Cereblon-recruiting proteolysis targeting chimeras can determine the selective degradation of HDAC1 over HDAC3

Aline R. Pavan,^{a,b†} Joshua P. Smalley,^{a†} Urvashi Patel,^a Wiktoria A. Pytel,^a Jean Lenardo dos Santos,^b Shaun M. Cowley,^{c*} John W.R. Schwabe,^{d*} and James T. Hodgkinson^{a*}

Supplementary Information

Summary

Supplementary Information: Biology	3
1. Cell Culture, Compound Handling and Western Blotting Protocols	3
2. Western Blotting Results	4
2.1. Western Blotting Analysis of Compounds 3-15 from Initial Screen	4
2.2. Representative Blots from Dose Response Experiment with 5,7, and 12	8
Supplementary Information: Chemistry	10
3. General Methods	10
3.1. Synthesis of HDAC inhibitor (1)	11
3.2. Synthesis of HDAC inhibitor (2)	16
3.3. Synthesis of Pomalidomide-linker conjugates (7 atoms length)	19
3.4. Synthesis of Pomalidomide-linker conjugates (12 atoms length)	23
3.5. Synthesis of the PROTACs 3-6 and 10-13	29
3.6. Synthesis of the PROTACs 7-9 and 14-15	42
3.7. Synthesis of 5-Me and 7-Me	49
Appendix: ¹ H NMR and ¹³ C NMR of the Compounds	57
Appendix: Analytical HPLC	113
Appendix: Full Western Blots	116

Supplementary Information: Biology

1. Cell Culture, Compound Handling and Western Blotting Protocols

The HCT116 cell line used in this study was obtained from ATCC (CCL-247). HCT116 human colon carcinoma cells were grown in a Dulbecco's modified Eagle medium (GIBCO, 41965-039) supplemented with 10% FBS (Sigma) and 1X glutamine/penicillin/streptomycin (GIBCO, 10378–016). Cells were incubated at 37 °C with 5% CO₂. Cells were treated with compounds at indicated concentrations (0.01–10 μ M). All compounds were made up to a standard solution of 10 mM in DMSO, serially diluted in DMSO, then added to fresh medium (5 mL total) to afford the concentrations stated (0.01–10 μ M), with a final DMSO volume of 0.1%.

HCT116 cells were seeded into 6-well plates (4×10^5 cells/well) for 24 hours and then treated with DMSO or compounds at the indicated concentrations in fresh medium (5 mL total). After 24 hours treatment time, the cells were harvested and then lysed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.5% NP-40, 0.5% Triton X-100) supplemented with a protease inhibitor (Sigma, P8340). The suspension was incubated on ice for 30 min, then centrifuged (18,000 rcf, 15 min, 4 °C) and the supernatant collected. Protein concentrations were quantified via Bradford Assay using Protein Assay Dye Reagent Concentrate (BIO-RAD). For histone extraction, an equal volume of 0.4 N H₂SO₄ was added to the pellets, and the extracts were placed at 4 °C overnight, centrifuged (18,000 rcf, 15 min, 4 °C), then the supernatant (histone extract) collected.

Western blots were run on NuPAGE 4–12% bis–Tris gels with 30 μ g of protein or 10 μ L of acid-extracted histone loaded per lane, using NuPAGE LDS sample buffer (4X). PageRuler Plus Prestained Ladder was used for size standards. After gel electrophoresis at 140 V for 90 min, the separated proteins were transferred onto a nitrocellulose membrane at 30 V for 60 min. The membranes were probed with primary antibodies (as indicated below) for 60–90 min. Blots were developed with complimentary IRDye®-conjugated secondary antibodies, and the bands were visualized using an Odyssey infrared imaging system. Image processing and band intensity quantification were performed using Image Studio Lite.

Antibody Information

Primary Antibodies; α-tubulin - Sigma, t5168 (1:10,000 dilution) HDAC1 - Abcam, 109411 (1:2,000 dilution) HDAC2 - Merck Millipore, 05-814 (1:2,000 dilution) HDAC3 - Abcam, 32369 (1:2,000 dilution) H3 - Merck Millipore, 05-499 (1:1,000 dilution) H3K56Ac - Active Motif, 39082 (1:1,000 dilution) Secondary Antibodies; IRDye[®] 680LT - LI-COR Biosciences, 926-68023 (1:10,000 dilution) IRDye[®] 800CW - LI-COR Biosciences, 926-32210 (1:10,000 dilution)

2. Western Blotting Results

2.1. Western Blotting Analysis of Compounds 3-15 from Initial Screen

S5

Figure S2. Western blotting of H3/H3K56ac in HCT116 cells treated with compounds 3-15, complete with representative graphs showing fold-change relative to DMSO.

S7

Figure S3. Western blotting of HDAC1/2/3 proteins in HCT116 cells treated with compounds 5,7 and 12 at concentration range from 0.01-10 μ M. Blots of two independent biological replicates.

	100	145	45	9	1 99	9 10	04 9	99	83	75	59	59	58	55
HDAC1	•	•	-	-					-	-				-
	100	110	62	9	89	6 9	99 1	03	93	89	85	82	82	81
HDAC2	-	-	-					-	_	_	_	-		_
	l	ĺ	i		,		ï	Ĭ	Ì	j	j	j		
I	100	161	131	1 10	6 10	9 11	6 1	02	97 1	106	85	94	99 1	03
HDAC3	-	_												-
	-	-	_						_	_	_	_		
Tubulin	•	•	-											
	õ	94	04	2			с О		25	.5	-	.5	2 2	10
	MC	6-12	SO					0	0	0				
ت ت <u>ب</u>														
		00	181	30	103	99	93	79	72	64	58	61	67	72
HDA		00 1	14	71	99	98	101	93	88	84	89	89	91	87
НДА			-	-	-	-	-					-	-	-
Tubu		_	_	_	_	_	_	_	_	_	_	_	_	_
Tubu				-	-	-	-	-	107	-	-	-	-	-
	1 C2	00 1	172	91	92	99	100	95	107	114	111	119	118	123
HDA				•	-	-	-	-	-	-	-	•	-	-
Tubu	lin	-	-	•	•	•	•	-	-	-	-	-	•	•
		00	94	04	01	25	05	.1	25	0.5	-	2.5	5	10
		ШЩ	0-1-0	0Sc	0.0	0.0	Ö.	0	O	0				
					12									
	1(101	20	33	01	0/	Q 1	69	68	63	62	51	68	64
НДА	c1		-	55	-	-	-		-	-	-	-		-
	1	00	124	74	104	103	112	103	98	96	98	95	104	89
HDA	c2	•	•	٠	1	•	•	•	•	•	•	•	•	١
Tubu	lin		-	-	_	_	_	_	-		_	_	_	
	1	00	151	84	92	87	111	116	120	124	129	121	132	123
HDA	сз 「		_	-	_	-	_	-	-	-	-	-	-	-
- 1			_	_	_	_	_	_	_	_	_	_	_	_
lubu	lin			-	-	-	•	-	-	-	-		•	-
		lso	994	004	001	025	0.05	0.1).25	0.5	-	2.5	5	10
	¬ 12													

Supplementary Information: Chemistry

3. General Methods

All reagents and solvents were obtained from Sigma Aldrich, Acros Organics, Fluorochem, Fisher Scientific and were used as supplied unless stated otherwise. Biotage[®] Macroporous polystyrene-co-divinylbenzene (MP) carbonate resin (3.02 mmol/g loading capacity) was used for neutralising amine TFA salts and scavenging excess TFA during tert-butoxycarbonyl deprotection reactions. Room temperature refers to ambient temperature. Temperatures of 0 °C were maintained using an ice-water bath. The reactions were monitored by thin-layer chromatography (TLC) on aluminum backed silica gel. Unless otherwise stated Flash column chromatography was carried out with Silica Gel 60 using commercial solvents. All evaporations *in vacuo* were performed under reduced pressure using a Büchi rotary evaporator. All chemical names have been generated using ChemDraw Professional.

Nuclear magnetic resonance (NMR) spectra were acquired using a Bruker 400 (¹H, 400 MHz; ¹³C 101 MHz) instrument at ambient temperature using deuterated solvent as reference - CDCl₃ ($\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.00 ppm), DMSO-*d*₆ ($\delta_{\rm H}$ = 2.50 ppm, $\delta_{\rm C}$ = 39.51 ppm) or CD₃OD ($\delta_{\rm H}$ = 3.31 ppm, $\delta_{\rm C}$ = 49.15 ppm). ¹H NMR data are reported as: chemical shift, multiplicity [b, broad; s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet m for multiplet; or as a combination (e.g., dd, dt, etc.)], coupling constant(s) and integration. ¹³C NMR spectra were recorded by broadband proton decoupling. Where ¹H and ¹³C NMR's have been fully assigned, 2D NMR including ¹H-¹H COSY (correlated spectroscopy), ¹H-¹³C HSQC (heteronuclear single quantum coherence) and ¹H-¹³C HMBC (heteronuclear multiple bond coherence) were used to aid assignment.

tert-butyl (4-bromo-2-nitrophenyl)carbamate, I¹: A solution of di-tert-butyldicarbonate (2.7 mmol, 1.2 eq) in anhydrous DCM (10 mL) was added dropwise to a solution of 4-bromo-2-nitroaniline (2.3 mmol, 1.0 eq) and sodium bis(trhimethylsilyl)amide (NaHMDS) (5 mL) in anhydrous DCM (15 mL) at 0 °C, then the mixture was stirred for 24 h. The reaction mixture was then concentrated *in vacuo* to yield a black/dark red sticky solid/oil, which was re-dissolved in ethyl acetate (100 mL) and washed with distilled H₂O (2 x 50 mL) and sat. NaCl (1 x 50 mL). The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (25% EtOAc in hexanes) to afford compound I as a yellow/orange solid in a yield of 33%. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 8.51 (d, *J* = 9.2 Hz, 1H), 8.33 (d, *J* = 2.4 Hz, 1H), 7.68 (dd, J=9.2, 1.4Hz, 1H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.10 (s), 138.68 (s), 136.32 (s), 135.28 (s), 128.41 (s), 122.35 (s), 113.88 (s), 82.46 (s), 28.32 (s). Spectroscopic data is consistent with previous literature.¹

tert-butyl (4'-fluoro-3-nitro-[1,1'-biphenyl]-4-yl)carbamate, II: A solution of 4-fluorophenyl boronic acid (2,05 mmol, 1.3 eq), cesium carbonate (4.1 mmol, 2.6 eq - aqueous solution 50:50 m/v) and Tetrakis(triphenylphosphine)-palladium(0) (0.079 mmol, 5 mol%) were added to a solution of I in anhydrous 1,4-dioxane (20 mL), then the reaction was stirred at 90 °C for 24 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo* to afford a yellow crude mixture. The crude mixture was resuspended in ethyl acetate (50 mL), filtered in Celite (washed with 50-100mL of ethyl acetate, or until the Celite was clear), then washed with distilled water (4 x 50 mL). The crude product was purified by column chromatography (10% EtOAc in hexane) to afford compound II as a yellow solid with 54% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.65 (s, 1H), 8.17 (d, *J* = 2.2 Hz, 1H), 7.97 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.78 (dd, *J* = 8.9, 5.4 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 1H), 7.32 (t, *J* = 8.9 Hz, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.22 (d, *J* = 245.4 Hz), 152.40 (s), 141.47 (s), 134.74 (s), 133.99 (d, *J* = 3.0 Hz), 131.94 (s), 131.64 (s), 128.76 (d, *J* = 8.3 Hz), 124.44 (s), 122.77 (s), 115.96 (d, *J* = 21.5 Hz), 80.60 (s), 27.90 (s). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -114.41 (s). Spectroscopic data is consistent with previous literature.²

tert-butyl (3-amino-4'-fluoro-[1,1'-biphenyl]-4-yl)carbamate, III: To a solution of compound II (0.64 mmol, 1.0 eq) in methanol (15 mL), 10% Pd/C was added. The flask was evacuated using a Schlenk line (3 times) and filled with nitrogen. A balloon filled with H₂ was added to the reaction, that was then stirred at room temperature for 24 h. The reaction mixture was filtered through celite, and the solvent was removed *in vacuo* to afford compound III as a white solid in a yield of 93%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.35 (s, 1H), 7.56 (dd, *J* = 8.9, 5.5 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.24 (t, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 2.1 Hz, 1H), 6.80 (dd, *J* = 8.2, 2.2 Hz, 1H)

1H), 4.96 (s, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.50 (d, J = 243.4 Hz), 153.56 (s), 141.22 (s), 136.97 (s), 135.63 (s), 128.05 (d, J = 8.0 Hz), 124.52 (s), 123.42 (s), 115.52 (d, J = 21.2 Hz), 114.71 (s), 113.65 (s), 78.80 (s), 28.17 (s). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -116.36 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₀N₂O₂F: 303.1509, found 303.1511.

methyl 5-(4-((benzyloxy)carbonyl)piperazin-1-yl)pyrazine-2-carboxylate, IV: A solution of methyl 5-chloro-2-pyrazinecarboxylate (0.87 mmol, 1.5 eq) in DMSO (5 mL) was added to a solution of Cbz-piperazine (0.57 mmol, 1.0 eq) and DIPEA (0.87 mmol, 1.5 eq) in DMSO (10 mL) and stirred at 100°C for 20 h. Upon cooling, 100 mL of DCM was added to the reaction and washed with distilled water (2 x 50mL) and brine (1 x 50mL). The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (80-100% EtOAc in hexane) to afford compound **IV** as a brown solid in a yield of 78.3%. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 1.3 Hz, 1H), 8.13 (d, J = 1.4 Hz, 1H), 7.38 – 7.30 (m, 5H), 5.17 (s, 2H), 3.95 (s, 3H), 3.79 – 3.74 (m, 4H), 3.66 (dd, J = 6.5, 3.9 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 165.17 (s), 155.28 (s), 155.06 (s), 145.35 (s), 136.45 (s), 131.51 (s), 129.46 (s), 128.71 (s), 128.38 (s), 128.18 (s), 67.67 (s), 52.49 (s), 44.04 (s), 43.34 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₁N₄O₄: 357.1563, found 357.1559, [M+Na]⁺ calculated for C₁₈H₂₀N₄O₄Na: 379.1382, found 379.1365.

5-(4-((benzyloxy)carbonyl)piperazin-1-yl)pyrazine-2-carboxylic acid, V: A solution of sodium hydroxide (2.40 mL, 2 M, 3.3 eq) was added to a solution of compound **IV** (2.8 mmol, 1.0 eq) in THF (30 mL). The reaction was stirred for 48 h at room temperature. The solvent was concentrated *in vacuo*, dissolved in ethyl acetate (100-150 mL) and washed with saturated solution of potassium bissulfate (1 x 50mL or until pH <2) and distilled water (2 x 50 mL). The organic layer was dried over MgSO₄, filtered and the solvent was concentrated *in vacuo* to afford compound **V** as a yellow solid with yield of 82%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.72 (s, 1H), 8.65 (d, *J* = 1.2 Hz, 1H), 8.35 (d, *J* = 1.2 Hz, 1H), 7.41 – 7.31 (m, 5H), 5.12 (s, 2H), 3.80 – 3.73 (m, 4H), 3.54 (s, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.45 (s), 154.53 (s), 154.48 (s), 144.34 (s), 136.77 (s), 130.93 (s), 130.29 (s), 128.44 (s), 127.90 (s), 127.64 (s), 66.41 (s), 43.38 (s), 42.84 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₉N₄O₄: 343.1406, found 343.1405.

benzyl 4-(5-((4-((tert-butoxycarbonyl)amino)-4'-fluoro-[1,1'-biphenyl]-3-yl)carbamoyl)pyrazin-2yl)piperazine-1-carboxylate, VI: A solution of DIPEA (1.39 mmol, 2.8 eq) and HATU (0.69 mmol, 1.4 eq) were added to a solution of compound V (0.59 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. A solution of compound III (0.49 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50mL) and distilled water (1 x 50mL). The organic layer was dried over MgSO₄, filtered and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (100% EtOAc) to afford compound VI as a white solid in a yield of 67%. ¹H NMR (400 MHz, DMSO- d_6) δ 10.08 (s, 1H), 9.12 (s, 1H), 8.76 (d, J = 1.3 Hz, 1H), 8.27 (d, J = 1.0 Hz, 1H), 8.23 (d, J = 1.8 Hz, 1H), 7.68 (dd, J = 8.9, 5.4 Hz, 2H), 7.44 – 7.27 (m, 9H), 5.13 (s, 2H), 3.81 – 3.77 (m, 4H), 3.57 (s, 4H), 1.50 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.87 (s), 161.85 (d, J = 244.8 Hz), 155.10 (s), 154.50 (s), 153.88 (s), 142.24 (s), 136.78 (s), 136.18 (s), 136.04 (d, J = 2.9 Hz), 132.25 (s), 132.11 (s), 129.06 (s), 128.83 (s), 128.52 (s), 128.45 (s), 127.92 (s), 127.64 (s), 125.85 (s), 122.80 (s), 121.91 (s), 115.79 (d, J = 21.4Hz), 79.83 (s), 66.42 (s), 43.54 (s), 42.90 (s), 28.09 (s). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -115.50 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{34}H_{36}N_6O_5F$: 627.2731, found 627.2733; $[M+Na]^+$ calculated for C₃₄H₃₅N₆O₅FNa: 649.2551, found 649.2553.

