150.5, 150.2, 149.8, 138.6, 138.1 (1C + 1C), 135.3, 132.2, 131.8, 129.3, 127.2, 127.1, 127.0 (1C + 1C), 125.9, 125.3, 122.4, 121.8, 121.7, 117.1, 114.8, 36.0, 30.6, 29.9, 29.8.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+$ ($C_{15}H_{14}NO_2S^+$) requires 272.0736, found 272.0740. **IR** (thin film) v 3048, 1611, 1596, 1577, 1426, 1307, 1161, 1108, 1080, 991, 847, 776, 752, 578 cm⁻¹.

(Z)-15: (Z)-2-(((3,4-dihydronaphthalen-1(2H)-ylidene)methyl)sulfonyl)pyridine

C₁₆H₁₅NO₂S MW: 285 g.mol⁻¹ Yield: 81% Off-white oil

The compound was prepared using general procedure B from (*E*)-15 (28.5 mg) from two experiments (d.r. 70:30, 72:28) and isolated in 81% yield (46.3 mg) after purification of the combined crude mixtures.

¹H NMR (300 MHz, CDCl₃) δ 8.68 – 8.62 (m, 1H), 7.99 – 7.90 (m, 2H), 7.83 – 7.74 (m, 1H), 7.44 – 7.36 (m, 1H), 7.26 – 7.20 (m, 1H), 7.17 – 7.09 (m, 1H), 7.06 – 6.99 (m, 1H), 6.63 – 6.58 (m, 1H), 2.72 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 6.7 Hz, 2H), 1.94 (p, J = 6.7 Hz, 2H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 154.8, 150.0, 139.6, 137.7, 131.7, 130.8, 130.6, 128.1, 126.8, 125.2, 122.3, 122.2, 35.1, 28.8, 22.5.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₆H₁₆NO₂S⁺) requires 286.0896, found 286.0897. **IR** (thin film) v 3053, 2937, 1595, 1577, 1426, 1302, 1160, 1108, 1081, 991, 772, 604 cm⁻¹.

(Z)-16: (Z)-2-(((6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ylidene)methyl)sulfonyl)pyridine

C₁₇H₁₇NO₂S MW: 299 g.mol⁻¹ Yield: 96% Colourless oil

The compound was prepared using general procedure B from **(***E***)-16** (29.9 mg) from two experiments (d.r. 54:46, 65:35) and isolated in 96% yield (57.5 mg) after purification of the combined crude mixtures.

¹H NMR (300 MHz, CDCl₃) δ 8.62 (ddd, J = 4.6, 1.6, 0.9 Hz, 1H), 7.50 (td, J = 7.8, 1.7 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.24 – 7.19 (m, 1H), 7.14 – 7.02 (m, 2H), 6.80 (br.s, 1H), 6.76 – 6.71 (m, 1H), 2.41 (br.s, 2H), 2.28 – 2.20 (m, 2H), 1.97 – 1.80 (m, 2H), 1.58 (br.s, 2H). <u>See spectra</u>

¹³C NMR (**75** MHz, CDCl₃) δ 162.2, 158.1, 149.7, 139.4, 137.4, 137.1, 129.0, 128.8, 128.5, 127.2, 126.5, 125.4, 122.2, 38.3, 35.0, 31.9, 27.0.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₇H₁₈NO₂S⁺) requires 300.1053, found 300.1056. **IR** (thin film) v 3050, 2927, 2853 1614, 1577, 1448, 1427, 1305, 1149, 1108, 1081, 846, 761 cm⁻¹.

(Z)-17: (Z)-((2-phenylprop-1-en-1-yl)sulfonyl)benzene

C₁₅H₁₄O₂S MW: 258 g.mol⁻¹ Yield: 78% Colourless oil

The compound was prepared using general procedure B from (*E*)-17 (25.8 mg) from two experiments (d.r. 94:6, 78:22) and isolated in 78% yield (40.3 mg) after purification of the combined crude mixtures. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.48 (m, 2H), 7.47 – 7.42 (m, 1H), 7.33 – 7.20 (m, 5H), 7.09 – 7.02 (m, 2H), 6.53 (q, *J* = 1.3 Hz, 1H), 2.12 (d, *J* = 1.3 Hz, 3H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 154.8, 141.6, 137.6, 132.9, 129.2, 128.7 (2C), 128.6, 128.1 (2C), 127.7 (2C), 127.4 (2C), 27.8.

