Supporting Information

Expedient (3+3)-annulation of carbonyl ylides with azaoxyallyl cations: formal access to oxa-benzo[c]azepin-3-ones

Table of Contents

1	General Information	S2
2	Crystal Structure and Data of 3ra	S3-S4
3	Optimization of the Reaction Conditions	S4-S6
4	General Procedure for the Preparation of α -Diazoesters	S6-S7
5	General Procedure for the Preparation of α Halo-Hydroxamate	S7
6	Procedure for the Synthesis of 3 and Scale-up Synthesis	S7
7	Procedure for the Post-Synthetic Modifications	S7-S8
8	HPLC Chromatogram	S9-S10
9	Characterization Data of 1a-s	S11-S16
10	Characterization Data of 2a-k	S17-S18
11	Characterization Data of products 3aa-sa, 3ab-ai and 4-8	S19-S33
12	References	S33
13	NMR (¹ H, ¹³ C and ¹⁹ F) Spectra of 1a-s , 2a-k , 3aa-sa , 3ab-ai and 4-8	S34-S84

General Information: Ethyl benzoyl acetate, acetophenones, o-benzylhydroxylamine hydrochloride, HFIP (≥99%), NaH (60 % dispersion in mineral oil), diethyl carbonate (99%), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (>95%), 2-bromoisobutyryl bromide (>98%), Rh₂(OAc)₄, Pd(PPh₃)₄ (99 %), Pd(PPh₃)₂Cl₂ (99 %) and TEMPO (98%) were purchased from Aldrich and TCI, and used as received. Na₂CO₃ (>99%), K₂CO₃ (98%), Cs₂CO₃ (99%), DIPEA (≥99%), DBU (≥99%), DABCO (99%) and Et₃N (>99%) were procured from Merck and used as received. CH₃CN and CH₂Cl₂ were dried prior as per the standard procedure prior to use. SRL silica gel G/GF 254 plates were used for analytical TLC and SRL silica gel (100-200 mesh) was used for column chromatography. Bruker Avance III 400, 500 and 600 MHz NMR spectrometers were used to record (¹H, ¹³C and ¹⁹F) spectra using CDCl₃ as the solvent and tetramethylsilane (TMS) as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (J) are reported in parts per million and hertz (Hz), respectively, and to describe peak patterns following abbreviations used when appropriate: s = singlet, d = doublet, t = triplet, q= quartet and m = multiplet. Melting point of the products was measured on Büchi melting point apparatus, MPB-540. Open capillary tubes were used for the measurements and are uncorrected. Mestre nova software was used throughout the spectral analysis. Q-Tof ESI-MS instrument Agilent (model: 6546 LC/Q-TOF) was used for recording HRMS data. Infrared spectra were recorded on Perkin Elmer FT-IR instrument. Single crystal X-ray data of **3ra** was collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/-K α radiation and the structure was solved by direct method using SHELXL-19 (Göttingen, Germany).

Sample Preparation for Crystal Growth. The compound 3ra (10 mg) was dissolved in a mixture of CHCl₃ (1.0 ml) and CH₃CN (1.0 ml) and kept at room temperature for slow evaporation (2 days). Block shaped colorless crystals were formed, which was subjected to *X*-ray diffraction.

Crystal Structure and Data of 3ra.

Figure S1. ORTEP diagram of methyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5*H*-1,5-epoxybenzo[c]azepine-5-carboxylate **3ra** (CCDC 2372696) with 50% ellipsoid. H-omitted for clarity.

Identification code	3ra
Empirical formula	'C27 H25 N O5 '
Formula weight	443.48
Crystal habit, colour	Block/Colorless
Temperature, <i>T</i> /K	299 K
Wavelength, λ/Å	0.71073
Crystal system	'orthorhombic'
Space group	'P c a 21'
Unit cell dimensions	a = 18.656(4) Å
	b = 9.9609(18) Å
	c = 12.339(2) Å
	$\alpha = 90$
	$\beta = 90$
	$\gamma = 90$
Volume, <i>V</i> /Å ³	2293.0(7)
Ζ	4
Calculated density, Mg·m ⁻³	1.285
Absorption coefficient, μ/mm^{-1}	0.089
F(000)	936
θ range for data collection	2.183 to 27.481
Limiting indices	$-24 \le h \le 24, -12 \le k \le 12, -16 \le l \le 16$
Reflection collected / unique	5248/3994
Completeness to θ	99.9%
Absorption correction	Multi-scan

Refinement method	'SHELXL-2019/1 (Sheldrick 2019)'
Data / restraints / parameters	5248/1/ 301
Goodness–of–fit on F ²	1.201
Final R indices [I>2sigma(I)]	R1 =0.0603, wR2 = 0.1014
R indices (all data)	R1 = 0.0922, wR2 = 0.1133

Table S1 Optimization of the reaction conditions^a

EtO₂C

Ме

o

Entry	Catalyst	Base	Solvent	Yield $(\%)^b$
1	Rh ₂ (OAc) ₄	Cs ₂ CO ₃	CHCl ₃	43
2	Rh ₂ (OAc) ₄	K ₂ CO ₃	CHCl ₃	65
3	Rh ₂ (OAc) ₄	Na ₂ CO ₃	CHCl ₃	30
4	Rh ₂ (OAc) ₄	NaHCO ₃	CHCl ₃	trace
5	Rh ₂ (OAc) ₄	NEt ₃	CHCl ₃	trace
6	Rh ₂ (OAc) ₄	DIPEA	CHCl ₃	53
7	Rh ₂ (OAc) ₄	DBU	CHCl ₃	58
8	Rh ₂ (OAc) ₄	DABCO	CHCl ₃	46
9	Rh ₂ (OAc) ₄	K_2CO_3	CH_2Cl_2	73
10	Rh ₂ (OAc) ₄	K ₂ CO ₃	$(CH_2Cl)_2$	61
11	Rh ₂ (OAc) ₄	K ₂ CO ₃	Toluene	n.d.
12	Rh ₂ (OAc) ₄	K ₂ CO ₃	THF	n.d.
13	Rh ₂ (OAc) ₄	K ₂ CO ₃	CH ₃ CN	n.d.
14	Rh ₂ (OAc) ₄	K_2CO_3	TFE	trace
15	Rh ₂ (OAc) ₄	K ₂ CO ₃	MeOH	n.d.
16	Rh ₂ (OAc) ₄	K ₂ CO ₃	HFIP	68
17	Rh ₂ (OAc) ₄	K ₂ CO ₃	CH ₂ Cl ₂ : HFIP	86
18	Rh ₂ (OAc) ₄	K ₂ CO ₃	CHCl ₃ : HFIP	78
19	Rh ₂ (OAc) ₄	K ₂ CO ₃	(CH ₂ Cl) ₂ : HFIP	58

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), $Rh_2(OAc)_4$ (5 mol %), base (1.5 equiv), solvent (2 mL), N_2 atm 16 h. ^{*b*}Isolated yield. n.d. = not detected. HFIP = 1,1,1,3,3,3-Hexafluoroisopropanol. TFE =2,2,2- Trifluoroethanol.

	N ₂ CO ₂ Et Ph 1a	Me Br Me 2a	$\label{eq:response} \begin{array}{l} Rh_2(OAc)_4 \mbox{ (5 mol \%)} \\ K_2CO_3 \mbox{ (x equiv)} \\ \hline \\ CH_2Cl_2 \mbox{ : } HFIP, \mbox{ rt} \\ N_2 \mbox{ atm, 16 h} \end{array}$	+ EtO ₂ C Me O O Ph 3aa	
Entry	Catalyst	Equ	uvalent	Yield (%) ^b	
1	K ₂ CO ₃	0.2		n.d.	
2	K ₂ CO ₃	0.5		trace	
3	K ₂ CO ₃	1		34	
4	K ₂ CO ₃	1.2		73	
5	K ₂ CO ₃	1.5		86	
6	K ₂ CO ₃	1.7		75	
7	K ₂ CO ₃	2.0		77	

Table S2 Screening of the equivalent of K₂CO₃^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), $Rh_2(OAc)_4$ (5 mol %), K_2CO_3 (x equiv) CH₂Cl₂:HFIP (1:1, 2 mL), rt, N₂ atm 16 h. ^{*b*}Isolated yield.

