Electronic Supplementary Information

Chemicals and materials

Sodium tetrachloropalladate (Na₂PdCl₄), indium chloride (InCl₃), L-ascorbic acid (AA), *N_,N*dimethylformamide (DMF), polyvinylpyrrolidone (PVP, MW=40000), Nafion 117 solution (5 wt%) and indium oxide (In_2O_3) were supplied by Aladdin. Ethylenediamine (EN) was provided from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Molybdenum hexacarbonyl $(Mo(CO)₆)$ was purchased from Macklin. All chemicals were used as received without any further purification.

Synthesis of the Mo-PdIn BNRs

For a typical synthesis of Mo-PdIn BNRs, AA (80 mg) , Mo $(CO)_6$ (50 mg) and PVP (600 mg) , MW=40000) were added to 2 mL of EN in a glass via to dissolve ultrasonically. Subsequently, 0.1 mL InCl₃ (0.1 M DMF solution) and 0.3 mL Na₂PdCl₄ (0.1 M DMF solution) were added to the above solution and sonicated to mix evenly. Then putting it into the 120 °C oil bath for 8 h. Finally, after mixture cooled to room temperature, the Mo-PdIn BNRs are collected by alternate centrifugation (10000 rpm) washing with acetone, ethanol, and deionized water. For comparison, Mo-PdIn-50 BNRs and Mo-PdIn-200 BNRs samples were synthesized by the same method except adding different amounts of $InCl₃ precursors (50µl, 200µl)$, respectively.

Synthesis of the Mo-Pd MNRs

As a control sample, the synthesis method is the same as the above Mo-PdIn BNRs synthesis except that $InCl₃$ is not added.

Synthesis of the PdIn BNRs

As a control sample, the synthesis method is the same as the above Mo-PdIn BNRs synthesis except

that the addition of $Mo(CO)₆$ is replaced by the introduction of carbon monoxide.

General characterization

A ZEISS Gemini 500 scanning electron microscope (SEM) configured with energy-dispersive X-ray spectroscopy (EDX) was used to characterize the morphology and elemental distribution of the catalyst. Finer structural information of the catalyst was obtained by transmission electron microscopy (TEM) with a JEM-2100F. The crystal structure of the catalyst was obtained by a DX-2700 X-ray diffractometer (XRD). The elemental composition and electronic states of the catalysts were measured with an X-ray photoelectron spectroscopy (XPS) model ULVAC PHI Quantera. The ultraviolet–visible (UV–Vis) absorption was obtained by a TU-1900 spectrophotometer. The gas products were analyzed by a gas chromatograph (GC-2014 Shimadzu). The element components of the sample were measured via the inductively coupled plasma optical emission spectroscopy (ICP-OES, Agilent7700). The liquid products were analyzed by an Avance III HD 500 (Bruker) employed to collect nuclear magnetic resonance (NMR) spectroscopy.

Electrochemical measurements

All electrochemical measurements were performed on a CHI 760E electrochemical workstation. Electrocatalytic performance of urea synthesis was measured by a H-type three-electrode cell. Ag/AgCl electrode served as reference electrodes and a carbon rod as the counter electrode. The electrocatalyst ink was prepared via adding 4 mg of electrocatalyst to a 1 mL mixture containing 980 μ L of ethanol and 20 μ L of Nafion 117 (5 wt%). The preparation of the working electrode was described as follows, the Mo-PdIn BNRs or Mo-Pd MNRs electrocatalyst ink was sprayed on a 1×1 $cm²$ hydrophobicity carbon paper with a loading of 0.4 mg $cm²$ and dried naturally. During electrochemical measurements, high-purity $CO₂$ was continuously bubbled into a 0.1 M KNO₃ solution at the cathode at a constant flow rate of 20 sccm. All potentials were finally normalized to RHE reference scale $(E$ (*vs.* RHE) = E (*vs.* Ag/AgCl) + 0.197 + 0.059 \times pH).

Product quantification

The diacetylmonoxime method was typically applied to detect urea if the NO_2^- concentration is lower than 20 ppm.¹ Solution A, comprising 100 mL concentrated phosphoric acid, 300 mL concentrated sulfuric acid and 100 mg ferric chloride dissolved in 600 mL deionized water. Solution B, 0.5 g diacetylmonoxime, 10 mg aminothiourea and 100 mL deionized water. Then 2 mL of solution A and 1 mL of solution B was added into 1 mL of electrolyte solution after diluting. After heating at 110 ℃ for 15 min and cooling, the absorbance of the solution at 525 nm was measured by UV-Vis spectroscopy. The concentration of urea was calculated according to the calibration of the standard urea solution concentration-absorbance curve.

