Supplementary Information

Dual Metal Organic Framework Postsynthetic Modification; Two Birds with One Stone

Sally O. Hunter,^{*a*} Alexandra Nikolich,^{*a*} Macguire R. Bryant,^{*a*} Dayne Skelton^{*a*} and Christopher Richardson^{**a*}

^a School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong NSW 2522, Australia

Table of Contents

1	General Experimental	2
2	MOF Synthesis	3
3	¹ H NMR Digestion Spectra	5
4	Powder X-ray Diffraction Patterns	.18
5	TG-DTA Data	.23
6	Gas Adsorption Isotherms and BET Data	.28
7	References	.38

1 General Experimental

All chemicals used were of analytical grade and purchased from either Sigma Aldrich or Ajax Finechem Pty Ltd. 2-(Propargyloxy)-[1,1-biphenyl]-4,4-dicarboxylic acid $(H_2L^1)^1$ and 2-(allyloxy)-[1,1-biphenyl]-4,4-dicarboxylic acid $(H_2L^2)^2$ were prepared by reported procedures.

¹H NMR and ¹³C NMR spectra were obtained using a Varian Mercury VX-300-MHz NMR spectrometer, data collection was performed using VNMR 6.1c software on a SUN Solaris 9 operating system operating at 300 MHz for ¹H or a Bruker Ascend NMR spectrometer operating at 400 MHz for ¹H. ¹H NMR spectra were referenced to the residual protio peaks at 2.50 ppm (*d*₆-DMSO). For ¹H NMR analysis MOF samples (~10 mg) were digested by adding 35% DCl in D₂O (3 μ L) and DMSO (500 μ L) and briefly sonicating to aid a homogeneous solution being obtained.

PXRD patterns were obtained using a GBC-MMA X-Ray diffractometer equipped with Visual XRD 122D version 3.04 and Traces version 6.6.10 diffraction screen processing software and accessories. Samples were mounted on 1" SiO₂ substrates and measured using a 2 θ angle range of 3-30 with a step size of 0.02° at 1° per minute.

TG-DTA data were obtained using a Shimadzu DTG-60 simultaneous Thermogravimetry and Differential Thermal Analyser, fitted with a FC-60A Flow Rate controller and TA-60WS Thermal Analyser. Measuring parameters of 10 °Cmin⁻¹ under nitrogen flow (20 cm³min⁻¹) were used. Data analysis was performed on Ta60 version 2.20 software system. Data were also recorded using a Netzsch STA449F3 instrument with SiC furnace at 10 °Cmin⁻¹ under N₂ flow at 20 cm³min⁻¹.

Gas adsorption studies were carried out using a Quantachrome Autosorb MP instrument and high purity nitrogen gas (99.999%) at 77 K. Surface areas were determined using Brunauer–Emmett–Teller (BET) calculations. Samples for gas adsorption were freeze-dried for 1 hour before being heated at 120 °C under vacuum for 5 h to produce activated samples. Freeze-drying was carried out in a Christ Alpha 1–2 LDplus freeze-dryer.

Elemental microanalysis was performed by the Microanalytical Unit at the Australian National University using a Carlo Erba 1106 automatic analyser.

2 MOF Synthesis

General Procedure for Multivariate MOF synthesis

 H_2L^1 and H_2L^2 were weighed out into nine vials according to Table S1. $Zn(NO_3)_2 \cdot 6H_2O$ (152.3 mg, 0.17 mmol) and DMF (8 cm³) were added to each vial. The vials were capped and swirled to dissolve the solids, before being placed in an oven held at 100 °C for 23 hours. The crystals were manipulated to the bottom of each reaction flask and the solvent was replaced with fresh DMF with brief periods of heating at 100 °C (2 × 3 mL), and then exchanged for DCM over a period of a week (4 × 2 mL exchanges). Lastly, the DCM was exchanged for benzene (1 exchange) and then stored under benzene until required. Samples were freeze dried and then heated on the Quantachrome surface area analyser to 120 °C under vacuum and held at that temperature for 5 hours to produce activated samples.