 Table S3 HPLC Analysis^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), Rh₂(OAc)₄ (5 mol %), K₂CO₃ (1.5 equiv), L (10 mol %), CH₂Cl₂:HFIP (1:1, 2 mL), rt, N₂ atm 16 h. ^{*b*}Chiral HPLC Analysis.

Procedure for the Preparation of α -Diazoesters 1¹

Scheme S1

Step-I: To a stirred suspension of NaH (6 mmol, 144 mg, 60% dispersion in mineral oil) in toluene (10 ml), acetophenone (3 mmol) was added at room temperature and stirred for 10 min. After that diethyl carbonate (12 mmol, 1416 mg) was added dropwise and refluxed for 2 h under N_2 atm. After completion (monitored by TLC), the reaction mixture cooled to room temperature and quenched with cold water, acidified with 2 M HCl solution and then extracted with ethyl acetate (3 x 30 mL). The combined organic layer was washed with brine (20 ml) and dried (Na_2SO_4). Evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as an eluent to afford benzoyl acetates.

Scheme S2

Step-II: To a stirred solution of benzoyl acetate (2 mmol) and 2-(trimethylsilyl)-phenyl triflate (2.6 mmol, 775 mg) in CH₃CN (8 ml), CsF (5 mmol, 760 mg) was added under N₂ atm in one portion and refluxed for 2 h. After completion (monitored by TLC), the reaction was cooled to room temperature and quenched with brine (20 ml) and extracted with ethyl acetate (3 x 20 mL). The combined organic solution was dried (Na₂SO₄) and the solvent was evaporated to give a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford benzoyl phenyl acetate.

Scheme S3

Step-III: To a stirred solution of benzoyl phenyl acetate (2 mmol) and TsN_3 (2.4 mmol, 473 mg) in CH₃CN (8 mL), was added DBU (3.0 mmol, 456 mg) dropwise at 0 °C and after 5 min, the reaction mixture was allowed to stir at room temperature for 16 h under N₂ atm. After completion (monitored by TLC), the reaction mixture was concentrated and purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford diazoesters **1a-s**.

Procedure for the Preparation of α-Halohydroxamate 2²

Scheme S4

To a stirred solution of *o*-hydroxylamine HCl (3 mmol) in CH_2Cl_2 (10 mL), NEt₃ (3 mmol, 0.4 mL) was added at 0 °C. After 5 mins, corresponding bromide (3 mmol) was added dropwise and allowed to stir for 5 h. After completion (monitored by TLC), the reaction mixture was quenched with water and the organic layer washed with water (3 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford halo hydroxamates **2a-k**.

General Procedure for the Synthesis of 3. To a stirred solution of α -diazo esters 1 (0.1 mmol) and α -halo-hydroxamate 2 (0.11 mmol) in CH₂Cl₂: HFIP (1:1, 2 mL), K₂CO₃ (0.15 mmol, 21 mg) and Rh₂(OAc)₄ (0.005 mmol, 2.3 mg) were added and the reaction mixture was allowed to stir at room temperature for 16 h under N₂ atm. After completion (monitored by TLC), the reaction mixture diluted with CH₂Cl₂ (5 mL) and passed through a short bed of celite. The solvent was evaporated and the residue was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford **3aa-sa** and **3ab-ai**.

Scale-up Synthesis of 3aa. α -Diazo esters 3a (1.0 mmol, 294 mg), α halohydroxamate 2a (1.1 mmol, 298 mg), K₂CO₃ (1.5 mmol, 207 mg) and Rh₂(OAc)₄ (0.05 mmol, 22 mg) were subjected to above-described procedure to afford 3aa in 68% (312 mg) yield.

Synthesis of 5.³ To a stirred solution of ethyl -2-(benzyloxy)-1-(4-bromophenyl)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[*c*]azepine-5-carboxylate **3fa** (0.1 mmol, 53 mg) and phenylacetylene (0.3 mmol, 30 mg) in DMF (2 mL), CuBr (0.005 mmol, 1 mg), DIPEA (0.3 mmol, 38 mg) and Pd(PPh₃)₂Cl₂ (0.01 mmol, 7 mg) were added and the reaction mixture was allowed to stir at 100 °C for 12 h under N₂ atm. After completion (monitored by TLC), the reaction mixture was cooled to room temperature, diluted with ethyl acetate (5 mL) and washed with water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford **5** in 85% (48 mg) yield.

Synthesis of 6.⁴ To a stirred solution of ethyl -2-(benzyloxy)-1-(4-bromophenyl)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[*c*]azepine-5-carboxylate **3fa** (0.1 mmol, 53 mg) and phenyl boronic acid (0.11 mmol, 14 mg) in 1,4 dioxane (2 ml), K₂CO₃ (0.2 mmol, 27 mg), Pd(PPh₃)₄ (0.005 mmol, 5 mg) and H₂O (0.2 mL) were added and the reaction mixture was allowed to stir at 90 °C for 8 h under N₂ atm. After completion (monitored by TLC), the reaction mixture was cooled to room temperature, diluted with ethyl acetate (5 mL) and washed with water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford **6** in 82% (43 mg) yield.

Synthesis of 7.⁵ To a stirred solution of ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[*c*]azepine-5-carboxylate **3aa** (0.1 mmol, 45 mg) in THF (2 mL) at 0 °C, LiBH₄ (0.5 mmol, 11 mg) was added. The resulting reaction mixture was allowed warm up to room temperature and continued the stirring for 5 h under N₂ atm. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl (5 mL) and extracted with ethyl acetate (2 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent to afford 7 in 79% (33 mg) yield.

Synthesis of 8.⁶ To a stirred solution of ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[*c*]azepine-5-carboxylate **3aa** (0.1 mmol, 45 mg) in CH₃CN: H₂O (9:1, 2 mL), Mo(CO)₆ (0.12 mmol, 32 mg) was added. The resulting mixture was then stirred at 90 °C for 6 h. After completion (monitored by TLC), the reaction mixture diluted with ethyl acetate (5 mL) and passed through a short bed of celite. The solvent was evaporated and the residue was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford **8** in 75% (26 mg) yield.

HPLC Chromatogram:

Characterization Data of the α-Diazo esters

Ethyl 2-(2-benzoylphenyl)-2-diazoacetate 1a.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.2 Hz, 2H), 7.60-7.54 (m, 2H), 7.53-7.50 (m, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.42-7.38 (m, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.13 (t, J = 7.2 Hz, 3H).

Ethyl 2-diazo-2-(2-(4-methyl-benzoyl)-phenyl)-acetate 1b.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.55-7.48 (m, 3H), 7.40-7.36 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H).

Ethyl 2-diazo-2-(2-(4-ethyl-benzoyl)-phenyl)acetate 1c. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; yellow viscous liquid; yield 85% (230 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.57-7.49 (m, 3H), 7.40-7.36 (m, 1H), 7.26 (d, J = 8.4 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 165.4, 150.3, 138.0, 134.8, 131.0, 130.4, 130.2, 129.8, 128.0, 127.6, 125.1, 61.2, 29.1, 15.3, 14.4; FT-IR (neat) 2965, 2829, 2070, 1718, 1665, 1255, 1111, 1065, 1010 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₃: 345.1210, found: 345.1209.

Ethyl 2-(2-(4-(*tert***-butyl)-benzoyl)-phenyl)-2-diazoacetate 1d.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; yellow viscous liquid; yield 90% (240 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.57-7.52 (m, 2H), 7.51-7.49 (m, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.40-7.36 (m, 1H), 4.11 (q, J = 7.2 Hz, 2H), 1.34 (s, 9H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.5, 165.5, 157.0, 137.9, 134.5, 131.0, 130.3, 130.1, 129.9, 127.6, 125.4, 125.1, 122.5, 61.2, 35.3, 31.2, 14.4; FT-IR (neat) 2945, 2829, 2010, 1714, 1686, 1565, 1255, 1164, 1103 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₁H₂₂N₂NaO₃: 373.1523, found: 373.1520.