HRMS (EI⁺): exact mass calculated for $[M]^+$ (C₁₅H₁₄O₂S⁺) requires 258.0710, found 258.0713. **IR** (thin film) v 3059, 1616, 1597, 1446, 1302, 1137, 1084, 842, 755, 687, 544 cm⁻¹.

(Z)-18: (Z)-(1-(methylsulfonyl)prop-1-en-2-yl)benzene

C₁₀H₁₂O₂S MW: 196 g.mol⁻¹ Yield: 95% Colourless oil

Me

The compound was prepared using general procedure B from **(***E***)-18** (19.6 mg) from two experiments (d.r. 78:22, 78:22) and isolated in 95% yield (37.3 mg) after purification of the combined crude mixtures.

The E-isomer could not be entirely separated during the purification.

¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.34 (m, 5H), 6.44 (q, *J* = 1.4 Hz, 1H), 2.60 (s, 3H), 2.25 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 137.5, 129.2, 128.62, 128.55 (2C), 127.5 (2C), 43.3, 27.6.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₁₀H₁₃O₂S⁺) requires 197.0631, found 197.0631. **IR** (thin film) v 3033, 2928, 1622, 1575, 1437, 1295, 1125, 961, 766, 700, 688, 526 cm⁻¹.

(Z)-19: (Z)-2-((2-phenylbut-1-en-1-yl)sulfonyl)pyridine

C₁₅H₁₅NO₂S MW: 273 g.mol⁻¹ Yield: 90% Colourless oil

The compound was prepared using general procedure B from **(***E***)-19** (27.3 mg) from two experiments (d.r. 80:20, 88:12) and isolated in 90% yield (49.1 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (87:13).

¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.69 (m, 0.13H), 8.69 – 8.60 (m, 0.87H), 8.15 (d, *J* = 7.9 Hz, 0.13H), 7.95 (td, *J* = 7.8, 1.6 Hz, 0.13H), 7.58 (td, *J* = 7.8, 1.6 Hz, 0.87H), 7.51 (ddd, *J* = 7.6, 4.8, 0.8 Hz, 0.13H), 7.45 – 7.31 (m, 0.65H + 1.74H), 7.23 – 7.18 (m, 0.87H), 7.17 – 7.11 (m, 1.74H), 6.98 – 6.92 (m, 1.74H), 6.70 (s, 0.87H), 6.63 (s, 0.13H), 3.11 (q, *J* = 7.5 Hz, 0.26H), 2.45 (qd, *J* = 7.3, 1.3 Hz, 1.74H), 1.05 (t, *J* = 7.3 Hz, 2.61H), 0.98 (t, *J* = 7.5 Hz, 0.39H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 162.3, 161.5, 159.7, 158.9, 150.4, 150.0, 138.9, 138.2, 137.4, 137.1, 129.9, 128.9 (2C), 128.3, 127.8 (2C), 127.6 (2C), 127.1, 127.0 (2C), 126.6, 126.1, 124.7, 122.5, 121.8, 34.0, 24.3, 13.4, 11.7.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₅H₁₅NO₂S⁺) requires 273.0818, found 273.0817. **IR** (thin film) v 3053, 2972, 1617, 1596, 1577, 1426, 1304, 1147, 1107, 1080, 991, 764, 699, 604 cm⁻¹.

(Z)-20: (Z)-2-(styrylsulfonyl)pyridine

C₁₃H₁₁NO₂S MW: 245 g.mol⁻¹ Yield: 98% Colourless solid

The compound was prepared using general procedure B from (*E*)-20 (24.5 mg) from two experiments (d.r. 46:54, 48:52) and isolated in 98% yield (48.0 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (45:55).

¹H NMR (300 MHz, CDCl₃) δ 8.73 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 0.55H), 8.67 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 0.45H), 8.13 (dt, *J* = 7.9, 1.0 Hz, 0.55H), 7.99 - 7.90 (m, 0.55H + 0.45H), 7.81 (td, *J* = 7.7, 1.7 Hz, 0.45H), 7.77 (d, *J* = 15.6 Hz, 0.55H), 7.57 - 7.48 (m, 1.65H + 0.90H), 7.46 - 7.35 (m, 1.65H + 0.45H), 7.33 - 7.26 (m, 1.35H), 7.24 (d, *J* = 12.1 Hz, 0.45H), 7.11 (d, *J* = 15.5 Hz, 0.55H), 6.77 (d, *J* = 12.1 Hz, 0.45H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 158.6, 158.4, 150.5, 150.2, 145.2, 143.3, 138.3, 137.9, 132.5, 132.4, 131.5, 130.2 (2C), 129.9, 129.2 (2C), 128.9 (2C), 128.4, 128.1 (2C), 127.3, 127.2, 124.7, 122.3, 122.0.