MOF	H_2L^1	H_2L^2	Ratio of H ₂ L ¹ :H ₂ L ²	Mass of air-dried crystals
WUF-44-89	5.0 mg, 0.017 mmol	45.6 mg, 0.153 mmol	1:9	26.4 mg
WUF-44-82	10.1 mg, 0.034 mmol	40.6 mg, 0.136 mmol	2:8	24.1 mg
WUF-44-75	15.1 mg, 0.051 mmol	35.5 mg, 0.119 mmol	3:7	24.7 mg
WUF44-65	20.1 mg, 0.068 mmol	30.4 mg, 0.102 mmol	4:6	24.9 mg
WUF44-56	25.2 mg, 0.085 mmol	25.4 mg, 0.085 mmol	5:5	26.0 mg
WUF44-47	30.2 mg, 0.102 mmol	20.3 mg, 0.068 mmol	6:4	24.1 mg
WUF-44-33	35.3 mg, 0.119 mmol	15.2 mg, 0.051 mmol	7:3	23.6 mg
WUF-44-22	40.3 mg, 0.136 mmol	10.1 mg, 0.034 mmol	8:2	23.2 mg
WUF-44-13	45.3 mg, 0.153 mmol	5.1 mg, 0.017 mmol	9:1	24.7 mg

Table S 1 Quantities of H_2L^1 and H_2L^2 used in the multivariate MOF syntheses and yields of air-dried crystals.

Microanalytical data

WUF-44-90: Found C, 51.50; H, 3.03; N, 0.00. Calc $C_{51}H_{38.4}O_{17.5}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{0.29}(C_{17}H_{12}O_5)_{2.71}] \cdot 1.5H_2O \mid [Zn_4O(L^1)_{0.29}(L^2)_{2.71}] \cdot 1.5H_2O C, 51.35; H, 3.25; N, 0.00.$

WUF-44-82: Found C, 48.87; H, 2.73; N, 0.00. Calc for $C_{51}H_{44.9}O_{21}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{0.54}(C_{17}H_{12}O_5)_{2.46}] \cdot 5H_2O \mid [Zn_4O(L^1)_{0.54}(L^2)_{2.46}] \cdot 5H_2O C$, 48.79; H, 3.61; N, 0.00.

WUF-44-75: Found C, 51.34; H, 3.09; N, 0.00. Calc $C_{51}H_{37.5}O_{17.5}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{0.76}(C_{17}H_{12}O_5)_{2.24}] \cdot 1.5H_2O \mid [Zn_4O(L^1)_{0.76}(L^2)_{2.24}] \cdot 1.5H_2O C, 51.37; H, 3.17; N, 0.00.$

WUF-44-65: Found C, 51.35; H, 3.03; N, 0.00. Calc for $C_{51}H_{36.9}O_{17.5}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{1.04}(C_{17}H_{12}O_5)_{1.96}] \cdot 1.5H_2O \mid [Zn_4O(L^1)_{1.04}(L^2)_{1.96}] \cdot 1.5H_2O C, 51.40; H, 3.12; N, 0.00.$

WUF-44-56: Found C, 51.02; H, 3.17; N, 0.00. Calc. for $C_{51}H_{37.4}O_{18}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{1.32}(C_{17}H_{12}O_5)_{1.68}] \cdot 2H_2O \mid [Zn_4O(L^1)_{1.32}(L^2)_{1.68}] \cdot 2H_2O C, 51.06; H, 3.14; N, 0.00.$

WUF-44-47: Found C, 51.22; H, 3.26; N, 0.00. Calc. for $C_{51}H_{36.8}O_{18}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{1.58}(C_{17}H_{12}O_5)_{1.42}] \cdot 2H_2O \mid [Zn_4O(L^1)_{1.58}(L^2)_{1.42}] \cdot 2H_2O C$, 51.06; H, 3.10; N, 0.00.