Ethyl 2-diazo-2-(2-(4-fluorobenzoyl)-phenyl)-acetate 1e.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.82 (m, 2H), 7.58-7.54 (m, 1H), 7.50-7.47 (m, 2H), 7.41-7.37 (m, 1H), 7.12 (t, *J* = 8.4 Hz, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 1.14 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-(2-(4-bromo-benzoyl)-phenyl)-2-diazoacetate 1f.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.8 Hz, 2H), 7.60-7.55 (m, 3H), 7.49-7.46 (m, 2H), 7.41-7.37 (m, 1H), 4.11 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 6.8 Hz, 3H).

Ethyl 2-diazo-2-(2-(4-ethoxy-benzoyl)-phenyl)acetate 1g. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; yellow viscous liquid; yield 93% (260 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.8 Hz, 2H), 7.56-7.51 (m, 2H), 7.49-7.47 (m, 1H), 7.40-7.36 (m, 1H), 6.89 (d, J = 8.8 Hz, 2H), 4.13-4.07 (m, 4H), 1.44 (t, J = 6.8 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 165.5, 163.3, 138.2, 132.5, 130.8, 130.0, 129.9, 129.7, 127.7, 124.9, 114.2, 63.9, 61.3, 14.8, 14.5; FT-IR (KBr) 2940, 2889, 2066, 1788, 1765, 1455, 1211, 1165 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₄: 361.1159, found: 361.1159.

Ethyl 2-diazo-2-(2-(4-(trifluoromethyl)-benzoyl)-phenyl)-acetate 1h.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.42-7.39 (m, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.14 (t, J = 7.2 Hz, 3H).

Ethyl 2-diazo-2-(2-(4-nitro-benzoyl)-phenyl)-acetate 1i.^{1c} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.63-7.59 (m, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.43-7.39 (m, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H).

Ethyl 4-(2-(1-diazo-2-ethoxy-2-oxoethyl)-benzoyl)-benzoate 1j. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.20$; yellow viscous liquid; yield 85% (240 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.60-7.56 (m, 1H), 7.51-7.47 (m, 2H), 7.42-7.38 (m, 1H), 4.42 (q, J = 7.2 Hz 2H), 4.08 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.0, 165.9, 165.3, 140.7, 137.1, 134.2, 131.6, 130.4, 129.9, 129.6, 129.4, 127.7, 125.4, 61.6, 61.4, 14.44, 14.40; FT-IR (neat) 2982, 2940, 2089, 1716, 1672, 1271, 1103, 1024 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₂₀H₁₈N₂NaO₅: 389.1108, found: 389.1103.

Ethyl 2-diazo-2-(2-(3-fluoro-benzoyl)-phenyl)-acetate 1k.^{1d} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 2H), 7.52-7.48 (m, 2H), 7.45-7.38 (m, 3H), 7.30-7.27 (m, 1H), 4.11 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H).

Ethyl 2-diazo-2-(2-(3-methoxy-benzoyl)-phenyl)-acetate 11.^{1b} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.42 (m, 3H), 7.34-7.28 (m, 3H), 7.24-7.23 (m, 1H), 7.06-7.03 (m, 1H), 4.04 (q, J = 6.8 Hz, 2H), 3.76 (s, 3H), 1.06 (t, J = 6.8 Hz, 3H).

Ethyl 2-diazo-2-(2-(2-methyl-benzoyl)-phenyl)-acetate 1m. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; yellow viscous liquid; yield 78% (180 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.49 (m, 3H), 7.39-7.34 (m, 3H), 7.22-7.18 (m, 2H), 4.16 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 165.5, 139.2, 138.4, 137.5, 131.71, 131.70, 131.6, 131.4, 130.9, 130.3, 128.0, 125.6, 125.4, 61.2, 20.8, 14.5; FT-IR (neat) 2983, 2925, 2088, 1696, 1664, 1294, 1177, 762 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₁₈H₁₆N₂NaO₃: 331.1053, found: 331.1041.

Ethyl 2-diazo-2-(2-(2-(trifluoromethyl)-benzoyl)-phenyl)-acetate 1n. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.30$; yellow viscous liquid; yield 81% (210 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.77 (m, 1H), 7.62-7.57 (m, 4H), 7.56-7.52 (m, 1H), 7.39-7.37 (m, 1H), 7.33-7.29 (m, 1H), 4.25 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.5, 165.7, 138.8, 135.3, 133.0, 132.8, 131.6, 131.0, 130.5, 129.6, 128.8 ($J_{C-F} = 32.1$ Hz), 127.6, 126.9 ($J_{C-F} = 4.8$ Hz), 126.6, 124.8 ($J_{C-F} = 272.2$ Hz), 61.3, 14.5; FT-IR (neat) 3063, 1978, 2088, 1679, 1309, 1294, 1162, 1032, 767 cm-1; HRMS (ESI) m/z [M+Na]⁺ calcd for C₁₈H₁₃F₃N₂NaO₃: 385.0770, found: 385.0767.

Ethyl 2-diazo-2-(2-(3,4-dimethoxy-benzoyl)-phenyl)-acetate 10.^{1a} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.52 (m, 2H), 7.49-7.48 (m, 2H), 7.41-7.37 (m, 1H), 7.33-7.30 (m, 1H), 6.83 (d, J = 8.4 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H).

Ethyl 2-(2-(benzo[d][1,3] dioxole-5-carbonyl)-phenyl)-2-diazoacetate 1p.^{1b} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.51 (m, 2H), 7.47-7.45 (m, 1H), 7.40-7.36 (m, 2H), 7.33-7.31 (m, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.05 (s, 2H), 4.12 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H).

Ethyl 2-diazo-2-(2-(thiophene-2-carbonyl)-phenyl)-acetate 1q.^{1a} Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.70 (m, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.55-7.54 (m, 2H), 7.50-7.49 (m, 1H), 7.41-7.37 (m, 1H), 7.12-7.10 (m, 1H), 4.14 (q, *J* = 6.8 Hz, 2H), 1.15 (t, *J* = 6.8 Hz, 3H).

Methyl 2-(2-benzoyl-phenyl)-2-diazoacetate 1r.^{1b} Yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.2 Hz, 2H), 7.59-7.54 (m, 2H), 7.51-7.49 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.41-7.37 (m, 1H), 3.59 (s, 3H).

Ethyl 2-diazo-2-(2-pivaloylphenyl)acetate 1s.^{1a} Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.36-7.29 (m, 3H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.29-1.23 (m, 12H).

Characterization Data of the α -halo-hydroxamate:

N-(benzyloxy)-2-bromo-2-methyl-propanamide 2a.^{2a} Colorless solid; ¹H

NMR (400 MHz, CDCl₃) δ 9.06 (bs, 1H), 7.43-7.38 (m, 5H), 4.94 (s, 2H), 1.93 (s, 6H).

2-Bromo-*N***-methoxy-2-methyl-propanamide 2b.**^{2b} Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 9.32 (bs, 1H), 3.79 (s, 3H), 1.96 (s, 6H).

2-Bromo-*N***-ethoxy-2-methyl-propanamide 2c.**^{2b} Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 9.24 (bs, 1H), 4.00 (q, *J* = 7.2 Hz, 2H), 1.96 (s, 6H), 1.29 (t, *J* = 6.8 Hz, 3H).

2-Bromo-*N***-(***tert***-butoxy)-2-methyl-propanamide 2d.^{2c} Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (bs, 1H), 1.98 (s, 6H), 1.30 (s, 9H).**

2-Bromo-2-methyl-*N***-phenoxy-propanamide 2e.**^{2d} Grey solid; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.6 Hz, 2H), 7.09-7.05 (m, 3H), 2.05 (s, 6H).

