Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

SUPPLEMENTARY INFORMATION

Asymmetric cyclopropanation via electro-organocatalytic cascade

Anastasiya Krech, ‡ Marharyta Laktsevich-Iskryk, ‡ Nora Deil, Mihhail Fokin, Mariliis Kimm and Maksim Ošeka*

‡ These authors contributed equally.

Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.

E-mail: maksim.oseka@taltech.ee

Table of contents

1.	Gen	eral information	S3
2.	Opti	mization of reaction conditions	S4
2	.1.	Screening of EtOH conditions	S4
2	.2.	Screening of additional parameters for standard reaction conditions	S6
2	.3.	Screening of organocatalysts	S7
3.	Effe	ct of temperature on reaction outcome	S8
3.	Kine	tic studies of the model reaction	S9
4.	Kine	tic studies of 4a cyclopropanation	S10
5.	Cyc	lic voltammetry	S11
6.	Sub	strate scope limitations	S13
7.	Alte	rnative mechanism	S14
8.	Gen	eral procedure	S15
9.	Refe	erences	S19
10.	Ν	MR spectra	S20
11.	Н	PLC chromatograms	S34

1. General information

¹H and ¹³C NMR spectra were recorded on a Bruker Avance III instrument at 400 MHz for ¹H and 100.6 MHz for ¹³C. ¹H NMR spectra are reported in parts per million (ppm) downfield relative to CDCl₃ (7.26 ppm) and ¹³C NMR spectra are reported in ppm relative to CDCl₃ (77.16 ppm). HRMS measurements were performed on Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA, US) equipped with AJS-ESI source. Precoated silica gel plates (Merck 60 F254 or F254, Supelco Sigma-Aldrich[™]) were used for TLC analysis. Flash column chromatography was performed on a Biotage[®] Isolera Prime with silica gel Kieselgel 63–200 μm. Purchased chemicals (Sigma Aldrich, TCI, Honeywell and Fluorochem) and solvents (Honeywell, Keemiakaubandus AS, Lach:ner) were used as received.

For all electrochemical reactions, a homemade cell was used, together with a six-channel power supply (Fig. S1). The cell consists of a working electrode and a counter electrode. The material used for the electrodes were Stainless Steel electrode (316L) and Graphite AC-K800 premium Grade (purchased by IKA).

HPLC determination of enantiomeric excess was performed with an Agilent Technologies 1200 series chromatograph by using appropriate chiral columns (see below). Specific rotations were measured using an Anton Paar MCP 500 polarimeter.

Figure S1. Electrochemical reaction setup.

2. Optimization of reaction conditions

2.1. Screening of EtOH conditions

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TEAI (0.12 mmol, 40 mol%, 30.8 mg), and cinnamic acid (0.12 mmol, 17.8 mg) were dissolved in EtOH (0.1 M, 3 mL). To the resulting solution, cinnamic aldehyde (0.45 mmol, 1.5 equiv., 57 μ L) and dimethyl malonate (0.3 mmol, 1 equiv., 34 μ L) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current of 1 mA for 16 hours while stirring at 800 rpm. After completion of the reaction, the cap was removed, and the electrodes were rinsed with CH₂Cl₂. The reaction mixture was combined with the rinses, and the resulting solution was analyzed by ¹H NMR using trimethoxybenzene as an external standard.

- .			d af Da h		
Entry	Deviation from reaction conditions	3a	4a	5a	d.r. of 3a*
1	None	57	6	11	>20:1
2	3 equiv. of 1a	37	27	-	>20:1
3	nBu ₄ NI instead of nEt ₄ NI	22	7	4	>20:1
4	Me ₄ NI instead of <i>n</i> Et ₄ NI	28	5	4	>20:1
5	Me4NBr instead of <i>n</i> Et4NI	-	26	-	
6	Cat. II—IV as organocatalysts	31-52	3-16	3-11	>20:1
7	10 mol% of cat. I	42	12	4	>20:1
8	Pt as a cathode	36	25	6	>20:1
9	Graphite as a cathode	42	11	6	>20:1
10	TFA instead of cinnamic acid	47	19	-	>20:1
11	Without cinnamic acid	37	6	-	>20:1
10	At 0 °C	33	19	3	>20:1
11	Constant potential, 2 V, 16 h	27	-	7	>20:1
12	No electricity	-	52	-	
13	No halogen source	-	41	-	

Table S1. ^aYields were determined by ¹H NMR analysis of the crude reaction mixture using trimethoxybenzene as an internal standard. ^bDiastereomeric ratio of **3a** was determined by ¹H NMR analysis of the crude reaction mixture.

Figure S2. Characteristic signals of the main products and cinnamic aldehyde in ¹H NMR spectrum of the reaction mixture (**Table S1**, Entry 1).