WUF-44-33: Found C, 51.79; H, 3.19; N, 0.00. Calc. for $C_{51}H_{35}O_{17.5}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{1.99}(C_{17}H_{12}O_5)_{1.01}] \cdot 1.5H_2O \mid [Zn_4O(L^1)_{1.99}(L^2)_{1.01}] \cdot 1.5H_2O C, 51.48; H, 2.97; N, 0.00.$

WUF-44-22: Found C, 51.38; H, 3.21; N, 0.00. Calc. for $C_{51}H_{35.6}O_{18}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{2.22}(C_{17}H_{12}O_5)_{0.78}] \cdot 2H_2O \mid [Zn_4O(L^1)_{2.22}(L^2)_{0.87}] \cdot 2H_2O C, 51.11; H, 2.99; N, 0.00.$

WUF-44-13: Found C, 51.81; H, 3.23; N, 0.00. Calc. for $C_{51}H_{33.5}O_{17.5}Zn_4 \mid [Zn_4O(C_{17}H_{10}O_5)_{2.75}(C_{17}H_{12}O_5)_{0.25}] \cdot 1.5H_2O \mid [Zn_4O(L^1)_{2.75}(L^2)_{0.25}] \cdot 1.5H_2O C$, 51.55; H, 2.84; N, 0.00.

Figure S 1¹H NMR chemical shifts of the tag groups in the linkers. The groups are colour coded here and in the ¹H NMR spectra that follow. The propargyloxy tag group in L¹ linkers give 1 major product under transformation under N₂ gas while 3 major products occur for L². The cyclised product and the internal alkenes are derived from the terminal alkene product. The multiple values for the internal alkene at bottom right is due to *cis*- and *trans*-isomers.

Figure S 2 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-89 (Zn₄O(L¹)_{0.32}(L²)_{2.68}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61 ppm) is obscured by the large signal for HOD in these air-dried crystals.

Figure S 3 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-82 (Zn₄O(L¹)_{0.53}(L²)_{2.47}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61 ppm) is obscured by the large signal for HOD in these air-dried crystals.

Figure S 4 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-75 (Zn₄O(L¹)_{0.76}(L²)_{2.24}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61 ppm) is obscured by the large signal for water in these air-dried crystals.

Figure S 5 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-65 (Zn₄O(L¹)_{1.04}(L²)_{1.96}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Figure S 6 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-56 (Zn₄O(L¹)_{1.33}(L²)_{1.67}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Figure S 7 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-47 (Zn₄O(L¹)_{1.60}(L²)_{1.40}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Figure S 8 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-33 (Zn₄O(L¹)_{2.01}(L²)_{0.99}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Figure S 9 ¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-22 (Zn₄O(L¹)_{2.33}(L²)_{0.67}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L¹ (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Figure S 10¹H NMR spectrum in DCl and DMSO- d_6 solution of WUF-44-13 (Zn₄O(L^1)_{2.61}(L^2)_{0.39}). Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The methyl signals for DMF are marked with an asterisk (*). The signal for the terminal alkyne of L^1 (δ 3.61) is obscured by the large signal for water in these air-dried crystals.

Propargyl integration	Allyl integration	MOF Formula	WUF Code
2	17.02	$Zn_4O(L^1)_{0.32}(L^2)_{2.68}$	WUF-44-89
2	9.34	$Zn_4O(L^1)_{0.53}(L^2)_{2.47}$	WUF-44-82
2	5.87	$Zn_4O(L^1)_{0.76}(L^2)_{2.24}$	WUF-44-75
2	3.66	$Zn_4O(L^1)_{1.06}(L^2)_{1.94}$	WUF-44-65
2	2.50	$Zn_4O(L^1)_{1.33}(L^2)_{1.67}$	WUF-44-56
2	1.74	$Zn_4O(L^1)_{1.60}(L^2)_{1.40}$	WUF-44-47
2	0.98	$Zn_4O(L^1)_{2.01}(L^2)_{0.99}$	WUF-44-33
2	0.57	$Zn_4O(L^1)_{2.33}(L^2)_{0.67}$	WUF-44-22
2	0.30	$Zn_4O(L^1)_{2.61}(L^2)_{0.39}$	WUF-44-13

Table S 2 MOF formulas derived from ¹H NMR data of the digestions of air-dried crystals.

