Efficient synthesis of porous triazine-based macrocycles with 22-carbon and 6-nitrogen ring atoms and their adsorption/desorption of non-volatile organic compounds

Zi-Ting Gu^a, Hao-Chin Chen^a, Jin-Peng Yang^a, Hsiu-Fu Hsu, ^b Ting-shen Kuo^c, and Long-Li Lai^{a,*} ^a Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan ^b Department of Chemistry, Tamkang University, Tamsui 251, Taiwan ^c National Taiwan Normal University No. 88, Sec. 4, Ting-Chow Rd, Taipei 116, Taiwan

E-Mail: lilai@ncnu.edu.tw

Supporting information

Experimental section1
Materials and general methods:1
Crystallographic determination:1
Synthesis of intermediate A1
Synthesis of macrocycle 2a
Synthesis of macrocycle 2b 6
Table S1. Crystal data and structure refinement for 2a•1THF•1MeOH . (Squeezed THF & CH ₃ OH,
CCDC#2328542)
Table S2. Bond lengths [Å] and angles [°] for 2a•1THF•1MeOH (CCDC#2328542)10
Table S3. The intermolecular H-bond (NH-N, NH-C, CH-Cl) and π-π (CH-π, π-π) interactions of
macrocycle 2a (THF and MeOH omitted) in the framework12
Figure S1. Thermogravimetric analysis of dried 2a and 2b from 50 to 850 °C at a heating rate of 10 °C
min ⁻¹ under an N ₂ atmosphere
Figure S2. The pore size distributions of 2a and 2b , calculated by NLDFT based on their N ₂ isotherms at
77 К
Figure S3. The ¹ H-NMR spectra of 2a , SDS and 2a-SDS in showing the adsorption of SDS by 2a 18
Figure S4. The ¹ H-NMR spectra of 2b with BPA, SDS, SMZ and Brij35, respectively, in showing their
adsorption by 2b 20
Figure S5. The H-chemical shifts of 2b and 2b with BPA, SDS, SMZ and Brij35, respectively
Figure S6. The H-chemical shifts of 2b after recovery

Experimental section

Materials and general methods: Reagents were used as received without further purification. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-300 solution NMR spectrometers. Elemental analyses were carried out using an Elementar UNICUBE analyzer. Thermogravimetric analyses were performed under nitrogen with a Perkin-Elmer TGA-7 TG analyzer. Brunauer-Emmett-Teller (BET) analyses were examined with a Micrometrics TriStar II Plus system using nitrogen as the adsorbate at 77 K and carbon dioxide as the adsorbate at 195 K. All gases used were of 99.9995% purity. Crystallographic analyses were performed by Bruker D8 Venture diffractometer. HRMS were obtained from Bruker Autoflex speed MALDI-TOFMS, Bruker Compact ESI -QTOF-MS

Crystallographic determination: A suitable single crystal of **2a** or **2a-1THF-MeOH** was mounted on the tip of a glass fiber with dimensions of 0.11 x 0.04 x 0.02 mm3 and then placed onto the goniometer head for indexing; the intensity data collection using a Bruker D8 Venture diffractometer was equipped with graphite-monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Collection of intensity data was conducted at 200 K. Empirical absorptions were applied using the multi-scan method. The structure was solved by direct methods and refined against F2 by the full-matrix least-squares technique using the SHELX-97 software packages.¹

Synthesis of intermediate A

9,9-Bis(4-aminophenyl)fluorene (1.74 g, 5.0 mmol) and N,N-diisopropyl-ethylamine (1.55 g, 12.0 mmol) in dry THF (20 mL) were gradually added to cyanuric chloride (1.85 g, 10.0 mmol) in dry THF (30 mL) at 5 °C and then stirred for 4hr. After the reaction (confirmed by TLC), solvent was removed at reduced pressure to yield a solid, which was further purified by chromatography (SiO₂: 20 x 2.2 cm, eluates: THF-hexane [1:2]) and then recrystallized by CH₂Cl₂-hexane (1:1), giving intermediate **A** in 87%

