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Experimental Section

Preparation of GPEs

N-phenylmethacrylamide (PMA, TCI, >98.0%) and LK-001 electrolyte (1 M 
LiTFSI/TEGDME, DodoChem) were mixed with mass ratios of 1:1, 1:2, 1:3, 1:4 and 
1:5, and appropriate amounts of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 
TCI, >98.0%) were added to maintain the volume concentration of the electrolytes (1 
M), and 0.2 wt% 2,2'-Azobis(2-methylpropionitrile) (AIBN, Aladdin, 99%) was used 
as an initiator. The mixtures were absorbed by a glass fiber (GF/D, Whatman) separator 
and kept warm overnight at 60 ℃ to obtain a clear gel. The above operations were all 
completed in a glove box filled with Ar, with the water and oxygen contents controlled 
below 0.1 ppm. The as-prepared electrolytes were denoted as P1, P2, P3, P4 and P5, 
respectively. 

Characterizations

Scanning electron microscope (SEM) images were taken by JSM-7800 and the attached 
energy-dispersive X-ray spectrometry (EDS) was utilized to obtain the elemental 
distribution information. Fourier transform-infrared (FT-IR) spectroscopy 
measurements were performed using a Brook ALPHA FTIR spectrometer. X-ray 
photoelectron spectroscopy (XPS) measurements were taken by Thermo Scientific 
ESCALAB 250Xi. XRD patterns were obtained using a Rigaku D/Max-2500 X-ray 
diffractometer with Cu Kα radiation (λ = 1.5406 Å) at a scanning rate of 10° min−1. 
XPS analysis was operated on Thermo Scientific ESCALAB 250Xi. 
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Electrochemical Measurements

CR2032 coin-type cells were assembled in the above-mentioned glove box with or 
without holes on cathode shells according to whether oxygen was required in different 
tests. The cathode was prepared by coating a slurry composed of polyvinylidene 
fluoride (PVDF) and Ketjen black (KB) with a mass ratio of 1:9 onto a carbon paper 
(12 mm in diameter), and the active material mass loading was 0.25mg cm-2. 

A typical cell consisted of a lithium anode, a glassfiber separator with LEs or GPEs and 
a KB cathode. All cells were stabilized for 5 h before electrochemical measurements 
on LAND-CT2001A testers or LSV and CV measurements on a CHI760E 
electrochemical workstation.

All measurements were performed at room temperature. 

Computational details related to DS-PAW
The binding energies of O2 on the monomer of PMA and TEGDME were calculated 
using DS-PAW1 software. Perdew-Burke-Ernzerhof (PBE) functional2 within the 
generalized gradient approximation was used to describe the exchange-correlation 
interaction. A single gamma-centered Monkhorst–Pack scheme3 was applied for 

structure relaxation due to the large cell (40 × 40 × 40 Å3) used. 520 eV was used as 

the energy cutoff for the plane-wave basis set. Van der Waals (vdW) interactions were 
included using Grimme's DFT-D3 method with zero damping4. The convergence 
criteria for the electronic self-consistent field calculations and the ionic relaxation loop 
were set to 10-5eV and 0.05 eV/Å, respectively. 

Scheme 1 A schematic diagram regarding the synthesis of a PPMA GPE and the 
assembly of the Li-O2/air battery.
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Fig. S1. Discharge curves of Li-O2 batteries with different electrolytes at 200 mA g-1.

Fig. S2. Nyquist plots for EIS measurements of different electrolytes.
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Fig. S3. SEM images of Li anodes after stripping and deposition in symmetric cells.

Fig. S4 FT-IR spectroscopy of GPE-P3 (a) before and (b) after polymerization.
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Fig. S5. XPS of PMA and PPMA (a) before and (b) after polymerization.

Fig. S6. CV curves of Li-O2 batteries with LEs or GPE-P3.
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Fig. S7. XRD patterns of Li-O2 batteries with GPE-P3 and standard PDF card of Li2O2. 
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Fig. S8. Rate performance for Li-O2 batteries with GPE-P3 or liquid electrolyte (LE). 

Fig. S9. Cycling curves of Li-O2 batteries with GPE-P3 or P4 under 200 mA g-1. 

Fig. S10. Cycling performance of Li-O2 batteries with LE or GPE-P3 under current 
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density of 100 mA g-1 with cut-off capacity of 500 mAh g-1. 

Fig. S11. Comparison of volume expansion of Li-O2 batteries with LEs or GPE-P3 after 
20 cycles of discharge and recharge. 

Fig. S12. Photos of Li anodes: (a) covered with different electrolytes and exposed to 
air for several hours, and (b) after cycling in O2. 
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Fig. S13. Optimized atomic structures of O2 on the monomer of (a) PMA and (b) 
TEGDME. 

Fig. S14. SEM images of discharge products in Li-O2 batteries after 1 cycle and 10 
cycles. 
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Fig. S15. XRD patterns of Li-air battery cathodes with GPE-P3 before discharge, after 
discharge and after recharge. 
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Table S1. Ionic conductivities of different electrolytes calculated based on EIS data.
Bulk Resistance

(Ω)
Ionic Conductivity

(S cm-1)

LE 15.72 4.1310-3

GPE-P5 40.10 1.6210-3

GPE-P3 80.29 8.1010-4

Table S2. Assignment of various peaks for XPS in Fig. R2.

Peak Assignment Binding Energy
(eV)

C1 C=C 284.2
C2 C-C 284.8
C3 C-N 285.9
C4 C=O 287.9
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Table S3. DFT-calculated energies of O2 on monomers of PMA and TEGDME.
Total energy / eV

monomer of PMA -2451.351
TEGDME -4111.154

O2 on monomer of PMA -3325.072
O2 on TEGDME -4984.660

O2 -873.459

Table S4. Performance comparison with previous reports. 

Atmosphere
Current Density

&
Cut-off Capacity

Cycles Operating
Time (h)

This Work O2
200 mA g-1

500 mAh g-1 127 635

5 O2
312.5 mA g-1

1250 mAh g-1 194 1552

6 O2
0.1 mA cm-2

1 mAh cm-2 34 680

7 O2
200 mA g-1

500 mAh g-1 70 350

8 O2
0.05 mA cm-2

0.25 mAh cm-2 117 1170

9 O2
0.1 mA cm-2

0.4 mAh cm-2 39 312

10 O2
500 mA g-1

1000 mAh g-1 250 1000

11 O2
250 mA g-1

500 mAh g-1 55 220

This Work Air 200 mA g-1

500 mAh g-1 120 600

12 Air 500 mA g-1

500 mAh g-1 100 200

13 Air 200 mA g-1

500 mAh g-1 235 1175

14 Air 500 mA g-1

1000 mAh g-1 241 964

15 Air 500 mA g-1

1000 mAh g-1 98 196
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