Electronic Supporting Information

From one to two: In-site constructing C3N5-Poly (triazine imide) heterojunction for enhanced O² activation

Shiling Xu,^a Ziheng Yang,^a Laiqing Zhang,^a Xiaorui Zhang,^a Zikang Zeng,^a Wenxuan Wang,^a Yujun *Liang,*^a Lan Yuan* ^b and Chuang Han* a*

*^a*Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074,

China

*^b*School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

***Corresponding author, E-mail: yujunliang@sohu.com (Yujun Liang); yuanlan@wust.edu.cn (Lan Yuan) hanc@cug.edu.cn (Chuang Han)

Contents list:

Experimental Section

Fig. S1 The SEM image of (a) C_3N_5 . (b) PTI

Fig. S2 TEM images of (a) C_3N_5 -PTI and (b) C_3N_5 . (c) HR-TEM images of C_3N_5 -PTI.

Fig. S3 N_2 adsorption-desorption isotherms.

Fig. S4 (a) X-ray photoelectron spectra (XPS) of C_3N_5 , PTI and C_3N_5 -PTI. (b) FT-IR spectra of C_3N_5 , C₃N₅-PTI and PTI.

Fig. S5 Kubelka-Munk plots of (a) C_3N_5 and (b) PTI. Mott-Schottky curves of (c) C_3N_5 and (d) PTI. **Fig. S6** Band structure alignment of C_3N_5 and PTI.

Fig. S7 (a) ESR spectra of C_3N_5 -PTI, PTI and C_3N_5 obtained in the presence of DMPO as an electrontrapping agent. (b) Photoluminescence (PL) spectra of as-samples in the presence of terephthalic acid (excitation wavelength: 320 nm). (c) The degradation of DPBF in C_3N_5 , PTI and C_3N_5 -PTI systems. **Fig.** S8 (a) The UPS spectra of C_3N_5 and PTI, (b) Schematic illustration of the band positions for C_3N_5 and PTI.

Fig. S9 K_f , K_d fitting curve of (a) C_3N_5 -PTI, (b) PTI and (c) C_3N_5 , (d) H_2O_2 decomposition rate of the prepared samples. (y=[H₂O₂], a=K_f/K_d, b=K_d)

Fig. S10 (a) The linear relationship of concentration of H_2O_2 vs. UV-vis absorbance and (b) Standard curves for different concentration of H_2O_2

Equation S1-2.

Table S1. Surface area and pore information of the prepared samples.

Table S2. Comparison of photocatalytic H₂O₂ yields over different semiconductor catalysts.

References

Experimental Section:

Materials. 3-amino-1,2,4-triazole (3-AT, 99%, Energy Chemical), Potassium chloride (KCl, AR, Sinopharm), Lithium chloride (LiCl, 99%, Meryer), Potassium iodide (KI, AR, Sinopharm), Ammonium molybdate hydrate $(H_{32}Mo_7N_6O_{28}$, 99%, Energy Chemical), Ethanol (C₂H₅OH, AR, Sinopharm), Hydrogen peroxide (30% H₂O₂, AR, Sinopharm), Silver nitrate (AgNO₃, AR, Sinopharm), P-benzoquinone (p-BQ, AR, Sinopharm), 1,3-Diphenylisobenzofuran (DPBF, 96%, Bide), Terephthalic acid (TPA, 99%, Energy Chemical)

Preparation.

(I) Preparation of C_3N_5 -PTI heterojunction nanomaterials

The C_3N_5 -PTI heterojunction was synthesized by two-step thermal polycondensation of 3-amino-1,2,4-triazole (3-AT) with KCl and LiCl. 3-AT (2 g) was heated to 520 °C for 3 h at a rate of 3 °C/min in a muffle furnace. Then, 0.6 g sample was ground entirely with 6 g eutectic salt mixture of 2.7 g LiCl and 3.3 g KCl for 20 min. Next, the mixture was calcined to 500 °C for 3 h at a rate of 3 °C /min in a crucible under air. Following that, the collected samples were ground fully and followed by washing twice alternately with hot deionized water and ethanol to ensure the removal of remaining salts. Subsequently, the sample was dried at 60 °C overnight.