Figure S 11 A plot of L² incorporation in the MOFs. The red line is provided to guide the eye for what would be expected if the incorporation matched the synthesis fraction.

Figure S 12 ¹H NMR spectrum in DCl and DMSO-*d*₆ solution (reference δ 2.50 ppm) of WUF-44-90PSM. The large broad signal centred around 4.75 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 13 ¹H NMR spectrum in DCl and DMSO- d_6 solution (reference δ 2.50 ppm) of WUF-44-82PSM. The large broad signal centred around 3.5 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 14 ¹H NMR spectrum in DCl and DMSO- d_6 (reference δ 2.50 ppm) solution of WUF-44-75PSM. The large broad signal centred around 4.25 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 15 ¹H NMR spectrum in DCl and DMSO- d_6 (reference δ 2.50 ppm) solution of WUF-44-65PSM. Spectrum referenced to δ 2.50 ppm for DMSO- d_6 . The large signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 16 ¹H NMR spectrum in DCl and DMSO-*d*₆ (reference δ 2.50 ppm) solution of WUF-44-56PSM. The large signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 -*CH*₂; 3.61-*CH*) and L² (4.66 -*CH*₂; 6.01-*CH*; 5.21/5.30 =*CH*₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 17 ¹H NMR spectrum in DCl and DMSO- d_6 (reference δ 2.50 ppm) solution of WUF-44-47PSM. The large broad signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have been driven to completion.

Figure S 18 ¹H NMR spectrum in DCl and DMSO-*d*₆ solution of WUF-44-34PSM. The large broad signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 -C*H*₂; 3.61-C<u>*H*</u>) and L² (4.66 -C*H*₂; 6.01-C*H*; 5.21/5.30 =C*H*₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 19 ¹H NMR spectrum in DCl and DMSO- d_6 (reference δ 2.50 ppm) solution of WUF-44-26PSM. The large broad signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 - CH₂; 3.61-C<u>H</u>) and L² (4.66 - CH₂; 6.01-CH; 5.21/5.30 = CH₂) linkers meaning the reactions have been driven to completion. The colour codes for products are given in Figure S1.

Figure S 20 ¹H NMR spectrum in DCl and DMSO-d₆ (δ 2.50 ppm) solution of WUF-44-8PSM. The large broad signal centred around 3.3 ppm is the HOD signal. There are no signals for L¹ (4.92 -CH₂; 3.61-C<u>H</u>) and L² (4.66 -CH₂; 6.01-CH; 5.21/5.30 =CH₂) linkers meaning the reactions have gone to completion. The colour codes for products are given in Figure S1.

Figure S 21 Stacked spectra from Figures S12-S20 in the range 7.5-0.5 ppm showing the decrease of products arising from reactions of L² linkers and the increase in product arising from reaction of L¹ linkers in the dual modified samples. The labels at right are as follows: **1** WUF-44-89PSM; **2** WUF-44-82PSM; **3** WUF-44-75PSM; **4** WUF-44-65PSM; **5** WUF-44-56PSM; **6** WUF-44-47PSM; **7** WUF-44-33PSM; **8** WUF-44-22PSM; **9** WUF-44-13PSM. Spectra are referenced to δ 2.50 ppm for DMSO-*d*₆.

Table S 3 Approximate MOF formulas derived from ¹H NMR data of the digestions of modified samples crystals.#MOF FormulaWUF Code

Zn4O(chr)0.39(cla)1.16(dhf)0.92(ole)0.54	WUF-44-89PSM
Zn4O(chr)0.41(cla)1.24(dhf)0.71(ole)0.64	WUF-44-82PSM
Zn4O(chr)0.79(cla)1.13(dhf)0.63(ole)0.44	WUF-44-75PSM
Zn4O(chr)0.91(cla)1.15(dhf)0.46(ole)0.48	WUF-44-65PSM
Zn4O(chr)1.02(cla)1.07(dhf)0.52(ole)0.40	WUF-44-56PSM
Zn4O(chr)1.23(cla)1.15(dhf)0.31(ole)0.31	WUF-44-47PSM
Zn4O(chr)1.58(cla)0.91(dhf)0.25(ole)0.26	WUF-44-33PSM
Zn4O(chr)2.06(cla)0.66(dhf)0.12(ole)0.17	WUF-44-22PSM
Zn4O(chr)2.39(cla)0.38(dhf)0.08(ole)0.14	WUF-44-13PSM