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₃H₁₁NO₂S⁺) requires 245.0505, found 245.0524. **IR** (thin film) v 1592, 1446, 1409, 1305, 1148, 1086, 821, 720, 688, 613, 546 cm⁻¹. (Z)-21: (Z)-2-((2-(allyloxy)styryl)sulfonyl)pyridine

C₁₆H₁₅NO₃S MW: 301 g.mol⁻¹ Yield: 73% Colourless oil

The compound was prepared using general procedure B from **(***E***)-21** (30.1 mg) from two experiments (d.r. 53:47, 54:46) and isolated in 73% yield (44.2 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (56:44).

¹H NMR (300 MHz, CDCl₃) δ 8.73 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 0.44H), 8.67 (ddd, *J* = 4.7, 1.6, 0.9 Hz, 0.56H), 8.13 (dt, *J* = 7.9, 0.9 Hz, 0.44H), 8.00 (d, *J* = 15.6 Hz, 0.44H), 7.97 – 7.87 (m, 0.44H + 0.56H), 7.78 (app.td, *J* = 7.7, 1.7 Hz, 1.12H), 7.53 – 7.40 (m, 0.88H + 1.12H), 7.39 – 7.24 (m, 0.88H + 0.56H), 7.00 – 6.87 (m, 0.88H + 0.56H), 6.80 – 6.70 (m, 1.12H), 6.12 – 5.89 (m, 0.44H + 0.56H), 5.45 – 5.21 (m, 0.88H + 1.12H), 4.62 (dt, *J* = 5.2, 1.4 Hz, 0.88H), 4.45 (dt, *J* = 5.1, 1.5 Hz, 1.12H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 158.7, 158.1, 156.3, 150.5, 150.1, 141.1, 139.7, 138.2, 137.7, 132.9, 132.7, 132.6, 132.2, 131.6, 131.1, 128.1, 127.03, 126.96, 125.5, 122.3, 122.0, 121.8, 121.6, 121.1, 120.2, 118.4, 117.8, 112.7, 111.4, 69.4, 69.1.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+$ ($C_{16}H_{16}NO_3S^+$) requires 302.0845, found 302.0847. **IR** (thin film) v 3057, 1599, 1577, 1485, 1452, 1426, 1308, 1249, 1162, 1108, 991, 754 cm⁻¹.

(E)-22: (E)-1-((2-chloro-2-phenylvinyl)sulfonyl)-4-methylbenzene

C₁₅H₁₃NO₂SCl MW: 292 g.mol⁻¹ Yield: 87% Colourless solid

The compound was prepared using general procedure B from (*Z*)-22 (29.3 mg) from two experiments (d.r. 91:9, 88:12) and isolated in 87% yield (51.1 mg) after purification of the combined crude mixtures. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.2 Hz, 2H), 7.45 – 7.33 (m, 5H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.92 (s, 1H), 2.40 (s, 3H). See spectra

¹³C NMR (101 MHz, CDCl₃) δ 148.1, 144.7, 137.7, 134.5, 131.1, 130.8, 129.8 (2C), 129.0 (2C), 128.1 (2C), 127.9 (2C), 21.7.

HRMS (EI⁺): exact mass calculated for $[M]^+(C_{15}H_{13}NO_2S^{35}CI^+)$ requires 292.0320, found 292.0328; $(C_{15}H_{13}NO_2S^{37}CI^+)$ requires 294.0290, found 294.0300.

IR (thin film) v 3046, 1593, 1445, 1320, 1291, 1148, 1085, 899, 717, 653, 562 $\rm cm^{-1}.$

(E)-23: (E)-1-((2-bromo-2-phenylvinyl)sulfonyl)-4-methylbenzene

C₁₅H₁₃NO₂SBr MW: 336 g.mol⁻¹ Yield: 81% Colourless solid

The compound was prepared using general procedure B from (*Z*)-23 (29.3 mg) from two experiments (d.r. 65:35, 63:37) and isolated in 81% yield (54.3 mg) after purification of the combined crude mixtures.