tert-butyl (4'-fluoro-3-(5-(piperazin-1-yl)pyrazine-2-carboxamido-[1,1'-biphenyl]-4-yl)carbamate, VII: To a solution of compound VI (0.64 mmol, 1.0 eq) in methanol (15 mL), 10% Pd/C was added. The flask was evacuated using a Schlenk line (3 times) and filled with nitrogen. A balloon filled with H_2 was added to the reaction, that was then stirred at room temperature for 48 h. The reaction mixture was filtered through celite, and the solvent was removed *in vacuo* to afford compound **VII** as a white solid in a yield of 89%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 9.11 (s, 1H), 8.74 (d, *J* = 1.2 Hz, 1H), 8.24 (s, 2H), 7.68 (dd, *J* = 8.8, 5.4 Hz, 3H), 7.42 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.30 (t, *J* = 8.9 Hz, 3H), 3.71 – 3.67 (m, 4H), 2.88 – 2.80 (m, 5H), 1.50 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.96 (s), 161.85 (d, *J* = 244.5 Hz), 155.27 (s), 153.88 (s), 142.33 (s), 136.20 (s), 136.06 (d, *J* = 3.0 Hz), 132.20 (s), 131.76 (s), 129.02 (s), 128.64 (s), 128.48 (d, *J* = 8.2 Hz), 125.88 (s), 122.75 (s), 121.86 (s), 115.79 (d, *J* = 21.4 Hz), 79.83 (s), 45.01 (s), 44.76 (s), 28.08 (s). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -115.51 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₃₀N₆O₃F: 493.2363, found 493.2368; [M+Na]⁺ calculated for C₂₆H₂₉N₆O₃FNa: 515.2183, found 515.2188.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(piperazin-1-yl)pyrazine-2-carboxamide, (1): TFA (0.5 mL) was added to a solution of compound VII (0.09 mmol, 1.0 eq) in DCM (2 mL) at 0°C, then the reaction was stirred at room temperature for 4 h. The solvent was concentrated *in vacuo* and the mixture re-suspended in methanol (10 mL). MP-carbonate resin was added to this solution and stirred at room temperature for 4 hours. The reaction was filtered, and the solvent was removed *in vacuo*. Purification was performed by column chromatography (alumina, 5% methanol in DCM) to afford compound (1) as a crystalline white solid in a yield of 68%. ¹H NMR (400 MHz, CD₃OD) δ ppm 8.80 (d, *J*=1.4 Hz, 1 H), 8.27 (d, *J*=1.4 Hz, 1 H), 7.67 (d, *J*=2.2 Hz, 1 H), 7.55 - 7.59 (m, 2 H), 7.31 (dd, J=8.3, 2.2 Hz, 1 H), 7.07 - 7.17 (m, 3 H), 6.97 (d, *J*=8.3 Hz, 1 H), 3.76 - 3.79 (m, 4 H), 2.93 - 2.96 (m, 4 H). ¹³C NMR (101 MHz, CD₃OD) δ 165.1 (s), 163.5 (d, *J*=243.8 Hz), 157.1 (s), 143.8 (s), 142.5 (s), 138.6 (d, *J*=3.0 Hz), 133.9 (s), 132.1 (s), 130.1 (s), 129.1 (d, *J*=7.8 Hz, CD₃OD) δ -119.4 (s). HRMS (ESI) m/z: [M+H]+ calculated for C₂₁H₂₂FN₆O: 393.1839, found 393.1836.

tert-butyl (2-aminophenyl)carbamate, VIII: A solution of di-tert-butyl dicarbonate (2.8 mmol, 1.0 eq) in anhydrous THF (10 mL) was added dropwise to a solution of *o*-phenylenediamine (2.8 mmol, 1.0 eq) and triethylamine (4.7 mL) in anhydrous THF (15 mL) at 0°C, then the mixture was stirred for 24 hours. The reaction mixture was then concentrated *in vacuo* to yield a grey/white solid, which was re-dissolved in ethyl acetate (100 mL) and washed with distilled H₂O (2 x 50 mL) and sat. NaCl (1 x 50 mL). The organic layer was collected, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude was purified by column chromatography (10-90% EtOAc in hexane) to afford compound **VIII** as a slight pink solid in a yield of 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, 1H), 7.00 (td, *J* = 7.6, 1.5 Hz, 1H), 6.82 – 6.74 (m, 2H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.96 (s), 140.06 (s), 126.27 (s), 124.93 (s), 124.79 (s), 119.77 (s), 117.76 (s), 80.66 (s), 28.47 (s). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₁H₁₆N₂O₂Na: 231.1109, found 231.1111.

benzyl 4-(5-((2-((*tert*-butoxycarbonyl)amino)phenyl)carbamoyl)pyrazin-2-yl)piperazine-1-carboxylate, IX: A solution of DIPEA (2.1 mmol, 1.5 eq) and HATU (1.8 mmol, 1.3 eq) were added to a solution of compound V (1.7 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound **VIII** (1.4 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The product precipitated in the organic layer and was then filtered to afford compound **IX** as a yellow solid in a yield of 75%. ¹H NMR (400 MHz, DMSO- d_6) δ 10.00 (s, 1H), 9.03 (s, 1H), 8.75 (d, J = 1.3 Hz, 1H), 8.25 (d, J = 0.6 Hz, 1H), 7.96 (d, J = 7.4 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.28 – 7.19 (m, 2H), 7.13 (td, J = 7.6, 1.5 Hz, 1H), 5.13 (s, 2H), 3.82 – 3.75 (m, 4H), 3.56 (s, 4H), 1.48 (s, 8H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.65 (s), 155.08 (s), 154.50 (s), 153.92 (s), 142.15 (s), 136.78 (s), 132.32 (s), 132.05 (s), 129.56 (s), 128.79 (s), 128.45 (s), 127.91 (s), 127.63 (s), 125.64 (s), 125.45 (s), 124.54 (s), 123.54 (s), 79.67 (s), 66.41 (s), 43.53 (s), 42.83 (s), 28.08 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₈H₃₃N₆O₅: 533.2512, found 533.2512; [M+Na]⁺ calculated for C₂₈H₃₂N₆O₅Na: 555.2332, found 555.2325.

tert-butyl (2-(5-(piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, X: To a solution of compound IX (0.14 mmol, 1.0 eq) in methanol (15 mL), 10% Pd/C was added. The flask was evacuated using a Schlenk line (3 times) and filled with nitrogen. A balloon filled with H₂ was added to the reaction, that was then stirred at room temperature for 48 h. The reaction mixture was filtered through celite, and the solvent was removed *in vacuo* to afford compound **X** as a white solid in a yield of 85%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.97 (s, 1H), 9.02 (s, 1H), 8.71 (d, *J* = 1.3 Hz, 1H), 8.21 (d, *J* = 0.9 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.12 (td, *J* = 7.6, 1.5 Hz, 1H), 3.65 (t, 4H), 2.79 (t, 4H), 1.48 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.79 (s), 155.33 (s), 153.95 (s), 142.31 (s), 132.15 (s), 131.69 (s), 129.54 (s), 128.59 (s), 125.71 (s), 125.51 (s), 124.53 (s), 123.57 (s), 79.71 (s), 45.35 (s), 45.19 (s), 28.11 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₆N₆O₃: 399.2145, found 399.2143; [M+Na]⁺ calculated for C₂₀H₂₅N₆O₃Na: 421.1964, found 421.1960.

N-(2-aminophenyl)-5-(piperazin-1-yl)pyrazine-2-carboxamide, (2): TFA was added to a solution of compound **X** (0.12 mmol, 1.0 eq) in DCM (7 mL) at 0 °C, then the reaction was stirred at room temperature for 24 h. The solvent was concentrated *in vacuo* and re-suspended in methanol (20 mL). MP-carbonate resin was added to this solution and stirred at room temperature for 4 hours. The reaction was filtered, and the solvent was removed *in*

vacuo. Purification was performed by column chromatography (alumina, 5% methanol in DCM) to afford compound (**2**) as a crystalline white solid in a yield of 85%. ¹H NMR (400 MHz, CD₃OD) δ 8.77 (d, *J* = 1.3 Hz, 1H), 8.24 (d, *J* = 1.4 Hz, 1H), 7.39 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.05 (ddd, *J* = 7.9, 7.4, 1.5 Hz, 1H), 6.91 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.79 (td, *J* = 7.8, 1.4 Hz, 1H), 3.75 (t, 4H), 2.94 (t, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 164.91 (s), 156.93 (s), 143.54 (s), 142.86 (s), 133.72 (s), 130.00 (s), 127.94 (s), 126.48 (s), 125.36 (s), 119.84 (s), 118.74 (s), 46.15 (s), 45.95 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₅H₁₉N₆O: 299.1621, found 299.1620; [M+Na]⁺ calculated for C₁₅H₁₈N₆ONa: 321.1442, found 321.1440.

3.3. Synthesis of Pomalidomide-linker conjugates (7 atoms length)

2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione, XI: A solution of 3-aminopiperidine-2,6-dione hydrochloride (1.8 mmol, 1.0 eq), and sodium acetate (2.1 mmol, 1.2 eq) in acetic acid (10 mL) was added to a solution of 3-flurophtalic anhydride (1.8 mmol, 1.0 eq) in acetic acid (5 mL), then the resultant mixture was stirred at 140 °C for 24 h. The reaction mixture was cooled to room temperature and then the volume of acetic acid was reduced *in vacuo* to afford a brown crude mixture. The crude product was purified by column chromatography (2.5-4% of methanol in DCM), to afford compound **XI** as a white solid in a yield of 77.7%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.14 (s, 1H), 7.95 (ddd, *J* = 8.4, 7.4, 4.6 Hz, 1H), 7.79 (d, *J* = 7.4 Hz, 1H), 7.73 (dd, *J* = 8.4 Hz, 1H), 5.16 (dd, *J* = 12.9, 5.4 Hz, 1H), 2.89 (ddd, *J* = 17.1, 13.9, 5.5 Hz, 1H), 2.65 – 2.56 (m, 1H), 2.55 – 2.45 (m, 1H), 2.10 – 2.02 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.73 (s), 169.68 (s), 166.10 (d, *J* = 2.8 Hz), 163.97 (s), 156.81 (d, *J* = 262.4 Hz), 138.05 (d, *J* = 7.9 Hz), 133.45 (d, *J* = 1.3 Hz), 123.00 (d, *J* = 19.5 Hz), 120.04 (d, *J* = 3.2 Hz), 117.03 (d, *J* = 12.6 Hz), 49.09 (s), 30.90 (s), 21.84 (s). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -114.67 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₀N₂O₄F: 277.0625, found 277.0626.

6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexanoic acid, XII: To a solution of **XI** (0.7 mmol, 1.0 eq) in anhydrous DMSO (10mL), DIPEA (1.4 mmol, 2.0 eq) and 6-aminocapric acid (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90 °C for 24 h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (50-70% EtOAc in hexane) to afford compound **XII** as yellow solid in a yield of 20 %. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 7.57 (dd, *J* = 8.5, 7.2 Hz, 1H), 7.08 (d, *J* = 8.6 Hz, 1H), 7.01 (d, *J* = 6.9 Hz, 1H), 6.53 (t, *J* = 5.9 Hz, 1H), 5.04 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.28 (dd, *J* = 13.3, 6.7 Hz, 2H), 2.88 (ddd, *J* = 17.2, 14.0, 5.4 Hz, 1H), 2.63 – 2.56 (m, 1H), 2.55 – 2.51 (m, 1H), 2.21 (t, *J* = 7.3 Hz, 2H), 2.06 – 1.99 (m, 1H), 1.55 (tt, *J* = 14.8, 7.4 Hz, 4H), 1.40 – 1.30 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.52 (s), 172.85 (s), 170.14 (s), 168.96 (s), 167.34 (s), 146.44 (s), 136.31 (s), 132.22 (s), 117.21 (s), 110.41 (s), 109.03 (s), 48.56 (s), 41.76 (s), 33.68 (s), 31.01 (s), 28.48 (s), 25.93 (s), 24.29 (s), 22.18 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₂₂N₃O₆: 388.1509, found 388.1515, [M+Na]⁺ calculated for C₁₉H₂₁N₃O₆Na: 410.1328, found 410.1336.

2-(2,6-dioxopiperidin-3-yl)-4-((6-hydroxyhexyl)amino)isoindoline-1,3-dione, XIII: To a solution of XI (0.7 mmol, 1.0 eq) in anhydrous DMSO (10 mL), DIPEA (1.4 mmol, 2.0 eq) and 6-aminohexan-1-ol (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90 °C for 24h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with brine (2 x 50 mL), dried over MgSO4, filtered and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (70% EtOAc in hexane) to afford compound **XIII** as yellow solid in a yield of 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.48 (dd, *J* = 8.1, 7.2 Hz, 1H), 7.08 (dd, *J* = 7.1, 0.5 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 6.23 (t, *J* = 5.5 Hz, 1H), 4.91 (dd, *J* = 12.1, 5.4 Hz, 1H), 3.65 (t, *J* = 4.9 Hz, 2H), 3.27 (dd, *J* = 12.7, 7.0 Hz, 2H), 2.92 – 2.67 (m, 3H), 2.18 – 2.09 (m, 1H), 1.72 – 1.64 (m, 2H), 1.58 (dd, *J* = 13.4, 6.8 Hz, 2H), 1.48 – 1.41 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.13 (s), 169.67 (s), 168.48 (s), 167.76 (s), 147.14 (s), 136.27 (s), 132.63 (s), 116.79 (s), 111.56 (s), 110.00 (s), 62.91 (s), 49.00 (s), 42.70 (s), 32.68 (s), 31.55 (s), 29.30 (s), 26.86 (s), 25.62 (s), 22.95 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₂₄N₃O₅: 374.1716, found 374.1716, [M+Na]⁺ calculated for C₁₉H₂₃N₃O₅Na: 396.1535, found 396.1541.

4-((6-bromohexyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione, XIV: Thionyl bromide (1.6 mmol, 3.0 eq) was added to a solution of **XIII** (0.53 mmol, 1.0 eq) in DCM (3 mL) at 0 °C. The reaction was stirred at room temperature overnight. Then DCM (50-100 mL) was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (2 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude was purified by column chromatography (50% EtOAc in hexane) to afford compound **XIV** as yellow solid in a yield of 89%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.58 (dd, *J* = 8.5, 7.2 Hz, 1H), 7.09 (d, *J* = 8.6 Hz, 1H), 7.02 (d, *J* = 6.7 Hz, 1H), 6.54 (t, *J* = 5.9 Hz, 1H), 5.05 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.53 (t, *J* = 6.7 Hz, 2H), 3.31 – 3.26 (m, 2H), 2.88 (ddd, *J* = 17.3, 14.0, 5.4 Hz, 1H), 2.62-2.52 (m, 2H), 2.07 – 1.98 (m, 1H), 1.85 – 1.77 (m, 2H), 1.63 – 1.53 (m, 2H), 1.47 – 1.33 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.81 (s), 170.09 (s), 168.93 (s), 167.30 (s), 146.41 (s), 136.28 (s), 132.20 (s), 117.19 (s), 110.38 (s), 109.03 (s), 48.53 (s), 41.74 (s), 35.11 (s), 32.16 (s), 30.97 (s), 28.50 (s), 27.26 (s), 25.41 (s), 22.15 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₂₃N₃O₄³⁹Br: 436.0872, found 436.0871, [M+H]⁺ calculated for C₁₉H₂₃N₃O₄⁸¹Br: 438.0851, found 438.0853.

3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4-yl)propanoic acid, XV: To a solution of **XI** (0.7 mmol, 1.0 eq) in anhydrous DMSO (10 mL), DIPEA (1.4 mmol, 2.0 eq) and 3-(piperidin-4-yl)propanoic acid (0.86 mmol, 1.2 eq) were added. The resultant mixture was stirred at 90 °C for 24 h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50 mL), dried over MgSO₄, filtered and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (3% methanol in EtOAc) to afford compound **XV** as yellow solid in a yield of 81.6%. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.56 (dd, J = 8.4, 7.2 Hz, 1H), 7.36 (dd, J = 7.1, 0.5 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 3.73 (t, J = 10.4 Hz, 2H), 2.93 – 2.70 (m, 5H), 2.43 (t, J = 7.6 Hz, 2H), 2.14 – 2.07 (m, 1H), 1.84 (d, J = 8.9 Hz, 2H), 1.68 (dd, J = 12.7, 7.5 Hz, 2H), 1.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.69 (s), 171.40 (s), 168.57 (s), 167.57 (s), 166.83 (s), 150.99 (s), 135.64 (s), 134.26 (s), 123.80 (s), 117.34 (s), 115.48 (s), 52.11 (s), 51.76 (s), 49.23 (s), 34.98 (s), 32.11 (s), 31.55 (s), 31.27 (s), 31.24 (s), 31.08 (s), 22.82 (s). HRMS (ESI) m/z: [M+H]⁺

calculated for $C_{21}H_{24}N_3O_6$: 414.1665, found 414.1666, $[M+Na]^+$ calculated for $C_{21}H_{23}N_3O_6Na$: 436.1485, found 436.1483.