#We provide this data at the request of the referee and wish to note the inherent inaccuracy in integrations of the low-intensity signals and that caution should be exercised in the proportions estimated for some of these products. We emphasise that the reactions have gone to completion by the absence of the signals for the starting L^1 and L^2 linkers. The **ole** components are reported as the total of the *cis*- and *trans*-isomers.

4 Powder X-ray Diffraction Patterns

Figure S 22 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-89 and WUF-44-89PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 23 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-82 and WUF-44-82PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 24 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-75 and WUF-44-75PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 25 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-65 and WUF-44-65PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 26 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-56 and WUF-44-56PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 27 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-47 and WUF-44-47PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 28 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-33 and WUF-44-33PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 29 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-22 and WUF-44-22PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

Figure S 30 Experimental PXRD patterns for 'as synthesised' (black) and activated (blue) WUF-44-13 and WUF-44-13PSM (red) alongside the calculated pattern of a parent 'as synthesised' MOF WUF-35 (Zn₄O(L¹)₃) (purple) for reference.

5 TG-DTA Data

Figure S 31 TG—DTA for heating activated WUF-44-89 (blue) and WUF-44-89PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 32 TG—DTA for heating activated WUF-44-82 (blue) and WUF-44-82PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 33 TG—DTA for heating activated WUF-44-75 (blue) and WUF-44-75PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 34 TG—DTA for heating activated WUF-44-65 (blue) and WUF-44-65PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 35 TG—DTA for heating activated WUF-44-56 (blue) and WUF-44-56PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 36 TG—DTA for heating activated WUF-44-47 (blue) and WUF-44-47PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 37 TG—DTA for heating activated WUF-44-33 (blue) and WUF-44-33PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 38 TG—DTA for heating activated WUF-44-22 (blue) and WUF-44-22PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

Figure S 39 TG—DTA for heating activated WUF-44-13 (blue) and WUF-44-13PSM (red) up to 550 °C; TG curves (solid lines); DTA curves (dashed lines).

6 Gas Adsorption Isotherms and BET Data

Figure S 40 Isotherm of Zn₄O(L²)₃. We re-recorded this data for the current study. It was reported by us previously.²

Figure S 41 Isotherm of $Zn_4O(L^2)_3$ heated to 320 °C for 20 minutes.

BET summary	$Zn_4O(L^2)_3$	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.01261e-03	437.4542	1.4774e-02
Slope	1.688	9.10737e-03	443.3428	1.6587e-02
Intercept	1.206e-03	1.00427e-02	447.2739	1.8147e-02
Correlation coefficient, r	0.999996	1.20346e-02	452.6257	2.1533e-02
C constant	1400.579	1.50070e-02	459.9681	2.6502e-02
Surface Area	2062.049 m ² /g	2.57038e-02	474.4455	4.4491e-02
		3.91115e-02	484.1217	6.7271e-02

BET summary	Zn ₄ O(L ²) ₃ PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.99321e-03	443.3957	1.6376e-02
Slope	1.654	9.80354e-03	448.1257	1.7677e-02
Intercept	1.426e-03	1.04610e-02	451.3749	1.8739e-02
Correlation coefficient, r	0.999992	1.20215e-02	457.0802	2.1299e-02
C constant	1161.514	1.50440e-02	465.5290	2.6251e-02
Surface Area	2103.289 m ² /g	2.63043e-02	482.2583	4.4820e-02
		3.88862e-02	491.6892	6.5839e-02

Figure S	43	Isotherm o	of WUF-44-89PSM.	
----------	----	------------	------------------	--