(2.80 g). ¹H NMR (300 MHz, DMSO-D₆, 25 °C, TMS): δ 7.13 (d, *J*=8.7, 4H, 4×Ar-H), 7.30-7.50 (m, 10H, 10×Ar-H), 7.93 (d, *J*=7.2, 2H, 2×Ar-H), 11.13 (s, 2H, 2×NH) ppm. ¹³C NMR (75 MHz, DMSO-D₆, 25 °C, TMS): δ 64.19, 120.59, 121.53, 126.08, 127.78, 127.96, 128.11, 135.51, 139.53, 142.09, 150.38, 163.65, 168.78, 169.71 ppm. MS cacld for C₃₁H₁₈Cl₄N₈ [M]⁺: 644.3; found 644.4.

 1 H NMR of **A**

 13 C NMR of **A**

mass spectra of A

Synthesis of macrocycle 2a

Intermediate **A** (0.644 g, 1.0 mmol) in acetone (90 mL) and 9,9-bis(4-aminophenyl)fluorene **1** (0.348 g, 1.0 mmol) in acetone (90 mL) were simultaneously added to N,N-diisopropylethylamine (0.310 g, 2.4 mmol) in acetone (200 mL) gradually at room temperature and then stirred for 60 h. After the reaction (confirmed by TLC), solvent was removed at reduced pressure to give a solid which was further recrystallized by THF-MeOH (1:2), yielding macrocycle **2a** in 60% (0.60g)

¹H NMR (300 MHz, DMSO-D₆, 25 °C, TMS): δ , 7.10 (d, *J*=8.7, 8H, 8×Ar-H), 7.35-7.46 (m, 20H, 20×Ar-H), 7.97 (d, *J*=7.5, 4H, 4×Ar-H), 10.11 (s, 4H, 4×NH) ppm. ¹³C NMR (75 MHz, DMSO-D₆, 25 °C, TMS): δ 64.20, 120.87, 122.69, 125.66, 127.63, 127.81, 127.94, 136.84, 139.62, 140.84, 150.66, 164.27, 168.17 ppm. HRMS cacld for C₅₆H₃₆Cl₂N₁₀ [M]⁺: 919.2580; found 919.2574. Elemental analysis calcd for C₅₆H₃₆Cl₂N₁₀+MeOH: C 71.92; H 4.24; N 14.71 %; found C 71.89; H 4.05; N 14.80 %.

¹H NMR of **2a**

S5

¹³C NMR of **2a**

HRMS of 2a

Synthesis of macrocycle 2b

Compound **2a** (0.46 g, 0.5 mmol), diethanolamine (0.52 g, 5.0 mmol) and N,Ndiisopropylethylamine (0.15 g, 1.2 mmol) were added to THF (25 mL) and then heated at 70 °C for 36h. After the reaction (confirmed by TLC), solvent was removed at reduced pressure to give a solid which was further purified by chromatography (SiO₂: 20 x 2.2 cm, eluates: THF-hexane [3:1]) and then recrystallized by THF-hexane (2:1), giving macrocycle **2b** in 72% (0.38 g).

¹H NMR (300 MHz, DMSO-D₆, 25 °C, TMS): δ 3.57-3.62 (m, 16H, 8×CH₂), 4.74 (t, *J*=4.8, 4H, 4×OH), 7.05 (d, *J*=8.7, 8H, 8×Ar-H), 7.36-7.50 (m, 20H, 20×Ar-H), 7.95 (d, *J*=7.2, 4H, 4×Ar-H), 8.99 (s, 4H, 4×NH) ppm. ¹³C NMR (75 MHz, DMSO-D₆, 25 °C, TMS): δ 49.93, 59.40, 64.15, 120.78, 122.02, 125.90, 127.49, 127.74, 138.60, 139.66, 151.12, 164.50, 165.15 ppm. HRMS cacld for C₆₄H₅₆N₁₂O₄ [M]⁺: 1057.4626; found 1057.4620. Elemental analysis calcd for C₆₈H₆₄N₁₂+H₂O+2THF: C 70.92; H 6.12; N 13.78 %; found C 70.61; H 6.03; N 13.88 %.