2-(2,6-dioxopiperidin-3-yl)-4-(4-(3-hydroxypropyl)piperidin-1-yl)isoindoline-1,3-dione, XVI: To a solution of **XI** (0.7 mmol, 1.0 eq) in anhydrous DMSO (10 mL), DIPEA (1.4 mmol, 2.0 eq) and 3-(piperidin-4-yl)propan-1-ol (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90°C for 24h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (100% EtOAc) to afford compound **XVI** as yellow solid in a yield of 68.5%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.55 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.35 (dd, *J* = 7.1, 0.6 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 4.96 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.74 (t, *J* = 10.2 Hz, 2H), 3.66 (t, *J* = 6.6 Hz, 2H), 2.92 – 2.67 (m, 5H), 2.15 – 2.06 (m, 1H), 1.84 (d, *J* = 9.5 Hz, 2H), 1.69 – 1.59 (m, 2H), 1.52 – 1.44 (m, 3H), 1.42 – 1.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.12 (s), 168.36 (s), 167.59 (s), 166.82 (s), 151.08 (s), 135.58 (s), 134.27 (s), 123.79 (s), 117.21 (s), 115.33 (s), 63.29 (s), 52.28 (s), 51.94 (s), 49.23 (s), 35.47 (s), 32.64 (s), 32.50 (s), 32.48 (s), 31.55 (s), 30.04 (s), 22.82 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₁H₂₆N₃O₅: 400.1872, found 400.1873, [M+Na]⁺ calculated for C₂₁H₂₅N₃O₅Na: 422.1692, found 422.1693.

4-(4-(3-bromopropyl)piperidin-1-yl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione, XVII: Thionyl bromide (1.6 mmol, 3.0 eq) was added to a solution of **XVI** (0.53 mmol, 1.0 eq) in DCM (3 mL) at 0°C. The reaction was stirred at room temperature overnight. Then DCM (50-100 mL) was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (2 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (40% EtOAc in hexane) to afford compound **XVII** as yellow solid in a yield of 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.56 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.36 (d, *J* = 7.0 Hz, 1H), 7.17 (d, *J* = 8.3 Hz,

1H), 4.96 (dd, J = 12.2, 5.4 Hz, 1H), 3.74 (t, J = 10.1 Hz, 2H), 3.42 (t, J = 6.8 Hz, 2H), 2.94 – 2.64 (m, 5H), 2.16 – 2.07 (m, 1H), 1.93 (dt, J = 12.1, 5.9 Hz, 2H), 1.86 – 1.80 (m, 2H), 1.55 – 1.43 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 171.03 (s), 168.30 (s), 167.55 (s), 166.82 (s), 151.02 (s), 135.61 (s), 134.27 (s), 123.78 (s), 117.29 (s), 115.41 (s), 52.20 (s), 51.87 (s), 49.24 (s), 35.08 (s), 35.03 (s), 34.07 (s), 32.40 (s), 32.38 (s), 31.55 (s), 30.21 (s), 22.83 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₁H₂₅N₃O₄⁷⁹Br: 462.1028, found 462.1025, [M+H]⁺ calculated for C₂₁H₂₅N₃O₄⁸¹Br: 464.1008, found 464.1009.

3.4. Synthesis of Pomalidomide-linker conjugates (12 atoms length)

12-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino_dodecanoic acid, XVIII: To a solution of **XI** (0.7 mmol, 1.0 eq) in anhydrous DMSO (10 mL), DIPEA (1.4 mmol, 2.0 eq) and 12-aminododecanoic acid (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90 °C for 24 h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (50-100% EtOAc in hexane) to afford compound **XVIII** as yellow solid in a yield of 71%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.94 (s, 1H), 11.08 (s, 1H), 7.57 (dd, *J* = 8.5, 7.2 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.52 (t, *J* = 5.9 Hz, 1H), 5.05 (dd, *J* = 12.9, 5.4 Hz, 1H), 3.31 – 3.25 (m, 2H), 2.90 – 2.81 (m, 1H), 2.63 – 2.52 (m, 2H), 2.18 (t, *J* = 7.4 Hz, 2H), 2.06 – 1.98 (m, 1H), 1.56 (dt, *J* = 14.1, 7.1 Hz, 2H), 1.47 (dt, *J* = 12.5, 6.3 Hz, 2H), 1.33 – 1.20 (m, 16H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.51 (s), 172.81 (s), 170.09 (s), 168.95 (s), 167.31 (s), 146.44 (s), 136.27 (s), 132.19 (s), 117.19 (s), 110.36 (s), 109.00 (s), 48.54 (s), 41.83 (s), 33.66 (s), 30.98 (s), 28.97 (s), 28.98 (s), 28.74 (s)*, 28.66 (s), 28.54 (s), 26.30 (s), 24.49 (s), 22.15 (s), * 2 x resonace signals coincide. HRMS

 $(ESI) m/z: [M+H]^+ calculated for C_{25}H_{34}N_3O_6: 472.2448, found 472.2442, [M+Na]^+ calculated for C_{25}H_{33}N_3O_6Na: 494.2267, found 494.2255.$

tert-butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino_ethyl)carbamate, XIX: To a solution of XI (0.7 mmol, 1.0 eq) in anhydrous DMSO (10mL), DIPEA (1.4 mmol, 2.0 eq) and *tert*-butyl-*N*-(2-aminoethylcarbamate) (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90°C for 24h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (50% EtOAc in hexane) to afford compound XIX as yellow solid in a yield of 28%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.08 (s, 1H), 7.57 (dd, *J* = 8.3, 7.3 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 7.03-6.99 (m, 2H), 6.71 (t, *J* = 6.1 Hz, 1H), 5.05 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.36 (q, *J* = 6.2 Hz, 2H), 3.12 (q, *J* = 6.0 Hz, 2H), 2.89 (ddd, *J* = 17.2, 13.9, 5.4 Hz, 1H), 2.66 - 2.52 (m, 2H), 2.06 - 1.97 (m, 1H), 1.36 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.81 (s), 170.06 (s), 168.71 (s), 167.30 (s), 155.88 (s), 146.40 (s), 136.17 (s), 132.22 (s), 117.07 (s), 110.49 (s), 109.23 (s), 77.78 (s), 48.51 (s), 41.57 (s), 30.97 (s), 28.20 (s), 22.17 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₅N₄O₆: 417.1774, found 417.1768, [M+Na]⁺ calculated for C₂₀H₂₅N₄O₆: 417.1774, found 417.1768, [M+Na]⁺ calculated for C₂₀H₂₄N₄O₆Na: 439.1594, found 439.1584.

2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethan-1-aminium, XX: HCl in dioxane (4 N, 2 mL) was added to a stirring solution of compound **XIX** (0.18 mmol) in DCM (5 mL) and the resulting mixture was stirred at room temperature for 4 h. The reaction mixture was concentrated *in vacuo* to afford compound **XX** as a yellow solid in a yield of 95%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.10 (s, 1H), 8.17 (s, 3H), 7.61 (dd, *J* = 8.5, 7.1 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 7.08 (d, *J* = 7.1 Hz, 1H), 6.83 (t, *J* = 6.3 Hz, 1H), 5.06 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.63 (q, *J* = 6.2 Hz, 2H), 2.97 (dd, *J* = 6.2 Hz, 2H), 2.91 – 2.84 (m, 1H), 2.63 – 2.52 (m, 2H), 2.09 – 1.99 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.86 (s), 170.08 (s), 168.60 (s), 167.29 (s), 145.85 (s), 136.32 (s), 132.28 (s), 117.34 (s), 111.05 (s), 110.02 (s), 66.36 (s), 48.57 (s), 37.66 (s), 31.00 (s), 22.20 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₅H₁₇N₄O₄: 317.1250, found 317.1248.

9-((2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)amino-9-oxononanoate, benzvl XXI: To a solution of compound XXVII (0.48 mmol, 1.1 eq) in anhydrous DMF (7 mL) at 0 °C, DIPEA (0.88 mmol, 2.0 eq) and HATU (0.53 mmol, 1.2 eq) were added. The reaction mixture was stirred for 15 minutes, after which a solution of compound XX (0.44 mmol, 1.0 eq) in DMF (3 mL) was added slowly and the resultant solution stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with sat. solution of sodium bicarbonate (2 x 50 mL) and distilled water (2 x 50 mL). The organic layer was dried over MgSO4 and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (50-100% EtOAc in hexane) to afford compound XXI as yellow solid in a yield of 42%. ¹H NMR (400 MHz, CD_3OD) δ 7.55 (dd, J = 8.5, 7.1 Hz, 1H), 7.38 – 7.29 (m, 5H), 7.13 (d, J = 8.5 Hz, 1H), 7.06 (d, J = 6.9 Hz, 1H), 6.61 (t, J = 5.6 Hz, 1H), 5.11 (s, 2H), 5.06 (dd, J = 12.5, 5.4 Hz, 1H), 3.51 - 3.46 (m, 1H), 3.45 - 3.41 (m, 1H), 2.91 - 2.81 (m, 1H), 2.79 - 2.69 (m, 2H), 2.35 (t, J = 7.4 Hz, 2H), 2.19 - 2.15 (m, 3H), 2.14 - 2.05 (m, 1H), 1.64- 1.54 (m, 4H), 1.31 - 1.25 (m, 6H). ¹³C NMR (101 MHz, CD₃OD) δ 176.85 (s), 175.24 (s), 174.66 (s), 171.55 (s), 170.56 (s), 169.27 (s), 148.12 (s), 137.74 (s), 137.22 (s), 133.96 (s), 129.53 (s)*, 129.18 (s)*, 118.01 (s), 112.08 (s), 111.42 (s), 67.11 (s), 50.18 (s), 42.74 (s), 39.76 (s), 37.03 (s), 35.00 (s), 32.20 (s), 29.93, 26.83 (s), 25.95 (s), 23.79 (s), * 2 x resonace signals coincide at 129.53 and 3 x resonace signals coincide at 129.18. HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{31}H_{36}N_4O_7$: 577.2662, found 577.2661, $[M+Na]^+$ calculated for $C_{31}H_{35}N_4O_7Na$: 599.2482, found 599.2488.

9-((2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino(ethyl)amino)9-oxononanoic acid, XXII: To a solution of compound **XXI** (0.52 mmol) in methanol (15 mL), 10% Pd/C was added. The flask was evacuated using a Schlenk line (3 times) and filled with nitrogen. A balloon filled with H₂ was added to the reaction, that was then stirred at room temperature for 48 h. The reaction mixture was filtered through celite, and the solvent was removed *in vacuo* to afford compound **XXII** as a yellow solid in a yield of 93%. ¹H NMR (400 MHz, DMSO*d*₆) δ 8.00 (t, *J* = 5.5 Hz, 1H), 7.58 (dd, *J* = 8.5, 7.2 Hz, 1H), 7.16 (d, *J* = 8.6 Hz, 1H), 7.02 (d, *J* = 6.9 Hz, 1H), 6.70 (t, *J* = 6.0 Hz, 1H), 5.04 (dd, *J* = 12.8, 5.4 Hz, 1H), 2.88 (ddd, *J* = 16.9, 13.9, 4.4 Hz, 1H), 2.63 – 2.52 (m, 2H), 2.15 (t, *J* = 7.4 Hz, 2H), 2.06 – 1.98 (m, 3H), 1.54 – 1.38 (m, 4H), 1.21 (s, 6H). ¹³C NMR (101 MHz, DMSO*d*₆) δ 174.67 (s), 172.86 (s), 171.87 (s), 170.11 (s), 168.74 (s), 167.35 (s), 146.42 (s), 136.24 (s), 132.23 (s), 117.20 (s), 110.59 (s), 109.26 (s), 48.56 (s), 41.52 (s), 35.40 (s), 33.86 (s), 31.01 (s), 28.53 (s), 28.48 (s), 25.18 (s), 24.57 (s), 22.22 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{24}H_{31}N_4O_7$: 487.2193, found 487.2186, $[M+Na]^+$ calculated for $C_{24}H_{30}N_4O_7Na$: 509.2012, found 509.1996.

tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazine-1-carboxylate, XXIII: To a solution of XI (0.7 mmol, 1.0 eq) in anhydrous DMSO (10 mL), DIPEA (1.4 mmol, 2.0 eq) and boc-piperazine (0.86 mmol, 1.2 eq) were added and the resultant mixture was stirred at 90 °C for 24 h. The reaction mixture was cooled to room temperature then poured in water (30 mL) and washed with EtOAc (2 x 50 mL). The organic layers were combined, washed with sat. brine (2 x 50 mL), dried over MgSO4, filtered, and concentrated *in vacuo* to afford a yellow/orange tar. The crude product was purified by column chromatography (60-80% EtOAc in hexane) to afford compound XXIII as yellow solid in a yield of 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.61 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.43 (d, *J* = 7.2, 0.7 Hz, 1H), 7.16 (d, *J* = 8.4, 0.6 Hz, 1H), 4.96 (dd, *J* = 12.4, 5.3 Hz, 1H), 3.65 (t, *J* = 4.9 Hz, 4H), 3.28 (dd, *J* = 9.3, 4.4 Hz, 4H), 2.94 – 2.67 (m, 3H), 2.13 (tdd, *J* = 11.3, 4.5, 1.7 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.91 (s), 168.20 (s), 167.37 (s), 166.72 (s), 154.89 (s), 150.45 (s), 135.91 (s), 134.31 (s), 123.54 (s), 118.05 (s), 116.34 (s), 80.20 (s), 51.42 (s), 49.33 (s), 43.40 (s), 31.56 (s), 28.57 (s), 22.81 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₂H₂₇N₄O₆: 443.1931, found 443.1930.

2-(2,6-dioxopiperidin-3-yl)-4-(piperazin-1-yl)isoindoline-1,3-dione, XXIV: TFA was added to a solution of compound **XXIII** (0.12 mmol, 1.0 eq) in DCM (7 mL) at 0°C, then the reaction was stirred at room temperature for 24 h. Then DCM (100 mL) was added to the reaction and washed with sat. solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, filtered, and the solvent was removed *in vacuo* to afford a yellow solid in a yield of 82% without further purification. ¹H NMR (400 MHz, DMSO) δ 11.09 (s, 1H), 7.69 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.35 – 7.31 (m, 2H), 5.09 (dd, *J* = 12.9, 5.4 Hz, 1H), 3.23 – 3.16 (m, 4H), 2.92 – 2.82 (m, 5H), 2.63 – 2.53 (m, 2H), 2.06 – 1.98 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 172.80 (s), 170.02 (s), 167.08 (s), 166.28 (s), 150.33 (s), 135.83 (s), 133.71 (s), 123.62 (s), 116.36 (s), 114.58 (s),

51.93 (s), 48.77 (s), 45.53 (s), 30.96 (s), 22.05 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{17}H_{19}N_4O_4$: 343.1408, found 343.1406.

benzyl 9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)-9-oxonanoate, XXV: To a solution of compound XXVII (0.48 mmol, 1.1 eq) in anhydrous DMF (7 mL) at 0 °C, DIPEA (0.88 mmol, 2.0 eq) and HATU (0.53 mmol, 1.2 eq) were added. The reaction mixture was stirred for 15 minutes, after which a solution of compound XXIV (0.44 mmol, 1.0 eq) in DMF (3 mL) was added slowly and the resultant solution stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (2 x 50 mL). The organic layer was dried over MgSO4 and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (90% EtOAc in hexane) to afford compound **XXV** as yellow solid in a yield of 54%. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.14 \text{ (s, 1H)}, 7.62 \text{ (dd, } J = 8.3, 7.3 \text{ Hz}, 1\text{H}), 7.45 \text{ (d, } J = 6.8 \text{ Hz}, 1\text{H}), 7.39 - 7.29 \text{ (m, 5H)},$ 7.16 (d, J = 8.0 Hz, 1H), 5.11 (s, 2H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 3.91 - 3.67 (m, 4H), 3.41 - 3.24 (m, 4H), 2.94 - 2.68 (m, 3H), 2.35 (m, 4H), 2.15 - 2.09 (m, 1H), 1.69 - 1.59 (m, 4H), 1.39 - 1.28 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.75 (s), 171.94 (s), 170.95 (s), 168.23 (s), 167.29 (s), 166.77 (s), 150.08 (s), 136.24 (s), 135.98 (s), 134.28 (s), 128.68 (s), 128.30 (s), 123.52 (s), 118.17 (s), 116.56 (s), 66.22 (s), 52.16 (s), 50.45 (s), 49.35 (s), 45.87 (s), 41.49 (s), 34.39 (s), 33.43 (s), 31.06 (s), 29.38 (s), 29.16 (s), 29.08 (s), 25.35 (s), 24.99 (s), 22.80 (s) HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{33}H_{39}N_4O_7$: 603.2819, found 603.2817; $[M+Na]^+$ calculated for C₃₃H₃₈N₄O₇Na: 625.2638, found 625.2636.