2.2. Screening of additional parameters for standard reaction conditions

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TBACIO₄ (0.3 mmol, 1 equiv., 102.6 mg), TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH_2Cl_2 (0.1 M, 3 mL). To the resulting solution, HFIP (0.6 mmol, 2 equiv., 63.0 µL), H_2O (0.6 mmol, 2 equiv., 10.8 µL), cinnamic aldehyde (0.45 mmol, 1.5 equiv., 57 µL) and dimethyl malonate (0.3 mmol, 1 equiv., 34 µL) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current of 3.2 mA for 5 hours while stirring at 800 rpm. After completion of the reaction, the cap was removed, and the electrodes were rinsed with CH_2Cl_2 . The reaction mixture was combined with the rinses, and the resulting solution was analyzed by ¹H NMR using trimethoxybenzene as an external standard.

Finter	Deviation from an ation and discus	1	NMR yield, %	dr of Job	
Entry	Deviation from reaction conditions	3a	4a	5a	a.r. of 3a*
1	None	59	-	12	>20:1
2	10 mol% of I	37	-	-	>20:1
3	30 mol% of I	48	-	22	>20:1
4	<i>n</i> Bu ₄ NBF ₄ or <i>n</i> Bu ₄ NPF ₆ as electrolytes	55	-	14-18	>20:1
5	1 equiv. of 1a , 1 equiv. of 2a	49	-	8	>20:1
6	3 equiv. of 1a , 1 equiv. of 2a	53	6	-	>20:1
7	EtOH (2 equiv.) instead of HFIP	39	-	7	>20:1
8	EtOH (2 equiv.) instead of H_2O	47	5	10	>20:1
9	1 equiv. of H ₂ O	17	27	6	>20:1
10	4 equiv. of H ₂ O	50	-	6	>20:1
11	Constant potential, 2 V, 20 h	48	-	17	>20:1
13	At 10 °C or at 35 °C	33-49	-	0-17	>20:1
14	At 0 °C, 2 F mol ⁻¹ , 1 mA, 16 h,	53	-	6	>20:1
15	CH ₂ Cl ₂ 1:1 EtOH as solvent	29	-	-	>20:1
16	With dimethoxybiphenyl (50 mol %), RVC cathode, 2.5 F mol ⁻¹ , 3.3 mA, 6 h	63	-	13	>20:1

Table S2. ^aYields were determined by ¹H NMR analysis of the crude reaction mixture using trimethoxybenzene as an internal standard. ^bDiastereomeric ratio of **3a** was determined by ¹H NMR analysis of the crude reaction mixture.

2.3. Screening of organocatalysts

Proline-based organocatalyst (I-IX) (0.06 mmol, 20 mol%), TBACIO₄ (0.3 mmol, 1 equiv., 102.6 mg), TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH₂Cl₂ (0.1 M, 3 mL). To the resulting solution, HFIP (0.6 mmol, 2 equiv., 63.0 μ L), H₂O (0.6 mmol, 2 equiv., 10.8 μ L), cinnamic aldehyde (0.45 mmol, 1.5 equiv., 57 μ L) and dimethyl malonate (0.3 mmol, 1 equiv., 34 μ L) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current of 3.2 mA for 5 hours while stirring at 800 rpm. After completion of the reaction, the cap was removed, and the electrodes were rinsed with CH₂Cl₂. The reaction mixture was combined with the rinses, and the resulting solution was analyzed by ¹H NMR using trimethoxybenzene as an external standard.

Table S3. ^aYields were determined by ¹H NMR analysis of the crude reaction mixture using trimethoxybenzene as an internal standard. ^bDiastereomeric ratio of **3a** was determined by ¹H NMR analysis of the crude reaction mixture. n.d.: not determined. ^cEnantiomeric ratio of **3a** was determined by chiral HPLC analysis.

3. Effect of temperature on reaction outcome

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TBACIO₄ (0.3 mmol, 1 equiv., 102.6 mg), TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH₂Cl₂ (0.1 M, 3 mL). To the resulting solution, HFIP (0.6 mmol, 2 equiv., 63.0 μ L), H₂O (0.6 mmol, 2 equiv., 10.8 μ L), (*E*)-3-(4-methoxyphenyl)acrylaldehyde (0.45 mmol, 1.5 equiv., 73 mg) and dimethyl malonate (0.3 mmol, 1 equiv., 34 μ L) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current for the defined period (1-8 h at r.t., 10-48 h at 0 °C) while stirring at 800 rpm. After completion of the reaction, the cap was removed, and the electrodes were rinsed with CH₂Cl₂. The reaction mixture was combined with the rinses, and the resulting solution was analyzed by ¹H NMR using trimethoxybenzene as an external standard. Each column on the graph (Figure S3) corresponds to the result of a distinct experiment.

Figure S3. The outcome of the reaction between 1i and 2a at varying temperatures and reaction times.

3. Kinetic studies of the model reaction

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TBAClO₄ (0.3 mmol, 1 equiv., 102.6 mg) and TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH₂Cl₂ (0.1 M, 3 mL). To the resulting solution, HFIP (0.6 mmol, 2 equiv., 63.0 μ L), H₂O (0.6 mmol, 2 equiv., 10.8 μ L), cinnamic aldehyde (0.45 mmol, 1.5 equiv., 57 μ L), dimethyl malonate (0.3 mmol, 1 equiv., 34 μ L) and the internal standard dimethyacetamide (0.15 mmol, 14 μ L) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current of 2.7 mA for 7 hours while stirring at 800 rpm. The progress of the reaction was monitored by ¹H NMR by withdrawing 50 μ L samples from the reaction mixture after defined periods and diluting them with CDCl₃.