N-(Allyloxy)-2-bromo-2-methyl-propanamide 2f.^{2c} Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.19 (bs, 1H), 6.04-5.94 (m, 1H), 5.40-5.35 (m, 2H), 4.41 (d, J = 6.4 Hz, 2H), 1.95 (s, 6H).

2-Bromo-2-methyl-N-((4-methyl-benzyl) oxy)-propenamide

2g.^{2b} Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (bs, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.89 (s, 2H), 2.37 (s, 3H), 1.93 (s, 6H).

MHz, CDCl₃) δ 8.92 (bs, 1H), 7.42-7.38 (m, 5H), 4.94 (s, 2H), 4.37-4.32 (m, 1H), 1.71 (d, *J* = 5.6 Hz, 3H).

 $N-(Benzyloxy)-2-bromo-2-ethylbutanamide 2i. Analytical TLC on silica gel, 2:8 ethyl acetate/hexane R_f = 0.30; yellow oil; yield 75% (150 mg); ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 9.20 (bs, 1H), 7.44-7.35 (m, 5H), 4.93 (s, 2H), 2.26-2.17 (m, 2H), 1.98-1.89 (m, 2H), 1.00 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 134.9, 129.5, 129.1, 128.8, 78.7, 76.3, 36.2, 10.4; FT-IR (neat) 3063, 1978, 2088, 1679, 1309, 1294, 1162, 1032, 767 cm-1; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₉BrNO₂: 300.0594, found: 300.0590.

¹H NMR (400 MHz, CDCl₃) δ 9.01 (bs, 1H), 7.44-7.36 (m, 5H), 4.94 (s, 2H), 2.16-2.09 (m, 2H), 2.02-1.97 (m, 2H), 1.77-1.63 (m, 5H), 1.36-1.27 (m, 1H).

N-(Benzyloxy)-2-bromo-acetamide 2k.^{2a} Colorless solid; ¹H NMR (500 MHz, CDCl₃) δ 8.68 (bs, 1H), 7.41 (s, 5H), 4.94 (s, 2H), 3.79 (s, 2H).

Characterization Data of Products

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetra-hydro-5H-1,5-epoxybenzo[c]azepine-5-carboxylate 3aa. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; colorless sticky solid; yield 86% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.73-7.71 (m, 1H), 7.60-7.58 (m, 1H), 7.54-7.52 (m, 3H), 7.36-7.34 (m, 2H), 7.24-7.20 (m, 3H), 7.02-7.00 (m, 2H), 4.95 (d, J = 8.8 Hz, 1H), 4.56 (d, J = 9.2 Hz, 1H), 4.44-4.32 (m, 2H), 1.66 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 167.4, 142.7, 139.0, 135.0, 134.3, 129.9, 129.4, 128.9, 128.6, 128.5, 128.4, 128.3, 124.8, 123.4, 98.6, 89.7, 78.1, 62.1, 52.5, 24.5, 19.9, 14.4; FT-IR (neat) 2927, 2837, 1731, 1703, 1458, 1304, 1048, 752, 699, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₈NO₅: 458.1962, found: 458.1968.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(*p***-tolyl)-1,2,3,4-tetra-hydro-***5H***-1,5-epoxybenzo**[*c*]azepine-5-carboxylate 3ba. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky liquid; yield 84% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.72-7.70 (m, 1H), 7.58-7.56 (m, 1H), 7.34-7.30 (m, 4H), 7.25-7.18 (m, 3H), 7.05-7.03 (m, 2H), 4.94 (d, *J* = 9.2 Hz, 1H), 4.58 (d, *J* = 9.2 Hz, 1H), 4.44-4.27 (m, 2H), 2.43 (s, 3H), 1.65 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 167.4, 142.9, 139.8, 139.1, 135.2, 131.4, 129.4, 129.2, 128.8, 128.4, 128.3, 128.2, 124.8, 123.3, 98.6, 89.6, 78.0, 62.0, 52.4, 24.5, 21.4, 19.9, 14.4; FT-IR (neat) 3030, 2985, 2936, 1737, 1704, 1460, 1214, 1048, 753, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₃₀NO₅: 472.2118, found: 472.2112.

Ethyl 2-(benzyloxy)-1-(4-ethylphenyl)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo**[*c*]azepine-5-carboxylate 3ca. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky solid; yield 81% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.73-7.71 (m, 1H), 7.59-7.57 (m, 1H), 7.36-7.33 (m, 4H), 7.24-7.18 (m, 3H), 7.02-6.99 (m, 2H), 4.96 (d, J = 9.2 Hz, 1H), 4.59 (d, J = 9.2 Hz, 1H), 4.45-4.29 (m, 2H), 2.75 (q, J = 7.6 Hz, 2H), 1.66 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.34 (s, 3H), 1.30 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 167.4, 146.2, 142.8, 139.0, 135.2, 131.6, 129.4, 128.8, 128.5, 128.4, 128.3, 128.2, 128.0, 124.8, 123.4, 98.7, 89.6, 78.0, 62.0, 52.4, 28.9, 24.5, 19.9, 15.9, 14.4; FT-IR (neat) 2967, 2935, 2873, 1730, 1701, 1459, 1304, 1047, 752, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₃₂NO₅: 486.2275, found: 486.2277.

Ethyl 2-(benzyloxy)-1-(4-(*tert*-butyl)phenyl)-4,4-dimethyl-3-oxo-1,2,3,4tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3da. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.40$; colorless solid; mp 163-165 °C yield 73% (37 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.8 Hz, 2H), 7.72-7.70 (m, 1H), 7.59-7.57 (m, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.36-7.32 (m, 2H), 7.23-7.16 (m, 3H), 6.94-6.92 (m, 2H), 4.97 (d, *J* = 9.2 Hz, 1H), 4.59 (d, *J* = 9.2 Hz, 1H), 4.45-4.28 (m, 2H), 1.66 (s, 3H), 1.39-1.36 (m, 12H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 167.4, 153.0, 142.8, 139.1, 135.2, 131.4, 129.4, 128.8, 128.4, 128.3, 128.2, 125.5, 124.8, 123.4, 98.8, 89.6, 78.1, 62.0, 52.5, 34.9, 31.5, 24.5, 19.9, 14.4; FT-IR (neat) 2986, 2935, 2883, 1730, 1700, 1459, 1212, 1047, 748, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₂H₃₆NO₅: 514.2588, found: 514.2586.

Ethyl 2-(benzyloxy)-1-(4-fluorophenyl)-4,4-dimethyl-3-oxo-1,2,3,4tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ea. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky solid; yield 77% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H), 7.73-7.71 (m, 1H), 7.55-7.53 (m, 1H), 7.38-7.34 (m, 2H), 7.25-7.17 (m, 5H), 7.07-7.04 (m, 2H), 4.96 (d, J = 9.2 Hz, 1H), 4.54 (d, J = 9.2 Hz, 1H), 4.46-4.30 (m, 2H), 1.64 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 167.2, 164.4 ($J_{C-F} = 247.8$ Hz), 142.5, 139.0, 135.0, 130.5 ($J_{C-F} = 8.4$ Hz), 130.4 ($J_{C-F} = 3.3$ Hz), 129.8, 129.3, 129.0, 128.6, 128.4, 124.9, 123.2, 115.6 ($J_{C-F} = 21.6$ Hz), 98.1, 89.7, 78.1, 62.2, 52.5, 24.5, 19.9, 14.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.39; FT-IR (neat) 3065, 2985, 2931, 1732, 1706, 1513, 1305, 1230, 1049, 753, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₇FNO₅: 476.1868, found: 476.1873.