9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)-9-oxononanoic acid, XXVI: To a solution of compound **XXV** (0.52 mmol) in methanol (15mL), 10% Pd/C (0.052 mmol) was added. The flask was evacuated using a Schlenk line (3 times) and filled with nitrogen. A balloon filled with H₂ was added to the reaction, that was then stirred at room temperature for 48 h. The reaction mixture was filtered through celite, and the solvent was removed *in vacuo* to afford compound **XXVI** as a yellow solid in a yield of 95%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 7.72 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.39 (d, *J* = 7.1 Hz, 1H), 7.35 (d, *J* = 8.4 Hz,

1H), 5.11 (dd, J = 12.9, 5.4 Hz, 1H), 3.65-3.63 (m, 4H), 3.30-3.24 (m, 4H), 2.88 (ddd, J = 17.3, 14.0, 5.3 Hz, 1H), 2.64 – 2.53 (m, 2H), 2.34 (t, J = 7.4 Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 2.07 – 1.99 (m, 1H), 1.55 – 1.44 (m, 4H), 1.31 – 1.23 (m, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 174.70 (s), 172.80 (s), 170.86 (s), 169.97 (s), 167.02 (s), 166.35 (s), 149.46 (s), 135.94 (s), 133.61 (s), 123.88 (s), 116.91 (s), 115.22 (s), 50.95 (s), 50.30 (s), 48.82 (s), 44.95 (s), 40.90 (s), 34.02 (s), 32.26 (s), 30.95 (s), 28.67 (s), 28.61 (s), 28.54 (s), 24.77 (s), 24.62 (s), 22.04 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₃₃N₄O₇: 513.2349, found 513.2338, [M+Na]⁺ calculated for C₂₆H₃₂N₄O₇Na: 535.2169, found 535.2151.

9-(benzyloxy)-9-oxononanoic acid, XXVII: To a solution of azelaic acid (6.36 mmol, 1.0 eq) in 1,4-Dioxane/DMF (1:1 – 8 mL), was added benzyl bromide (6.36 mmol, 1.0 eq), followed by the addition of NaHCO₃ (6.51 mmol, 1.02 eq). The resulting suspension was heated at 90 °C for 16 h. The reaction mixture was cool to room temperature and then concentrated *in vacuo* to afford an off-white oil. The crude residue was then suspended in EtOAc (50 mL) and washed with sat. NaCl (2 x 50 mL) and distilled water (2 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (40% EtOAc in hexane) to afford compound **XXVII** as an off-white solid in a yield of 31%. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 5.12 (s, 2H), 2.34 (td, *J* = 7.5, 5.7 Hz, 4H), 1.68 – 1.57 (m, 4H), 1.32 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.58 (s), 173.77 (s), 136.25 (s), 128.69 (s)*, 128.34 (s)*, 66.25 (s), 34.40 (s), 34.03 (s), 28.99 (s), 24.99 (s), 24.70 (s), * 2 x resonace signals coincide at 128.69 and 3 x resonace signals coincide at 128.34. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₂₂N₄O₄: 301.1416, found 301.1422.

3.5. Synthesis of the PROTACs 3-6 and 10-13

tert-butyl (2-(5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)piperazin-1yl)pyrazine-2-carboxamido)phenyl)carbamate, XXVIII: DIPEA (0.18 mmol, 1.5 eq) was added to a solution of compounds X (0.12 mmol, 1.0 eq) and XIV (0.13 mmol, 1.1 eq) in acetonitrile (10 mL) and the reaction was stirred at 85°C for 24 hours. The solvent was concentrated *in vacuo* and 50 mL of ethyl acetate was added to the crude and washed with distilled water (3 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was

concentrated *in vacuo*. The crude product was purified by column chromatography (50-100% EtOAc in hexane) to afford compound **XXVIII** as yellow solid in a yield of 53%. ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.93 (d, *J* = 1.3 Hz, 1H), 7.98 (d, *J* = 1.3 Hz, 1H), 7.67 – 7.56 (m, 2H), 7.49 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.24 – 7.13 (m, 2H), 7.08 (d, *J* = 7.0 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 6.23 (t, *J* = 5.4 Hz, 1H), 4.91 (dd, *J* = 12.1, 5.4 Hz, 1H), 3.78 – 3.71 (m, 4H), 3.27 (dd, *J* = 12.7, 6.8 Hz, 2H), 2.92 – 2.70 (m, 3H), 2.58 – 2.53 (m, 4H), 2.43 – 2.36 (m, 2H), 2.16 – 2.07 (m, 1H), 1.73 – 1.64 (m, 2H), 1.60 – 1.52 (m, 2H), 1.50 (s, 9H), 1.47 – 1.36 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.15 (s), 169.67 (s), 168.53 (s), 167.72 (s), 162.98 (s), 155.59 (s), 154.00 (s), 147.12 (s), 143.39 (s), 136.27 (s), 132.64 (s), 132.56 (s), 127.72 (s), 126.10 (s), 125.46 (s), 125.01 (s), 124.51 (s), 116.75 (s), 111.57 (s), 26.73 (s), 22.96 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₉H₄₈N₉O₇: 754.3677, found 754.3684.

tert-butyl (3-(5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)piperazin-1vl)pyrazine-2-carboxamido)-4'-fluoro-[1,1'-biphenyl]-4-vl)carbamate, XXIX: DIPEA (0.27 mmol, 1.5 eq) was added to a solution of compounds VII (0.18 mmol, 1.0 eq) and XIV (0.21 mmol, 1.2 eq) in acetonitrile (10 mL) and the reaction was stirred at 85 °C for 24 h. The solvent was concentrated in vacuo and 50 mL of ethyl acetate was added to the crude and washed with distilled water (3 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (50-100% EtOAc in hexane) to afford compound XXIX as yellow solid in a yield of 37%. ¹H NMR (400 MHz, $CDCl_3$ δ 9.64 (s, 1H), 8.95 (d, J = 1.3 Hz, 1H), 8.22 (s, 1H), 7.99 (d, J = 1.3 Hz, 1H), 7.85 (s, 1H), 7.65 (d, J = 1.3 Hz, 1H), 7.65 (d, J = 1.3 Hz 8.2 Hz, 1H), 7.56 – 7.52 (m, 3H), 7.37 (dd, J = 8.4, 2.1 Hz, 1H), 7.13 – 7.07 (m, 3H), 6.78 (d, J = 9.0 Hz, 1H), 6.38 (t, J = 5.6 Hz, 1H), 4.92 (dd, J = 12.3, 5.4 Hz, 1H), 3.79 - 3.73 (m, 4H), 3.31 - 3.22 (m, 3H), 2.93 - 2.72 (m, 4H), 3.1 - 3.22 (m, 3H), 2.93 - 2.72 (m, 4H), 3.1 - 3.22 (m, 3H), 2.93 - 2.72 (m, 4H), 3.1 - 3.22 (m, 3H), 2.93 - 2.72 (m, 4H), 3.1 - 3.22 (m, 3H), 2.93 - 2.72 (m, 4H), 3.1 - 3.22 (m, 3H), 3.2 - 3.223H), 2.59 – 2.54 (m, 4H), 2.43 – 2.38 (m, 2H), 2.16 – 2.10 (m, 1H), 1.70 – 1.65 (m, 2H), 1.60 – 1.55 (m, 2H), 1.52 (s, 9H), 1.48 – 1.39 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.96 (s), 168.26 (s), 165.66 (s), 163.10 (s), 162.61 (d, J = 246.4 Hz), 155.62 (s), 154.00 (s), 146.52 (s), 143.46 (s), 140.68 (s), 136.47 (d, J = 3.0 Hz), 132.48(s), 129.41 (s), 128.74 (d, J = 8.0 Hz), 127.74 (s), 125.31 (s), 124.49 (s), 122.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 127.74 (s), 125.31 (s), 124.49 (s), 122.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 127.74 (s), 125.31 (s), 124.49 (s), 122.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 127.74 (s), 125.31 (s), 124.49 (s), 122.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 127.74 (s), 125.31 (s), 124.49 (s), 125.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 125.31 (s), 125.31 (s), 125.31 (s), 125.78 (s), 118.43 (s), 115.73 (d, J = 21.5 Hz), 125.41 (s), 125.41 Hz), 111.64 (s), 103.65 (s), 80.91 (s), 58.52 (s), 52.84 (s), 49.17 (s), 44.46 (s), 42.81 (s), 31.52 (s), 29.25 (s), 28.47

(s), 27.28 (s), 26.94 (s), 26.73 (s), 22.85 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{45}H_{51}N_9O_7$: 848.3895, found 848.3929; $[M+Na]^+$ calculated for $C_{45}H_{50}N_9O_7Na$: 870.3715, found 870.3749.

N-(2-(3-(tert-butyl)ureido)phenyl)-5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-

yl)amino)hexanoyl)piperazin-1-yl)pyrazine-2-carboxamide, XXX: A solution of DIPEA (0.4 mmol, 1.6 eq) and HATU (0.35 mmol, 1.4 eq) were added to a solution of compound XII (0.3 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound X (0.25 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (100% EtOAc) to afford compound XXX as yellow solid in a yield of 30%. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.95 (d, *J* = 1.3 Hz, 1H), 8.31 (s, 1H), 8.00 (d, *J* = 1.3 Hz, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.48 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.24 - 7.14 (m, 3H), 7.07 (d, J = 6.9 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 6.23 (t, J = 5.5 Hz, 1H), 4.91(dd, J = 12.1, 5.4 Hz, 1H), 3.83 – 3.77 (m, 4H), 3.73 – 3.59 (m, 4H), 3.29 (dd, J = 12.7, 6.7 Hz, 2H), 2.90 – 2.71 (m, 3H), 2.40 (t, J = 7.4 Hz, 2H), 2.16 – 2.09 (m, 1H), 1.78 – 1.66 (m, 6H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.67 (s), 169.67 (s), 168.56 (s), 167.69 (s), 162.70 (s), 155.38 (s), 154.03 (s), 147.07 (s), 143.29 (s), 136.31 (s), 133.44 (s), 132.60 (s), 130.94 (s), 127.74 (s), 126.11 (s), 125.58 (s), 125.13 (s), 124.45 (s), 116.77 (s), 111.62 (s), 110.02 (s), 80.81 (s), 45.00 (s), 44.50 (s), 44.09 (s), 42.46 (s), 40.94 (s), 33.10 (s), 31.53 (s), 29.15 (s), 28.45 (s), 26.77 (s), 24.84 (s), 22.96 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₉H₄₆N₉O₈: 768.3469, found 768.3464.

tert-butyl (3-(5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexanoyl)piperazin-1yl)pyrazine-2-carboxamido)-4'-fluoro-[1,1'-biphenyl]-4-yl)carbamate, XXXI: A solution of DIPEA (0.61 mmol, 2.6 eq) and HATU (0.3 mmol, 1.2 eq) were added to a solution of compound XII (0.25 mmol, 1.1 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound VII (0.23 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (80-95% EtOAc in petroleum ether) to afford compound XXXI as yellow solid in a yield of 55.3%. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.97 (d, J = 1.3 Hz, 1H), 8.25 (s, 1H), 8.01 (d, J = 1.4 Hz, 1H), 7.90 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.49 (dd, J = 8.3, 7.3 Hz, 1H), 7.38 (dd, J = 8.4, 2.1 Hz, 1H), 7.17 (s, 1H), 7.13 - 7.06 (m, 3H), 6.88 (d, J = 8.5 Hz, 1H), 6.23 (t, J = 5.5 Hz, 1H), 4.91 (dd, J = 12.1, 5.4 Hz, 1H), 3.85-3.77 (m, 4H), 3.74 - 3.60 (m, 4H), 3.30 (dd, J = 12.6, 6.7 Hz, 2H), 2.91 - 2.71 (m, 3H), 2.40 (t, J = 7.4 Hz, 2H), 2.16 - 2.10 (m, 1H), 1.79 - 1.68 (m, 4H), 1.57 - 1.47 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 171.67 (s), 171.14 (s), 169.68 (s), 168.54 (s), 167.69 (s), 165.65 (s), 162.83 (s), 162.62 (d, J = 246.7 Hz), 155.41 (s), 154.02 (s), 147.08 (s), 143.36 (s), 136.44 (s), 136.32 (s), 133.36 (s), 132.61 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (d, J = 8.1 Hz), 127.76 (s), 125.41 (s), 128.74 (s), 124.57 (s), 122.85 (s), 116.78 (s), 115.75 (d, *J* = 21.5 Hz), 111.65 (s), 110.03 (s), 81.00 (s), 49.01 (s), 45.02 (s), 44.51 (s), 44.10 (s), 42.47 (s), 40.98 (s), 33.11 (s), 31.54 (s), 29.15 (s), 28.46 (s), 26.78 (s), 24.85 (s), 22.97 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.59 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₅H₄₉N₉O₈F: 862.3688, found 862.3690, $[M+Na]^+$ calculated for C₄₅H₄₈N₉O₈FNa: 884.3508, found 884.3509.

N-(2-(3-(tert-butyl)ureido)phenyl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-

yl)piperidin-4-yl)propanoyl)piperazin-1-yl)pyrazine-2-carboxamide, XXXII: A solution of DIPEA (0.33 mmol, 1.5 eq) and HATU (0.28 mmol, 1.3 eq) were added to a solution of compound XV (0.24 mmol, 1.1 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound X (0.22 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 h. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium

bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (100% EtOAc) to afford compound **XXXII** as yellow solid in a yield of 63%. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.96 (d, *J* = 1.3 Hz, 1H), 8.13 (s, 1H), 8.01 (d, *J* = 1.4 Hz, 1H), 7.67 (d, *J* = 3.6 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.36 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.24 – 7.11 (m, 3H), 4.96 (dd, *J* = 12.3, 5.3 Hz, 1H), 3.89 – 3.62 (m, 10H), 2.92 – 2.68 (m, 5H), 2.47 – 2.43 (m, 2H), 2.14 – 2.07 (m, 1H), 1.87 (d, *J* = 9.0 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.57 – 1.53 (m, 3H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.89 (s), 171.05 (s), 168.34 (s), 167.53 (s), 166.87 (s), 162.71 (s), 155.40 (s), 154.01 (s), 150.99 (s), 143.32 (s), 135.65 (s), 134.25 (s), 133.49 (s), 127.70 (s), 126.17 (s), 125.62 (s), 125.12 (s), 124.43 (s), 123.78 (s), 117.33 (s), 115.49 (s), 80.82 (s), 52.14 (s), 51.80 (s), 49.24 (s), 45.04 (s), 44.53 (s), 44.09 (s), 40.97 (s), 35.16 (s), 32.27 (s), 31.66 (s), 31.55 (s), 31.07 (s), 30.42 (s), 28.45 (s), 22.83 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₁H₄₈N₉O₈: 794.3626, found 794.3630, [M+Na]⁺ calculated for C₄₁H₄₇N₉O₈Na: 816.3445, found 816.3453.