Figure S4. Kinetic studies of the model reaction.

Comment: Kinetics experiments for model reaction of cinnamic aldehyde **1a** and dimethyl malonate **2a** was performed, where we investigated the formation of intermediate **4a** (product of the first addition of malonate to iminium ion), cyclopropane **3a**, byproduct **5a** and the conversions of starting compounds over the addition of electrons and, thus, reaction time. Even before turning on the electricity, intermediate **4a** is formed in 20% yield and over the addition of 0.2 F mol⁻¹ electrons the amount of **4a** continues to increase to 30%, together with the start of the formation of product 3. Then **4a** degrades over time and it is fully consumed at **1.7** F mol⁻¹, however the amount of **3a** still increases together with its byproduct **5a**. When performing the reaction with an excess of electrons over 2 F mol⁻¹, cyclopropane **3a** does not form anymore and even starts to degrade to **5a**.

4. Kinetic studies of 4a cyclopropanation

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TBACIO₄ (0.3 mmol, 1 equiv., 102.6 mg) and TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH₂Cl₂ (0.1 M, 3 mL). To the resulting solution, HFIP (0.6 mmol, 2 equiv., 63.0 μ L), H₂O (0.6 mmol, 2 equiv., 10.8 μ L), **4a** (0.3 mmol, 1 equiv., 79.3 mg) and the internal standard dimethyacetamide (0.15 mmol, 14 μ L) were sequentially added. The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 minutes. The vial was then connected to a power supply, and the reaction mixture was electrolyzed under a constant current of 3.2 mA for 5 hours while stirring at 800 rpm. The progress of the reaction was monitored by ¹H NMR by withdrawing 50 μ L samples from the reaction mixture after defined periods and diluting them with CDCl₃.

Figure S5. Kinetic studies of the control reaction from 4a.

5. Cyclic voltammetry

The cyclic voltammetry experiments were conducted using a three-electrode cell. For analysis, a PalmSens EmStat4LR potentiostat was utilized, with a glassy carbon disc (diameter: 3 mm) serving as the working electrode, and a platinum wire as the counter electrode. Prior to each experiment, the glassy carbon disc was polished with 0.05 μ m alumina slurry in distilled water. Ag wire in 10 mM solution of AgNO₃ in *n*Bu₄NPF₆ (0.1 M) in acetonitrile was used as a reference electrode and this compartment was separated from the rest of the cell with a frit. Anhydrous acetonitrile was stored over molecular sieves and used as the solvent. Tetrabutylammonium hexafluorophosphate was recrystallized from ethanol prior to use.

The analyte was dissolved in the electrolyte (10 mM solution in 0.1 M nBu_4NPF_6 in acetonitrile, for Et₄NI, nBu_4NBr and TEMPO 2 mM solution). Before measurements, the electrochemical cell was flushed with argon, charged with 3 mL of the analyte solution, and flushed with a stream of argon for 5 min. The measurements were conducted at a scan rate of 100 mV/s. The measurements were started at the open circuit potential (OCP). The range of the scanned potentials was -0.5 / +1.5 V. CV diagrams are presented in IUPAC plotting convention. The CV spectra were realigned with respect to Fc⁺/Fc couple. Half-wave potentials and E_p (peak potentials) for all the compounds were determined with PSTrace5 software.

6. Substrate scope limitations

decomposition of staring materials, no product detected in crude NMR

Scheme S1. Substrate scope limitations.

7. Alternative mechanism

Scheme S2. Alternative mechanism of the reaction through anodic oxidation of enamine intermediate (ii) to radical cation which captures iodine radical formed in electrocatalytic cycle.

8. General procedure

Organocatalyst I (0.06 mmol, 20 mol%, 19.5 mg), TBACIO₄ (0.3 mmol, 1 equiv., 102.6 mg), TEAI (0.06 mmol, 20 mol%, 15.4 mg) were dissolved in CH_2Cl_2 (0.1 M, 3 mL). To the resulted solution were sequentially added HFIP (0.6 mmol, 2 equiv., 63.0 μ L), H_2O (0.6 mmol, 2 equiv., 10.8 μ L), Michael donor (0.3 mmol, 1 equiv.) and α , β -unsaturated aldehyde (0.45 mmol, 1.5 equiv.). The reaction vessel was sealed with a Teflon cap equipped with stainless steel and graphite electrodes (gap between electrodes of 0.5 cm) and flushed with Ar for 5 min. Then the vial was connected to a power supply and the reaction mixture was electrolyzed under a constant current for a defined time while being stirred at 800 rpm. After the completion of the reaction, the cap was removed, and the electrodes were rinsed with CH_2Cl_2 . The reaction mixture was combined with rinses and concentrated under the reduced pressure. The residue was then purified by flash chromatography to yield the corresponding cyclopropane product.