Ethyl 2-(benzyloxy)-1-(4-bromophenyl)-4,4-dimethyl-3-oxo-1,2,3,4tetrahydro-5*H***-1,5-epoxybenzo**[*c*]**azepine-5-carboxylate 3fa.** Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.40$; yellow sticky solid; yield 82% (43 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.84 (m, 2H), 7.72-7.69 (m, 1H), 7.65-7.62 (m, 2H), 7.53-7.50 (m, 1H), 7.37-7.31 (m, 2H), 7.26-7.21 (m, 3H), 7.07-7.05 (m, 2H), 4.96 (d, J = 9.2 Hz, 1H), 4.55 (d, J = 9.2 Hz, 1H), 4.43-4.31 (m, 2H), 1.64 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.5, 167.2, 142.2, 138.9, 134.9, 133.4, 131.7, 130.1, 129.3, 129.0, 128.6, 128.5, 128.4, 124.9, 124.2, 123.1, 98.1, 89.7, 78.1, 62.1, 52.6, 24.4, 19.8, 14.4; FT-IR (neat) 2965, 2915, 1742, 1716, 1532, 1345, 1210, 1029, 780, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₇BrNO₅: 536.1067, found: 536.1061.

Ethyl 2-(benzyloxy)-1-(4-ethoxyphenyl)-4,4-dimethyl-3-oxo-1,2,3,4tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ga. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky liquid; yield 80% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.8 Hz, 2H), 7.72-7.69 (m, 1H), 7.58-7.56 (m, 1H), 7.34-7.32 (m, 2H), 7.25-7.21 (m, 3H), 7.08-7.05 (m, 2H), 7.00 (d, J = 8.8 Hz, 2H), 4.94 (d, J = 8.8 Hz, 1H), 4.57 (d, J = 9.2 Hz, 1H), 4.45-4.29 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 1.64 (s, 3H), 1.46 (t, J =6.8 Hz, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 167.5, 160.1, 142.9, 139.0, 135.2, 129.9, 129.4, 128.8, 128.4, 128.34, 128.32, 126.4, 124.8, 123.3, 114.4, 98.6, 89.5, 78.0, 63.7, 62.0, 52.4, 24.5, 19.9, 14.9, 14.4; FT-IR (neat) 2982, 2933, 1731, 1702, 1304, 1249, 1047, 754, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₃₂NO₆: 502.2224, found: 502.2231.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(4-(trifluoro-methyl)-phenyl)-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[*c***]azepine-5-carboxylate 3ha.** Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.50$; yellow sticky liquid; yield 76% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 2H), 7.77-7.72 (m, 3H), 7.55-7.53 (m, 1H), 7.40-7.34 (m, 2H), 7.24-7.20 (m, 3H), 7.03-7.00 (m, 2H), 4.99 (d, J = 9.6 Hz, 1H), 4.54 (d, J = 9.2 Hz, 1H), 4.46-4.30 (m, 2H), 1.66 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.7, 167.1, 142.1, 139.0, 138.2, 134.8, 132.0 ($J_{C-F} = 32.5$ Hz), 129.3, 129.1, 128.9, 128.8, 128.7, 128.4, 125.5 ($J_{C-F} = 3.6$ Hz), 125.0, 124.9, 123.1, 97.8, 89.9, 78.2, 62.2, 52.7, 24.4, 19.9, 14.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.68.; FT-IR (neat) 2926, 2855, 1734, 1711, 1323, 1169, 1066, 753, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₂₇NF₃O₅: 526.1836, found: 526.1841.

Ethyl 2-(benzyloxy)-4,4-dimethyl-1-(4-nitrophenyl)-3-oxo-1,2,3,4tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ia. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.4$; yellow sticky solid; yield 64% (32 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 2H), 8.14 (d, *J* = 8.8 Hz, 2H), 7.75-7.73 (m, 1H), 7.54-7.52 (m, 1H), 7.40-7.37 (m, 2H), 7.25-7.21 (m, 3H), 7.07-7.05 (m, 2H), 5.00 (d, *J* = 9.6 Hz, 1H), 4.53 (d, *J* = 9.6 Hz, 1H), 4.44-4.33 (m, 2H), 1.65 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 166.9, 148.7, 141.8, 141.0, 138.9, 134.7, 129.5, 129.3, 129.2, 129.0, 128.7, 128.5, 125.1, 123.6, 122.9, 97.4, 90.0, 78.3, 62.3, 52.9, 24.4, 19.9, 14.4; FT-IR (neat) 3065, 2961, 2870, 1731, 1704, 1461, 1306, 1049, 755, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₇N₂O₇: 503.1813, found: 5023.1810.

Ethyl 2-(benzyloxy)-1-(4-(ethoxycarbonyl)-phenyl)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo[***c***]azepine-5-carboxylate 3ja. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.45; yellow sticky liquid; yield 77% (41 mg); ¹H NMR (500 MHz, CDCl₃) \delta 8.18 (d, J = 9.0 Hz, 2H), 8.06 (d, J = 9.0 Hz, 2H), 7.73-7.72 (m, 1H), 7.56-7.55 (m, 1H), 7.37-7.35 (m, 2H), 7.25-7.20 (m, 3H), 7.05-7.04 (m, 2H), 4.95 (d, J = 9.0 Hz, 1H), 4.53 (d, J = 9.0 Hz, 1H), 4.46-4.32 (m, 4H), 1.65 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H), 1.38 (t, J = 7.0 Hz, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 177.6, 167.2, 166.3, 142.3, 139.0, 138.9, 134.9, 131.8, 129.7, 129.4, 129.0, 128.7, 128.6, 128.5, 128.4, 124.9, 123.2, 98.0, 89.8, 78.1, 62.1, 61.4, 52.7, 24.5, 19.9, 14.5, 14.4. FT-IR (neat) 3005, 2951, 2850, 1732, 1715, 1431, 1356, 1055, 754, 715 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₁H₃₂NO₇: 530.2173, found: 530.2165.**

Ethyl 2-(benzyloxy)-1-(3-fluorophenyl)-4,4-dimethyl-3-oxo-1,2,3,4tetrahydro-5*H***-1,5-epoxybenzo[***c***]azepine-5-carboxylate 3ka. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.40; colorless sticky liquid; yield 82% (39 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.80-7.77 (m, 1H), 7.73-7.69 (m, 2H), 7.56-7.54 (m, 1H), 7.52-7.46 (m, 1H), 7.38-7.33 (m, 2H), 7.25-7.18 (m, 4H), 7.08-7.05 (m, 2H), 4.98 (d,** *J* **= 9.2 Hz, 1H), 4.56 (d,** *J* **= 9.2 Hz, 1H), 4.46-4.30 (m, 2H), 1.65 (s, 3H), 1.38 (t,** *J* **= 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 177.6, 167.2, 163.8 (J_{C-F} = 244.7 Hz), 142.2, 139.0, 136.9 (J_{C-F} = 7.3 Hz), 134.9, 130.2 (J_{C-F} = 7.8 Hz), 129.4, 129.0, 128.7, 128.6, 128.4, 124.9, 124.1 (J_{C-F} = 3.0 Hz), 123.1, 116.9 (J_{C-F} = 20.8 Hz), 115.9 (J_{C-F} = 23.2 Hz), 97.8 (J_{C-F} = 2.2 Hz), 89.8, 78.2, 62.1, 52.6, 24.4, 19.9, 14.4; ¹⁹F NMR (470 MHz, CDCl₃) \delta -111.95; FT-IR (neat)2987, 2935, 1731, 1704, 1305, 1217, 1049, 750, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₇ FNO₅: 476.1868, found: 476.1866.**