N-(4-(3-(tert-butyl)ureido)-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3dioxoisoindolin-4-yl)piperidin-4-yl)propanoyl)piperazin-1-yl)pyrazine-2-carboxamide, XXXIII: A solution of DIPEA (0.5 mmol, 2.8 eq) and HATU (0.25 mmol, 1.4 eq) were added to a solution of compound **XV** (0.21 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound **VII** (0.18 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with sat. solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (100% EtOAc) to afford compound **XXXIII** as yellow solid in a yield of 53%. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.98 (d, *J* = 1.3 Hz, 1H), 8.11 (s, 1H), 8.02 (d, *J* = 1.4 Hz, 1H), 7.90 (s, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.58 – 7.52 (m, 3H), 7.40 – 7.35 (m, 2H), 7.17 (d, *J* = 8.1 Hz, 1H), 7.10 (t, *J* = 8.7 Hz, 2H), 4.96 (dd, *J* = 12.3, 5.3 Hz, 1H), 3.92 – 3.54 (m, 10H), 2.96 – 2.67 (m, 7H), 2.48 – 2.43 (m, 2H), 2.14 – 2.08 (m, 1H), 1.87 (d, *J* = 9.6 Hz, 2H), 1.71 (dd, *J* = 14.2, 7.4 Hz, 2H), 1.53 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 171.89 (s), 171.03 (s), 168.32 (s), 167.52 (s), 166.88 (s), 162.83 (s), 162.63 (d, *J* = 246.3 Hz), 155.43 (s), 154.01 (s), 150.99 (s), 143.37 (s), 137.72 (s), 136.42 (d, *J* = 3.3 Hz), 135.66 (s), 134.25 (s), 133.39 (s), , 128.74 (d, *J* = 8.0 Hz), 127.71 (s), 125.38 (s), 124.61 (s), 123.79 (s), 122.93 (s), 117.34 (s), 115.75 (d, J = 21.4 Hz), 115.50 (s), 81.00 (s), 52.14 (s), 51.81 (s), 49.25 (s), 45.04 (s), 44.53 (s), 44.12 (s), 40.98 (s), 35.16 (s), 32.27 (s), 31.66 (s), 31.56 (s), 31.07 (s), 30.42 (s), 28.47 (s), 22.83 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.57 (s).

tert-butyl (2-(5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4yl)propyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XXXIV: DIPEA (0.37 mmol, 1.5 eq) was added to a solution of compounds X (0.25 mmol, 1.0 eq) and XVII (0.30 mmol, 1.2 eq) in acetonitrile (10 mL) and the reaction was stirred at 85 °C for 24 h. The solvent was concentrated *in vacuo* and 50 mL of ethyl acetate was added to the crude and washed with distilled water (3 x 50 mL). The organic layer was dried over MgSO4, and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (2% methanol in EtOAc in hexane) to afford compound **XXXIV** as yellow solid in a yield of 40%. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 8.93 (d, J = 1.3 Hz, 1H), 8.24 (s, 1H), 7.99 (d, J = 1.3 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.56 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.35 (d, *J* = 6.7 Hz, 1H), 7.23 – 7.15 (m, 3H), 4.96 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.81 -3.70 (m, 6H), 2.93 - 2.70 (m, 5H), 2.59 (s, 4H), 2.47 - 2.34 (m, 2H), 2.14 - 2.07 (m, 1H), 1.84 (d, J = 9.6 Hz, 2H), 1.64 – 1.58 (m, 2H), 1.50 (s, 9H), 1.48 (s, 2H), 1.39 – 1.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.11 (s), 168.39 (s), 167.56 (s), 166.85 (s), 162.96 (s), 155.56 (s), 155.56 (s), 154.00 (s), 154.00 (s), 151.06 (s), 151.06 (s), 143.40 (s), 135.60 (s), 134.26 (s), 132.64 (s), 127.71 (s), 126.12 (s), 125.48 (s), 125.01 (s), 124.47 (s), 123.78 (s), 117.25 (s), 115.37 (s), 80.72 (s), 58.87 (s), 52.79 (s), 52.27 (s), 51.94 (s), 49.24 (s), 44.35 (s), 35.56 (s), 34.35 (s), 32.51 (s), 32.48 (s), 31.56 (s), 28.46 (s), 23.95 (s), 22.83 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for C₄₁H₅₀N₉O₇: 780.3833, found 780.3835, [M+Na]⁺ calculated for C₄₁H₄₉N₉O₇Na: 802.3653, found 802.3657.

tert-butyl (3-(5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4vl)propyl)piperazin-1-vl)pyrazine-2-carboxamido)-4'-fluoro-[1,1'-biphenyl]-4-yl)carbamate, XXXV: DIPEA (0.27 mmol, 1.5 eq) was added to a solution of compounds VII (0.18 mmol, 1.0 eq) and XVII (0.21 mmol, 1.2 eq) in acetonitrile (10 mL) and the reaction was stirred at 85°C for 24 hours. The solvent was concentrated in vacuo and 50 mL of ethyl acetate was added to the crude mixture and washed with distilled water (3 x 50 mL). The organic layer was dried over MgSO4, and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (2% methanol in EtOAc in hexane) to afford compound XXXV as yellow solid in a yield of 36%. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 8.94 (d, J = 1.3 Hz, 1H), 8.24 (s, 1H), 7.99 (d, J = 1.3 Hz, 1H), 7.86 (s, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.58 - 7.51 (m, 3H), 7.39 - 7.34 (m, 2H), 7.17 (d, J = 7.34 Hz), 78.1 Hz, 1H), 7.12 – 7.06 (m, 2H), 4.96 (dd, J = 12.2, 5.4 Hz, 1H), 3.80 – 3.71 (m, 6H), 2.92 – 2.70 (m, 5H), 2.60 -2.53 (m, 4H), 2.44 - 2.38 (m, 2H), 2.18 - 2.08 (m, 1H), 1.89 - 1.80 (m, 2H), 1.63 - 1.56 (m, 2H), 1.52 (s, 9H), 1.49 – 1.46 (m, 3H), 1.39 – 1.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.09 (s), 168.37 (s), 167.55 (s), 166.85 (s), 163.10 (s), 162.60 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (d, J = 246.2 Hz), 155.62 (s), 153.99 (s), 151.07 (s), 143.46 (s), 137.56 (s), 136.46 (s), 143.46 (s), 137.56 (s), 136.46 (s), 143.46 (s), 3.1 Hz), 135.60 (s), 134.27 (s), 132.45 (s), 128.73 (d, J = 8.1 Hz), 127.72 (s), 125.34 (s), 124.51 (s), 123.78 (s), 122.82 (s), 117.25 (s), 115.72 (d, *J* = 21.4 Hz), 115.37 (s), 80.89 (s), 58.92 (s), 52.86 (s), 52.28 (s), 51.95 (s), 49.24 (s), 44.47 (s), 35.59 (s), 34.38 (s), 32.52 (s), 32.50 (s), 31.56 (s), 28.46 (s), 24.09 (s), 22.84 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{47}H_{53}N_9O_7F$: 874.4052, found 874.4051; $[M+Na]^+$ calculated for $C_{47}H_{52}N_9O_7FNa$: 896.3871, found 896.3870.

N-(2-aminophenyl)-5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)piperazin-1-yl)pyrazine-2-carboxamide, 3: TFA (0.16 mmol, 3.0 eq) was added to a solution of compound XXVIII (0.05 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (5% methanol in EtOAc) to afford compound 3 as yellow solid in a yield of 72%. ¹H NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 8.91 (d, *J* = 1.3 Hz, 1H), 8.00 (d, *J* = 1.3 Hz, 1H), 7.48 (dd, J = 8.4, 7.2 Hz, 1H), 7.42 (dd, J = 8.2, 1.4 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.88 (d, J = 8.5 Hz, 1H), 6.86 – 6.81 (m, 2H), 6.23 (t, J = 5.5 Hz, 1H), 4.90 (dd, J = 12.1, 5.4 Hz, 1H), 3.78 – 3.72 (m, 4H), 3.27 (dd, J = 12.7, 6.8 Hz, 2H), 2.91 - 2.70 (m, 3H), 2.61 - 2.54 (m, 4H), 2.45 - 2.39 (m, 2H), 2.18 - 2.09 (m, 1H), 1.68 (dt, J = 14.5, 7.1 Hz, 2H), 1.56 (dt, J = 14.8, 7.5 Hz, 2H), 1.50 – 1.37 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.24 (s), 169.67 (s), 168.60 (s), 167.73 (s), 162.40 (s), 155.52 (s), 147.11 (s), 143.14 (s), 140.58 (s), 136.27 (s), 132.78 (s), 132.63 (s), 127.76 (s), 126.81 (s), 124.84 (s), 124.60 (s), 119.67 (s), 118.16 (s), 116.75 (s), 111.56 (s), 110.01 (s), 58.50 (s), 52.77 (s), 49.01 (s), 44.35 (s), 42.68 (s), 31.55 (s), 29.29 (s), 27.27 (s), 26.94 (s), 26.62 (s), 22.95 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{34}H_{40}N_9O_5$: 654.3152, found 654.3152; $[M+Na]^+$ calculated for $C_{34}H_{39}N_9O_5Na$: 676.2972, found 676.2970.

N-(2-aminophenyl)-5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4- yl)amino) hexanoyl) piperazin-1-yl)pyrazine-2-carboxamide, 4: TFA (1.2 mmol, 20 eq) was added to a solution of compound XXX (0.06 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with sat. sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (100% EtOAc) to afford compound 4 as yellow solid in a yield of 49%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 9.63 (s, 1H), 8.73 (d, *J* = 1.3 Hz, 1H), 8.36 (d, *J* = 1.3 Hz, 1H), 7.58 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.47 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.10 (d, *J* = 8.6 Hz, 1H), 7.01 (d, *J* = 6.9 Hz, 1H), 6.97 – 6.90 (m, 1H), 6.81 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.64 (td, *J* = 7.7, 1.4 Hz, 1H), 6.54 (t, *J* = 4.8 Hz, 1H), 5.05 (dd, *J* = 12.8, 5.4 Hz, 1H), 4.85 (s, 1H), 3.79 – 3.70 (m, 3H), 3.63 – 3.58 (m, 3H), 3.31 – 3.22 (m, 2H), 2.93 – 2.83 (m, 1H), 2.64 – 2.52 (m, 2H), 2.39 (t, *J* = 7.3 Hz, 2H), 2.07 – 1.98 (m, 1H), 1.59 (tt, *J* = 14.7, 7.5 Hz, 4H), 1.43 – 1.34
(m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.81 (s), 170.88 (s), 170.10 (s), 168.95 (s), 167.29 (s), 161.85 (s), 154.93 (s), 146.43 (s), 141.92 (s), 141.60 (s), 136.29 (s), 132.93 (s), 132.19 (s), 128.83 (s), 125.61 (s), 124.42 (s), 124.30 (s), 117.20 (s), 117.06 (s), 116.79 (s), 110.37 (s), 108.99 (s), 48.54 (s), 44.21 (s), 43.91 (s), 43.72 (s), 41.75 (s), 40.41 (s), 32.15 (s), 30.98 (s), 30.69 (s), 28.56 (s), 26.06 (s), 24.44 (s), 22.16 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₈N₉O₆: 668.2945, found 668.2954.

N-(2-aminophenyl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4-

yl)propanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 5: TFA (1.2 mmol, 20 eq) was added to a solution of compound **XXXII** (0.06 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with sat. sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (5% methanol in EtOAc) to afford compound **5** as yellow solid in a yield of 82%. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.95 (d, *J* = 1.1 Hz, 1H), 8.22 (s, 1H), 8.04 (d, *J* = 1.2 Hz, 1H), 7.56 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.43 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.36 (d, *J* = 7.1 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.10 – 7.05 (m, 1H), 6.87 – 6.82 (m, 2H), 4.95 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.99 (s, 2H), 3.86 – 3.62 (m, 10H), 2.94 – 2.66 (m, 5H), 2.48 – 2.43 (m, 2H), 2.15 – 2.07 (m, 1H), 1.86 (d, *J* = 9.3 Hz, 2H), 1.74 – 1.64 (m, 2H), 1.59 – 1.49 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.89 (s), 171.11 (s), 168.38 (s), 167.53 (s), 166.86 (s), 162.16 (s), 155.35 (s), 150.98 (s), 143.09 (s), 140.53 (s), 135.64 (s), 134.24 (s), 133.59 (s), 127.74 (s), 126.92 (s), 124.80 (s), 124.51 (s), 123.78 (s), 119.74 (s), 118.24 (s), 117.32 (s), 115.48 (s), 52.13 (s), 51.80 (s), 49.23 (s), 45.05 (s), 44.09 (s), 40.97 (s), 35.15 (s), 32.25 (s), 31.66 (s), 31.54 (s)*, 30.41 (s), 22.82 (s), *2 x resonace signals coincide at 31.54. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₀N₉O₆: 694.3102, found 694.3102, [M+Na]⁺ calculated for C₃₆H₃₉N₉O₆Na: 716.2921, found 716.2916.

N-(2-aminophenyl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4-

yl)propyl)piperazin-1-yl)pyrazine-2-carboxamide, 6: TFA (1.2 mmol, 20 eq) was added to a solution of compound **XXXIV** (0.06 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with sat. sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (5% methanol in EtOAc) to afford compound **6** as yellow solid in a yield of 68%. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.92 (d, *J* = 1.4 Hz, 1H), 8.27 (s, 1H), 8.01 (d, *J* = 1.4 Hz, 1H), 7.56 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.42 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.35 (dd, *J* = 7.1, 0.6 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.09 – 7.04 (m, 1H), 6.86 – 6.81 (m, 2H), 4.96 (dd, *J* = 12.2, 5.4 Hz, 1H), 3.98 (s, 2H), 3.75 (dd, *J* = 14.3, 8.8 Hz, 6H), 2.93 – 2.67 (m, 5H), 2.60 – 2.55 (m, 4H), 2.44 – 2.38 (m, 2H), 2.15 – 2.06 (m, 1H), 1.84 (d, *J* = 9.3 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.52 – 1.43 (m, 3H), 1.39 – 1.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.12 (s), 168.39 (s), 167.56 (s), 166.85 (s), 162.40 (s), 155.56 (s), 151.07 (s), 143.16 (s), 140.57 (s), 135.59 (s), 134.27 (s), 132.76 (s), 52.86 (s), 52.28 (s), 51.96 (s), 49.24 (s), 44.45 (s), 35.58 (s), 34.39 (s), 32.52 (s), 32.49 (s), 31.56 (s), 24.08 (s), 22.83 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₂N₉O₅: 680.3309, found 680.3314; [M+Na]⁺ calculated for C₃₆H₄₁N₉O₅Na: 702.3128, found 702.3132.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4yl)amino)hexyl)piperazin-1-yl)pyrazine-2-carboxamide, 10: TFA (1.2 mmol, 20 eq) was added to a solution of

