Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Eectronic Supplementary Material (ESI) for Chemical Communications.

Interlayer spacing expansion for V₂O₅ towards ultra-stable zinc anode-based flexible electrochromic displays in

Zn²⁺/Li⁺-PC organic electrolyte

Experimental section

Materials

All chemicals were of analytical grade and were used without further purification. Zinc foil (Zn, 99.9%), zinc perchlorate hexahydrate (Zn(ClO₄)₂·6H₂O, reagent grade), propylene carbonate (PC), vanadate oxide (V₂O₅, 99%) and polymethyl methacrylate (PMMA, Mw~35,000) were purchased from Macklin Biochemical Technology Co. Ltd. Lithium perchlorate (LiClO₄, \geq 99.0%) were purchased from Sinopharm Chemical Reagent Co. Ltd. ITO glasses were purchased from Zhuhai Kaivo Glass Co. Ltd. Flexible PET-ITO conductive films were purchased from South China Science & Technology Co. Ltd. 3 M transparent double-sided tapes (VHB, 3 m ×10 mm × 1.0 mm) were purchased from 3 M China Co. Ltd.

Synthesis of PEDOT@V₂O₅ nanofibers

First, add 7 g of commercial V₂O₅ to 200 mL of deionized water and stir for 30 minutes. Next, add x mL of EDOT to the liquid and stir for 5 days to turn it from yellow to dark green. Then, centrifuge the dark green solution twice with deionized water and ethanol, respectively, and dry overnight at 70 °C to obtain PEDOT@V₂O₅ powders. Repeat the above steps for commercial V₂O₅ without adding EDOT to obtain bare V₂O₅ as control samples. The amount of EDOT were varied as 1 mL, 3 mL and 5 mL, respectively, and the resulted samples were marked as 1-PEDOT@V₂O₅, 3-PEDOT@V₂O₅ and 5-PEDOT@V₂O₅.

Fabrication of PEDOT@V2O5 electrodes

Add 15 mg of dried powder into 40 ml of deionized water and sonicate for at least 1 hour to disperse evenly. Treat the ITO glass with a plasma cleaning machine for 60 seconds, spray all the suspension onto the ITO glass with an effective area of 4 cm × 5 cm on a 150 °C heating plate, and then continue annealing at this temperature for 20 hours.

Assembly of Zn-PEDOT@V₂O₅ flexible electrochromic displays

The PMMA-based gel electrolyte was prepared by gradually adding 10 g of PMMA powder into 40 mL of the hybrid PC solution comprising 0.1 M Zn(ClO₄)₂ and 0.8 M LiClO₄. Spray a pineapple-shaped PEDOT@V₂O₅ film on a 5 cm x 8 cm PET-ITO conductive film to obtain the cathode, paste the zinc foil frame onto another PET-ITO conductive film to obtain the PMMA-based gel electrolyte is used as an electrolyte to assemble a flexible electrochromic display as shown in **Fig. 5a** (Electrolyte not marked).

Characterization

The crystal structures, morphology and chemical structures of the samples were examined by X-ray diffraction (XRD, Rigaku D/Max 2200/PC diffractometer with a graphite monochromator and Cu Kα radiation

 $(\lambda=0.15418 \text{ nm}))$, X-ray photoelectron spectroscopy (XPS) (PHI 5000 VersaProbe III), field emission scanning electron microscope (FESEM, FEI Quanta 250 FEG) and high-resolution transmission electron microscope (HRTEM, JEM-F200(HRP)). The interlayer spacing was calculated according to equation S1.

$$2d\sin\theta = n\lambda$$
 (S1)

where d is the crystal plane spacing, θ is the angle between the incident X-rays and the corresponding crystal plane, λ is the wavelength of the X-rays, and n is the number of diffraction stages.

Electrochemical and optical measurements

All electrochemical measurements were carried out using an electrochemical workstation (CHI-760E, CH Instruments, Shanghai, China) in a two-electrode configuration, using the electrochromic electrode as the working electrode, a zinc foil as the counter electrode and reference electrode. All optical measurements were performed using a UV–visible–NIR Spectrophotometer (UH5700). In situ optical transmittance as a function of the applied potential was obtained in a quartz cuvette recorded by the UV–visible–NIR Spectrophotometer. Add electrolyte to a quartz cuvette and immerse an ITO glass in it as a baseline to measure the performance of the electrode. However, in the dissolution experiment shown in **Fig. 3**, the transmittance was measured using air as the baseline. In this work, two types of solutions were used as electrolytes: the hybrid organic solution comprised of 0.1 M Zn(ClO₄)₂ and 0.8 M LiClO₄ (marked as Zn²⁺/Li⁺-PC), and hybrid aqueous solution comprised of 0.1 M Zn(ClO₄)₂ and 0.8 M LiClO₄ (marked as Zn²⁺/Li⁺-PC).

Fig. S1 a Raman spectra of PEDOT@V₂O₅ at different states. As-prepared, discharged to 0.1 V and charged to 2.2 V. b FTIR spectra of commercial V₂O₅. c FTIR spectra of PEDOT@V₂O₅.

The chemical structure of PEDOT@V₂O₅ was evaluated by Raman spectroscopy (Fig. S1a). The peak at 101 cm⁻¹ is attributed to the external Ty mode. The peak at 165 cm⁻¹ arises from the bending vibrations of the skeleton. Peaks at 178 and 264 cm⁻¹ correspond to bending vibrations of the OC-V-OB bond. Peaks at 305, 406, 531, and 704 cm⁻¹ are related to C-O-C bond bending, V-OB-V bond bending, V-OB-V bond stretching, and V-O-C bond stretching vibrations, respectively. The V=O bond at 986 cm⁻¹ is crucial for understanding the layered structure of the V₂O₅ electrode¹, which connects with oxygen atoms and contributes to electrode stability.