Dimethyl (2*R*,3*S*)-2-formyl-3-phenylcyclopropane-1,1-dicarboxylate (3a): synthesized according to general procedure from (*E*)-cinnamaldehyde and dimethylmalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 5\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3a** (45 mg, 0.17 mmol) as a yellowish oil in 57% yield. $\frac{1H \text{ NMR}}{14 \text{ NMR}}$ (400 MHz, CDCl₃) δ 9.47 (d, *J* = 4.5 Hz, 1H), 7.30 – 7.16 (m, 5H), 3.83 – 3.78 (m, 4H), 3.44 (s, 3H), 3.37 (dd, *J* = 7.5, 4.5 Hz, 1H); $\frac{1^3C \text{ NMR}}{125 \text{ MHz}}$ (2DCl₃): δ 196.2, 166.6, 165.2, 132.3, 128.6, 128.5, 128.2, 53.5, 53.0, 44.7, 38.4, 35.8. HPLC (Chiralpak AS-H, i-PrOH/hexane =

10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 10.8 min, t_{minor} = 12.4 min, *ee* = 96%. [α]_D ²² = - 60.5 (c = 0.12 in CHCl₃). Spectral data are in agreement with previously reported.¹

Dimethyl (2*R*,3*S*)-2-formyl-3-(4-(trifluoromethyl)phenyl)cyclopropane-1,1dicarboxylate (3b): synthesized according to general procedure from (*E*)-3-(4-(trifluoromethyl)phenyl)acrylaldehyde and dimethylmalonate at 4.4 mA for 4 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 2\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3b** (63 mg, 0.19 mmol) as a yellowish oil in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.55 (d, *J* = 4.1 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.34 (m, 2H), 3.85 – 3.81 (m, 4H), 3.50 (s, 3H), 3.43 (dd, *J* = 7.6, 4.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

195.5, 166.2, 165.0, 136.5, 130.49 (q, ² J _{CF} = 32.7 Hz), 129.1, 125.6 (q, ³ J _{CF} = 3.8 Hz), 124.01 (q, ¹ J _{CF} = 272.1 Hz, CF₃), 53.6, 53.3, 44.8, 38.1, 35.2. HPLC (Chiralpak OJ-H, i-PrOH/hexane = 4/96, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 28.6 min, t_{minor} = 41.2 min, *ee* = 96%. [α]_D ²² = -45.9 (c = 0.17 in CHCl₃). Spectral data are in agreement with previously reported.¹

Dimethyl (2*R*,3*S*)-2-(4-chlorophenyl)-3-formylcyclopropane-1,1-dicarboxylate (3c): synthesized according to general procedure from (*E*)-3-(4-(chlorophenyl)acrylaldehyde and dimethylmalonate at 4.4 mA for 4 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 3\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3c** (47 mg, 0.16 mmol) as a yellowish oil in 53% yield. <u>¹H NMR</u> (400 MHz, CDCl₃) δ 9.50 (d, *J* = 4.2 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.21 – 7.13 (m, 2H), 3.82 (s, 3H), 3.76 (d, *J* = 7.5 Hz, 1H), 3.51 (s, 3H), 3.36 (dd, *J* = 7.5, 4.2 Hz, 1H). <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 195.8, 166.4, 165.1, 134.2, 130.8,

130.0, 128.9, 53.6, 53.2, 44.7, 38.3, 35.1. HPLC (Chiralpak OJ-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 22.5 min, t_{minor} = 32.9 min, *ee* = 98%. [α]_D²² = - 32.9 (c = 0.26 in CHCl₃). Spectral data are in agreement with previously reported.²

Dimethyl (2*R*,3*S*)-2-(4-bromophenyl)-3-formylcyclopropane-1,1-dicarboxylate (3d): synthesized according to general procedure from (*E*)-3-(4-(bromophenyl)acrylaldehyde and dimethylmalonate at 5 mA for 3.5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 2\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3d** (63 mg, 0.18 mmol) as a yellowish oil in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 4.2 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.13 – 7.07 (m, 2H), 3.82 (s, 3H), 3.75 (d, *J* = 7.5 Hz, 1H), 3.51 (s, 3H), 3.36 (dd, *J* = 7.5, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.7, 166.4, 165.0, 131.8, 131.4,

130.3, 122.4, 53.6, 53.2, 44.7, 38.2, 35.2. HPLC (Chiralpak OJ-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 26.3 min, t_{minor} = 40.0 min, *ee* = 98%. [α]_D²² = - 52.9 (c = 0.16 in CHCl₃). <u>HRMS</u> (ESI) m/z [M+Na]⁺ calcd for C₁₄H₁₃BrO₅Na⁺ 362.9839, found 362.9833.