¹³C NMR of **2b**

HRMS of **2b** Intens. [a.u.] [a.u.] 1.5 1057.4620 >1058.4650 1.0 1059.4680 0.5 1060.4709 1061.4737 1062.4766 0.0 1062.5 1072.5 m/z 1052.5 1055.0 1060.0 1065.0 1067.5 1070.0 1057.5

S10

Table S1. Crystal data and structure refinement for **2a**•**1THF**•**1MeOH**. (Squeezed THF & CH₃OH, CCDC#<u>2328542</u>)

Identification code	shelx
Empirical formula	C61 H48 Cl2 N10 O2 (C56 H36 Cl2 N10+THF+MeOH)
Formula weight	1024.02
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1

Unit cell dimensions	a = 13.5359(11) Å	α= 102.627(3)°.	
	b = 14.6708(11) Å	β= 100.704(3)°.	
	c = 16.4233(13) Å	$\gamma = 114.701(3)^{\circ}.$	
Volume	2746.4(4) Å ³		
Z	2		
Density (calculated)	1.112 Mg/m ³		
Absorption coefficient	0.162 mm ⁻¹		
F(000)	952		
Crystal size	0.270 x 0.100 x 0.050 mm ³		
Theta range for data collection	2.175 to 25.129°.		
Index ranges	-16<=h<=16, -17<=k<=17, -19<=l<=19		
Reflections collected	74086		
Independent reflections	9772 [R(int) = 0.0770]		
Completeness to theta = 25.129°	99.5 %		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	9772/0/613		
Goodness-of-fit on F ²	1.020		
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.1060		
R indices (all data)	R1 = 0.0563, wR2 = 0.1157		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.318 and -0.354 e.Å ⁻³		

 Table S2. Bond lengths [Å] and angles [°] for 2a•1THF•1MeOH (CCDC#2328542).

C56	N2	1.339(3)	N2	C2	N4	120.5(2)
N2	C2	1.330(2)	C2	N4	C3	128.3(2)
C2	N4	1.349(3)	N4	C3	C8	124.1(2)
N4	C3	1.413(3)	C3	C8	C7	120.0(2)
C3	C8	1.386(2)	C8	C7	C6	121.8(2)
C8	C7	1.388(3)	C7	C6	C9	121.7(2)
C7	C6	1.390(3)	C6	C9	C22	112.0(2)
C6	C9	1.541(3)	C9	C22	C23	121.8(2)
C9	C22	1.543(2)	C22	C23	C24	121.5(2)
C22	C23	1.385(2)	C23	C24	C25	119.8(2)
C23	C24	1.390(3)	C24	C25	N5	120.5(2)
C24	C25	1.381(3)	C25	N5	C28	124.7(2)
C25	N5	1.435(2)	N5	C28	N8	119.1(2)
N5	C28	1.341(2)	C28	N8	C30	114.4(2)
C28	N8	1.341(3)	N8	C30	N9	120.6(2)
N8	C30	1.327(2)	C30	N9	C31	131.6(2)
C30	N9	1.354(3)	N9	C31	C36	124.6(2)
N9	C31	1.415(3)	C31	C36	C35	119.2(2)