2-(benzyloxy)-1-(3-methoxyphenyl)-4,4-dimethyl-3-oxo-

1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo[***c***]azepine-5-carboxylate 3**la. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; colorless sticky solid; yield 78% (38 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.70 (m, 1H), 7.60-7.58 (m, 2H), 7.55-7.54 (m, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.35-7.32 (m, 2H), 7.24-7.20 (m, 3H), 7.06-7.03 (m, 3H), 4.98 (d, J = 8.8 Hz, 1H), 4.61 (d, J = 9.2 Hz, 1H), 4.45-4.29 (m, 2H), 3.86 (s, 3H), 1.65 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 167.4, 159.7, 142.6, 139.0, 135.8, 135.1, 129.6, 129.4, 128.9, 128.5, 128.3, 124.8, 123.3, 120.8, 115.1, 114.6, 98.5, 89.6, 78.1, 62.0, 55.5, 52.5, 24.5, 19.9, 14.4; FT-IR (neat)3065, 2932, 1731, 1702, 1460, 1305, 1046, 751, cm⁻¹HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₃₀NO₆: 488.2068, found: 488.2064.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(*o*-tolyl)-1,2,3,4-tetra-hydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ma. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky liquid; yield 75% (35 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.75-7.73 (m, 1H), 7.69-7.67 (m, 1H), 7.44-7.40 (m, 1H), 7.37-7.35 (m, 3H), 7.31-7.27 (m, 1H), 7.22-7.16 (m, 3H), 6.91-6.89 (m, 2H), 4.92 (d, J = 9.2 Hz, 1H), 4.50 (d, J = 8.8 Hz, 1H), 4.44-4.30 (m, 2H), 2.85 (s, 3H), 1.66 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 1.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 167.4, 143.1, 139.5, 138.3, 135.1, 133.1, 132.0, 130.0, 129.4, 129.3, 128.8, 128.4, 128.3, 128.2, 125.5, 124.8, 124.5, 99.8, 89.4, 77.4, 62.0, 52.6, 23.7, 21.9, 20.0, 14.4; FT-IR (neat) 2986, 2935, 1731, 1699, 1459, 1302, 1079, 1047, 752, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₃₀NO₅: 472.2118, found: 472.2120.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(2-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3na. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky liquid; yield 66% (34 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.43-8.41 (m, 1H), 7.98-7.96 (m, 1H), 7.75-7.73 (m, 1H), 7.68-7.64 (m, 3H), 7.36-7.34 (m, 2H), 7.23-7.18 (m, 3H), 6.99-6.96 (m, 2H), 4.94 (d, *J* = 9.6 Hz, 1H), 4.45-4.26 (m, 3H), 1.64 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 167.2, 143.6, 138.1, 135.1, 131.4, 131.2, 130.5 (J_{C-F} = 32.5 Hz), 130.1, 129.4 (J_{C-F} = 6.7 Hz), 129.2, 128.8, 128.7 (J_{C-F} = 66.6 Hz), 128.5, 128.4, 128.3, 125.1 (J_{C-F} = 272.9 Hz), 124.8, 123.9, 98.1, 89.8, 77.8, 62.0, 52.7, 23.6, 20.3, 14.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -54.16; FT-IR (neat) 2988, 2933, 1733, 1699, 1460, 1302, 1158, 1043, 752, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₂₇NF₃O₅: 526.1836, found: 526.1840.

Ethyl 2-(benzyloxy)-1-(3,4-dimethoxyphenyl)-4,4-dimethyl-3-oxo -

1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo[***c***]azepine-5-carboxylate 3oa. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane R_f = 0.50; colorless sticky liquid; yield 63% (32 mg); ¹H NMR (400 MHz, CDCl₃) \delta 7.73-7.70 (m, 1H), 7.57-7.52 (m, 2H), 7.48 (d, J = 2.0 Hz, 1H), 7.37-7.32 (m, 3H), 7.24-7.21 (m, 2H), 7.08-7.05 (m, 2H), 6.97 (d, J = 8.4 Hz, 1H), 4.99 (d, J = 9.2 Hz, 1H), 4.63 (d, J = 9.2 Hz, 1H), 4.45-4.29 (m, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 1.65 (s, 3H), 1.38 (t, J = 6.8 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) \delta 177.6, 167.4, 150.2, 148.9, 142.9, 139.0, 135.2, 129.2, 128.9, 128.5, 128.4, 128.3, 127.4, 124.9, 123.2, 121.4, 111.6, 110.8, 98.7, 89.6, 78.0, 62.1, 56.2, 56.1, 52.4, 24.5, 19.9, 14.4; FT-IR (neat) 2931, 2850, 1732, 1703, 1517, 1461, 1271, 1231, 1024, 755, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₃₂NO₇: 518.2173, found: 518.2182.**

Ethyl 1-(benzo[*d*][1,3]dioxol-5-yl)-2-(benzyloxy)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3pa. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.60$; yellow sticky solid; yield 80% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.69 (m, 1H), 7.56-7.54 (m, 1H), 7.48-7.45 (m, 2H), 7.34-7.32 (m, 2H), 7.25-7.23 (m, 3H), 7.11-7.09 (m, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.03-6.02 (m, 2H), 4.97 (d, *J* = 9.2 Hz, 1H), 4.64 (d, *J* = 9.2 Hz, 1H), 4.43-4.30 (m, 2H), 1.63 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.7, 167.3, 148.8, 147.9, 142.5, 139.0, 135.2, 129.5, 129.3, 128.9, 128.4, 128.3, 128.2, 124.8, 123.3, 122.5, 109.1, 108.1, 101.6, 98.6, 89.5, 78.0, 62.1, 52.4, 24.4, 19.8, 14.4; FT-IR (neat) 1986, 1958, 1731, 1701, 1442, 1232, 1041, 753, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₂₈NO₇: 502.1860, found: 502.1852.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(thiophen-2-yl)-1,2,3,4-tetra-hydro-5*H***-1,5-epoxybenzo**[*c*]azepine-**5-carboxylate 3qa.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.60$; yellow sticky solid; yield 81% (38 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.68 (m, 1H), 7.63-7.60 (m, 2H), 7.51-7.50 (m, 1H), 7.34-7.32 (m, 2H), 7.26-7.24 (m, 3H), 7.16-7.11 (m, 3H), 4.99 (d, J = 9.2 Hz, 1H), 4.70 (d, J = 9.2 Hz, 1H), 4.45-4.29 (m, 2H), 1.64 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.2, 167.1, 142.9, 138.4, 137.2, 135.1, 129.4, 129.0, 128.7, 128.6, 128.5, 128.3, 127.6, 127.0, 124.7, 122.6, 96.4, 89.9, 78.4, 62.1, 52.6, 24.4, 19.8, 14.4; FT-IR (neat) 2986, 2940, 1730, 1704, 1294, 1044, 750, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₆NO₅S: 464.1526, found: 464.1523.

Methyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetra-hydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ra. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; colorless solid; mp 148-149 °C yield 83% (37 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.74-7.72 (m, 1H), 7.60-7.58 (m, 1H), 7.54-7.52 (m, 3H), 7.36-7.34 (m, 2H), 7.23-7.19 (m, 3H), 7.02-7.00 (m, 2H), 4.98 (d, *J* = 9.2 Hz, 1H), 4.58 (d, *J* = 9.2 Hz, 1H), 3.87 (s, 3H), 1.66 (s, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 168.0, 142.4, 139.0, 135.1, 134.3, 129.9, 129.3, 128.9, 128.6, 128.5, 128.4, 128.3, 124.8, 123.4, 98.8, 89.8, 78.0, 52.7, 52.5, 24.5, 19.7; FT-IR (neat) 3030, 2951, 1737, 1701, 1304, 1050, 751, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₆NO₅: 444.1805, found: 444.1809.

Ethyl-2-(benzyloxy)-1-(*tert*-butyl)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3sa. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.70$; colorless liquid; yield 74% (33 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.60 (m, 2H), 7.45-7.43 (m, 2H), 7.35-7.30 (m, 3H), 7.29-7.26 (m, 2H), 5.05 (d, J = 9.0 Hz, 1H), 4.96 (d, J = 9.5 Hz, 1H), 4.36-4.32 (m, 2H), 1.52 (s, 3H), 1.39-1.35 (m, 12H), 1.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 167.9, 144.1, 139.3, 135.3, 129.4, 128.7, 128.54, 128.53, 128.0, 124.6, 122.3, 102.8, 88.2, 76.5, 61.7, 52.4, 37.8, 26.9, 24.2, 20.0, 14.4; FT-IR (neat) 3025, 2981, 1767, 1731, 1324, 1150, 791, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₃₂NO₅: 438.2275, found: 438.2270.