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.30 (m, 5H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.14 (s, 1H), 2.40 (s, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 144.8, 138.4, 137.6, 136.2, 134.5, 130.5, 129.8 (2C), 128.7 (2C), 128.1 (2C), 128.0 (2C), 21.8.

HRMS (ESI⁺): exact mass calculated for $[M+H]^+$ ($C_{15}H_{14}^{79}BrNO_2S^+$) requires 336.9892, found 336.9895; ($C_{15}H_{14}^{81}BrNO_2S^+$) requires 338.9872, found 338.9872.

IR (thin film) v 3047, 1592, 1488, 1444, 1323, 1291, 1149, 1084, 878, 773, 692, 648, 553 cm⁻¹.

(Z)-26: (Z)-((1-phenylprop-1-en-2-yl)sulfonyl)benzene

C₁₅H₁₄O₂S MW: 258 g.mol⁻¹ Yield: 92% Colourless solid

The compound was prepared using general procedure B from (*E*)-26 (25.8 mg) from two experiments (d.r. 22:78, 27:73) and isolated in 92% yield (47.3 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (25:75).

¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, *J* = 8.0, 1.0 Hz, 1.50H), 7.83 (d, *J* = 0.9 Hz, 0.75H), 7.67 – 7.50 (m, 3.00H), 7.49 – 7.30 (m, 1.50H + 3.00H), 7.23 (d, *J* = 3.1 Hz, 1.00H), 7.06 (s, 0.25H), 2.24 – 2.20 (m, 0.75H), 2.11 (d, *J* = 1.0 Hz, 2.25H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 140.5, 139.5, 139.2, 138.9, 137.6, 137.4, 134.2, 133.9, 133.4, 133.1, 129.7 (2C), 129.5, 129.3 (2C), 129.0 (2C), 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.2, 127.8 (2C), 127.8 (2C), 20.8, 13.3.

HRMS (EI⁺): exact mass calculated for $[M]^+$ (C₁₅H₁₄O₂S⁺) requires 258.0709, found 258.0724. **IR** (thin film) v 3060, 1631, 1446, 1302, 1150, 1109, 1072, 966, 773, 738, 569 cm⁻¹. (Z)-27: ethyl (Z)-3-phenylbut-2-enoate

C₁₂H₁₄O₂ MW: 190 g.mol⁻¹ Yield: 84% Colourless oil

(*Z*)-27

The compound was prepared using general procedure B from **Ethyl trans-\beta-methylcinnamate** (18 μ L) from two experiments (d.r. 86:14, 87:13) and isolated in 84% yield (31.9 mg) after purification of the combined crude mixtures.

Spectral properties were in accordance with those reported in the literature.¹²

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 3H), 7.24 – 7.17 (m, 2H), 5.94 – 5.87 (m, 1H), 4.00 (q, J = 7.1 Hz, 2H), 2.18 (d, J = 1.3 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 155.5, 141.0, 128.0 (2C), 127.9, 127.0 (2C), 117.9, 59.9, 27.3, 14.1. HRMS (El⁺): exact mass calculated for [M]⁺ (C₁₂H₁₄O₂⁺) requires 190.0988, found 190.0991.

IR (thin film) v 2979, 1724, 1639, 1443, 1375, 1275, 1229, 1160, 1046, 768, 697 cm⁻¹.

C₁₀H₉N MW: 143 g.mol⁻¹ Yield: 76% Colourless oil

(*Z*)-28

The compound was prepared using general procedure B from (*E*)-28 (14.3 μ L) from two experiments (d.r. 78:22, 64:36) and isolated in 76% yield (21.6 mg) after purification of the combined crude mixtures.

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.46 – 7.40 (m, 3H), 5.40 (q, *J* = 1.4 Hz, 1H), 2.29 (d, *J* = 1.5 Hz, 3H). <u>See spectra</u>

¹³C NMR (101 MHz, CDCl₃) δ 161.1, 138.0, 130.0, 128.8 (2C), 127.2 (2C), 117.7, 95.6, 24.8. HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₀H₉N⁺) requires 143.0730, found 143.0743. IR (thin film) v 3057, 2215, 1612, 1439, 1358, 1214, 1027, 806, 766, 697 cm⁻¹.

C₁₅H₁₄ MW: 194 g.mol⁻¹ Yield: 77% Colourless oil

(*Z*)-29

The compound was prepared using general procedure B from (*E*)- α -methylstilbene (19.4 mg) from two experiments (d.r. 79:21, 78:22) and isolated in 77% yield (30.0 mg) after purification of the combined crude mixtures.