compound **XXIX** (0.06 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (2% methanol in DCM) to afford compound **10** as yellow solid in a yield of 13%. ¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.94 (d, *J* = 1.3 Hz, 1H), 8.14 (s, 1H), 8.02 (d, *J* = 1.4 Hz, 1H), 7.67 (d, *J* = 2.1 Hz, 1H), 7.54 (d, *J* = 9.2 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.27 (d, *J* = 2.1 Hz, 1H), 7.10 – 7.04 (m, 3H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.78 (d, *J* = 9.0 Hz, 1H), 6.38 (t, *J* = 5.5 Hz, 1H), 4.92 (dd, *J* = 12.2, 5.4 Hz, 1H), 4.03 (s, 2H), 3.79 – 3.73 (m, 4H), 3.31 – 3.23 (m, 2H), 2.93 – 2.72 (m, 3H), 2.61 – 2.52 (m, 4H), 2.44 – 2.37 (m, 2H), 2.18 – 2.10 (m, 1H), 1.74 – 1.65 (m, 2H), 1.61 – 1.52 (m, 2H), 1.49 – 1.38 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.89 (s), 168.28 (s), 168.21 (s), 165.66 (s), 162.53 (s), 162.17 (d, *J* = 245.5 Hz), 155.60 (s), 146.53 (s), 143.23 (s), 140.69 (s), 139.81 (s), 136.95 (d, *J* = 3.2 Hz), 131.98 (s), 129.42 (s), 128.22 (d, *J* = 7.9 Hz), 127.76 (s), 125.25 (s), 123.27 (s), 118.52 (s), 118.43 (s), 115.59 (d, *J* = 21.4 Hz), 111.65 (s), 58.54 (s), 52.86 (s), 49.18 (s), 44.48 (s), 42.82 (s), 31.52 (s), 29.26 (s), 27.30 (s), 26.95 (s), 26.76 (s), 22.86 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.90 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₀H₄₃N₉O₅Fr. 748.3371, found 748.3372; [M+Na]⁺ calculated for C₄₀H₄₃N₉O₅Fr. 748.3371, found 748.3372; [M+Na]⁺ calculated for C₄₀H₄₂N₉O₅Fna: 770.3191, found 770.3195.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4yl)amino)hexanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 11: TFA (0.9 mmol, 20 eq) was added to a solution of compound XXXI (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (3% methanol in EtOAc) to afford compound 11 as yellow solid in a yield of 68%. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.96 (d, *J* = 1.0 Hz, 1H), 8.27 (s, 1H), 8.04 (d, *J* = 1.0 Hz, 1H), 7.68 (d, *J* = 2.0 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.28 (d, 1H), 7.10 – 7.04 (m, 3H), 6.89 (dd, *J* = 8.2, 7.0 Hz, 2H), 6.23 (t, *J* = 5.5 Hz, 1H), 4.90 (dd, *J* = 12.1, 5.4 Hz, 1H), 4.04 (s, 2H), 3.84 – 3.78 (m, 4H), 3.74 – 3.69 (m, 2H), 3.65 – 3.60 (m, 2H), 3.29 (dd, *J* = 12.7, 6.6 Hz, 2H), 2.92 – 2.67 (m, 3H), 2.41 (t, *J* = 7.4 Hz, 2H), 2.16 – 2.09 (m, 1H), 1.73 (dq, *J* = 15.1, 7.4 Hz, 4H), 1.49 (dt, *J* = 15.8, 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.66 (s), 171.12 (s), 169.67 (s), 168.53 (s), 167.69 (s), 162.30 (s), 162.17 (d, J = 245.4 Hz), 155.38 (s), 147.07 (s), 143.14 (s), 139.78 (s), 136.89 (d, J = 3.1 Hz), 136.32 (s), 133.47 (s), 132.61 (s), 131.98 (s), 128.20 (d, J = 7.9 Hz), 127.79 (s), 125.32 (s), 124.85 (s), 123.26 (s), 118.55 (s), 116.78 (s), 115.60 (d, J = 21.4 Hz), 111.63 (s), 110.03 (s), 49.01 (s), 45.02 (s), 44.51 (s), 44.09 (s), 42.46 (s), 40.96 (s), 33.11 (s), 31.54 (s), 29.15 (s), 26.77 (s), 24.85 (s), 22.96 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.82 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₀H₄₁N₉O₆F: 762.3164, found 761.3162; [M+Na]⁺ calculated for C₄₀H₄₀N₉O₆FNa: 784.2983, found 784.2987.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4vl)piperidin-4-vl)propanovl)piperazin-1-vl)pvrazine-2-carboxamide, 12: TFA (0.9 mmol, 20 eq) was added to a solution of compound XXXIII (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (3% methanol in EtOAc) to afford compound 12 as yellow solid in a yield of 75%. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 8.97 (d, J = 1.2 Hz, 1H), 8.14 (s, 1H), 8.05 (d, J = 1.3 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.3, 7.2 Hz, 1H), 7.50 (dd, J = 8.8, 5.3 Hz, 2H), 7.36 (d, J = 7.1 Hz, 1H), 7.27 - 7.25 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 7.07 (t, J = 8.7)Hz, 2H), 6.90 (d, J = 8.2 Hz, 1H), 4.96 (dd, J = 12.2, 5.4 Hz, 1H), 4.03 (s, 2H), 3.89 - 3.63 (m, 10H), 2.93 - 2.67 (m, 5H), 2.49 - 2.42 (m, 2H), 2.14 - 2.07 (m, 1H), 1.87 (d, J = 9.2 Hz, 2H), 1.71 (dd, J = 13.5, 7.0 Hz, 2H), 1.59- 1.47 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.88 (s), 171.04 (s), 168.34 (s), 167.52 (s), 166.87 (s), 162.29 (s), 162.17 (d, J = 245.5 Hz), 155.39 (s), 150.99 (s), 143.15 (s), 139.77 (s), 136.88 (d, J = 3.1 Hz), 135.65 (s), 134.25 (s), 133.49 (s), 132.00 (s), 128.20 (d, J = 7.9 Hz), 127.74 (s), 125.33 (s), 124.86 (s), 123.78 (s), 123.23 (s), 118.58 (s), 117.34 (s), 115.71 (s), 115.60 (d, J=21.5 Hz), 115.50 (s), 52.15 (s), 51.80 (s), 49.24 (s), 45.04 (s), 44.52 (s), 44.10 (s), 40.97 (s), 35.16 (s), 32.26 (s), 31.66 (s), 31.55 (s), 30.41 (s), 22.83 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.80 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₂H₄₃N₉O₆F: 788.3320, found 788.3313, [M+Na]⁺ calculated for C₄₂H₄₂N₉O₆FNa: 810.3140, found 810.3134.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(3-(1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4yl)piperidin-4-yl)propyl)piperazin-1-yl)pyrazine-2-carboxamide, 13: TFA (0.9 mmol, 20 eq) was added to a solution of compound XXXV (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (2% methanol in DCM) to afford compound 13 as yellow solid in a yield of 48%. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.94 (d, J= 1.3 Hz, 1H), 8.18 (s, 1H), 8.02 (d, J = 1.4 Hz, 1H), 7.67 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.4, 7.2 Hz, 1H), 7.50 (dd, J = 8.9, 5.3 Hz, 2H), 7.36 (d, J = 6.7 Hz, 1H), 7.26 (dd, J = 2.1 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 7.07 (t, J = 3.2 Hz, 1H), 7.07 (t, J = 38.8 Hz, 2H), 6.89 (d, J = 8.2 Hz, 1H), 4.96 (dd, J = 12.2, 5.4 Hz, 1H), 4.05 (s, 2H), 3.80 - 3.69 (m, 4H), 2.92 -2.66 (m, 5H), 2.60 - 2.55 (m, 4H), 2.44 - 2.38 (m, 2H), 2.16 - 2.07 (m, 1H), 1.85 (d, J = 9.2 Hz, 2H), 1.65 - 1.55 (m, 2H), 2.60 - 2.55 (m, 2H), 2.55 (m,(m, 2H), 1.52 – 1.45 (m, 3H), 1.40 – 1.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.06 (s), 168.35 (s), 167.56 (s), 166.86 (s), 162.54 (s), 162.16 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (d, J = 245.3 Hz), 155.59 (s), 151.08 (s), 143.23 (s), 139.81 (s), 136.94 (s), 140.28 (s), 3.2 Hz, 135.60 (s), 134.27 (s), 132.63 (s), 131.95 (s), 128.20 (d, J = 7.9 Hz), 127.74 (s), 125.23 (s), 124.96 (s), 123.78 (s), 123.26 (s), 118.51 (s), 117.25 (s), 115.58 (d, J = 21.4 Hz), 115.37 (s), 58.93 (s), 52.87 (s), 52.29 (s), 51.96 (s), 49.24 (s), 44.48 (s), 35.59 (s), 34.39 (s), 32.52 (s), 32.50 (s), 31.56 (s), 24.10 (s), 22.84 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.90 (s).

3.6. Synthesis of the PROTACs 7-9 and 14-15

tert-butyl (2-(5-(4-(12-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XXXVI: A solution of DIPEA (0.28 mmol, 1.5 eq) and HATU (0.25 mmol, 1.3 eq) were added to a solution of compound XVIII (0.21 mmol, 1.1 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound X (0.19 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (90% EtOAc in hexane) to afford compound XXXVI as yellow solid in a yield of 65%. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.96 (d, *J* = 1.3 Hz, 1H), 8.28 (s, 1H), 8.00 (d, *J* = 1.3 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.57 (d, *J* = 5.6 Hz, 1H), 7.48 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.07 (d, *J* = 6.8 Hz, 1H), 6.87 (d, *J* = 8.5 Hz, 1H), 6.22 (t, *J* = 5.4 Hz, 1H), 4.91 (dd, *J* = 12.1, 5.4 Hz, 1H), 3.85 – 3.77 (m, 4H), 3.73 – 3.60 (m, 4H), 3.25 (dd, *J* = 12.7, 6.9 Hz, 2H), 2.92 – 2.67 (m, 3H), 2.40 – 2.35 (m, 2H), 2.12 (ddd, *J* = 9.5, 5.6, 2.7 Hz, 1H), 1.72 – 1.61 (m, 5H), 1.50 (s, 9H), 1.40-1.27 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 172.23 (s), 171.18 (s), 169.65 (s), 168.50 (s), 167.78 (s), 162.75 (s), 155.42 (s), 154.03 (s), 147.17 (s), 143.33 (s), 136.24 (s), 133.34 (s), 133.38 (s), 132.63 (s), 127.72 (s), 126.15 (s), 125.61 (s), 125.09 (s), 124.47 (s), 116.78 (s), 111.47 (s), 109.95 (s), 80.81 (s), 49.00 (s), 45.07 (s), 44.56 (s), 44.13 (s), 42.78 (s), 40.91 (s), 33.46 (s), 31.56 (s), 29.57 (s), 29.54 (s), 29.51 (s), 29.38 (s), 29.34 (s), 28.45 (s), 27.03 (s), 25.37 (s), 22.95 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for C₄₅H₅₈N₉O₈: 852.4408, found 852.4407; : $[M+Na]^+$ calculated for C₄₅H₅₇N₉O₈Na: 874.4228, found 874.4227.

tert-butyl (3-(5-(4-(12-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamido)-4'-fluoro-[1,1'-biphenyl]-4-yl)carbamate, XXXVII: A solution of DIPEA (0.44 mmol, 2.8 eq) and HATU (0.22 mmol, 1.4 eq) were added to a solution of compound **XVIII** (0.19 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound VII (0.15 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (90% EtOAc in hexane) to afford compound **XXXVII** as yellow solid in a yield of 50%. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.98 (d, J = 1.4 Hz, 1H), 8.19 (s, 1H), 8.02 (d, J = 1.4 Hz, 1H), 7.89 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.55 (dd, J = 8.8, 5.3 Hz, 2H), 7.49 (dd, J = 8.4, 7.3 Hz, 1H), 7.38 (dd, J = 8.4, 7.3 Hz, 1H), 7.49 (dd, J = 8.4, 7.4 Hz, 1H), 7.4 Hz, 1H), 7.4 Hz, 1H),2.1 Hz, 1H), 7.14 - 7.05 (m, 4H), 6.88 (d, J = 8.5 Hz, 1H), 6.22 (t, J = 5.4 Hz, 1H), 4.91 (dd, J = 12.1, 5.3 Hz, 1.4) 1H), 3.88 - 3.77 (m, 4H), 3.76 - 3.62 (m, 4H), 3.26 (dd, J = 12.6, 6.7 Hz, 2H), 2.89 - 2.70 (m, 3H), 2.40 - 2.35(m, 2H), 2.16 - 2.09 (m, 1H), 1.71 - 1.61 (m, 4H), 1.53 (s, 9H), 1.34 - 1.28 (m, 14H).¹³C NMR (101 MHz, CDCl₃) δ 172.23 (s), 171.10 (s), 169.66 (s), 168.45 (s), 167.77 (s), 162.87 (s), 162.64 (d, *J* = 246.5 Hz), 155.47 (s), 154.00 (s), 147.19 (s), 143.40 (s), 136.25 (s), 133.34 (s), 132.64 (s), 128.76 (d, *J* = 8.1 Hz), 127.72 (s), 125.87 (s), 124.22 (s), 123.22 (s), 116.79 (s), 115.75 (d, J = 21.4 Hz), 111.49 (s), 109.97 (s), 80.98 (s), 49.01 (s), 45.08 (s), 44.58 (s), 44.14 (s), 42.79 (s), 40.92 (s), 33.46 (s), 31.57 (s), 29.67 (s), 29.64 (s), 29.62 (s), 29.60 (s), 29.57 (s), 29.55 (s), 29.52 (s), 29.39 (s), 29.34 (s), 28.47 (s), 22.96 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{51}H_{61}N_9O_8F$: 946.4627, found 946.4660; $[M+Na]^+$ calculated for $C_{51}H_{60}N_9O_8FNa$: 968.4447, found 968.4481.

(2-(5-(4-(9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)-9*tert*-butyl oxononanoyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XXXVIII: : A solution of DIPEA (0.32 mmol, 1.6 eq) and HATU (0.28 mmol, 1.4 eq) was added to a solution of compound XXVI (0.24 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound X (0.2 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (60-80% EtOAc in hexane) to afford compound **XXXVIII** as yellow solid in a yield of 69%. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.96 (d, *J* = 1.4 Hz, 1H), 8.24 (s, 1H), 8.00 (d, *J* = 1.4 Hz, 1H), 7.67 (s, 1H), 7.62 (dd, J = 8.3, 7.2 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.1 Hz, 1H), 7.21 – 7.13 (m, 3H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 3.91 - 3.61 (m, 12H), 3.41 - 3.25 (m, 4H), 2.91 - 2.71 (m, 3H), 2.37 (td, J = 12.3, J= 7.7, 3.0 Hz, 4H), 2.16 - 2.09 (m, 1H), 1.66 (s, 4H), 1.50 (s, 9H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.09 (s), 171.93 (s), 171.00 (s), 168.28 (s), 167.28 (s), 166.79 (s), 162.73 (s), 155.42 (s), 154.02 (s), 150.04 (s), 143.32 (s), 135.99 (s), 134.27 (s), 133.41 (s), 130.84 (s), 127.71 (s), 126.13 (s), 125.59 (s), 125.06 (s), 124.47 (s), 123.51 (s), 118.16 (s), 116.57 (s), 80.81 (s), 52.15 (s), 50.43 (s), 49.35 (s), 45.88 (s), 45.05 (s), 44.53 (s), 44.14 (s), 41.50 (s), 40.91 (s), 33.39 (s), 33.36 (s), 31.54 (s), 29.36 (s), 29.33 (s), 29.29 (s), 28.45 (s), 25.32 (s), 25.22 (s), 22.80 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{46}H_{57}N_{10}O_9$: 893.4310, found 893.4305, $[M+Na]^+$ calculated for C₄₆H₅₆N₁₀O₉Na: 915.4129, found 915.4128.

(3-(5-(4-(9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)-9tert-butyl oxononanoyl)piperazin-1-yl)pyrazine-2-carboxamido)-4'-fluoro-[1,1'-biphenyl]-4-yl)carbamate, XXXIX: A solution of DIPEA (0.52 mmol, 4.4 eq) and HATU (0.29 mmol, 2.2 eq) was added to a solution of compound XXVI (0.26 mmol, 2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound VII (0.13 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (60-80% EtOAc in hexane) to afford compound XXXIX as yellow solid in a yield of 58%. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.97 (d, J = 1.3 Hz, 1H), 8.22 (s, 1H), 8.01 (d, J = 1.3Hz, 1H), 7.90 (s, 1H), 7.65 – 7.59 (m, 2H), 7.54 (dd, J = 8.8, 5.3 Hz, 2H), 7.44 (d, J = 6.9 Hz, 1H), 7.37 (dd, J = 8.4, 2.1 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 8.7 Hz, 2H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 3.92 - 3.61 (m, 12H), 3.42 – 3.25 (m, 4H), 2.93 – 2.71 (m, 3H), 2.42 – 2.32 (m, 4H), 2.16 – 2.09 (m, 1H), 1.72 – 1.62 (m, 4H), 1.52 (s, 9H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.11 (s), 171.95 (s), 171.00 (s), 168.28 (s), 167.28 (s), 166.79 (s), 162.86 (s), 162.62 (d, J = 246.7 Hz), 155.45 (s), 154.02 (s), 150.04 (s), 143.37 (s), 137.70 (s), 136.41 (d, J = 3.2 Hz), 136.00 (s), 134.27 (s), 133.31 (s), 128.74 (d, J = 8.1 Hz), 127.73 (s), 125.39 (s), 124.60 (s), 123.51 (s), 122.86 (s), 118.16 (s), 116.58 (s), 115.74 (d, J = 21.5 Hz), 80.99 (s), 52.16 (s), 50.43 (s), 49.35 (s), 45.89 (s), 45.05 (s), 44.54 (s), 44.14 (s), 41.51 (s), 40.91 (s), 33.40 (s), 33.36 (s), 31.54 (s), 29.36 (s), 29.33 (s), 29.29 (s), 28.46 (s), 25.32 (s), 25.22 (s), 22.80 (s). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{52}H_{60}N_{10}O_9F$: 987.4529, found 987.4548; $[M+Na]^+$ calculated for C₅₂H₅₉N₁₀O₉FNa: 1009.4348, found 1009.4363.

tert-butyl (2-(5-(4-(9-((2-((2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)amino)-9oxononanoyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XL: A solution of DIPEA (0.4 mmol, 1.6 eq) and HATU (0.35 mmol, 1.4 eq) were added to a solution of compound XXII (0.3 mmol, 1.2 eq) in anhydrous DMF (10 mL) and stirred at room temperature for 15 minutes. Later, a solution of compound X (0.25 mmol, 1.0 eq) in anhydrous DMF (3 mL) was added dropwise and the reaction was stirred at room temperature for 48 hours. Then 100 mL of ethyl acetate was added to the reaction and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The crude product was purified by column chromatography (6% methanol in EtOAc) to afford compound XL as yellow solid in a yield of 24%. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.95 (d, J = 1.3 Hz, 1H), 8.62 (s, 1H), 8.00 (d, J = 1.3 Hz, 1H), 7.67 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.50 (dd, J = 8.4, 7.3 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.10 (d, J = 7.0 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.39 (t, J = 5.6 Hz, 1H), 6.08 (t, J = 4.9 Hz, 1H), 4.92 (dd, J = 12.1, 5.5 Hz, 1H), 3.84 – 3.76 (m, 4H), 3.74 – 3.60 (m, 4H), 3.50 – 3.43 (m, 4H), 2.91 – 2.68 (m, 3H), 2.39 – 2.33 (m, 2H), 2.19 – 2.14 (m, 2H), 2.14 – 2.08 (m, 1H), 1.65 – 1.58 (m, 4H), 1.50 (s, 9H), 1.38 – 1.22 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.06 (s), 172.22 (s), 171.38 (s), 169.56 (s), 168.72 (s), 167.65 (s), 162.76 (s), 155.41 (s), 154.04 (s), 146.92 (s), 143.31 (s), 136.42 (s), 133.40 (s), 132.61 (s), 127.75 (s), 125.62 (s), 125.07 (s), 124.81 (s), 124.53 (s), 116.92 (s), 112.07 (s), 110.48 (s), 80.83 (s), 49.08 (s), 45.05 (s), 44.50 (s), 44.11 (s), 42.22 (s), 40.92 (s), 39.15 (s), 36.60 (s), 33.26 (s), 31.59 (s), 29.13 (s), 29.02 (s), 28.97 (s), 28.46 (s), 25.57 (s), 25.12 (s), 22.90 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₄H₅₅N₁₀O₉: 867.4153, found 867.4145.

