Electronic Supplementary Information (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2024

## **Supporting Information**

# Activating FeMoO<sub>4</sub> nanosheet arrays by partial nickel substitution for efficient electrocatalytic seawater oxidation

Jun-Ya Gao,<sup>a,#</sup> Yin-Lei Ma,<sup>a,#</sup> Guang-Sheng Qian,<sup>a</sup> Meng-Ying Si,<sup>a</sup> Ling-Li Han,<sup>a</sup> and

Ji-Sen Li<sup>a, b,\*</sup>

<sup>a</sup>School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu

273155, P. R. China

<sup>b</sup>Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China

<sup>#</sup>These authors contributed equally to this work.

\*Corresponding authors. E-mail: senjili@sina.com (J.-S. Li)

#### **EXPERIMENTAL SECTION**

Synthesis of FNMO/NF. In typical procedure, a piece of NF (1 cm  $\times$  3 cm) was pre-treated sequentially with hydrochloric acid, acetone, and deionized water, respectively. Then, 50 mL deionized water consisting of 811 mg FeCl<sub>3</sub>·6H<sub>2</sub>O, 242 mg L-cysteine, and 618 mg Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O was prepared by ultrasonication and transferred into a Teflon reactor. Next, the treated NF was soaked into the mixture and heated at 170 °C for 12 h. The Fe<sub>x</sub>Ni<sub>1-x</sub>MoO<sub>4</sub> (named FNMO/NF) was obtained by washing with ethanol and water for several times, and then dried at 60 °C in a vacuum oven.

**Synthesis of FMO/NF and NMO/NF.** The fabrication of FMO/NF and NMO/NF are similar to that of FNMO/NF apart from using FeCl<sub>2</sub>·4H<sub>2</sub>O and NiCl<sub>2</sub>·6H<sub>2</sub>O instead of FeCl<sub>3</sub>·6H<sub>2</sub>O, respectively.

Synthesis of Pt/C/NF and IrO<sub>2</sub>/NF. 20 mg of commercial Pt/C was added into a mixture (1930  $\mu$ L ethanol and 70  $\mu$ L Nafion) and thus form a uniform ink by ultrasonication. Then, a certain amount of the ink was coated on a piece of NF (1 cm × 1 cm) with a loading mass of 1.4 mg cm<sup>-2</sup>. IrO<sub>2</sub>/NF was also prepared via the same way.

**Instruments.** Power X-ray diffraction (PXRD) patterns were achieved by D/max/2500PC. Scanning electron microscope (SEM, Regulus 8100), high-resolution transmission electron microscopy (HRTEM, JEM-F200), thermogravimetric analysis (TG, PE DSC8500) and X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa) were performed to examine the morphology and component of the resultant materials.

**Electrochemical Measurements.** The Electrochemical measurements were performed on an electrochemical workstation (CHI 760E) with a three-electrode setup, wherein the self-supported catalyst was served as the working electrode, a graphite rode as the counter electrode, and the reversible hydrogen electrode as reference electrode, respectively. The linear sweep voltammetry (LSV) tests were carried out at a scan rate of 2 mV s<sup>-1</sup> in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1.0 M KOH + seawater electrolytes toward the OER, respectively. The double-layer capacitance ( $C_{dl}$ ) was assessed according to cycle voltammetry (CV) curves with different scan rates from 20 to 100 mV s<sup>-1</sup>.

### S1. Figures in Supporting Information



Fig. S1 PXRD pattern of FNMO scraped from NF.



Fig. S2 (a) PXRD patterns and (b) the magnified patterns of FNMO/NF and FMO/NF.



When FNMO is heated in the temperature range of 35-600  $^{\circ}$ C (Fig. S3, ESI<sup>†</sup>), the mass loss is ascribed to the removal of water (35-180  $^{\circ}$ C) and phase transformation of MoO<sub>x</sub> and FeO<sub>x</sub> oxides (180-600  $^{\circ}$ C).



Fig. S4 (a-c) Cyclic voltammograms of NMO/NF, FMO/NF, and FNMO/NF, respectively.



Fig. S5 Stability test of FNMO/NF in 1 M KOH.



Fig. S6 Gas collection device toward the OER and digital photographs of  $O_2$  produced at different time.



Fig. S7 Faraday efficiency of FNMO/NF toward the OER.



Fig. S8 PXRD of FNMO/NF after stability testing.



Fig. S9 SEM image of FNMO/NF after stability testing.



Fig. S10 High-resolution XPS spectrum of Fe 2p (a) and Mo 3d (b) for FNMO after stability testing.



Fig. S11 Stability tests of FNMO/NF in 1 M KOH + seawater.



**Fig. S12** (a) LSV curves of Pt/C/NF||FNMO/NF and  $Pt/C/NF||IrO_2/NF$  for overall seawater splitting and (b) long-term durability test at a voltage of 1.66 V in 1 M KOH + seawater. (c-e) 1.5 V battery, wind, and solar energy drive the overall seawater splitting.