The E-isomer could not be separated during the purification, the compound was characterized as a Z:E mixture (78:22).

¹² B. Scheiper, M. Bonnekessel, H. Krause and A. Fürstner, J. Org. Chem. 2004, **69**, 3943–3949.

¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.48 (m, 0.44H), 7.40 – 7.32 (m, 1.32H), 7.30 – 7.13 (m, 0.44H + 3.90H), 7.11 – 7.01 (m, 2.34H), 6.96 – 6.89 (m, 1.56H), 6.82 (s, 0.22H), 6.45 (s, 0.78H), 2.27 (d, *J* = 1.2 Hz, 0.44H), 2.19 (d, *J* = 1.4 Hz, 2.34H). See spectra

HRMS (EI⁺): exact mass calculated for [M]⁺ (C₁₅H₁₄⁺) requires 194.1090, found 194.1101. **IR** (thin film) v 3023, 1599, 1494, 1441, 1026, 916, 757, 696 cm⁻¹.

VI. Mechanistic investigations

. Synthesis of SEGPHOS-oxide derivatives

SEGPHOSO₂

C₃₈H₂₈O₆P₂ MW: 642 g.mol⁻¹ Yield: >99% Colourless solid

To a solution of SEGPHOS (122 mg, 0.20 mmol. 1.0 equiv.) in CH_2Cl_2 at 0 °C was added a solution of hydrogen peroxide in water (35%, 1.0 mL, excess). The reaction was stirred for 2 hours at this temperature. Water (6 mL) was added and the mixture was extracted twice with CH_2Cl_2 . The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography to afford quantitatively SEGPHOSO as a colourless solid.

Spectral properties were in accordance with those reported in the literature.¹³

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 4H), 7.61 – 7.52 (m, 4H), 7.46 – 7.28 (m, 8H), 7.27 – 7.19 (m, 4H), 6.73 (dd, J = 14.1, 8.1 Hz, 2H), 6.61 (dd, J = 8.1, 1.9 Hz, 2H), 5.66 (d, J = 1.1 Hz, 2H), 5.21 (d, J = 2.5 Hz, 2H). <u>See spectra</u>

³¹P NMR (162 MHz, CDCl₃) δ 28.96.

The compound was obtained according to a modification of Grushin's procedure.^{14,15} Under argon, (*S*)-SEGPHOS (61.1 mg, 0.10 mmol) and Pdl₂ (54.0 mg, 0.15 mmol, 1.5 equiv.) were stirred in CH₂Cl₂ (10 mL) for 1.5 h at room temperature. Unreacted Pdl₂ was filtered off using a syringe filter.The filtrate was transferred to a new flask under argon and further stirred stirred with bis(p-methoxybenzylidene)acetone (25.8 mg, 0.11 mmol, 1.1 equiv.) and an aqueous NaOH solution (3.75 M, 4.9 mL) at room temperature for 16 h. The organic layer was separated and stirred with dppe (79.7 mg, 0.20 mmol, 2.0 equiv.) at room temperature for 3 h to remove Pd. The resulting solution was filtered on a silica gel pad and washed with CH₂Cl₂ (this filtrate was discarded). The pad was then eluted with a 2:1 CH₂Cl₂/EtOAc mixture and concentrated under reduced pressure. The product was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc, from 100/0 to 30/70). SEGPHOSO was obtained as a colourless solid (28.0 mg, 45%). The product of double oxidation (SEGPHOSOO) was detected after column.

Spectral properties were in accordance with those reported in the literature.

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 2H), 7.64 – 7.57 (m, 2H), 7.48 – 7.41 (m, 2H), 7.36 (ddd, *J* = 7.4, 5.2, 2.0 Hz, 4H), 7.29 – 7.19 (m, 10H), 6.98 (dd, *J* = 14.1, 8.1 Hz, 1H), 6.75 (dd, *J* = 8.1, 1.9 Hz,

¹³ Z. Zuo, R. S. Kim and D. A. Watson, *J. Am. Chem. Soc.*, 2021, **143**, 1328–1333.

¹⁴ V. V. Grushin, *Organometallics*, 2001, **20**, 3950–3961.