BET summary	WUF-44-89	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.02795e-03	426.4728	426.4728
Slope	1.724	9.12510e-03	432.3239	1.7044e-02
Intercept	1.270e-03	1.00331e-02	436.1987	1.8590e-02
Correlation coefficient, r	0.999994	1.20735e-02	443.2281	2.2061e-02
C constant	1359.137	1.50762e-02	450.3068	2.7198e-02
Surface Area	2018.046 m ² /g	2.66886e-02	464.9930	4.7182e-02
		4.01034e-02	474.1188	7.0505e-02

BET summary	WUF-44-89PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		9.43319e-03	446.5092	1.7065e-02
Slope	1.657	1.02311e-02	450.5847	1.8355e-02
Intercept	1.361e-03	1.08268e-02	453.1802	1.9324e-02
Correlation coefficient, r	0.999992	1.26135e-02	459.3684	2.2250e-02
C constant	1218.578	1.52747e-02	466.3038	2.6616e-02
Surface Area	2099.425 m²/g	2.73822e-02	483.2701	4.6611e-02
		4.02096e-02	492.2433	6.8096e-02

Figure S 4	5 Isotherm	of WUF-44-82PSM.
------------	------------	------------------

BET summary	WUF-44-82	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.11189e-03	445.8459	1.4677e-02
Slope	1.643	9.11177e-03	451.5228	1.6295e-02
Intercept	1.290e-03	9.96736e-03	455.4914	1.7685e-02
Correlation coefficient, r	0.999995	1.21754e-02	463.8231	2.1262e-02
C constant	1274.736	1.51675e-02	471.2920	2.6146e-02
Surface Area	2118.028 m ² /g	2.64232e-02	486.6893	4.4618e-02
		3.98413e-02	496.9326	6.6810e-02

BET summary	WUF-44-82PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.02152e-02	462.4973	1.7855e-02
Slope	1.619	1.08638e-02	465.4344	1.8881e-02
Intercept	1.257e-03	1.13284e-02	467.2752	1.9620e-02
Correlation coefficient, r	0.999993	1.34238e-02	473.7353	2.2981e-02
C constant	1289.144	1.60100e-02	479.9582	2.7124e-02
Surface Area	2149.065 m ² /g	2.69020e-02	494.8001	4.4704e-02
		4.02114e-02	504.5221	6.6442e-02

BET summary	WUF-44-75	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.24440e-02	443.5837	2.2729e-02
Slope	1.721	1.27571e-02	444.3862	2.3266e-02
Intercept	1.266e-03	1.46283e-02	448.7678	2.6468e-02
Correlation coefficient, r	0.999994	1.74544e-02	453.9558	3.1310e-02
C constant	1361.209	2.93863e-02	468.2107	5.1738e-02
Surface Area	2021.611 m ² /g	4.22211e-02	477.8506	7.3811e-02
		5.33806e-02	483.6119	9.3296e-02

BET summary	WUF-44-75PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.08445e-03	469.1373	1.3900e-02
Slope	1.555	9.03669e-03	475.8486	1.5333e-02
Intercept	1.239e-03	1.00039e-02	481.4077	1.6795e-02
Correlation coefficient, r	0.999991	1.20567e-02	488.7489	1.9978e-02
C constant	1256.610	1.50800e-02	497.6349	2.4617e-02
Surface Area	2237.398 m²/g	2.94610e-02	517.6734	4.6917e-02
		4.29608e-02	526.9727	6.8156e-02

Figure S 49 Isotherm o	of WUF-44-65PSM.
------------------------	------------------

BET summary	WUF-44-65	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.24901e-02	458.2266	2.2085e-02
Slope	1.644	1.35201e-02	461.0336	2.3785e-02
Intercept	1.585e-03	1.41958e-02	462.6371	2.4904e-02
Correlation coefficient, r	0.999998	1.64639e-02	467.3040	2.8661e-02
C constant	1038.425	2.11798e-02	474.4907	3.6487e-02
Surface Area	2116.415 m ² /g	4.08573e-02	495.6612	6.8762e-02
		4.27197e-02	497.4695	7.1775e-02