Ethyl 2-methoxy-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo**[*c*]**azepine-5-carboxylate 3ab.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; yellow sticky liquid; yield 82% (31 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.74-7.72 (m, 1H), 7.61-7.59 (m, 1H), 7.50-7.48 (m, 3H), 7.40-7.37 (m, 2H), 4.44-4.28 (m, 2H), 3.63 (s, 3H), 1.62 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 167.3, 142.6, 139.1, 134.3, 129.8, 128.8, 128.5, 128.4, 128.3, 124.9, 123.2, 98.9, 89.6, 63.7, 62.0, 52.4, 24.3, 19.8, 14.4; FT-IR (neat) 2986, 2937, 1730, 1701, 1459, 1302, 1211, 1046, 753, 701, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₄NO₅: 382.1649, found: 382.1656.

Ethyl 2-ethoxy-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5*H*-1,5epoxybenzo[*c*]azepine-5-carboxylate 3ac. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.40$; yellow sticky solid; yield 75% (29 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.73-7.71 (m, 1H), 7.65-7.63 (m, 1H), 7.51-7.47 (m, 3H), 7.41-7.34 (m, 2H), 4.44-4.28 (m, 2H), 4.02-3.94 (m, 1H), 3.66-3.58 (m, 1H), 1.61 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.32 (s, 3H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 167.4, 143.0, 139.0, 134.4, 129.7, 128.8, 128.4, 128.2, 124.8, 123.1, 98.4, 89.6, 71.9, 62.0, 52.3, 24.4, 19.9, 14.4, 13.4; FT-IR (neat) 2983, 2935, 1730, 1700, 1460, 1213, 1045, 752, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₃H₂₆NO₅: 396.1805, found: 396.1804.

Ethyl 4,4-dimethyl-3-oxo-2-phenoxy-1-phenyl-1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo**[*c*]**azepine-5-carboxylate 3ae.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; colorless sticky liquid; yield 81% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 1H), 7.68-7.65 (m, 3H), 7.50-7.42 (m, 2H), 7.34-7.29 (m, 1H), 7.27-7.23 (m, 2H), 7.21-7.17 (m, 2H), 6.97-6.93 (m, 1H), 6.84-6.82 (m, 2H), 4.47-4.31 (m, 2H), 1.74 (s, 3H), 1.41-1.37 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 167.1, 159.3, 142.7, 139.2, 133.3, 129.8, 129.2, 129.1, 128.8, 128.4, 128.3, 124.8, 123.7, 122.5, 114.0, 100.5, 89.9, 62.2, 53.4, 24.3, 19.8, 14.4; FT-IR (neat) 2987, 2935, 1788, 1722, 1303, 1213, 1049, 752, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₆NO₅: 444.1805, found: 444.1809.

Ethyl 2-(allyloxy)-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3af. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.30$; colorless sticky liquid; yield 68% (28 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.73-7.71 (m, 1H), 7.65-7.63 (m, 1H), 7.50-7.48 (m, 3H), 7.40-7.36 (m, 2H), 5.74-5.64 (m, 1H), 5.10-5.09 (m, 1H), 5.07-5.05 (m, 1H), 4.42-4.30 (m, 3H), 4.12-4.08 (m, 1H), 1.61 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 167.4, 142.8, 139.0, 134.3, 132.1, 131.4, 129.8, 128.9, 128.5, 128.3, 124.9, 123.2, 119.6, 98.6, 89.6, 77.4, 62.1, 52.5, 24.4, 19.9, 14.4; FT-IR (neat) 2988, 2927, 2855, 1732, 1705, 1463, 1304, 1049, 760, 703, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆NO₅: 408.1805, found: 408.1809.

Ethyl 4,4-dimethyl-2-((4-methylbenzyl)oxy)-3-oxo-1-phenyl-1,2,3,4-

tetrahydro-5*H*-1,5-epoxybenzo[*c*]azepine-5-carboxylate 3ag. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; colorless sticky solid; yield 78% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.72-7.70 (m, 1H), 7.59-7.57 (m, 1H), 7.53-7.51 (m, 3H), 7.34-7.32 (m, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 4.91 (d, *J* = 9.2 Hz, 1H), 4.50 (d, *J* = 8.8 Hz, 1H), 4.42-4.31 (m, 2H), 2.28 (s, 3H), 1.65 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 167.4, 142.8, 139.1, 138.3, 134.4, 132.1, 129.8, 129.5, 129.0, 128.8, 128.5, 128.47, 128.40, 124.8, 123.4, 98.5, 89.7, 77.9, 62.0, 52.5, 24.5, 21.4, 19.9, 14.4; FT-IR (neat) 2985, 2928, 1731, 1704, 1462, 1304, 1049, 758, 702, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₉H₃₀NO₅: 472.2118, found: 472.2116.

Ethyl-2-(benzyloxy)-4,4-diethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5H-

1,5-epoxybenzo[*c*]**azepine-5-carboxylate 3ai.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.70$; colorless liquid; yield 70% (34 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.79-7.77 (m, 1H), 7.59-7.57 (m, 1H), 7.52-7.50 (m, 3H), 7.34-7.33 (m, 2H), 7.23-7.19 (m, 3H), 7.00 (d, J = 6.5 Hz, 2H), 4.95 (d, J = 9.5 Hz, 1H), 4.55 (d, J = 9.0 Hz, 1H), 4.44-4.37 (m, 1H), 4.28-4.22 (m, 1H), 2.32-2.25 (m, 1H), 2.12-2.05 (m, 1H), 1.87 (q, J = 7.5 Hz, 2H), 1.37 (t, J = 7.5 Hz, 3H), 1.15 (t, J = 7.5 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 167.9, 143.2, 139.8, 135.2, 134.6, 129.3, 128.6, 128.5, 128.45, 128.41, 128.34, 128.30, 128.2, 125.6, 123.3, 98.4, 89.9, 77.9, 62.1, 59.2, 27.1, 24.1, 14.3, 10.8, 9.5; FT-IR (neat) 2943, 2935, 1770, 1710, 1450, 1203, 1015, 782, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₃₂NO₅: 486.2275, found: 486.2268.

Diethyl 6,12-diphenyl-5,12:6,11-diepoxy-dibenzo-[*a,e*][8]-annulene-**5,11(***6H***,12***H***)-dicarboxylate 4.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f =$ 0.30; colorless liquid; yield 58% (30 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.5 Hz, 6H), 7.70-7.67 (m, 2H), 7.65-7.60 (m, 6H), 7.50 (t, *J* = 7.5 Hz, 4H), 4.19 (q, *J* = 7.0 Hz, 4H), 1.22 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 196.6, 186.9, 161.6, 140.1, 136.9, 136.8, 133.4, 131.91, 131.88, 130.9, 130.3, 130.2, 128.7, 62.7, 14.0; FT-IR (neat) 2984, 2928, 1708, 1649, 1284, 1201, 1020, 752, cm⁻¹; HRMS (ESI) m/z [M+Na]⁺ calcd for C₃₄H₂₈NaO₆: 550.1778, found: 550.1785.

Ethyl 2-(benzyloxy)-4,4-dimethyl-3-oxo-1-(4-(phenylethynyl)-phenyl)-1,2,3,4-tetrahydro-5H-1,5-epoxybenzo[c]azepine-5-carboxylate 5. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane $R_f = 0.30$; yellow sticky liquid; yield 85% (48 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.74-7.71 (m, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.59-7.56 (m, 3H), 7.38-7.35 (m, 5H), 7.26-7.24 (m, 3H), 7.09-7.07 (m, 2H), 4.96 (d, J = 9.2Hz, 1H), 4.57 (d, J = 9.2 Hz, 1H), 4.46-4.31 (m, 2H), 1.66 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 167.3, 142.5, 139.0, 135.0, 134.2, 131.9, 131.7, 129.4, 129.0, 128.7, 128.6, 128.5, 128.4, 124.94, 124.90, 123.2, 123.1, 98.2, 90.8, 89.8, 89.0, 78.2, 62.1, 52.6, 24.5, 19.9, 14.4; FT-IR (neat) 2985, 2927, 2855, 1732, 1705, 1304, 1048, 754, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₆H₃₂NO₅: 558.2275, found: 558.2279.