¹⁵ J. Hu, H. Hirao, Y. Li and J. (Steve) Zhou, Angew. Chem. Int. Ed., 2013, **52**, 8676–8680.
1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.55 (dd, *J* = 8.0, 3.4 Hz, 1H), 5.71 (d, *J* = 1.6 Hz, 1H), 5.66 (d, *J* = 1.4 Hz, 1H), 5.23 (d, *J* = 1.6 Hz, 1H), 4.82 (d, *J* = 1.4 Hz, 1H).

B. NMR analysis of the reaction crude mixture

¹H-NMR analysis of the crude mixture:

³¹P-NMR analysis of the crude mixture:

SEGPHOSO ₂			
SEGPHOS		 	
Crude mixture			
	 1	 . 10	 -200

The NMR analysis of the reaction crude mixture on large scale revealed the conversion of SEGPHOS into SEGPHOSO₂. Integration in ¹H NMR permitted to approximate the quantity of SEGPHOSO₂ in the crude mixture to 3 mol%.

C. Mechanistic experiments

Impact of SEGPHOS oxidation state and atmosphere							
Ph	Me O I Catalyst 5 mol% MeCN, 0.1 M 24 h, 405 nm atmosphere	Me Ph O II O N (Z)-1					
Entry	Catalyst	Atmosphere	Z:E				
1	(S)-SEGPHOS	air	95:5				
2	SEGPHOSO	air	86:14				
3	SEGPHOSO ₂	air	80:20				
4	(S)-SEGPHOS	Open to air	52:48				
5	(S)-SEGPHOS	glovebox	52:48				
6	SEGPHOSO	glovebox	95:5				
7	SEGPHOSO ₂	glovebox	95:5				

The reactions were carried out using general procedure B with the following alterations:

- (2), (6) SEGPHOSO (3.1 mg, 5.0 $\mu mol,$ 5.0 mol%) was used instead of SEGPHOS.
- (3), (7) SEGPHOSO₂ (3.2 mg, 5.0 μ mol, 5.0 mol%) was used instead of SEGPHOS.
- (4) Atmosphere exchange with ambient air was permitted through two needles.
- (5), (6), (7) The reaction was set up in a glovebox using degazed MeCN (3 freezepump-thaw cycles).

The reactions were carried out using general procedure B with the following alterations:

- (1) Azulene (12.8 mg, 0.10 mmol, 1.0 equiv.) was added to the reaction vessel prior the addition of MeCN.
- (2) 1,3-cyclohexadiene (9.5 μL, 0.10 mmol, 1.0 equiv.) was added to the reaction mixture after the addition of MeCN.

30: (±)-2-(((1R,6S,7R,8S)-8-methyl-8-phenylbicyclo[4.2.0]oct-2-en-7-yl)sulfonyl)pyridine

C₂₀H₂₁NO₂S MW: 339 g.mol⁻¹ Yield: 44% Colourless oil

The compound was prepared using general procedure B from **(***E***)-1** (25.9 mg) and additional 1,3-cyclohexadiene (9.5 μ L, 0.10 mmol, 1.0 equiv.) and isolated in 44% yield (11.3 mg) after purification. ¹H NMR (300 MHz, CDCl₃) δ 8.77 (ddd, *J* = 4.7, 1.6, 0.8 Hz, 1H), 8.17 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.98 (td, *J* = 7.8, 1.7 Hz, 1H), 7.56 (ddd, *J* = 7.6, 4.7, 1.1 Hz, 1H), 7.34 – 7.28 (m, 4H), 7.21 – 7.15 (m, 1H), 5.59 – 5.44 (m, 2H), 4.68 (d, *J* = 10.0 Hz, 1H), 3.48 – 3.37 (m, 1H), 2.91 – 2.80 (m, 1H), 1.96 (s, 3H), 1.83 – 1.72 (m, 2H), 1.36 – 1.24 (m, 1H), 1.07 – 0.96 (m, 1H). See spectra

¹³C NMR (**75** MHz, CDCl₃) δ 159.1, 150.4, 145.3, 138.3, 128.2 (2C), 127.7, 127.5, 127.0, 126.5 (2C), 126.1, 122.4, 58.3, 54.0, 41.6, 32.4, 26.7, 20.6, 20.5.

HRMS (ESI⁺): exact mass calculated for [M+H]⁺ (C₂₀H₂₁NO₂S⁺) requires 340.1366, found 340.1360.

VII. Spectroscopic studies

A stirred solution of SEGPHOS or SEGPHOSO2 were irradiated in the fluorimeter until the fluorescent signal reached the steady state.