BET summary	WUF-44-65PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.03316e-03	441.7625	1.4667e-02
Slope	1.643	9.11159e-03	448.7896	1.6394e-02
Intercept	1.377e-03	1.00202e-02	453.5049	1.7857e-02
Correlation coefficient, r	0.999990	1.21211e-02	461.8508	2.1256e-02
C constant	1194.693	1.49835e-02	469.6912	2.5912e-02
Surface Area	2117.539 m²/g	2.54869e-02	485.0341	4.3143e-02
		3.84401e-02	494.9045	6.4630e-02

BET summary	WUF-44-56	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		9.14285e-03	469.3398	1.5730e-02
Slope	1.556	9.99343e-03	473.6987	1.7050e-02
Intercept	1.522e-03	1.20866e-02	482.2964	2.0297e-02
Correlation coefficient, r	0.999988	1.52280e-02	490.6295	2.5218e-02
C constant	1023.492	2.59285e-02	506.2404	4.2071e-02
Surface Area	2236.233 m ² /g	3.62767e-02	521.3861	5.7765e-02
		4.99656e-02	530.6302	7.9303e-02

BET summary	WUF-44-56PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.11664e-03	464.3036	1.4101e-02
Slope	1.567	8.99291e-03	470.2549	1.5440e-02
Intercept	1.301e-03	9.96335e-03	475.5894	1.6931e-02
Correlation coefficient, r	0.999991	1.20084e-02	484.1066	2.0088e-02
C constant	1205.395	1.52373e-02	493.3375	2.5095e-02
Surface Area	2220.369 m²/g	2.58176e-02	509.0579	4.1654e-02
		3.89743e-02	519.4898	6.2462e-02

Figure S	53	Isotherm of	WUF-44-47PSM.
----------	----	-------------	---------------

BET summary	WUF-44-47	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.04904E-02	453.3785	1.8710E-02
Slope	1.617	1.11979E-02	456.2471	1.9860E-02
Intercept	1.802e-03	1.18131E-02	458.427	2.0864E-02
Correlation coefficient, r	0.999968	1.37660E-02	463.9469	2.4072E-02
C constant	898.759	1.65928E-02	470.3277	2.8704E-02
Surface Area	2150.676 m ² /g	2.79188E-02	486.5931	4.7226E-02
		3.86611E-02	501.5225	6.4159E-02

BET summary	WUF-44-47PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.18447e-02	477.9230	2.0067e-02
Slope	1.595	1.20998e-02	478.8822	2.0464e-02
Intercept	1.130e-03	1.24007e-02	479.8479	2.0937e-02
Correlation coefficient, r	0.999994	1.41608e-02	484.6609	2.3713e-02
C constant	1412.890	1.68803e-02	490.4942	2.8008e-02
Surface Area	2181.397 m²/g	2.86067e-02	504.9726	4.6661e-02
		4.12340e-02	513.7383	6.6981e-02

Figure S	55	Isotherm of	WUF-44-33PSM.
----------	----	-------------	---------------

BET summary	WUF-44-33	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		9.63901e-03	452.6748	1.7203e-02
Slope	1.610	1.03029e-02	456.9278	1.8229e-02
Intercept	1.629e-03	1.10816e-02	460.2435	1.9481e-02
Correlation coefficient, r	0.999993	1.29803e-02	467.0731	2.2528e-02
C constant	989.150	1.58025e-02	474.8742	2.7053e-02
Surface Area	2160.894 m ² /g	2.67589e-02	493.5913	4.4569e-02
		4.04341e-02	504.6477	6.6809e-02

BET summary	WUF-44-33PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		1.13110e-02	475.4953	1.9251e-02
Slope	1.601	1.15654e-02	476.3544	1.9653e-02
Intercept	1.105e-03	1.19239e-02	477.5274	2.0220e-02
Correlation coefficient, r	0.999994	1.36691e-02	482.6242	2.2975e-02
C constant	1449.080	1.64836e-02	488.6542	2.7442e-02
Surface Area	2174.048 m ² /g	2.80918e-02	503.1603	4.5962e-02
		4.11628e-02	512.1458	6.7068e-02