(II) Preparation of C_3N_5

 C_3N_5 was synthesized by thermal polymerization of 3-AT. A porcelain crucible was loaded with 3-AT(2 g) and calcined at 520 °C for 3 h in air at a heating rate of 10 °C/min.

(III) Preparation of poly triazine imide (PTI)

Poly triazine imide (PTI) photocatalyst was synthesized via molten salt methods. 2 g of 3-AT was ground completely with 5 g eutectic salt mixture of 2.26 g LiCl and 2.74 g KCl for 20 min. Then, the mixture was calcined to 600 °C for 3 h at a rate of 10 °C /min in a crucible under air. The subsequent procedure was similar to C_3N_5 -PTI.

Characterization.

The phase and crystal structure of as-samples were observed by X-ray diffraction (XRD, AXS D8- Focus, Bruker, Germany) with the 2θ range from 5° to 60°. The morphology and microstructure of the samples were observed by transmission electron microscopy (TEM, Talos F200x, Thermo Fisher Scientific) and field emission scanning electron microscope (FE-SEM, SU8010, Hitachi, Japan). Elemental maps and energy dispersive (EDS) spectra of the catalysts were obtained by scanning electron microscopy. The X-ray photoelectron spectroscopy (XPS, K-alpha, Thermo Scientific, America) spectra were applied to analyze the element compositions and chemical states. The pore size, pore volume, and surface area of samples were obtained by the Brunauer-Emmett-Teller (BET, V-sorb 2800P, China) instrument. The light absorption characteristics of the prepared samples were analyzed by UV-Vis diffuse reflectance spectroscopy (DRS, UV-2550 PC). The photoluminescence (PL) spectra of the prepared samples were measured by a fluorescence spectrometer (Fluoromax- 4 P, Horiba Jobin Yvon), using an emission wavelength of 365 nm. The free radicals of $\cdot O_2$ were recorded on electron spin resonance (ESR, Bruker EMXplus-6/1) using DMPO as the spin-trapper agent. The electrochemical properties of samples were tested by an electrochemical workstation (CHI-760E,

Shanghai). The work function of samples was characterized by Ultraviolet photoelectron spectroscopy (UPS, PHI5000 VersaProbe III).

H2O² detection

The photocatalytic hydrogen peroxide production reactions were performed under the 5W white LED lamp irradiation. In a typical operation, 5 mg of the photocatalysts were ultrasonically dissolved in 33 mL of aqueous solution containing 10 vol% ethanol by ultrasound. The obtained solution was stirred and air bubbled to obtain an oxygen environment. During the reaction, 2 mL of the suspension was collected every 15 min and the photocatalyst material was removed using a 0.22 μL nylon needle filter. H₂O₂ concentration was determined by the iodometric method. 1 mL of suspension was taken out and mixed with 2 mL of 0.1M KI and 0.05 mL of 0.01M $H_{32}Mo_7N_6O_{28}$ solution. The absorbance was detected by UV-vis diffuse reflectance spectra. The concentration of H_2O_2 was calculated by the equation given in **Fig. S10**.

H2O² decomposition detection methods

The reaction conditions for the H_2O_2 decomposition experiments were referred to previous works with minor revisions.^{[1](#page-11-0)-[3](#page-11-1)} Specifically, experiments were carried out by adding 5 mg of the photocatalyst samples to 1 mL 8 mM H_2O_2 solution without air bubbles. After 90 min of light exposure, 2 mL of the suspension was collected, and the photocatalytic material was removed using a 0.22 μL nylon needle filter. The H_2O_2 concentration was determined by the iodometric method and was used to assess the decomposition of H_2O_2 by UV-Vis reflectance spectra.

