### **Supplementary Information**

# Constructing LiF-rich Cathode Electrolyte Interphase to Enhance the Cyclic Stability of Lithium-rich Manganese-based Oxide Cathode

Yang Yang <sup>ab</sup>, Yajun Zhao <sup>a</sup>, Junjie Song <sup>ab</sup>, Xiqian Yu <sup>\*ab</sup> and Hong Li <sup>\*ab</sup>

a. Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

 b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China E-mail: xyu@iphy.ac.cn , hli@iphy.ac.cn

#### 1. Experimental

#### **1.1 Sample Preparation**

Ni<sub>0.12</sub>Co<sub>0.12</sub>Mn<sub>0.76</sub>CO<sub>3</sub> (Zhongwei New Materials Co., Ltd) and Li<sub>2</sub>CO<sub>3</sub> (Innochem Co., Ltd) were mixed at a weight ratio of 1:1.4 and reacted at 500 °C for 5 h under an oxygen atmosphere, and then preserved at 850 °C for 12 h to obtain the bare Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> (LR-bare).

According to the mass ratio of 1:0.01, 1:0.03, and 1:0.05, LR-bare and fluorinated carbon (CF) were mixed to a total of 2 g, and then spherical ground for 2 h at 200 r min<sup>-1</sup> in a ball mill tank to obtain the composites LR@CF, named LRCF1, LRCF3 and LRCF5 respectively.

Si and C composite material was purchased from Tianmulake Excellent Anode Materials Co., Ltd.

#### 1.2 Coin-cell assembling

The cathode electrode was prepared by coating the slurry on Al foil by a ratio of active material: Super P: poly-vinylidene fluoride (PVDF) = 8:1:1, and then cast into  $\Phi$ 12 mm tablets. The as-prepared tablets were dried at 120 °C for 24 h in a vacuum oven before assembly. CR2032-type coin-cells were assembled with the tablets as cathode and Li foil as anode in a glovebox filled with argon (H<sub>2</sub>O and O<sub>2</sub>< 0.1 ppm). The electrolyte was 1M LiPF<sub>6</sub> in ethylene (EC) and dimethyl carbonate (DMC) (3:7 in volume) and the separator was Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) coated polypropylene (PP)/polyethylene (PE) film.

#### 1.3 Full pouch-cells assembling

The anode electrode was prepared by coating the slurry on Cu foil by a ratio of active material: Super P: carboxymethyl cellulose sodium (CMC): styrene-butadiene rubber (SBR)= 96:2:1:1. The prepared cathode and anode electrodes were punched into  $73 \times 60$  mm and  $75 \times 62$  mm rectangular pieces, respectively. All electrodes were dried in a vacuum oven for 24 h (120 °C for cathode and 80 °C for anode) before assembly. Pouch cells were produced in a dry room (dewpoint -60 °C) with a N/P of 1.1.

#### 1.4 Characterization

The electrochemical performance of coin-cells was carried out with a Land CT2001A battery test system (Wuhan, PR China) in a voltage range of 2.0-4.8 V under different current rates (1C=250 mAh g<sup>-1</sup>) at room temperature under different current rates (1C=250 mAh g<sup>-1</sup>) at room temperature. And full pouch-cells were tested within a voltage range of 2.05 - 4.75 V during the first charge and discharge at 0.1C. Subsequently, a cycle test was conducted at 0.5C within a voltage range of 2.1 - 4.7 V

(the design capacity is 1.0Ah).

Electrochemical impedance spectroscopy (EIS) was measured by Autolab (Metrohm), with a 5 mV amplitude of AC in the frequency range of 0.01 Hz-100 kHz. The surface morphology and element distribution were observed by Scanning Electron Microscopy (SEM, Hitachi S-840) with Energy Dispersive Spectrometer (EDS). Transmission electron microscope (TEM, JEOL JEM-F200) was used to observe the coating layer structure on the surface of the samples. The structure of materials was measured by an X-ray diffractometer (XRD, Bruker D8) with Cu-K $\alpha$  radiation ( $\lambda$  = 1.5405 Å) in the 2 $\theta$  scan range of 10-80°. X-ray photoelectron spectroscopy (XPS) was recorded by an ESCALAB 250 Xi system (Thermo Scientific).

## 2. Supplementary Figures

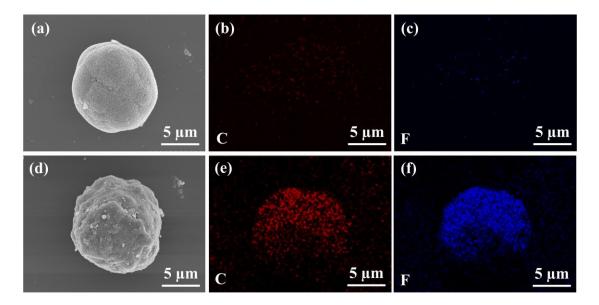



Fig S1. SEM-EDS mapping images of (a-c) LR-bare and (d-f) LR@CF3 samples.

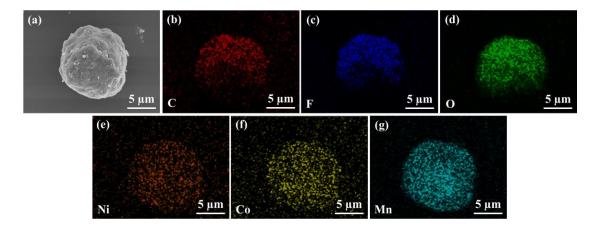



Fig S2. The EDS mapping spectrum of different elements on the surface of LR@CF,

(a) LR@CF, (b) C, (c) F, (d) O, (e) Ni, (f) Co, (g) Mn.