Dimethyl (2*R*,3*S*)-2-(4-fluorophenyl)-3-formylcyclopropane-1,1-dicarboxylate (3e): synthesized according to general procedure from (*E*)-3-(4-(fluorophenyl)acrylaldehyde and dimethylmalonate at 4.4 mA for 4 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 2\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3e** (47 mg, 0.17 mmol) as a yellowish oil in 56% yield. $\frac{1}{H}$ NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 4.3 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.03 – 6.95 (m, 2H), 3.82 (s, 3H), 3.80 – 3.76 (m, 1H), 3.50 (s, 3H), 3.36 (dd, *J* = 7.5, 4.3 Hz, 1H). $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 195.9, 166.5, 165.1, 162.6 (d, *J* = 247.5

Hz), 130.3 (d, J = 8.4 Hz), 128.1 (d, J = 3.1 Hz), 115.7 (d, J = 21.8 Hz), 53.5, 53.1, 44.7, 38.5, 35.0. HPLC (Chiralpak OJ-H, i-PrOH/hexane = 3/97, flow rate = 1 mL/min, $\lambda = 210$ nm): t_{major} = 38.8 min, t_{minor} = 54.3 min, *ee* = 97%. [α]_D²² = -57.4 (c = 0.16 in CHCl₃). Spectral data are in agreement with previously reported.²

Dimethyl (2*R*,3*S*)-2-formyl-3-(4-nitrophenyl)cyclopropane-1,1-dicarboxylate (3f): synthesized according to general procedure from (*E*)-3-(4-nitrophenyl)acrylaldehyde and dimethylmalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 7\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3f** (55 mg, 0.18 mmol) as a yellowish oil in 60% yield. $\frac{1\text{H NMR}}{14}$ (400 MHz, CDCl₃) δ 9.59 (d, *J* = 3.8 Hz, 1H), 8.22 – 8.10 (m, 2H), 7.47 – 7.39 (m, 2H), 3.85 (s, 4H), 3.53 (s, 3H), 3.47 (dd, *J* = 7.6, 3.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 165.9, 164.9,

147.8, 139.8, 129.7, 123.8, 53.8, 53.5, 45.0, 38.2, 35.1; HPLC (*ee* was determined after converted to the corresponding enone with Ph₃P=CHCO₂Et,² Chiralpak AS-H, *i*PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 254 nm): t_{major} = 37.2 min, t_{minor} = 27.9 min, *ee* = 94%. [α]_D²² = -46.7 (c = 0.20 in CHCl₃). Spectral data are in agreement with previously reported.²

Dimethyl (2*R*,3*S*)-2-formyl-3-(2-nitrophenyl)cyclopropane-1,1-dicarboxylate (3g): synthesized according to general procedure from (*E*)-3-(2-nitrophenyl)acrylaldehyde and dimethylmalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 7\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3g** (62 mg, 0.2 mmol) as a yellowish oil in 67% yield. <u>¹H NMR</u> (400 MHz, CDCl₃) δ 9.56 (d, *J* = 4.5 Hz, 1H), 8.05 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.62 - 7.56 (m, 1H), 7.53 - 7.47 (m, 1H), 7.38 - 7.33 (m, 1H), 4.28 (d, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 3.49 (s, 3H), 3.22 (dd, *J* = 7.8, 4.5 Hz, 1H). <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 195.6,

166.1, 165.4, 149.9, 133.6, 131.4, 129.6, 128.5, 125.2, 53.7, 53.4, 43.4, 39.2, 34.3. HPLC (Chiralpak AS-H, i-PrOH/hexane = 25/75, flow rate = 0.5 mL/min, λ = 210 nm): t_{major} = 14.0 min, t_{minor} = 31.6 min, *ee* = 97%. [α]_D²² = + 38.1 (c = 0.14 in CHCl₃). Spectral data are in agreement with previously reported.²

Dimethyl (2*R*,3*S***)-2-formyl-3-(naphthalen-2-yl)cyclopropane-1,1-dicarboxylate (3h):** synthesized according to general procedure from (*E*)-3-(naphthalen-2-yl)acrylaldehyde and dimethylmalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 5\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3h** (39 mg, 0.12 mmol) as a yellowish oil in 42% yield. <u>¹H NMR</u> (400 MHz, CDCl₃) δ 9.49 (d, *J* = 4.4 Hz, 1H), 7.77 – 7.68 (m, 3H), 7.62 (s, 1H), 7.44 – 7.38 (m, 2H), 7.28 (dd, *J* = 8.5, 1.9 Hz, 1H), 3.91 (dd, *J* = 7.5, 1.0 Hz, 1H), 3.79 (s, 3H), 3.46 (dd, *J* = 7.5, 4.5 Hz, 1H), 3.35 (s, 3H). ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 196.2, 166.7, 165.2, 133.2, 133.0, 129.7, 128.4, 128.0, 127.8, 127.7, 126.6, 126.5, 126.2, 53.6, 53.1, 44.9, 38.6, 36.0. <u>HPLC</u> (Chiralpak OJ-H, i-PrOH/hexane = 5/95, flow rate = 1 mL/min, λ = 230 nm): t_{major} = 28.5 min, t_{minor} = 61.0 min, *ee* = 97%. [α]_D²² = - 66.1 (c = 0.16 in CHCl₃). <u>HRMS</u> (ESI) m/z [M+Na]⁺ calcd for C₁₈H₁₆O₅Na⁺ 335.0890, found 335.0889.