Electrochemical measurements

Electrochemical tests were performed on an electrochemical workstation (CHI-760E, Shanghai). The 10 mg catalyst was dispersed into 250 μL ethanol, followed by 20 μL Nafion solution (5 wt%), and then the mixture was ultrasonic for 20 min to achieve a homogeneous catalyst. Finally, the obtained catalyst was uniformly dripped onto the FTO conductive glass and dried to form a working electrode. Generally, the Ag/AgCl electrode is used as the reference electrode and the Pt wire as the counter electrode. 0.1 M Na₂SO₄ solution was used as the electrolyte and a 300 W xenon lamp was used as the light source. In addition, the impedance test was measured using 0.5 M KCl solution and 5mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ as the electrolyte solution.

The position of the guide tape is calculated by the following formula:

 $E_{CB}=E_{fb}-0.1$

 $E_{NHE} = E_{(Ag/AgCl)} + 0.197$

Fig. S1 The SEM image of (a) C_3N_5 . (b) PTI

Fig. S2 TEM images of (a) C_3N_5 -PTI and (b) C_3N_5 . (c) HR-TEM images of C_3N_5 -PTI.

Fig. S3 N_2 adsorption-desorption isotherms.

Fig. S4 (a) X-ray photoelectron spectra (XPS) of C_3N_5 , PTI and C_3N_5 -PTI. (b) FT-IR spectra of C_3N_5 , C_3N_5 -PTI and PTI.

Notes: As shown in Fig. S4b, the distinctive stretching vibrations at band locations of 600-700 cm-1 (shaded by grey) indicate the unique structure of the PTI.[4](#page-11-2) The obvious adsorption peak at 806 cm-1 corresponded to the out-of-plane bending vibration of the heptazine units,^{[5](#page-11-3)} while the broad peaks in the range of 3000-3600 cm⁻¹ (shaded by orange) were assignable to the absorbed H_2O molecules and terminal amino groups.^{[6](#page-11-4)} Furthermore, the stretching vibration modes of C-N heterocycles were the source of the strongest absorption bands in the 1200-1[7](#page-11-5)00 cm⁻¹ area.⁷ Notably, the spectra of the C₃N₅-PTI and PTI showed a clear peak at 2175 cm⁻¹, which was attributed to the terminal cyano groups (-C≡N) produced by the 3-AT following ammonia loss during calcination in the alkali metal chloride molten solution.[8](#page-11-6)

Fig. S5 Kubelka-Munk plots of (a) C_3N_5 and (b) PTI. Mott-Schottky curves of (c) C_3N_5 and (d) PTI.

Fig. S6 Band structure alignment of C_3N_5 and PTI.

Fig. S7 (a) ESR spectra of C_3N_5 -PTI, PTI and C_3N_5 obtained in the presence of DMPO as an electron-trapping agent. (b) Photoluminescence (PL) spectra of as-samples in the presence of terephthalic acid (excitation wavelength: 320 nm). (c) The degradation of DPBF in C₃N₅, PTI and C_3N_5 -PTI systems.

Notes: As shown in Fig. S7, the dominant ROSs vary across different catalysts, which can be attributed to the following reasons. First, the oxidation potential of PTI is very positive (1.96 V), which is conductive to produce \bullet OH through oxidation of H₂O (1.9 V). Secondly, the synthesis temperature of C_3N_5 material (520 °C) is relatively low in contrast to PTI (600 °C), and there are more surface functional groups, forming many defective states with low redox capability, which is unfavorable for charge transfer reactions for the production of \cdot OH and \cdot O₂⁻ while promoting the ¹O₂ production through energy transfer. Finally, for C_3N_5 -PTI heterojunction, the charge transfer capability at the heterojunction interface is significantly enhanced, which facilitates the production of H_2O_2 through consecutive two-step single-electron reduction of O₂ (i.e., O₂ + e⁻ → \cdot O₂⁻, \cdot O₂⁻ + e⁻ + 2H⁺ → H₂O₂) and one-step two-electrons reduction of O₂ (i.e., O₂ + e⁻ + 2H⁺ \rightarrow H₂O₂).