C36	1.394(2)	C36	C35	C34	122.5(2)
C35	1.388(3)	C35	C34	C37	122.6(2)
C34	1.392(3)	C34	C37	C50	116.3(2)
C37	1.535(3)	C37	C50	C55	125.5(2)
C50	1.544(2)	C50	C55	C54	121.3(2)
C55	1.384(3)	C55	C54	C53	120.2(2)
C54	1.397(2)	C54	C53	N10	122.9(2)
C53	1.376(3)	C53	N10	C56	126.7(2)
N10	1.422(2)	N10	C56	N2	119.6(2)
C56	1.334(2)	C56	N2	C2	114.6(2)
	C36 C35 C34 C37 C50 C55 C54 C53 N10 C56	C361.394(2)C351.388(3)C341.392(3)C371.535(3)C501.544(2)C551.384(3)C541.397(2)C531.376(3)N101.422(2)C561.334(2)	C361.394(2)C36C351.388(3)C35C341.392(3)C34C371.535(3)C37C501.544(2)C50C551.384(3)C55C541.397(2)C54C531.376(3)C53N101.422(2)N10C561.334(2)C56	C361.394(2)C36C35C351.388(3)C35C34C341.392(3)C34C37C371.535(3)C37C50C501.544(2)C50C55C551.384(3)C55C54C541.397(2)C54C53C531.376(3)C53N10N101.422(2)N10C56C561.334(2)C56N2	C361.394(2)C36C35C34C351.388(3)C35C34C37C341.392(3)C34C37C50C371.535(3)C37C50C55C501.544(2)C50C55C54C551.384(3)C55C54C53C541.397(2)C54C53N10C531.376(3)C53N10C56N101.422(2)N10C56N2C561.334(2)C56N2C2

Table S3. The intermolecular H-bond (NH-N, NH-C, CH-Cl) and π - π (CH- π , π - π)

interactions of macrocycle **2a** (THF and MeOH omitted) in the framework.

	BNI OF CONTRACTOR			BIN BIN BIN
D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
N(5)-H(5A)····N(3)	0.8802(20)	2.2409(21)	3.0881(29)	161.464(128)
N(10)-H(10)····N(6)	0.8793(20)	2.0700(19)	2.9200(28)	162.325(123)

D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
N(9)-H(9)····C(45)	0.8799(12)	2.8774(15)	3.7169(19)	160.108(114)
C(45)-H(45)····N(9)	0.9499(23)	3.4887(14)	3.7169(19)	96.423(125)

D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
C(5)-H(5)····C(47)	0.9492(19)	2.9627(20)	3.7529(26)	141.561(108)
C(47)-H(47)····C(5)	0.9509(21)	2.9847(18)	3.7529(26)	138.813(115)

D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
C(12)-H(12)····C(4)	0.9503(25)	2.7902(24)	3.5392(37)	136.362(167)
C(4)-H(4)····C(12)	0.9504(14)	3.7964(28)	3.5392(37)	67.256(126)

		-		
D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
C(54)-H(54)····C(54)	0.9505(24)	3.0865(19)	3.3202(30)	95.806(128)

D-HA	D-H	НА	DA	D-HA
	length(Å)	length(Å)	length(Å)	angle(°)
C(46)-H(46)····Cl(1)	0.9507(24)	3.1891(7)	3.2693(23)	86.356(130)
C(47)-H(47)····Cl(1)	0.9509(21)	3.2946(5)	3.3403(19)	84.494(127)

Figure S1. Thermogravimetric analysis of dried 2a and 2b from 50 to 850 °C at a heating rate of 10 °C min⁻¹ under an N₂ atmosphere.

Figure S2. The pore size distributions of 2a and 2b, calculated by NLDFT based on their N₂ isotherms at 77 K.

Figure S3. The 1H-NMR spectra of **2a**, SDS and **2a**-SDS in showing the adsorption of SDS by **2a**.

Figure S4. The 1H-NMR spectra of **2b** with BPA, SDS, SMZ and Brij35, respectively, in showing their adsorption by **2b**.

Figure S5. The H-chemical shifts of **2b** and **2b** with BPA, SDS, SMZ and Brij35, respectively.

Figure S6. The H-chemical shifts of 2b after recovery.

1. G. Sheldrick, *Acta Crystallogr. Sect. A*, 2008, **64**, 112-122.