Dimethyl (2*R*,3*S*)-2-formyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate (3i): synthesized according to general procedure from (*E*)-3-(4-methoxyphenyl)acrylaldehyde and dimethylmalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $2 \rightarrow 5\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3i** (35 mg, 0.12 mmol) as a yellowish oil in 40% yield. <u>¹H NMR</u> (400 MHz, CDCl₃) δ 9.47 (d, *J* = 4.6 Hz, 1H), 7.17 – 7.12 (m, 2H), 6.85 – 6.80 (m, 2H), 3.82 (s, 3H), 3.79 – 3.76 (m, 4H), 3.49 (s, 3H), 3.34 (dd, *J* = 7.5, 4.6 Hz, 1H). <u>¹³C NMR</u> (101 MHz, CDCl₃) δ

196.3, 166.8, 165.3, 159.5, 129.7, 124.1, 114.0, 55.4, 53.5, 53.1, 44.7, 38.7, 35.4. <u>HPLC</u> (Chiralpak OJ-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 49.3 min, t_{minor} = 52.9 min, *ee* = 98%. [α]_D ²² = -49.7 (c = 0.4 in CHCl₃). Spectral data are in agreement with previously reported.¹

Dimethyl (2*R*,**3***S***)-2-formyl-3-(4-isopropylphenyl)cyclopropane-1,1-dicarboxylate (3j):** synthesized according to general procedure from (*E*)-3-(4isopropylphenyl)acrylaldehyde and dimethylmalonate at 1 mA for 16 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 2\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **3j** (44 mg, 0.14 mmol) as a yellowish oil in 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.48 (d, *J* = 4.6 Hz, 1H), 7.19 – 7.06 (m, 4H), 3.85 – 3.75 (m, 4H), 3.47 (s, 3H), 3.36 (dd, *J* = 7.5, 4.6 Hz, 1H), 2.87 (hept, *J* = 7.0 Hz, 1H), 1.21 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101

MHz, CDCl₃) δ 196.3, 166.8, 165.3, 149.0, 129.5, 128.5, 126.7, 53.5, 53.0, 44.7, 38.6, 35.7, 33.9, 24.0. <u>HPLC</u> (Chiralpak OD-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 7.3 min, t_{minor} = 13.5 min, *ee* = 98%; [α]_D ²⁰ = -47.6 (c = 0.18 in CHCl₃). <u>HRMS</u> (ESI) m/z [M+Na]⁺ calcd for C₁₇H₂₀O₅Na⁺ 327.1203, found 327.1202.

Dibenzyl (2*R*,3*S*)-2-formyl-3-phenylcyclopropane-1,1-dicarboxylate (3k): synthesized according to general procedure from (*E*)-cinnamaldehyde and dibenzymalonate at 3.2 mA for 5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 30\%$ Et₂O in PE) to give **3k** (66 mg, 0.16 mmol) as a yellowish oil in 53% yield. $\frac{1H \text{ NMR}}{14 \text{ NMR}}$ (400 MHz, CDCl₃) δ 9.45 (d, *J* = 4.6 Hz, 1H), 7.37 – 7.17 (m, 15H), 6.99 – 6.92 (m, 2H), 5.27 (d, *J* = 12.2 Hz, 1H), 5.18 (d, *J* = 12.2 Hz, 1H), 4.87 (d, *J* = 12.2 Hz, 1H), 4.80 (d, *J* = 12.2 Hz, 1H), 3.86 (d, *J* = 7.6 Hz, 1H),

3.40 (dd, J = 7.6, 4.6 Hz, 1H). $\frac{13}{\text{C NMR}}$ (101 MHz, CDCl₃) δ 196.0, 166.0, 164.6, 135.0, 134.8, 132.1, 128.8, 128.7, 128.7, 128.7, 128.6, 128.5, 128.4, 128.2, 68.4, 68.0, 44.9, 38.5, 35.9. <u>HPLC</u> (Chiralpak AD-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 27.2 min, t_{minor} = 22.3 min, *ee* = 96%; [α]_D ²² = - 56.1 (c = 0.34 in CHCl₃). Spectral data are in agreement with previously reported.³

Ethyl (2R,3S)-1-acetyl-2-formyl-3-phenylcyclopropane-1-carboxylate (3I): synthesized as a mixture of diastereomers (2:1) according to general procedure from (*E*)-cinnamaldehyde and ethyl 3-oxobutanoate at 12 mA for 1.5 hours. Purified by column chromatography on silica gel (eluent: $0 \rightarrow 20\%$ Et₂O in PE) to give **3I** (31 mg, 0.12 mmol) as white amorphous solid in 30% yield (major diastereomer). ¹H NMR (400 MHz, CDCl₃) δ 9.51 (d, *J* = 4.7 Hz, 1H), 7.32 – 7.23 (m, 3H), 7.19 – 7.13 (m, 2H), 4.41 – 4.23 (m, 2H), 3.89 (d, *J* = 7.6 Hz, 1H), 3.49 (dd, *J* = 7.6, 4.7 Hz, 1H), 1.98 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 196.1, 167.3, 131.5, 128.8, 128.4, 128.3, 62.8, 51.8, 37.4, 36.9, 29.4, 14.2. <u>HPLC</u>

(Chiralpak OD-H, i-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 210 nm): t_{major} = 8.1 min, t_{minor} = 10.5 min, *ee* = 94%; [α]_D ²² = - 91.3 (c = 0.11 in CHCl₃). Spectral data are in agreement with previously reported.⁴