Fig. S8 (a) The UPS spectra of C_3N_5 and PTI, (b) Schematic illustration of the band positions for C_3N_5 and PTI.

Fig. S9 K_f , K_d fitting curve of (a) C_3N_5 -PTI, (b) PTI and (c) C_3N_5 , (d) H_2O_2 decomposition rate of the prepared samples. ($y=[H_2O_2]$, a=K_f/K_d, b=K_d)

Fig. S10 (a) The linear relationship of concentration of H_2O_2 vs. UV-vis absorbance and (b) Standard curves for different concentration of H_2O_2

Equation S1:

$$
\frac{1}{c^2} = \frac{2}{e\varepsilon\varepsilon_0 N_D}(-E + E_{fb} - \frac{KT}{e})
$$
(1)

Where C, e, ε , ε_0 , N_D, E, E_{fb}, K and T represent the capacitance of the space charge layer, the electron charge, the relative permittivity, the vacuum permittivity, the donor density, the applied potential, the flat-band potentials, the Boltzamann constant and the thermodynamic temperature, respectively.[9](#page-11-7)

Equation S2:

$$
[H_2O_2] = \frac{K_f}{K_d} \times \{1 - \exp\left(-K_d \times t\right)\}
$$
 (2)

Where $[H_2O_2]$, K_f , K_d and t represent the hydrogen peroxide concentration, the formation rate constant, the decomposition rate constant, the reaction time, respectively. Zero-order and first-order kinetic studies were used to simulate the decomposition behavior of H_2O_2 on all samples.^{[10](#page-11-8)}

Samples	Surface area $(m^2 g^{-1})$	Adsorption cumulative volume $(cm3 g-1)$	BJH Adsorption average pore width (nm)	
C_3N_5	7.2638	0.07746	13.94	
PTI	13.3457	0.166563	13.18	
C_3N_5 -PTI	55.6896	0.328717	8.12	

Table S1. Surface area and pore information of the prepared samples.