The possible NO_3 reduction products (NH₃, NO₂) were quantified using the spectrophotometric method based on the calibration curves. Specifically, ammonia content was measured using the indophenol blue method²: 2.0 mL of 1 M sodium hydroxide aqueous solution containing 5% sodium citrate and 5% salicylic acid, 1.0 mL of 0.05 M sodium hypochlorite solution, and 0.2 mL of 1% mass fraction of sodium nitroxycyanide aqueous solution were added in sequence. In 2.0 mL of diluted electrolyte, mix the above solution evenly, place it in a dark environment to react for 2 h, and finally measure the absorbance at 665 nm. The amount of ammonia was computed according to the calibration of the standard ammonia concentration-absorbance curve. The concentration of NO_2^- was quantified by the Griess method.² Specifically, 0.4 g sulfonamide, 0.02 g naphthylethylenediamine hydrochloride and 1 mL phosphoric acid were dissolved in 5 mL water as a color developer, and 5 mL of diluted electrolyte was mixed with 0.1 mL of chromogenic reagent, and after 20 min of color development, color development was performed with a UV-visible spectrophotometer, and the absorbance was recorded at 540 nm. The amount of nitrite was calculated according to the calibration of the standard nitrite concentration-absorbance curve.

The quantitative analysis of $H₂$ and CO was conducted by GC with a thermal conductivity detector and flame ionization detectors.

Product yield rate and Faradaic efficiency (FE) were calculated using the equations:

Urea yield rete = $C_{\text{urea}} \times$ V/ (m \times t) $FE_{\text{urea}} = 16 \times F \times C_{\text{urea}} \times V / (60.06 \times Q)$ $FE_{NH3} = 8 \times F \times C_{NH3} \times V/(17 \times Q)$ FE_{NO2} = 2 × F × C_{NO2} × V/ (46 × Q) $FE_{CO} = 2 \times F \times n_{CO}/Q$ $FE_{H2} = 2 \times F \times n_{H2}/Q$

Where C_{area} is urea concentration, V is catholyte volume, m is the catalyst weight (mg), t is reaction time, F is Faraday constant (96485 C mol⁻¹), C_{NH3} refers to the concentration of ammonia, C_{NO2} refers to the concentration of nitrite, Q is the total amount of charges passing the electrode.

In-situ Fourier transform infrared (FTIR):

The Experiments were performed in a NicoletiS50 spectrometer equipped with a liquid nitrogencooled MCT detector. The working electrode was prepared by spreading the configured catalyst suspension evenly over the surface of a gold-plated semi-cylindrical silicon prism. Pt electrode and Ag/AgCl electrode were used as the counter and reference electrodes. The 0.1 M KNO3 solution served as the electrolyte with $CO₂$ -saturated. Each spectrum was obtained with a time resolution of 32 seconds, and the background spectrum of the electrode is obtained at the open circuit voltage

before the test. The voltage with measured potential range is -0.2~-0.6 V *vs.* RHE.

Fig. S1 TEM image of the Mo-Pd MNRs.

Fig. S2 EDX spectrum of the Mo-Pd MNRs.

Fig. S3 TEM image of the PdIn BNRs.

Fig. S4 EDX spectrum of the PdIn BNRs.

Energy (keV)

Fig. S5 EDX spectrum of the typical Mo-PdIn BNRs.

Fig. S6 XPS survey spectra of the (a) Mo-Pd MNRs and (b) commercial In_2O_3 .

Fig. S7 SEM image of In_2O_3 .

Fig. S8 LSV curves of Mo-PdIn BNRs, Mo-Pd MNRs and In₂O₃ in 0.1 M KNO₃ solution with flowing CO₂.

Fig. S9 Chronoamperometric curves of the Mo-PdIn BNRs for co-reduction of CO_2 and NO_3^- under different potentials.

Fig. S10 (a) UV-Vis spectra of standard urea solution with various concentrations. (b) The corresponding calibration curve.

Fig. S11 (a) UV-Vis spectra of standard $NO₂$ solution with various concentrations. (b) The corresponding calibration curve.

Fig. S12 (a) UV-Vis spectra of standard NH₄⁺ solution with various concentrations. (b) The corresponding calibration curve.

Fig. S13 The FE of urea with Mo-PdIn BNRs or PdIn BNRs at different applied potentials.

Fig. S14 Comparison of urea FE and yield rate of Mo-PdIn BNRs with some other reported catalysts.

Fig. S15 FEs of main products of CO_2 and NO_3^- co-reduction on the Mo-PdIn BNRs.

Fig. S16 (a) FEs of main products of CO_2 and NO_3 co-reduction on the Mo-Pd MNRs. (b) FEs of main products of CO_2 and NO_3^- co-reduction on the In_2O_3 .

Fig. S17 The FEs of urea with varying contents of Mo-PdIn BNRs at different applied potentials. The atomic ratios of Pd/In in the typical Mo-PdIn BNRs, Mo-PdIn-200 BNRs and Mo-PdIn-50 BNRs are determined to be 6.2/1, 2.3/1 and 7.7/1, respectively.