(2R,3S)-2'-Oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (red-3m): synthesized according to general procedure from (*E*)-cinnamaldehyde and indolin-2-one at 4.4 mA for 4 hours at -10°C. The resulting mixture was diluted with MeOH (5 mL) and quenched with NaBH₄ (1.5 mmol, 5 equiv., 56.8 mg). After stirring for 5 min, H₂O (5 mL) was added. The mixture was extracted with CH₂Cl₂ (4 x 15 mL), combined organic fractions

were washed with brine (15 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by reversed phase flash column chromatography (eluent: $10 \rightarrow 60\%$ MeCN in H₂O) to give **red-3m** (33 mg, 0.12 mmol) as a yellowish oil in 41% yield as an inseparable mixture of diastereomers (3.4:1). ¹H NMR major diastereomer (400 MHz, CD₃OD) δ 7.31 – 7.15 (m, 7H), 7.08 – 7.00 (m, 1H), 7.00 – 6.93 (m, 1H), 4.14 (dd, *J* = 12.0, 6.4 Hz, 1H), 3.99 (dd, *J* = 12.0, 7.9 Hz, 1H), 3.27 (d, *J* = 8.5 Hz, 1H), 2.79 (td, *J* = 8.1, 6.2 Hz, 1H). ¹H NMR minor diastereomer characteristic signals (400 MHz, MeOD) δ 6.61 (td, *J* = 7.6, 1.0 Hz, 1H), 5.99 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.22 (dd, *J* = 11.7, 6.2 Hz, 1H), 2.68 (td, *J* = 7.8, 6.2 Hz, 1H). ¹³C NMR major diastereomer (101 MHz, MeOD) δ 177.5, 143.1, 136.2, 130.9, 130.3, 129.9, 129.4, 128.9, 122.7, 122.1, 110.9, 60.3, 42.8, 39.5, 39.4. ¹³C NMR minor diastereomer (101 MHz, MeOD) δ 179.1, 142.6, 136.2, 128.5, 128.0, 127.8, 127.6, 122.2, 121.8, 110.9, 110.5, 59.1, 41.7, 40.1, 38.2. <u>HPLC</u> (Chiralpak OJ-H, *i*-PrOH/hexane = 10/90, flow rate = 1 mL/min, λ = 230 nm): major diastereomer t = 36.3 min, *ee* >99%; minor diastereomer t = 10.1 min, *ee* >99%. Spectral data are in agreement with previously reported.⁵

red-3n

(2*R*,3*S*)-1'-Benzyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (red-3n): synthesized according to general procedure from (*E*)-cinnamaldehyde and 1benzylindolin-2-one at 8.8 mA for 2 hours. The resulting mixture was diluted with MeOH (5 mL) and quenched with NaBH₄ (1.5 mmol, 5 equiv., 56.8 mg). After stirring for 5 min, H₂O (5 mL) was added. The mixture was extracted with CH₂Cl₂ (4 x 15 mL), combined organic fractions were washed with brine (15 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $0 \rightarrow 30\%$ Et₂O in PE/CH₂Cl₂ = 1:1) to give **red-3n** (59 mg, 0.17 mmol) as a yellowish oil in 56% yield as an inseparable mixture of diastereomers (4.8:1). <u>¹H NMR</u> major diastereomer

9. References

- 1 H. Xie, L. Zu, H. Li, J. Wang and W. Wang, J. Am. Chem. Soc., 2007, **129**, 10886–10894.
- P. Llanes, C. Rodríguez-Escrich, S. Sayalero and M. A. Pericàs, Org. Lett., 2016, 18, 6292–6295.
- 3 I. Ibrahem, G. Zhao, R. Rios, J. Vesely, H. Sundén, P. Dziedzic and A. Córdova, *Chemistry A European J*, 2008, **14**, 7867–7879.
- 4 X. Companyó, A. Alba, F. Cárdenas, A. Moyano and R. Rios, *Eur J Org Chem*, 2009, **2009**, 3075–3080.
- 5 Z. Li, H. Zhang, L. Zhao, Y. Ma, Q. Wu, H. Ren, Z. Lin, J. Zheng and X. Yu, *Chem. Commun.*, 2024, **60**, 3579–3582.

10. NMR spectra

S20

120 110 100 90 f1 (ppm) -:

120 110 100 90 f1 (ppm) -:

120 110 100 90 f1 (ppm) -:

S24

S27

110 100 f1 (ppm)

120 110 100 90 f1 (ppm) -:

S30

S31

11. HPLC chromatograms

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.878	MF	0.3100	6016.52441	323.45093	50.1682
2	12.581	FM		5976.18506	245.53014	49.8318

HPLC trace of 3a.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.767	MF	0.3080	6331.47705	342.65207	97.7994
2	12.391	FM	0.4209	142.46320	5.64066	2.2006

HPLC trace of *rac*-3b.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.305	VB	0.7321	1863.86963	38.68213	49.8734
2	41.075	BB		1873.33191	26.33040	50.1266

HPLC trace of 3b.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.553	FM	0.9324	2.73726e4	489.29459	98.2019
2	41.201	MM	1.2817	501.20917	6.51752	1.7981