Materials	Atmos phere	Formed H_2O_2	Reaction system	Irradiation conditions	Ref.
C_3N_5 -PTI	Air	1675 \mu mol/g (90 min)	Catalyst: 5 mg Scavenger: 10 vol.% EtOH	5W white LED lamp (72.9 mW/cm^2)	This work
$g - C_3 N_4$ Nanosheet	Air	43.07μ mol/g/h	Catalyst: 0.03 g Scavenger: IPA	$\lambda = 400 - 700$ nm	11
C_3N_5/TiO_{2-x}	O ₂	2.93 umol/L/min	Catalyst: 4 cm ⁻¹ Scavenger: 10 vol.% EtOH	300 W Xe lamp	12
$g - C_3 N_4$	O ₂	170μ mol/L/h	Catalyst: 0.1 g	300 W Xe lamp	13
$2\%Bi/Bi_2O_3(a)g$ - C_3N_4	O ₂	92.51 μ mol/L/h	Catalyst: 50 mg	λ >420 nm	14
$CN-S$	O ₂	201.45 μ mol/g/h	Catalyst: 20 mg Scavenger: 0.1 mmol	20 W LED lamp (420 nm)	15
$g - C_3N_4$ nanosheets	O ₂	1083μ mol/g/h	Catalyst: 0.05 g Scavenger: 10 vol.% EtOH	Simulated sunlight (filter: $AM1.5$)	16
CN/rGO(a) BPQDs-0.04		181.69 μmol/L (3 h)	Catalyst: 50 mg	300 W Xe lamp $(\lambda = 420 - 780)$ nm)	17
$g - C_3N_4/PDI$	O ₂	30 μmol (48 h)	Catalyst: 50 mg	λ >420 nm (26.9 W/m ²)	18
CN/Zn-OAC	O ₂	77.5μ mol/h	Catalyst: 10 mg Scavenger: 20 vol.% EtOH	300 W Xe lamp $(\lambda > 400 \text{ nm})$	19
$C \equiv N - CN/IS/6\%$ Ppy	O ₂	895 µmol/L/h	Catalyst: 50 mg Scavenger: 10 vol.% IPA	300 W Xe lamp $(\lambda > 420$ nm)	20
$s-B_{0.3}CN$	O ₂	$108.4 \mu M (2 h)$	Catalyst: 30 mg	300 W Xe lamp $(\lambda \geq 420 \text{ nm})$	21
Cv-PCNNS	O ₂	984.8 µmol/L/h	Catalyst: 50 mg Scavenger: 10 vol.% IPA	300 W Xe lamp $(\lambda = 420)$ $nm, 140 mW/cm^2$	22
$PCN-NV_C$	O ₂	25.1μ mol/h	Catalyst: 50 mg Scavenger: 10 vol.% MeOH	300 W Xe lamp $(\lambda > 420 \text{ nm})$	23
$UiO-66-B$	O ₂	$1002 \mu \text{mol/g/h}$	Catalyst: 30 mg/100 mL Scavenger: 10 vol.% IPA	300 W Xe lamp (filter: AM1.5)	24
$NH2-MIL-125$	O ₂	$917 \mu \text{mol/g/h}$	Catalyst: 5 mg/20 mL	500 W Xe lamp $(\lambda > 420$ nm)	25
ZnO/PDA		1011.4 μ mol/L/h	Catalyst: 20 mg/50 mL Scavenger: Glycol	300 W Xe lamp	26
Pd/A/BiVO ₄	O ₂	805.9μ mol/g/h	Catalyst: 100 mg/100 mL	300 W Xe lamp $(\lambda > 420$ nm, 0.4 $W/cm2$)	27
Au/WO ₃		544 μ M (5 h)	Catalyst: 50 mg/50 mL Scavenger: $4 \text{ vol.}\% \text{ CH}_3\text{OH}$	400 W metal halide lamp $(\lambda \geq 420 \text{ nm}, 4$ mW/cm^2)	28
$SI-PIL-TiO2$	O ₂	$1601 \mu \text{mol/g/h}$	Catalyst: 10 mg/50 mL LEV	250 W Xe lamp	29
$CuFe2O4/ZnIn2S4$	O ₂	$2545.4 \mu \text{mol/g}$	Catalyst: 1 g 50 mL ethanol+45 mL pure water	350 W Xe lamp $(\lambda > 420 \text{ nm})$	30

Table S2. Comparison of photocatalytic H₂O₂ yields over different semiconductor catalysts.

÷.

References:

- J. Yuan, N. Tian, Z. Zhu, W. Yu, M. Li, Y. Zhang, H. Huang, Chem. Eng. J., 2023, **467**, 143379.
- 2 F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang, P. Dong, Y. Wang, C. Zhao, S. Wang, J. Zhang, S. Wang, Adv. Mater., 2024, **36**, 2307490.
- Y. Luo, C. Liu, J. Liu, X. Liu, Y. Zhou, X. Ou, B. Weng, J. Jiang, B. Han, Chem. Eng. J., 2024, , 148494.
- X. Liang, S. Xue, C. Yang, X. Ye, Y. Wang, Q. Chen, W. Lin, Y. Hou, G. Zhang, M. Shalom, Z. Yu, X. Wang, Angew. Chem. Int. Ed., 2023, **62**, e202216434.
- Y. Shen, X. Du, Y. Shi, L.J. Nguetsa Kuate, Z. Chen, C. Zhu, L. Tan, F. Guo, S. Li, W. Shi, Adv. Powder Mat., 2024, **3**, 100202.
- J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu, X. Xie, Appl. Catal. B, 2020, **262**, 118252.
- B. Zhai, H. Li, G. Gao, Y. Wang, P. Niu, S. Wang, L. Li, Adv. Funct. Mater., 2022, **32**, 2207375.
- H. Liang, A. Wang, R. Cheng, F. Chen, P. Kannan, C. Molochas, P. Tsiakaras, Chem. Eng. J., 2024, **489**, 151145.
- J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu and X. Xie, Appl. Catal. B, 2020, **262**, 118252.
- W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu and Y. Ao, Adv. Funct. Mater., 2022, **32**, 2205119.
- W. Liu, C. Song, M. Kou, Y. Wang, Y. Deng, T. Shimada and L. Ye, Chem. Eng. J., 2021, **425**, 130615.
- W. Gan, X. Fu, J. Jin, J. Guo, M. Zhang, R. Chen, C. Ding, Y. Lu, J. Li and Z. Sun, J. Colloid Interface Sci., 2024, **653**, 1028-1039.
- Z. Zhu, H. Pan, M. Murugananthan, J. Gong and Y. Zhang, Appl. Catal. B, 2018, **232**, 19-25.
- X. Yan, G. Yu, C. Xing, Y. Hu, H. Liu and X. Li, Catal. Sci. Technol., 2023, **13**, 3094-3105.
- B. Zhang, S. Wang, C. Qiu, Y. Xu and J. Zuo, Appl. Surf. Sci., 2022, **573**, 151506.
- L. Zhou, J. Feng, B. Qiu, Y. Zhou, J. Lei, M. Xing, L. Wang, Y. Zhou, Y. Liu and J. Zhang, Appl. Catal. B, 2020, **267**, 118396.
- J. Xiong, X. Li, J. Huang, X. Gao, Z. Chen, J. Liu, H. Li, B. Kang, W. Yao and Y. Zhu, Appl. Catal. B, 2020, **266**, 118602.
- Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka and T. Hirai, Angew. Chem., Int. Ed., 2014, **53**, 13454-13459.
- Y. Li, Y. Guo, G. Fan, D. Luan, X. Gu and X. Lou, Angew. Chem., Int. Ed., 2024, **63**, e202317572.
- R. Li, K. Ba, D. Zhang, Y. Shi, C. Li, Y. Yu and M. Yang, Small, 2024, **20**, 2308568.
- Z. Zhang, P. Luo, L. Gan, Y. Zhao, X. Wang, H. Peng and J. Peng, Appl. Surf. Sci., 2024, **649**, 159118.
- R. Li, M. Zheng, X. Zhou, D. Zhang, Y. Shi, C. X. Li and M. Yang, Chem. Eng. J., 2023, **464**, 142584.
- F. Lin, T. Wang, Z. Ren, X. Cai, Y. Wang, J. Chen, J. Wang, S. Zang, F. Mao and L. Lv, J. Colloid Interface Sci., 2023, **636**, 223-229.
- Y. Li, F. Ma, L. Zheng, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Mater. Horiz., 2021, **8**, 2842-2850.
- Y. Zheng, H. Zhou, B. Zhou, J. Mao, Y. Zhao, Catal. Sci. Technol., 2022, **12**, 969-975.
- G. Han, F. Xu, B. Cheng, Y. Li, J. Yu, L. Zhang, Acta Phys. - Chim. Sin., 2022, **38**, 1-10.
- M. Sun, X. Wang, Y. Li, H. Pan, M. Murugananthan, Y. Han, J. Wu, M. Zhang, Y. Zhang, Z. Kang, ACS Catal., 2022, **12**, 2138-2149.
- Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang, Y. Xu, Appl. Catal. B Environ., 2021, **284**, 119691.
- Y. Cheng, J. Jin, H. Yan, G. Zhou, Y. Xu, L. Tang, X. Liu, H. Li, K. Zhang, Z. Lu, Angew. Chem. Int. Ed., 2024, **63**, e202400857.
- D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, Chem. Eng. J., 2024, **482**, 149165.