B. Investigation for a potential charge-transfer complex formation.

C. Fluorescence and Stern-Volmer quenching studies

The fluorescence spectrum recording of a SEGPHOS solution showed irreproducibility with an enhancement of the signal over accumulations. The same behaviour was observed when the fluorescence signal of SEGPHOSO₂ was measured.

Once the steady state reached, the absorption spectrum measured and the solution was appropriately diluted to a concentration corresponding to initially 33 microM of SEGPHOS and 100 microM of SEGPHOSO₂.

Increasing amounts of (*E*)-1 (5-40 mM final, x times 10 μ L of a 1 M solution in MeCN) were added to the solution (2 mL) to measure the fluorescence quenching effect.

Increasing amounts of (E)-1 (5-13,3 mM final, x additions of a 1 M solution in MeCN) were added to the solution (3 mL) to measure the fluorescence quenching effect.

VIII. NMR spectra

¹³C NMR (75 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

(E)-6: (E)-2-((2-(4-(methylthio)phenyl)prop-1-en-1-yl)sulfonyl)pyridine ¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

¹³C NMR (101 MHz, CDCl₃)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-8: (E)-2-((2-(allyloxy)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(E)-9: (E)-2-((2-(m-tolyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(E)-10: (E)-2-((2-(thiophen-2-yl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-11: (E)-2-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-12: (E)-3-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-13: (E)-4-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-15: (E)-2-(((3,4-dihydronaphthalen-1(2H)-ylidene)methyl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

S64

(E)-21: (E)-2-((2-(allyloxy)styryl)sulfonyl)pyridine

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(Z)-24: (Z)-2-((3,3,3-trifluoro-2-phenylprop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

¹⁹F NMR (282 MHz, CDCl₃)

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

(E)-26: (E)-((1-phenylprop-1-en-2-yl)sulfonyl)benzene

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

S71

¹³C NMR (75 MHz, CDCl₃)

1.01 1.01 1.01 1.01 1.01 5.0 4.5 4.0 3.5 3.0 2.5 2.0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 f1 (ppm) 1.5 1.0 0.5 0.0 -0.5

2.02 Å

H00.1

3.06 ⊥
¹³C NMR (101 MHz, CDCl₃)

(Z)-3: (Z)-2-((2-(4-chlorophenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-4: (Z)-2-((2-(4-bromophenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-5: (Z)-2-((2-(4-iodophenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-6: (Z)-2-((2-(4-(methylthio)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-7: (Z)-2-((2-(2-methoxyphenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-8: (Z)-2-((2-(2-(allyloxy)phenyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(Z)-9: (Z)-2-((2-(m-tolyl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-10: (Z)-2-((2-(thiophen-2-yl)prop-1-en-1-yl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-11: (Z)-2-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-12: (Z)-3-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-13: (Z)-4-(1-(phenylsulfonyl)prop-1-en-2-yl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-14: (Z)-2-(((2,3-dihydro-1H-inden-1-ylidene)methyl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-15: (Z)-2-(((3,4-dihydronaphthalen-1(2H)-ylidene)methyl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-16: (Z)-2-(((6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ylidene)methyl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-17: (Z)-((2-phenylprop-1-en-1-yl)sulfonyl)benzene

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(Z)-18: (Z)-(1-(methylsulfonyl)prop-1-en-2-yl)benzene

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-19: (Z)-2-((2-phenylbut-1-en-1-yl)sulfonyl)pyridine

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(Z)-20: (Z)-2-(styrylsulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-21: (Z)-2-((2-(allyloxy)styryl)sulfonyl)pyridine

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(E)-22: (E)-1-((2-chloro-2-phenylvinyl)sulfonyl)-4-methylbenzene

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(E)-23: (E)-1-((2-bromo-2-phenylvinyl)sulfonyl)-4-methylbenzene

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

(Z)-26: (Z)-((1-phenylprop-1-en-2-yl)sulfonyl)benzene

¹H NMR (300 MHz, CDCl₃) <u>See procedure</u>

(Z)-27: ethyl (Z)-3-phenylbut-2-enoate

¹H NMR (400 MHz, CDCl₃) <u>See procedure</u>

30: (±)-2-(((1R,6S,7R,8S)-8-methyl-8-phenylbicyclo[4.2.0]oct-2-en-7-yl)sulfonyl)pyridine