Fig S2. a, b T% transmittance spectra and corresponding digital photos of PEDOT@ V_2O_5 electrode soaked in a Zn^{2+}/Li^+-PC and b Zn^{2+}/Li^+-H_2O for 3 weeks, respectively.

The PEDOT@V₂O₅ film shows negligible dissolution and transmittance variation after soaking in Zn^{2+}/Li^+ -PC for 3 weeks. However, the same electrode is obviously dissolved into Zn^{2+}/Li^+ -H₂O with gradually increased transmittance, forming soluble vanadium ion species (V³⁺, VO⁺, VO²⁺, H₂VO⁴⁻ and HV₂O₅⁻) in aqueous electrolytes².

Fig. S3 Electrochemical performance of PEDOT@V₂O₅ electrode in Zn²⁺/Li⁺- PC. **a** Dynamic T% test of the 1-PEDOT@V₂O₅ electrode at 400 nm in the 0.1-2.2 V window. **b** Dynamic T% test of the 5-PEDOT@V₂O₅ electrode at 400 nm in the 0.1-2.2 V window **c** CV cycling stability of 1-

PEDOT@V₂O₅. **d** CV cycling stability of 5-PEDOT@V₂O₅.

Fig. S4 Electrochemical performance of V₂O₅ stirred without EDOT electrode in Zn²⁺/Li⁺- PC. **a** T% spectra at 0.1 and 2.2 V. **b** Dynamic T% test of the V₂O₅ electrode at 400 nm in the 0.1-2.2 V window. **c** CV cycling stability.

Fig. S5 The XPS survey spectra of PEDOT@V₂O₅ electrode at different states. a full survey. b Zn 2p. c S 2p. d-f V 2p. g-i C 1s.

Sample conditions	The atomic percentage of V in different valence states		V ⁵⁺ /V ⁴⁺	
	V ⁴⁺	V ⁵⁺		
0.1 V	0.781	0.219	0.28	
2.2 V	0.287	0.713	2.48	
As-annealed	0.361	0.639	1.77	

Table S1. The atomic ratio of V⁴⁺ and V⁵⁺ in reduced (0.1 V), oxidized (2.2 V), and as-annealed PEDOT@V₂O₅ films.

Table S1 shows that the molar ratio of V^{5+}/V^{4+} in the reduced (0.1V-discharged) PEDOT@V₂O₅ electrode is 0.28, and 2.48 in the oxidized (2.2V-charged) PEDOT@V₂O₅. These results indicate that the color switching of Zn-PEDOT@V₂O₅ electrochromic systems is attributed to the reversible V valence change between V⁵⁺/V⁴⁺.

Fig. S6. The performance of PEDOT@V₂O₅ electrode. a Coloration efficiency compared to the V₂O₅ electrode. b T% spectra after 1000 CV cycles. c

The bleaching/coloration times after 1000 CV cycles.

electrolytes	Electrode material	Bleaching/Coloration time(s)	Transmittance modulation	CV cycles	Refs
1M Zn ²⁺ /Li ⁺ -PC	PEDOT@V ₂ O ₅	10.9 s/9.1 s	27.1%@400 nm	85.6%/1000 cycles	This work
1M Li*-PC	$a-V_2O_5$	21.2 s/17.1 s	38%@750 nm	70%/1000 cycles	[3]
0.3M LITFSI-BMITFSI	V_2O_5	120 s/120 s	20%@630 nm	98%/50 cycles	[4]
1M Li*-PC	TaVO _x	30s/30s	12%@550 nm	99%/100 cycles	[5]
1M Li ⁺ -PC	Ti-V ₂ O ₅	20 s/56 s	28%@500 nm	45%/100 cycles	[6]
1M Li ⁺ -PC	VMC	3.6 s/5.6 s	18.95%@664 nm	53%/500 cycles	[7]

Table S2. Comparison of $V_2 O_5$ performance in different organic electrolytes.

Fig. S7 Nyquist plots of V_2O_5 and PEDOT@ V_2O_5 .

The semicircle in the high-frequency region corresponds to the resistance of the Solid Electrolyte Interphase (SEI) film (R_{SEI}), the semicircle in the middle-frequency region indicates the charge transfer resistance (R_{CT}), and the oblique line in the low-frequency region represents the Warburg impedance.

Notes and references

- [1]. Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang and X. Q. Liu, Journal of Alloys and Compounds, 2009, 475, 518-523.
- [2]. S. Gupta and B. Evans, *Journal of Materials Science*, 2023, **58**, 11198-11217.
- [3]. J Wang, W Zhao, B Tam, H Zhang, Y Zhou, L Yong, W Cheng, *Chemical Engineering Journal*, 2023, **452**, 4.
- [4]. I. Mjejri, L.M. Manceriu, M. Gaudon, A. Rougier, F. Sediri, *Solid State Ionics*, 2016, **292**,8-14.
- [5]. G Mario, R Thomas, B Martin, P Angelika, *Journal of Materials Science*, 2022, **57**, 12810–12823.
- [6]. G Salek, B Bellanger, I Mjejri, M Gaudon, I Rougier, Inorganic Chemistry, 2016, 55, 9838-9847
- [7]. S Sun, S Cui, F Wang, M Gao, W Wie, J Dong, X Xia, Q Zhu, Ji Zhang, ACS Applied Electronic Materials, 2022, 4, 4724-4732