HPLC trace of *rac*-3c.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	22.498	 MM	0.5961	 3632.69629	 101.57577	50.0023
2	32.401	MM	0.9240	3632.36694	65.52168	49.9977

HPLC trace of 3c.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	22.491	MM	0.5794	7266.39893	209.00609	98.9311
2	32.873	MM	0.8052	78.50882	1.62495	1.0689

HPLC trace of *rac*-3d.


```
Signal 1: MWD1 C, Sig=210,8 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	26.700	MF	0.7059	6340.84082	149.70972	50.2106
2	39.638	MM		6287.64844	91.55206	49.7894

HPLC trace of 3d.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	26.260	FM	0.7419	1.65396e4	371.55261	98.7887
2	39.972	BV	0.8499	202.80893	2.83064	1.2113

HPLC trace of *rac*-3e.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.887	MM	0.9767	4409.40430	75.24049	49.2693
2	53.658	MM	1.3804	4540.20117	54.81925	50.7307

HPLC trace of 3e.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	38.761	MM	0.9747	3521.52100	60.21402	98.5283
2	54.320	MM	0.8952	52.59932	9.79273e-1	1.4717

HPLC trace of *rac*-3f.

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Aı	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	용
1	27.596	BB	1.0854	1.294	127e4	178.	96861	49.7454
2	37.290	BB	1.5836	1.307	752e4	123.	74281	50.2546

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	용
1	27.865	BB	0.9993	887	.72388	12.8	35521	2.8422
2	37.177	BB	1.6990	3.034	462e4	269.0	00430	97.1578

HPLC trace of *rac*-3g.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	Туре	Width	Area	a	Heig	Jht	Area	
#	[min]		[min]	mAU *	*s	[mAU]	8	
									I
1	14.015	BB	0.4673	2.38360	De4	767.2	21368	49.1651	
2	31.622	BV	1.1227	2.46455	5e4	332.4	0646	50.8349	

HPLC trace of 3g.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	туре	Width	Are	a	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	÷
1	14.002	VB	0.4987	6.6460)8e4	2036.2	22937	98.5454
2	31.756	BB	0.9934	981.0	1923	15.2	22486	1.4546

Signal 1: MWD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	28.646	MM	1.3974	1.02341e4	122.05883	48.4536
2	61.289	MM	3.7718	1.08873e4	48.10785	51.5464

HPLC trace of 3h.

Signal 1: MWD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	28.452	BB	1.2452	2.68562e4	324.62097	98.4979
2	60.957	BB	1.9636	409.56146	2.44081	1.5021

HPLC trace of *rac*-3i.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	etTime Type Width Area		Area	Height	Area
#	[min]			[mAU*s]	[mAU]	%
 1 2	49.677 53.059	 VV VV	1.1946 1.1943	2697.23291 2626.60962	32.96581 30.03388	 50.6633 49.3367

HPLC trace of 3i.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	49.345	VB	1.2353	6453.86865	74.89473	99.2234
2	52.923	MM	0.8715	50.51263	9.65973e-1	0.7766

HPLC trace of *rac*-3j.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7.263	VB	0.2460	5246.	13672	323.3	38766	56.9965
2	13.381	BB	0.4307	3958.	18384	139.8	33783	43.0035

HPLC trace of *rac*-3j.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	туре	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	÷
1	7.299	VB	0.2226	1.291	93e4	870.7	70148	99.1623
2	13.543	BB	0.4419	109.	14244	3.8	37762	0.8377

HPLC trace of *rac*-3k.


```
Signal 1: MWD1 C, Sig=210,8 Ref=360,100
```

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.399	MM	0.9070	1156.59644	21.25306	43.2192
2	27.394	MM	1.1748	1519.51794	21.55719	56.7808

HPLC trace of 3k.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	22.302	MM	0.8682	239.98329	4.60683	1.8530
2	27.242	MM	1.1844	1.27114e4	178.87932	98.1470

HPLC trace of *rac*-3I.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	Туре	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.107	VB	0.2120	2.967	24e4	2150.1	11060	48.1133
2	10.515	BB	0.3302	3.199	96e4	1467.0	02209	51.8867

HPLC trace of 3I.

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	8.093	MM	0.2201	2.23230e4	1690.71277	97.2439
2	10.522	MM	0.3757	632.67700	28.06989	2.7561

HPLC trace of *rac*-red-3m.

Signal 1: MWD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.136	MM	0.4178	5639.77881	224.97307	9.1114
2	18.870	MM	1.0762	6131.07275	94.94581	9.9052
3	36.301	MM	1.5329	2.31200e4	251.37956	37.3519
4	54.648	MM	2.6160	2.70069e4	172.06026	43.6315

Signal 1: MWD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.155	MM	0.4389	5942.14307	225.65591	18.6665
2	36.150	MM	1.5129	2.58910e4	285.22424	81.3335

HPLC trace of *rac*-red-3n.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.474	MM	1.4852	4.37942e4	491.45636	48.6330
2	29.416	BB	2.6569	4.62562e4	226.85381	51.3670

HPLC trace of red-3n.

Signal 1: MWD1 C, Sig=210,8 Ref=360,100