N-(2-aminophenyl)-5-(4-(12-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-

yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 7: TFA (0.9 mmol, 20 eq) was added to a solution of compound **XXXVI** (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50mL). The organic layer was dried over MgSO₄, and the solvent was concentrated *in vacuo*. The crude product was purified by column chromatography (100% EtOAc) to afford compound **7** as yellow solid in a yield of 62%. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.95 (d, *J* = 1.1 Hz, 1H), 8.26 (s, 1H), 8.04 (d, *J* = 1.2 Hz, 1H), 7.48 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.43 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.90 – 6.82 (m, 3H), 6.22 (t, *J* = 5.4 Hz, 1H), 4.91 (dd, *J* = 12.1, 5.3 Hz, 1H), 3.86 – 3.77 (m, 4H), 3.74 – 3.58 (m, 4H), 3.25 (dd, *J* = 12.7, 6.8 Hz, 2H), 2.93 – 2.69 (m, 3H), 2.41 – 2.35 (m, 2H), 2.18 – 2.08 (m, 1H), 1.73 – 1.59 (m, 4H), 1.41 – 1.24 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 172.24 (s), 171.16 (s), 169.65 (s), 168.50 (s), 167.78 (s), 162.20 (s), 155.38 (s), 147.18 (s), 143.11 (s), 140.53 (s), 136.25 (s), 133.54 (s), 132.63 (s), 127.75 (s), 126.93 (s), 124.84 (s), 124.53 (s), 119.77 (s), 118.27 (s), 116.79 (s), 111.48 (s), 109.95 (s), 49.01 (s), 45.09 (s), 44.55 (s), 44.13 (s), 42.78 (s), 40.93 (s), 33.46 (s), 31.56 (s), 29.84 (s), 29.57 (s), 29.55 (s), 29.51 (s), 29.39 (s), 29.34 (s), 27.03 (s), 25.38 (s), 22.95 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₀H₅₀N₉O₆.

N-(2-aminophenyl)-5-(4-(9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)-9oxononanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 8: TFA (0.9 mmol, 20 eq) was added to a solution of compound XXXVIII (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (5% methanol in DCM) to afford compound 8 as yellow solid in a yield of 35%. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.94 (d, J = 1.3Hz, 1H), 8.26 (s, 1H), 8.04 (d, J = 1.4 Hz, 1H), 7.62 (dd, J = 8.3, 7.2 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.16 (d, J = 8.3, 7.2 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.46 – 7.41 (m, 2H) 8.0 Hz, 1H), 7.09 – 7.05 (m, 1H), 6.86 – 6.81 (m, 2H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 3.98 (s, 2H), 3.92 – 3.62 (m, 12H), 3.42 – 3.24 (m, 4H), 2.93 – 2.69 (m, 3H), 2.41 – 2.33 (m, 4H), 2.15 – 2.08 (m, 1H), 1.67 (s, 4H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.09 (s), 171.92 (s), 171.00 (s), 168.29 (s), 167.28 (s), 166.78 (s), 162.18 (s), 155.38 (s), 150.04 (s), 143.09 (s), 140.54 (s), 135.98 (s), 134.27 (s), 133.53 (s), 127.75 (s), 126.90 (s), 124.80 (s), 124.52 (s), 123.50 (s), 119.72 (s), 118.22 (s), 118.16 (s), 116.56 (s), 52.14 (s), 50.44 (s), 49.35 (s), 45.87 (s), 45.06 (s), 44.53 (s), 44.15 (s), 41.49 (s), 40.91 (s), 33.39 (s), 33.36 (s), 31.53 (s), 29.35 (s), 29.32 (s), 29.28 (s), 25.31 (s), 25.22 (s), 22.80 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₁H₄₉N₁₀O₇: 793.3786, found 793.3782; $[M+Na]^+$ calculated for C₄₁H₄₈N₁₀O₇Na: 815.3605, found 815.3600.

vacuo. The crude product was purified by column chromatography (8% methanol in DCM) to afford compound **9** as yellow solid in a yield of 67%. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.94 (d, *J* = 1.3 Hz, 1H), 8.53 (s, 1H), 8.03 (d, *J* = 1.3 Hz, 1H), 7.50 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.43 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.12 – 7.05 (m, 2H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.88 – 6.82 (m, 2H), 6.40 (t, *J* = 5.1 Hz, 1H), 6.01 (t, *J* = 5.9 Hz, 1H), 4.92 (dd, *J* = 12.1, 5.4 Hz, 1H), 4.00 (s, 2H), 3.85 – 3.76 (m, 4H), 3.73 – 3.61 (m, 4H), 3.51 – 3.44 (m, 4H), 2.91 – 2.68 (m, 3H), 2.39 – 2.33 (m, 2H), 2.19 – 2.09 (m, 3H), 1.68 – 1.58 (m, 4H), 1.37 – 1.28 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.04 (s), 172.21 (s), 171.29 (s), 169.56 (s), 168.65 (s), 167.65 (s), 162.21 (s), 155.38 (s), 146.92 (s), 143.10 (s), 140.57 (s), 136.44 (s), 133.55 (s), 132.63 (s), 127.78 (s), 126.94 (s), 124.85 (s), 124.51 (s), 119.75 (s), 118.24 (s), 116.92 (s), 110.52 (s), 49.08 (s), 45.06 (s), 44.50 (s), 44.11 (s), 42.23 (s), 40.93 (s), 39.17 (s), 36.62 (s), 33.27 (s), 31.60 (s), 29.14 (s), 29.02 (s), 28.97 (s), 25.58 (s), 25.13 (s), 22.91 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₉H₄₇N₁₀O₇: 767.3629, found 767.3632.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(12-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 14: TFA (0.9 mmol, 20 eq) was added to a solution of compound XXXVII (0.046 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄ and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (2% methanol in DCM) to afford compound 14 as yellow solid in a yield of 59%. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 8.96 (d, J = 1.3 Hz, 1H), 8.25 (s, 1H), 8.04 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.54 - 7.45 (m, 3H), 7.28 (d, J = 1.4 Hz, 1H), 7.58 (d, J = 1.4 Hz, 1H), 2.1 Hz, 1H), 7.10 - 7.04 (m, 3H), 6.89 (t, 2H), 6.22 (t, J = 5.5 Hz, 1H), 4.90 (dd, J = 12.1, 5.3 Hz, 1H), 4.03 (s, 2H), 3.86 – 3.78 (m, 4H), 3.76 – 3.61 (m, 4H), 3.25 (dd, *J* = 12.7, 6.9 Hz, 2H), 2.92 – 2.69 (m, 3H), 2.41 – 2.34 (m, 2H), 2.15 - 2.09 (m, 1H), 1.73 - 1.63 (m, 4H), 1.43 - 1.27 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 172.22 (s), 171.13 (s), 169.65 (s), 168.48 (s), 167.77 (s), 162.31 (s), 162.17 (d, J = 245.3 Hz), 155.42 (s), 147.17 (s), 143.17 (s), 139.79 (s), 136.89 (d, J = 3.1 Hz), 136.24 (s), 133.43 (s), 132.63 (s), 131.99 (s), 128.20 (d, J = 7.9Hz), 127.75 (s), 125.33 (s), 124.85 (s), 123.27 (s), 118.56 (s), 116.78 (s), 115.60 (d, J = 21.4 Hz), 111.48 (s), 109.96 (s), 49.00 (s), 45.08 (s), 44.55 (s), 44.14 (s), 42.78 (s), 40.91 (s), 33.46 (s), 31.56 (s), 29.56 (s), 29.54 (s), 29.51 (s), 29.39 (s), 29.34 (s), 25.37 (s), 22.95 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.83 (s). HRMS (ESI) m/z:

 $[M+H]^+$ calculated for $C_{46}H_{53}N_9O_6F$: 846.4103, found 846.4122; $[M+Na]^+$ calculated for $C_{46}H_{52}N_9O_6FNa$: 868.3922, found 868.3941.

N-(4-amino-4'-fluoro-[1,1'-biphenyl]-3-yl)-5-(4-(9-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4yl)piperazin-1-yl)-9-oxononanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 15: TFA (1.0 mmol, 20 eq) was added to a solution of compound XXXIX (0.05 mmol, 1.0 eq) in DCM (10 mL) and the reaction was stirred at room temperature overnight. Then, 50 mL of ethyl acetate was added and washed with saturated solution of sodium bicarbonate (2 x 50 mL) and distilled water (1 x 50 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated in vacuo. The crude product was purified by column chromatography (2% methanol in DCM) to afford compound 15 as yellow solid in a yield of 61%. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.96 (d, J = 1.3 Hz, 1H), 8.21 (s, 1H), 8.05 (d, J = 1.3 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.62 (dd, J = 8.3, 7.3 Hz, 1H), 7.50 (dd, J = 8.9, 5.3 Hz, 2H), 7.44 (dd, J = 7.2, 0.5 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 7.9Hz, 1H), 7.07 (t, J = 8.8 Hz, 2H), 6.89 (d, J = 8.2 Hz, 1H), 4.96 (dd, J = 12.3, 5.3 Hz, 1H), 4.06 (s, 2H), 3.92 -3.62 (m, 12H), 3.43 – 3.22 (m, 4H), 2.94 – 2.69 (m, 3H), 2.41 – 2.34 (m, 4H), 2.16 – 2.09 (m, 1H), 1.70 – 1.61 (m, 4H), 1.38 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.10 (s), 171.93 (s), 170.96 (s), 168.27 (s), 167.28 (s), 166.79 (s), 162.32 (s), 162.17 (d, J = 245.5 Hz), 155.42 (s), 150.05 (s), 143.15 (s), 139.79 (s), 136.88 (d, J = 3.1Hz), 135.99 (s), 134.28 (s), 133.42 (s), 131.98 (s), 128.20 (d, J = 7.9 Hz), 127.76 (s), 125.33 (s), 124.85 (s), 123.51 (s), 123.25 (s), 118.56 (s), 118.16 (s), 116.57 (s), 115.60 (d, J = 21.4 Hz), 52.16 (s), 50.43 (s), 49.35 (s), 45.88 (s), 45.07 (s), 44.54 (s), 44.14 (s), 41.50 (s), 40.92 (s), 33.40 (s), 33.36 (s), 31.54 (s), 29.36 (s), 29.32 (s), 29.29 (s), 25.32 (s), 25.23 (s), 22.80 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.82 (s). HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{47}H_{52}N_{10}O_7F$: 887.4004, found 887.4005; [M+Na]⁺ calculated for $C_{47}H_{51}N_{10}O_7F$ Na: 909.3824, found 909.3821.

3.7. Synthesis of 5-Me and 7-Me

4-fluoro-2-(1-methyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione, XLI: A mixture of **XI** (0.500 g, 1.81 mmol), and Cs₂CO₃ (0.885 g, 2.72 mmol) in DMF (10 mL) was stirred at room temperature for 10 minutes, then methyl iodide (0.135 mL, 2.17 mmol) added and the reaction mixture stirred at room temperature for 16 hours. Acetic acid (1 mL) was added, then the reaction mixture concentrated *in vacuo*. The crude residue was triturated in water, filtered and then dried under vacuum to afford **XLI** (0.433 g, 1.49 mmol, 82% yield) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 7.96 (ddd, *J*=8.4, 7.4, 4.6 Hz, 1 H, 2-CH), 7.79 (d, *J*=7.3 Hz, 1 H, 3-CH), 7.74 (t, *J*_{CH/CF} =8.8 Hz, 1 H, 1-CH), 5.22 (dd, *J*=13.1, 5.4 Hz, 1 H, 9-CH), 3.02 (s, 3 H, 14-CH₃), 2.91 - 3.00 (m, 1 H, 11-CH), 2.73 - 2.82 (m, 1 H, 11-CH), 2.51 - 2.60 (m, 1 H, 10-CH), 2.08 (dtd, *J*=12.8, 5.4, 2.5 Hz, 1 H, 10-CH). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.7 (C12), 169.4 (C13), 166.1 (d, *J*=2.9 Hz, C8), 163.9 (d, *J*=0.8 Hz, C7), 156.8 (d, *J*=262.5 Hz, C6), 138.1 (d, *J*=8.0 Hz, C2), 133.4 (d, *J*=1.5 Hz, C4), 123.0 (d, *J*=19.6 Hz, C1), 120.0 (d, *J*=3.2 Hz, C3), 117.0 (d, *J*=12.4 Hz, C5), 49.6 (C9), 31.0 (C11), 26.6 (C14), 21.0 (C10). MS (ESI) m/z: 291 [M+H]⁺. Spectroscopic data consistent with previous literature.³

3-(1-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4-yl)propanoic acid, **XLII**: To a solution of **XLI** (120.0 mg, 0.413 mmol) in dry DMSO (7 mL), 3-(piperidin-4-yl)propanoic acid (72.8 mg, 0.376 mmol) and DIPEA (0.196 mL, 1.13 mmol) were added and the resultant solution stirred 100 °C under a N₂ atmosphere for 16 hours. The reaction mixture was cooled to room temperature, then water (30 mL) added and the product extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with saturated brine, dried over Na₂SO₄, then concentrated *in vacuo* to afford a green/brown tar. The crude product was purified by column chromatography (1-9% MeOH in DCM) to afford **XLII** (89.6 mg, 0.199 mmol, 53% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.56 (dd, *J*=8.3, 7.1 Hz, 1 H, 9-CH), 7.35 (d, *J*=7.1 Hz, 1 H, 8-CH), 7.16 (d, *J*=8.3 Hz, 1 H, 10-CH), 4.94 - 4.99 (m, 1 H, 15-CH), 3.74 (t, *J*=8.4 Hz, 2 H, 6-CH), 3.20 (s, 3 H, 20-CH₃), 2.93 - 2.99 (m, 1 H, 17-CH), 2.82 - 2.91 (m, 2 H, 6-CH), 2.71 - 2.81 (m, 2 H, (16,17)-CH), 2.43 (t, *J*=7.7 Hz, 2 H, 2-CH₃), 2.04 - 2.10 (m, 1 H, 16-CH), 1.78 - 1.89 (m, 2 H, 5-CH), 1.63 - 1.72 (m, 2 H, 3-CH₂), 1.42 - 1.54 (m, 3 H, 4-CH,5-CH). ¹³C NMR (101 MHz, CDCl₃) δ ppm 179.1 (C1), 171.3 (C18), 168.9 (C19), 167.6 (C14), 166.8 (C13), 150.7 (C7), 135.4 (C9), 134.1 (C11), 123.5 (C10), 117.2 (C12), 115.2 (C8), 51.9 (C6), 51.6 (C6*), 49.8 (C15), 34.8 (C4), 31.95 (C5), 31.9 (C5*), 31.85 (C17), 31.2 (C2), 31.1 (C3), 27.2 (C20), 21.9 (C16). HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₂H₂₆N₃O₆: 428.1822, found 428.1818.

tert-butyl (2-(5-(4-(3-(1-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4yl)propanoyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XLIII: To a solution of XLII (17.3 mg, 0.041 mmol) in dry DMF (1 mL) at 0 °C, DIPEA (19.3 μ L, 0.111 mmol) and HATU (18.2 mg, 0.048 mmol) were added. The reaction mixture was stirred for 15 minutes, after which a solution of X (14.7 mg, 0.037 mmol) in DMF (1 mL) was added slowly and the resultant solution stirred at room temperature for 16 hours.

The reaction mixture was diluted in EtOAc (10 mL), then washed with saturated NaHCO₃ (2 x 5 mL) and brine (2 x 5 mL). The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* to afford a yellow tar (55 mg). The crude product was purified by column chromatography (0-100% EtOAC in hexane) to afford **XLIII**

(19.9 mg, 0.025 mmol, 67% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.64 (s, 1 H, 28-NH), 8.97 (d, *J*=1.2 Hz, 1 H, 26-CH), 8.01 (d, *J*=1.3 Hz, 1 H, 24-CH), 7.61 - 7.75 (m, 1 H, 30/33-CH), 7.52 - 7.61 (m, 2 H, 30/33-CH,9-CH), 7.37 (d, *J*=6.9 Hz, 1 H, 8-CH), 7.09 - 7.24 (m, 4 H, 10,31,32-CH,29-NH), 4.97 (dd, *J*=12.5, 5.2 Hz, 1 H, 15-CH), 3.78 - 3.87 (m, 4 H, 21/22-CH), 3.69 - 3.78 (m, 4 H, 6,21/22-CH), 3.61 - 3.68 (m, 2 H, 21/22-CH), 3.21 (s, 3 H, 20-CH₃), 2.94 - 3.03 (m, 1 H, 17-CH), 2.85 - 2.94 (m, 2 H, 6-CH), 2.72 - 2.84 (m, 2 H, 16-CH, 17-CH), 2.46 (t, *J*=7.4 Hz, 2 H, 2-CH₂), 2.05 - 2.12 (m, 1 H, 16-CH), 1.83 - 1.93 (m, 2 H, 5-CH), 1.68 - 1.76 (m, 2 H, 3-CH₂), 1.46 - 1.60 (m, 12 H, 36-CH₃,(4,5)-CH). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.7 (C1), 171.2 (C18), 168.9 (C14), 167.5 (C19), 166.9 (C13), 162.5 (C27), 155.2 (C23), 153.8 (C34), 150.8 (C7), 143.1 (C26), 135.4 (C9), 134.1 (C25), 133.3 (C11), 130.7 (C28/29), 130.1 (C28/29), 127.5 (C24), 126.0 (C31/32), 125.4 (C31/32), 124.9 (C30/33), 124.3 (C30/33), 123.5 (C10), 117.3 (C12), 115.3 (C8), 80.7 (C35), 51.9 (C6), 51.7 (C6), 49.9 (C15), 44.9 (C21/22), 44.4 (C21/22), 43.9 (C21/22), 40.8 (C21/22), 35.0 (C4), 32.15 (C5), 32.1 (C5), 31.9 (C17), 31.5 (C3), 30.3 (C2), 28.3 (C36), 27.2 (C20), 22.0 (C16). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₂H₅₀N₉O₈: 808.3782, found 808.3770.