BET summary	WUF-44-22	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.10857e-03	469.9810	1.3917e-02
Slope	1.537	9.00353e-03	477.6244	1.5220e-02
Intercept	1.328e-03	1.00193e-02	483.6480	1.6743e-02
Correlation coefficient, r	0.999983	1.20765e-02	492.7429	1.9849e-02
C constant	1158.891	1.51039e-02	502.2813	2.4429e-02
Surface Area	2263.659 m ² /g	2.70788e-02	520.3263	4.2798e-02
		4.08067e-02	530.4648	6.4168e-02

BET summary	WUF-44-22PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.12115e-03	460.7094	1.4219e-02
Slope	1.600	9.05462e-03	466.2495	1.5680e-02
Intercept	1.152e-03	9.98833e-03	470.6442	1.7152e-02
Correlation coefficient, r	0.999993	1.20737e-02	478.0566	2.0454e-02
C constant	1389.884	1.50141e-02	485.5706	2.5117e-02
Surface Area	2174.491 m²/g	2.74088e-02	502.2737	4.4892e-02
		4.10757e-02	511.7205	6.6976e-02

Figure	s	59	Isotherm	of	WUF-44-13PSM.
IIGUIC	•	55	130111111	U.	

BET summary	WUF-44-13	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.02657e-03	491.4879	1.3172e-02
Slope	1.475	9.04756e-03	499.7826	1.4617e-02
Intercept	1.214e-03	9.99161e-03	505.7598	1.5966e-02
Correlation coefficient, r	0.999983	1.21072e-02	515.5884	1.9019e-02
C constant	1215.914	1.50985e-02	524.9823	2.3364e-02
Surface Area	2359.630 m ² /g	2.90352e-02	545.3957	4.3869e-02
		4.26486e-02	554.9351	6.4231e-02

BET summary	WUF-44-13PSM	Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
		8.08400e-03	487.0586	1.3388e-02
Slope	1.517	9.07299e-03	493.0475	1.4858e-02
Intercept	1.060e-03	9.96137e-03	497.3771	1.6186e-02
Correlation coefficient, r	0.999992	1.20899e-02	505.3842	1.9375e-02
C constant	1432.060	1.51430e-02	513.4657	2.3959e-02
Surface Area	2294.591 m²/g	2.93866e-02	532.4042	4.5500e-02
		4.27379e-02	541.4736	6.5971e-02

WUF Code	BET_{SA} (m ² /g)
$Zn_4O(L^2)_3$	2062*
Zn4O(L ²)3PSM	2103
WUF-44-89	2018
WUF-44-89PSM	2099
WUF-44-82	2118
WUF-44-82PSM	2149
WUF-44-75	2021
WUF-44-75PSM	2237
WUF-44-65	2116
WUF-44-65PSM	2117
WUF-44-56	2236
WUF-44-56PSM	2220
WUF-44-47	2150
WUF-44-47PSM	2181
WUF-44-33	2160
WUF-44-33PSM	2174
WUF-44-22	2263
WUF-44-22PSM	2174
WUF-44-13	2359
WUF-44-13PSM	2294
WUF-35	2166#
WUF-35PSM	2150#

 Table S 4 Apparent BET Surface areas of the MOFs before and after dual modification.

* We reported a value of 1999 m^2/g in Bryant et al.³ We re-prepared this sample during this study.

We reported these values in Ablott et al.¹

7 References

¹ T. A. Ablott, R. Webby, D. R. Jenkinson, A. Nikolich, L. Liu, H. Amer Hamzah, M. F. Mahon, A. D. Burrows and C. Richardson, *Inorg. Chem.*, 2022, **61**, 1136-1144.

² A. D. Burrows, S. O. Hunter, M. F. Mahon and C. Richardson, *Chem. Commun.*, 2013, 49, 990-992.

³ M. R. Bryant, T. Cunynghame, S. O. Hunter, S. G. Telfer and C. Richardson, *Inorg. Chem.*, 2021, 60, 11711-11719.