Fig S3. Charge and discharge curves of LR-bare and LRCF3 after 100 cycles.

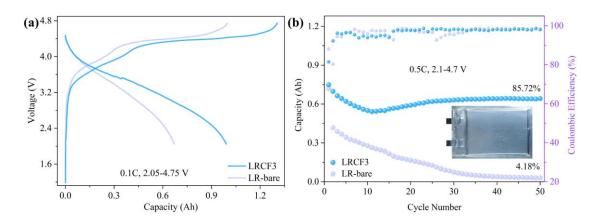



Fig S4. The electrochemical performance of full pouch-cells with SiC as anode and LRbare and LRCF3 as cathode respectively, (a) the initial charge and discharge curves, (b)cycle performance.

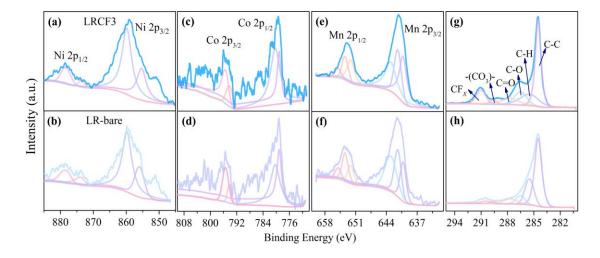



Fig S5. XPS spectra of LR-bare and LRCF3 after the initial discharge, (a-b) Ni 2p, (c-d) Co 2p, (e-f) Mn 2p, (g-h) C 1s.

| Materials                                                                                        | Maximal<br>capacity@RT<br>(mAh g <sup>-1</sup> ) | ICE<br>(%) | Rate<br>capabilities<br>(mAh g <sup>-1</sup> ) | Voltage<br>(V) | Capacity<br>retention<br>(%/cycle/rate) | Re           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|------------------------------------------------|----------------|-----------------------------------------|--------------|
| Li <sub>1.13</sub> Mn <sub>0.517</sub> Ni<br>0.256Co <sub>0.097</sub> O <sub>2</sub>             | 261.5(0.1C)                                      | 88.1       | 0.5C/210                                       | 2.0-4.8        | 85.3/300/0.5C                           | 1            |
| Li <sub>1.2</sub> Mn <sub>0.54</sub> Co <sub>0.</sub><br>13Ni <sub>0.13</sub> O <sub>2</sub>     | 277.1(0.2C)                                      | 71.2       | 5C/133                                         | 2.0-4.8        | 81.9/100/1C                             | 2            |
| Li <sub>1.14</sub> Ni <sub>0.133</sub> Co <sub>0</sub><br>.133Mn <sub>0.544</sub> O <sub>2</sub> | 390(0.1C)                                        | 99.5       | 5C/131                                         | 2.0-4.8        | ~78/100/1C                              | 3            |
| Li <sub>1.2</sub> Mn <sub>0.54</sub> Co <sub>0.</sub><br>13Ni <sub>0.13</sub> O <sub>2</sub>     | 289.5(0.1C)                                      | 82.4       | 5C/182.9                                       | 2.0-4.8        | 94.6/100/0.5C                           | 4            |
| Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub><br>O <sub>2</sub>                          | 288(0.1C)                                        | 95.9       | 5C/~90                                         | 2.0-4.8        | 91/100/0.2C                             | 5            |
| Li <sub>1.2</sub> Mn <sub>0.54</sub> Co <sub>0.</sub><br>13Ni <sub>0.13</sub> O <sub>2</sub>     | 305.5(0.1C)                                      | 94.15      | 5C/213.1                                       | 2.0-4.8        | 94.07/100/1C                            | This<br>work |

Table S1. Statistical table for performance comparison between this work and previous studies.

Table S2. The equivalent circuit fitting results corresponding to the EIS of LR-bare and

| Samples | $R_{s}(\Omega)$ | $\mathrm{R}_{\mathrm{sf}}\left(\Omega ight)$ | $R_{ct}(\Omega)$ |
|---------|-----------------|----------------------------------------------|------------------|
| LR-bare | 3.13            | 115.90                                       | 172.70           |
| LRCF3   | 2.57            | 109.10                                       | 85.96            |

#### **References:**

- 1 X. Zhang, J. Zhao, G.-H. Lee, Y. Liang, B. Wang, S. Liu, E. Wang, W. Yang and H. Yu, *Adv. Energy Mater.*, 2023, **13**, 2202929.
- 2 L. Di, C. Yufang, S. Weiwei, X. Wei, Y. Shuaiyu, L. Shiqiang, Z. Lanlan, Z. Yanshuang, Y. Tianyan, X. Peitao and Z. Chunman, *Adv. Energy Mater.*, 2023, **13**, 2301765.
- 3 B. Jiang, B. Luo, J. Li, P. Peng, J. Chen, L. Chu, Y. Li and M. Li, *Ceramics International*, 2019, **45**, 160–167.
- 4 F. Zheng, Q. Deng, W. Zhong, X. Ou, Q. Pan, Y. Liu, X. Xiong, C. Yang, Y. Chen and M. Liu, *ACS Sustainable Chem. Eng.*, 2018, **6**, 16399–16411.
- 5 Y. Jiang, G. Sun, F. Yu, L. Que, L. Deng, X. Meng and Z. Wang, *Ionics*, 2020, **26**, 151–161.