Ethyl 1-([1,1'-biphenyl]-4-yl)-2-(benzyloxy)-4,4-dimethyl-3-oxo-1,2,3,4-tetrahydro-5*H***-1,5-epoxybenzo[***c***]azepine-5-carboxylate 6. Analytical TLC on silica gel, 1:6.5 ethyl acetate/hexane R_f = 0.40; colorless sticky solid; yield 82% (43 mg); ¹H NMR (400 MHz, CDCl₃) \delta 8.06 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.8 Hz, 3H), 7.66 (d, J = 7.2 Hz, 2H), 7.64-7.62 (m, 1H), 7.50 (t, J = 7.2 Hz, 2H), 7.43-7.41 (m, 1H), 7.38-7.36 (m, 2H), 7.24-7.20 (m, 3H), 7.07-7.05 (m, 2H), 5.01 (d, J = 9.2 Hz, 1H), 4.65 (d, J = 9.2 Hz, 1H), 4.47-4.31 (m, 2H), 1.69 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 177.6, 167.4, 142.7, 140.6, 139.1, 135.1, 133.3, 129.34, 129.0, 128.90, 128.88, 128.5, 128.3, 127.9, 127.4, 127.2, 124.8, 123.3, 98.5, 89.7, 78.1, 62.1, 52.5, 24.5, 19.9, 14.4; FT-IR (neat) 2986, 2940, 1730, 1700, 1304, 1048, 750, 697, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₄H₃₂NO₅: 534.2275, found: 534.2269.**

2-(Benzyloxy)-5-(hydroxymethyl)-4,4-dimethyl-1-phenyl-1,2,4,5-tetra-

hydro-3*H*-1,5-epoxybenzo[*c*]azepin-3-one 7. Analytical TLC on silica gel, 2:8 ethyl acetate/hexane $R_f = 0.30$; colorless sticky liquid; yield 79% (33 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.55-7.53 (m, 3H), 7.38-7.31 (m, 3H), 7.23-7.18 (m, 3H), 6.99-6.98 (m, 2H), 4.96 (d, *J* = 9.0 Hz, 1H), 4.60 (d, *J* = 9.0 Hz, 1H), 4.21 (d, *J* = 12.0 Hz, 1H), 4.14 (d, *J* = 12.6 Hz, 1H), 1.66 (s, 4H), 1.16 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 179.4, 143.7, 140.8, 135.4, 135.0, 129.9, 129.2, 128.6, 128.4, 128.34, 128.30, 128.28, 123.9, 123.5, 99.5, 90.9, 77.8, 60.2, 50.7, 23.9, 19.6; FT-IR (neat) 2975, 2917, 1762, 1356, 1148, 734, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₆NO₄: 416.1856, found: 416.1850.

Ethyl-4,4-dimethyl-3-oxo-1-phenyl-1,2,3,4-tetrahydro-5H-1,5-epoxyben-

zo[*c*]**azepine-5-carboxylate 8.** Analytical TLC on silica gel, 2:8 ethyl acetate/hexane $R_f = 0.30$; colorless sticky solid; yield 75% (26 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.72-7.67 (m, 3H), 7.50-7.47 (m, 3H), 7.34-7.26 (m, 2H), 7.15-7.13 (m, 1H), 7.03 (d, *J* = 7.0 Hz, 1H), 4.46-4.33 (m, 2H), 1.53 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 168.0, 147.6, 138.3, 135.3, 129.9, 129.0, 128.9, 128.0, 126.6, 124.7, 120.2, 92.5, 90.0, 62.0, 48.9, 24.3, 20.6, 14.4; FT-IR (neat) 2925, 2907, 1782, 1754, 1340, 1188, 788, cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₂NO₄: 352.1543, found: 352.1547.

References

- A. Suneja, H. J. Loui and C. Schneider, *Angew. Chem. Int. Ed.*, 2020, **59**, 5536; (b) L.
 Tu, S. Li, L.-M. Gao, B.-W. Tang, Y.-S. Zheng and J.-K. Liu, *J. Org. Chem.*, 2024, **89**, 9031; (c) P. Jia, Z. Lin, S. Yan, J. Liang, C. Luo, R. Lai, L. Hai, Z. Yang and Y. Wu, *Org. Lett.*, 2023, **25**, 5134; (d) H. J. Loui, A. Suneja and C. Schneider, *Org. Lett.*, 2021, **23**, 2578.
- (2) C. S. Jeffrey, K. L. Barnes, J. A. Eickhoff and C. R. Carson, J. Am. Chem. Soc., 2011, 133, 7688; (b) P. Karjee, S. Mandal, B. Debnath, N. Namdev and T. Punniyamurthy, Chem. Commun., 2023, 59, 8270; (c) J. Feng, M. Zhou, X. Lin, A. Lu, X. Zhang and M. Zhao, Org. Lett., 2019, 21, 6245; (d) I. M. Taily, D. Saha and P. Banerjee, J. Org. Chem., 2022, 87, 2155.
- (3) H. Bhattacharyya, S. Saha, K. Verma and T. Punniyamurthy, Org. Lett., 2023, 25, 6830.
- S. Saha, B. Debnath, K. Talukdar, P. Karjee, S. Mandal and T. Punniyamurthy, *Org. Lett.*, 2023, 25, 3352.
- (5) H. J. Loui, A. Suneja and C. Schneider, Org. Lett., 2021, 23, 2578.
- (6) M. C. DiPoto, R. P. Hughes and J. Wu, J. Am. Chem. Soc., 2015, 137, 14861.

9.5

9.0 8.5 8.0

KV-386-1H

3.0

2.0

0.5 0.0

7.0 6.5

7.739 7.564 7.564 7.564 7.551 7.531 7.531 7.5337 7.53377 7.53377 7.53377 7.5337 7.53377 7.533777 7.5337777777777	4.122 4.104 4.069	2.741 2.722 2.703 2.684	1.280 1.261 1.242 1.144 1.109	-0.000
---	-------------------	----------------------------------	---	--------

KV-429-1H

KV-413-1H

7, 1855 2, 17, 1855 2, 1819 2,

 $\overbrace{1.124}^{1.160}$

KV-405-1H

1.458 1.441 1.423 1.161 1.161 1.125

KV-424-1H

KV-ESTER-1H

CO₂Et

1j

-0.5 -1

0.0

CO₂Et

1j

KV-445-1H

7,2,577 7,556 7,556 7,556 7,555 7,555 7,556 7,559 7,550 7,750 7,75

 $\overbrace{1.129}^{1.164}$

KV-462-1H

 $\overbrace{1.046}^{1.081}$

 $\overbrace{1.253}^{1.288}_{1.271}$

S44

KV-454-1H

 $\overbrace{-1.131}^{1.166}$

7,7,440 7,7,736 7,350 7,350 7,350 7,350 7,350 7,331 7,337 7,330 7,337 7,330 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,300 7,200 7,

1.288 1.282 1.282 1.266 1.251 1.233

S48

S50

KV-408-1H

7,2911 7,770 7,7770 7,7770 7,7770 7,7770 7,7770 7,7730 7,7730 7,7733 7,7330 7,7733 7,7743 7,7743 7,74443 7,74443 7,74443 7,74443 7,744443 7,74

KV-431-1H

8, 8, 113 8, 7, 7, 74 8, 7, 7, 75 1.655 1.403 1.385 1.385 1.345

EtO₂C Me Me OBn F_3 C **3ha** ¹⁹F NMR (565 MHz, CDCl₃)

---62.676

KV-431-19F

S64

KV-469-1H

7,7724 7,7724 7,759 7,750 7,770 7,75

1.653 1.397 1.379 1.379 1.332

KV-441-1H

1.658 1.391 1.373 1.373 1.373 1.376

KV-450-1H

8.8429 8.84448 8.84448 8.84448 8.84448 8.84448 8.84448 8.84448 8.84448 8.844448 8.844

KV-450-19F

S69

S70

S75

S81

S83