### S2. Tables in Supporting Information

| Table S1. | Comparison | of catalytic Ol | ER performance | e of FNMO/NF | and other reported | catalysts in |
|-----------|------------|-----------------|----------------|--------------|--------------------|--------------|
|-----------|------------|-----------------|----------------|--------------|--------------------|--------------|

| Catalyst                                              | Overpotential (mV)       | Overpotential (mV)        | Tafel                  | Reference                                         |  |
|-------------------------------------------------------|--------------------------|---------------------------|------------------------|---------------------------------------------------|--|
|                                                       | at 10 mA cm <sup>2</sup> | at 100 mA cm <sup>2</sup> | (mV dec <sup>-</sup> ) |                                                   |  |
| FNMO/NF                                               | 215                      | 251                       | 32.8                   | This work                                         |  |
| NiFe-Ppy                                              | 229                      | 268                       | 38                     | Angew. Chem. Int. Ed. 2024, e202409628            |  |
| Fe/P-NiMoO <sub>4</sub>                               | 213                      | 327                       | /                      | Appl. Catal. B Environ. Energy 2024, 347, 123805. |  |
| FeMoO <sub>4</sub> /NF                                | /                        | 263                       | 39                     | Nano Res. 2024, 17, 2270-2275.                    |  |
| 60Fe/NF                                               | /                        | 340                       | 57                     | Adv. Energy Mater. 2023, 13, 2301921.             |  |
| Ru-Ni(Fe)P <sub>2</sub> /NF                           | /                        | 251                       | 91.6                   | Small 2023, 19, e2300030.                         |  |
| P-Mo-Co <sub>3</sub> O <sub>4</sub> @CC               | 276                      | 315                       | 53.9                   | Carbon Energy. 2022; 1, 14.                       |  |
| MoNiFe-27%                                            | 242                      | 280                       | 23                     | Nat. Commun. 2022, 13, 2191.                      |  |
| NiFe LD-PMo12                                         | 206                      | 249                       | 47.5                   | Adv. Mater. 2022, 34, 2110696.                    |  |
| CF-FeSO                                               | 192                      | 230                       | 40.1                   | Nat. Commun. 2022, 13, 605.                       |  |
| CoNiFeCu                                              | 291                      | 345                       | 43.9                   | Adv. Mater. 2022, 2109108.                        |  |
| CoOOH/CoS                                             | 240                      | 360                       | 86.4                   | Angew. Chem. Int. Ed. 2022, 61, e202117178.       |  |
| Ni-Mo-B HF                                            | 293                      | 290                       | 79                     | Adv. Funct. Mater. 2021, 2107308.                 |  |
| FeP-CoP/NC                                            | 230                      | 390                       | 73                     | Nat. Commun. 2021, 12, 4143.                      |  |
| NiCoFe-NDA/NF                                         | 215                      | 270                       | 50.7                   | Energy Environ. Sci. 2021, 14, 6546.              |  |
| NiFe LDH/NiS <sub>2</sub>                             | 220                      | 386                       | 60.1                   | Adv. Energy Mater. 2021, 2102353.                 |  |
| CoCu-MOF NBs                                          | 260                      | 320                       | 63.5                   | Angew. Chem. Int. Edit. 2021, 60, 26397.          |  |
| MOF-Fe/Co                                             | 220                      | 300                       | 52                     | Angew. Chem. Int. Edit. 2021, 60, 12097.          |  |
| NiCo <sub>2x</sub> Fe <sub>x</sub> O <sub>4</sub> NBs | 274                      | 308                       | 42                     | Angew. Chem. Int. Edit. 2021, 60, 11841.          |  |
| NiCe@NiFe                                             | 220                      | 254                       | 59.9                   | Appl. Catal. B Environ. 2020, 260, 118199.        |  |

1 M KOH solution.

| Catalyst                                                              | Overpotential (mV)<br>at 100 mA cm <sup>-2</sup> | Reference                                    |  |
|-----------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|--|
| FNMO/NF                                                               | 269                                              | This work                                    |  |
| FeMoO <sub>4/</sub> NF                                                | 303                                              | Nano Res. 2024, 17, 2270.                    |  |
| Fe-doped Ni&Ni <sub>0.2</sub> Mo <sub>0.8</sub> N                     | 234                                              | Energy Environ. Sci. 2022, 15, 3945.         |  |
| NiCoHPi@Ni3N/NF                                                       | 396                                              | ACS Appl. Mater. Interfaces 2022, 14, 22061. |  |
| Ni(OH)2-TCNQ/GP                                                       | 382 Nano Res. 2022, 15, 6084.                    |                                              |  |
| Mo-Co <sub>x</sub> P                                                  | 520                                              | Mater. Today Nano 2022, 18, 100216.          |  |
| NiMoO4@NiFe-LDH                                                       | 251                                              | Sustain. Energ. Fuels. 2022, 6, 5521.        |  |
| BZ-NiFe-LDH/CC                                                        | 300                                              | Nano Res. Energy 2022, 1, e9120028.          |  |
| S-NiMoO4                                                              | 315                                              | J. Colloid Interf. Sci. 2022, 613, 349.      |  |
| Fe-Co <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | 287                                              | Chem. Commun. 2022, 58, 6761.                |  |
| CoPx@FeOOH                                                            | 290                                              | Appl. Catal. B Environ. 2021, 294, 120256.   |  |
| NiMoN@NiFeN/NF                                                        | 307                                              | Nat. Commun. 2019, 10, 10.                   |  |
| NiCoS/NF                                                              | 360                                              | Appl. Catal. B Environ. 2021, 291, 120071.   |  |

**Table S2.** Comparison of catalytic OER performance of FNMO/NF and other reported catalysts in1 M KOH + seawater.