N-(2-aminophenyl)-5-(4-(3-(1-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperidin-4-yl)propanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 5-Me: TFA (0.5 mL) was added to a stirring solution of **XLIII** (19.9 mg, 0.025 mmol) in DCM (2 mL) and the resulting reaction mixture stirred at room temperature for 4 hours. The reaction mixture was concentrated *in vacuo* (60.9 mg crude), then redissolved in EtOAc (25 mL) and washed with sat. NaHCO₃ (2 x 25mL) and water (1 x 25 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford **5-Me** (17.4 mg, 0.025 mmol, 100% yield) as a yellow solid. The product was further purified by column chromatography (Biotage, 0-9% MeOH in DCM) and lyophilised to afford **5-Me** (16.1 mg) as a fluffy yellow solid for biological evaluation. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.30 (s, 1 H, 28-NH), 8.95 (s, 1 H, 26-CH), 8.04 (s, 1 H, 24-CH), 7.57 (dd, *J*=8.3, 7.1 Hz, 1 H, 9-CH), 7.43 (d, *J*=7.9 Hz, 1 H, 33-CH), 7.37 (d, *J*=7.1 Hz, 1 H, 8-CH), 7.17 (d, *J*=8.3 Hz, 1 H, 10-CH), 7.05 - 7.12 (m, 1 H, 31-CH), 6.83 - 6.92 (m, 2 H, (30,32)-CH), 4.92 - 5.00 (m, 1 H, 15-CH), 3.78 - 3.88 (m, 4 H, 21/22-CH), 3.69 - 3.78 (m, 4 H, 6,21/22-CH), 3.62 - 3.68 (m, 2 H, 21/22-CH), 3.52 (br s, 2 H, 29-NH₂), 3.21 (s, 3 H, 20-CH₃), 2.94 - 3.04 (m, 1 H, 17-CH), 2.85 - 2.93 (m, 2 H, 6-CH), 2.70 - 2.83 (m, 2 H, (16,17)-CH), 2.46 (t, *J*=7.7 Hz, 2 H, 2-CH2), 2.05 - 2.11 (m, 1 H, 16-CH), 1.83 - 1.92 (m, 2 H, 5-CH), 1.67 - 1.75 (m, 2 H, 3-CH₂), 1.49 - 1.60 (m, 3 H, (4,5)-CH). ¹³C NMR (101

MHz, CDCl₃) δ 171.7 (C1), 171.2 (C18), 168.9 (C14), 167.5 (C19), 166.9 (C13), 162.1 (C27), 155.2 (C23), 150.8 (C7), 142.9 (C26), 139.6 (C29), 135.4 (C9), 134.1 (C25), 133.3 (C11), 127.6 (C24), 126.8 (C31), 124.6 (C28), 124.6 (C33), 123.5 (C10), 120.1 (C30/32), 118.4 (C30/32), 117.3 (C12), 115.3 (C8), 51.9 (C6), 51.7 (C6), 49.9 (C15), 44.9 (C21/22), 44.3 (C21/22), 43.9 (C21/22), 40.8 (C21/22), 35.0 (C4), 32.1 (C5), 31.9 (C17), 31.5 (C3), 30.3 (C2), 27.2 (C20), 22.0 (C16). HRMS (ESI) m/z: [M+H]+ calculated for C₃₇H₄₂N₉O₆: 708.3258, found 708.3254.

12-((2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)dodecanoic acid, XLIV: To a solution of XLI (120.0 mg, 0.413 mmol) in dry DMSO (7 mL), 12-aminododecanoic acid (106.8 mg, 0.496 mmol) and DIPEA (0.216 mL, 1.24 mmol) were added and the resultant solution stirred 100 °C under a N₂ atmosphere for 16 hours. The reaction mixture was cooled to room temperature, then water (30 mL) added and the product extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with saturated brine, dried over Na₂SO₄, then concentrated *in vacuo* to afford a green/brown tar. The crude product was purified by column chromatography (0-100% EtOAc in hexane) to afford XLIV (76.0 mg, 0.157 mmol, 38% yield) as a green tar. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.94 (s, 1 H, 1-CO₂H), 7.58 (dd, *J*=8.4, 7.2 Hz, 1 H, 15-CH), 7.09 (d, *J*=8.4 Hz, 1 H, 14-CH), 7.02 (d, J=7.2 Hz, 1 H, 16-CH), 6.52 (t, J=6.3 Hz, 1 H, 13-NH), 5.12 (dd, J=13.0, 5.4 Hz, 1 H, 21-CH), 3.28 (q, J=6.3 Hz, 2 H, 12-CH₂), 3.01 (s, 3 H, 26-CH₃), 2.94 (ddd, J=17.4, 13.8, 5.3 Hz, 1 H, 23-CH), 2.71 - 2.79 (m, 1 H, 23-CH), 2.51 - 2.59 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH₂), 2.00 - 2.08 (m, 1 H, 22-CH), 2.17 (t, J=7.3 Hz, 2 H, 2-CH), 2.17 (t, J=7.3 Hz, 2-CH), 2.17 (t, CH), 1.56 (quin, J=7.0 Hz, 2 H, 11-CH₂), 1.47 (quin, J=7.2 Hz, 2 H, 3-CH₂), 1.22 - 1.33 (m, 14 H, (4-10)-CH₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 174.5 (C1), 171.8 (C24), 169.8 (C25), 168.9 (C19), 167.3 (C20), 146.4 (C13), 136.3 (C15), 132.2 (C17), 117.2 (C14), 110.4 (C18), 108.9 (C16), 49.1 (C21), 41.8 (C12), 33.6 (C2), 31.1 (C23), 28.95 (alkyl CH₂), 28.9 (alkyl CH₂), 28.85 (alkyl CH₂), 28.7 (2 x alkyl CH₂), 28.6 (alkyl CH₂), 28.5 (alkyl CH₂), 26.6 (C26), 26.3 (C10), 24.5 (C3), 21.4 (C22). HRMS (ESI) m/z: $[M+H]^+$ calculated for C₂₆H₃₆N₃O₆: 486.2604, found 486.2604.

(2-(5-(4-(12-((2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4tert-butyl yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamido)phenyl)carbamate, XLV: To a solution of XLIV (21.2 mg, 0.044 mmol) in dry DMF (1 mL) at 0 °C, DIPEA (20.7 µL, 0.115 mmol) and HATU (19.6 mg, 0.052 mmol) were added. The reaction mixture was stirred for 15 minutes, after which a solution of X (15.8 mg, 0.040 mmol) in DMF (1 mL) was added slowly and the resultant solution stirred at room temperature for 16 hours. The reaction mixture was diluted in EtOAc (10 mL), then washed with saturated NaHCO₃ (2 x 5 mL) and brine (2 x 5 mL). The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* to afford a yellow tar. The crude product was purified by column chromatography (1-9% MeOH in DCM) to afford XLV (35.8 mg, 0.039 mmol, 98% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ ppm 9.63 (s, 1 H, 34-NH), 8.96 (d, J=1.4 Hz, 1 H, 32-CH), 8.02 (s, 1 H, 35-NH), 8.00 (d, J=1.4 Hz, 1 H, 30-CH), 7.67 (br d, J=7.2 Hz, 1 H, 36/39-CH), 7.57 (br d, J=7.2 Hz, 1 H, 36/39-CH), 7.49 (dd, J=8.3, 7.3 Hz, 1 H, 15-CH), 7.17 - 7.23 (m, 2 H, (37,38)-CH), 7.08 (d, J=7.2 Hz, 1 H, 14-CH), 6.88 (d, J=8.5 Hz, 1 H, 16-CH), 6.22 (br t, J=6.3 Hz, 1 H), 4.89 - 4.94 (m, 1 H, 21-CH), 3.77 - 3.85 (m, 4 H, 27/28-CH₂), 3.67 - 3.74 (m, 2 H, 27/28-CH₂), 3.60 - 3.67 (m, 2 H, 27/28-CH₂), 3.25 (q, J=6.3 Hz, 2 H, 12-CH₂), 3.21 (s, 3 H, 26-CH₃), 2.96 - 3.01 (m, 1H, 23-CH), 2.74 - 2.80 (m, 2 H, 22,23-CH), 2.38 (t, J=7.8 Hz, 2 H, 2-CH₂), 2.05 - 2.12 (m, 1 H, 22-CH), 1.64 - 1.68 (m, 4 H, (3,11)-CH₂), 1.51 (s, 9 H, 42-CH₃), 1.39 - 1.43 (m, 2 H, 10-CH₂), 1.29 - 1.36 (m, 12 H, (4-9)-CH₂). ¹³C NMR (101 MHz, CDCl₃) δ_C ppm 172.0 (C1), 171.2 (C24), 169.7 (C20), 169.0 (C25), 167.8 (C19), 162.6 (C33), 155.2 (C29/31), 153.8 (C40), 147.0 (C13), 143.1 (C32), 136.0 (C15), 133.2 (C29/31), 132.5 (C17), 130.7 (C34/35), 130.1 (C34/35), 127.5 (C30), 126.0 (C37/38), 125.4 (C37/38), 124.9 (C36/39), 124.3 (C36/39), 116.5 (C16), 111.2 (C14), 109.9 (C18), 80.6 (C41), 49.6 (C21), 44.9 (C27/28), 44.4 (C27/28), 44.0 (C27/28), 42.6 (C12), 40.7 (C27/28), 33.3 (C2), 31.9 (C23), 29.5 (alkyl CH₂), 29.4 (CH₂), 29.4 (alkyl CH₂), 29.4 (alkyl CH₂), 29.3 (alkyl CH₂), 29.2 (C11), 28.3 (C42), 27.2 (C26), 26.9 (C10), 25.2 (C3), 22.1 (C22). HRMS (ESI) m/z: $[M+H]^+$ calculated for C₄₆H₆₀N₉O₈: 866.4565, found 866.4559.

N-(2-aminophenyl)-5-(4-(12-((2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-

yl)amino)dodecanoyl)piperazin-1-yl)pyrazine-2-carboxamide, 7-Me: TFA (0.5 mL) was added to a stirring solution of XLV (35.8 mg, 0.039 mmol) in DCM (2 mL) and the resulting reaction mixture stirred at room temperature for 4 hours. The reaction mixture was concentrated *in vacuo*, then redissolved in EtOAc (25 mL) and washed with sat. NaHCO₃ (2 x 25mL) and water (1 x 25 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford 7-Me (28.6 mg, 0.012 mmol, 90% yield) as a yellow solid. The product was further purified by column chromatography (0-9% MeOH in DCM) and lyophilised to afford 7-**Me** (26.7 mg) as a fluffy yellow solid for biological evaluation. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ ppm 9.27 (s, 1 H, 34-NH), 8.95 (d, J=1.1 Hz, 1 H, 32-CH), 8.04 (d, J=1.1 Hz, 1 H, 30-CH), 7.42 - 7.52 (m, 2 H, (15,39)-CH), 7.04 - 7.12 (m, 2 H, (14,37)-CH), 6.79 - 6.93 (m, 3 H, (16,36,38)-CH), 6.22 (br t, J=6.0 Hz, 1 H, 13-NH), 4.89 - 4.94 (m, 1 H, 21-CH), 3.76 - 3.87 (m, 4 H, 27/28-CH), 3.68 - 3.76 (m, 2 H, 27/28-CH), 3.61 - 3.68 (m, 2 H, 27/28-CH), 3.25 (q, J=6.0 Hz, 2 H, 12-CH₂), 3.21 (s, 3 H, 26-CH₃), 2.94 - 3.02 (m, 1 H, 23-CH), 2.73 -2.83 (m, 2 H, 22,23-CH), 2.38 (t, J=7.5 Hz, 2 H, 2-CH₂), 2.06 - 2.12 (m, 1 H, 22-CH), 1.62 - 1.69 (m, 4 H, (3,11)-CH₂), 1.29 - 1.40 (m, 14 H, (4-10)-CH₂). NH₂ not visible. ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 172.0 (C1), 171.2 (C24), 169.7 (C20), 169.0 (C25), 167.8 (C19), 162.0 (C33), 155.2 (C29/31), 147.0 (C13), 142.9 (C32), 140.3 (C35), 136.0 (C15), 133.4 (C29/31), 132.5 (C17), 127.6 (C30), 126.7 (C39), 124.6 (C37), 124.4 (C34), 119.6 (C38), 118.1 (C36), 116.5 (C16), 111.2 (C14), 109.9 (C18), 49.6 (C21), 44.9 (C27/28), 44.4 (C27/28), 44.0 (C27/28), 42.6 (C12), 40.7 (C27/28), 33.3 (C2), 31.9 (C23), 29.5 (alkyl CH₂), 29.4 (alkyl CH₂), 29.4 (alkyl CH₂), 29.4 (alkyl CH₂), 29.4 (alkyl CH₂), 29.3 (alkyl CH₂), 29.2 (C11), 27.2 (C26), 26.9 (C10), 25.2 (C3), 22.1 (C22). HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₁H₅₂N₉O₆: 766.4041, found 766.4031.

REFERENCES:

- Y. Itoh, P. Zhan, T. Tojo, P. Jaikhan, Y. Ota, M. Sukuzi, Y. Li, Z. Hui, Y. Moriyama, Y. Takada, Y. Yamashita, M. Oba, S. Uchida, M. Masuda, S. Ito, Y. Sowa, T. Sakai, T. Suzuki, *J. Med. Chem.* 2023, 66, 15171.
- F. F. Wagner, Y. L. Zhang, D. M. Fass, N. Joseph, J. P. Gale, M. Weïwer, P. McCarren, S. L. Fisher, T. Kaya, W. N. Zhao, S. A. Reis, K. M. Hennig, M. Thomas, B. C. Lemercier, M. C. Lewis, J. S. Guan, M. P. Moyer, E. Scolnick, S. J. Haggarty, L. H. Tsai, E. B. Holson, *Chem. Sci.* 2015, 6, 804.

3 C. Steinebach, S. Lindner, N. D. Udeshi, D. C. Mani, H. Kehm, S. Köpff, S. A. Carr, M. Gütschow, J. Krönke, ACS Chem. Biol. 2018, 13, 2771.

S59

S67

S72

S74

Appendix: Analytical HPLC

Compound 7

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	27.69	n.a.	3.426	0.705	0.71	n.a.	BMB*
2	28.84	n.a.	1.966	0.353	0.36	n.a.	BMB*
3	34.64	n.a.	2.924	0.658	0.66	n.a.	MB*
4	36.09	n.a.	390.211	94.220	95.15	n.a.	MB*
5	37.42	n.a.	8.181	2.828	2.86	n.a.	BMb*
6	37.84	n.a.	1.459	0.256	0.26	n.a.	bMB*
Total:			408.167	99.020	100.00	0.000	

Compound 5

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	28.71	n.a.	2039.968	531.090	99.06	n.a.	BMB*
2	30.52	n.a.	4.538	1.072	0.20	n.a.	BMB
3	31.02	n.a.	10.941	2.439	0.45	n.a.	BMB
4	32.89	n.a.	6.934	1.526	0.28	n.a.	BMB
Total:			2062.381	536.127	100.00	0.000	

Compound 12

ARP-49

Sample Name:	ARP-49	Injection Volume:	20.0
Vial Number:	BB3	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	214.0
Control Program:	5-100%B, 30 min gradiant, 45 min run unb	u Bandwidth:	2
Quantif. Method:	processing parameters	Dilution Factor:	1.0000
Recording Time:	23/10/2024 17:34	Sample Weight:	1.0000
Run Time (min):	45.00	Sample Amount:	1.0000

ſ	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
L		min		mAU	mAU*min	%		
I	1	32.51	n.a.	2618.663	667.757	99.60	n.a.	BMB*
ł	2	37.59	n.a.	9.976	2.683	0.40	n.a.	BMB
	Total:			2628.639	670.439	100.00	0.000	

Appendix: Full Western Blots

0.05

0.1

0.025

0.001

0.25

0.5

7

2.5

ß

10

Ψ

DMSO

CI-994

JPS004