Fig. S18 FEs of (a) NH₃ and (b) CO with varying contents of Mo-PdIn BNRs at different applied potentials.

Fig. S19 Chronoamperometric curve of the Mo-PdIn BNRs at -0.4 V *vs.* RHE for 5 cycles (2 h for each cycle).

Fig. S20 TEM image of the Mo-PdIn BNRs after cycle testing.

Fig. S21 XRD patterns of Mo-PdIn BNRs before and after cycle testing.

Fig. S22 (a) Pd 3d XPS spectra and (b) In 3d XPS spectra of Mo-PdIn BNRs before and after cycle testing.

Fig. S23⁻¹H NMR spectra of urea produced using ${}^{14}NO_3$ /CO₂ and ${}^{15}NO_3$ /CO₂ as feedstocks respectively.

Fig. S24 Comparison of urea yield and FE under different reaction conditions and corresponding color development results.

Fig. S25 EIS spectra of Mo-PdIn BNRs, In₂O₃ and Mo-Pd MNRs catalysts at -0.4 V *vs.* RHE in a frequency ranging from 100 kHz to 0.1 Hz.

Fig. S26 CV curves of catalysts under various scan rates from 10 to 120 mV s⁻¹: (a) Mo-PdIn BNRs, (b) In_2O_3 and (c) Mo-Pd MNRs. (d) The calculated $C_{\rm dl}$ values.

Fig. S27 (a) NH₃ FEs of Mo-PdIn BNRs for NO₃ RRand C-N coupling reaction. (b) CO FEs of Mo-PdIn BNRs for CO₂RR and C-N coupling reaction.

Table S1 The atomic ratios of various samples determined by ICP-OES.

Catalysts	Reactant	Yeild rate	FE urea	Potential	Ref.
		$(\mu g \; h^{-1} m g_{cat}^{-1})$	(%)	$(V \nu s. \nREH)$	
Mo-PdIn BNRs	$CO2 +$	1016.49	18.42	$-0.4V$	this
	0.1 M $KNO3$				work
BiFeO ₃ /BiVO ₄	$N_2 +$	297.3	17.18	-0.4 V	3
	0.1 M KHCO ₃				
CuPc NTs	$N_2 +$	143.47	12.99	$-0.6 V$	$\overline{4}$
	0.1 M KHCO ₃				
$PdCu/TiO2-Vo-400$	$N_2 +$	201.8	8.92	-0.4 V	5
	0.1 M KHCO ₃				
$Fe(a)$ $@C$ - $Fe3O4/CNTs$	$CO2$ +	1341.3	16.50	-0.65 V	6
	0.1 M KNO ₃				
Fe^{II} -Fe ^{III} OOH@BiVO ₄	$CO2$ +	828.83	11.50	$-0.8 V$	τ
	0.1 M KNO ₃				
V_o -CeO ₂ -750	$CO2$ +	943.6	4.00	$-1.6 V$	8
	0.1 M KHCO ₃ +				
	0.05 M KNO ₃				
Vo-InOOH	$CO2$ +	592.5	51.00	$-0.5 V$	9
	0.1 M KNO ₃				

Table S2. Comparison of electrocatalytic performance of Mo-PdIn BNRs toward urea synthesis with previously reported catalysts.

References

- 1. M. Sun, G. Wu, J. Jiang, Y. Yang, A. Du, L. Dai, X. Mao and Q. Qin, *Angew. Chem. Int. Ed.*, 2023, **62**, e202301957.
- 2. P. Zhan, J. Zhuang, S. Yang, X. Li, X. Chen, T. Wen, L. Lu, P. Qin, B. Han, *Angew. Chem. Int. Ed*., 2024, **63**, 202409019.
- 3. M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Shi, S. Li, X. Wang and G. Zhang, *Chem. Sci.*, 2021, **12**, *6048-605*8.
- 4. J. Mukherjee, S. Paul, A. Adalder, S. Kapse, R. Thapa, S. Mandal, B. Ghorai, S. Sarkar and U. K. Ghorai, *Adv. Funct. Mater.*, 2022, **32**, 2200882.
- 5. C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li and S. Wang, *Nat. Chem.*, 2020, **12**, 717- 724.
- 6. J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu, G. Wang, C. Liang and H. Zhang, *Angew. Chem. Int. Ed.*, 2023, **62**, e202210958.
- 7. H. Yin, Z. Sun, Q. Zhao, L. Yang, T. Lu and Z. Zhang, *J. Energy Chem.*, 2023, **84**, 385-393.
- 8. X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X. Z. Fu and S. Wang, *J. Am. Chem. Soc.*, 2022, **144**, 11530-11535.
- 9. C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan and G. Yu, *ACS Nano*, 2022, **16**, 8213-8222.