Supporting Information

Base-promoted cascade *5-exo-dig* annulation/carboxylation of *o-*(1-alkynyl)benzenesulfonamides with CO₂: divergent synthesis of mono- or gem-dicarboxylic esters

Yang Yao,^{II†} Junxue Bai,^{II†} Peidong Cheng,[†] Han Yang,[†] Jianwei Sun,^{†‡} and Song Sun^{*†}

Contents

I. General Information	S2
II. Evaluation of Conditions ^a	S3
III. Synthesis and Characterization of Starting Materials	S5
IV. Synthesis of Mono-Carboxylic Esters	S18
V. Synthesis of Gem-Dicarboxylic Esters	S35
VI. The Control Experiment and Proposed Mechanism	S47
VII. Gram-Scale Reaction and Derivation	S53
IIX. Synthesis of TACE Inhibitor	S58
IX. Crystallographic Data of 2a and 4f	S60

NMR Spectra

^{*} Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

^{*} Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China Email: sunsong@cczu.edu.cn

I. General Information

Chemicals were used as received without special purification unless stated otherwise. ¹H and ¹³C NMR were recorded at ambient temperature on a 400 or 300 MHz NMR spectrometer (100 or 75 MHz for ¹³C NMR). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. NMR analysis was carried out at 298 K unless noted otherwise. HRMS was obtained on an ESI-LC-MS/MS spectrometer.

II. Evaluation of Conditions^{*a*}

Initially, *N*,4-dimethyl-2-(phenylethynyl)benzenesulfon amide **1a** was selected as the model substrate to optimize the reaction conditions (Table S1). Firstly, the reaction of 1a with CO₂ was conducted by using 3 equiv of K₂CO₃ as the base in DMF at 60 °C, the 5-exo-dig annulation/carboxylation product 2a was isolated in 36% yield, along with the generation of 6-endo-dig analogous **2A** in 32% yield, amination-protonation product **2B** in 21% yield, respectively. The structure of **2a** was ambiguously confirmed by X-ray crystallography analysis (for details, please see Supporting Information, Figure S1). For further improving the reaction efficiency, then, other common bases were tested, Na₂CO₃ gave 2a in a decreased yield (25%, entry 2), while KO⁴Bu and Cs₂CO₃ only could result in a messy mixture (entry 3) or almost no reaction (entry 4). Among the solvent screening, DMSO gave a slightly better result (45%, entry 5). However, DMAc only resulted in 2a in 14% yield (entry 6), and the reaction could not occur in MeCN (entry 7). The attempt to improve the reaction efficiency by adding some Lewis acids failed. None of the desired acid 2a could be detected. Instead, only the full formation of the protonated product **2B** was observed (entry 8). Further elevating the reaction temperature to 80 °C has no positive effect (38%, entry 9). However, lowering the temperature to 40 °C could improve the yield of 2a to 50% (entry 10). Delightedly, the employment of dry DMSO improved the yield to 61% (entry 11). Particularly, when the reaction was conduct at room temperature for about 48 h, the yield of 2a could be further increased to 76% (entries 12-13). Control experiments revealed that the reaction could not take place without base or CO₂, respectively (entry 14).

O O		itions	0 0		
	+ CO ₂		NMe +	Ph +	1e
1a	Ph	Me <mark>O₂C</mark> 2a	[—] Ph	CO ₂ Me H	Ъ
entry	base	solvent	T (°C)	2a yield ^b (%)	
1	K_2CO_3	DMF	60	36	
2	Na ₂ CO ₃	DMF	60	25	
3	KO ^t Bu	DMF	60	messy	
4	Cs_2CO_3	DMF	60	trace	
5	K_2CO_3	DMSO	60	45	
6	K_2CO_3	DMAc	60	14	
7	K_2CO_3	MeCN	60	0	
8 ^c	K_2CO_3	DMSO	60	0	
9	K_2CO_3	DMSO	80	38	
10	K ₂ CO ₃	DMSO	40	50	
11^d	K ₂ CO ₃	DMSO	40	61	
12	K ₂ CO ₃	DMSO	25	68	
13^e	K ₂ CO ₃	DMSO	25	76	
14^{f}	K ₂ CO ₃	DMSO	25	N.R	

Table S1 Evaluation of Conditions^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), base (0.3 mmol), CO₂ (1 atm), solvent (1 mL), 12 h, in a sealed Schlenk tube, unless otherwise noted. Then, MeI (0.4 mmol), 50 °C (oil bath), 1 h. ^{*b*} Isolated yield. ^{*c*} Cu(OTf)₂ or AgOAc (10 mol%) was added, ^{*d*} dry DMSO was used. ^{*e*} 48 h. ^{*f*} without K₂CO₃ or CO₂. N.R. = no reaction.

III. Synthesis and Characterization of Starting Materials

General Procedure A

(1) *o*-(1-Alkynyl)benzenesulfonamides are **1a-1x** prepared according to the known methods.¹ **1a-1x** are all known compounds (Note: commercially available *N*,4-dimethylbenzenesulfonamide was used for the synthesis of **1a-1d**, **1l-1x** directly, and 2-bromobenzenesulfonyl chloride was used for the synthesis of **1f** directly.)

Step A: Primary amine (12 mmol, 1.2 equiv) and Et₃N (20 mmol, 2 equiv) were added to round bottom flask, then benzenesulfonyl chloride (10 mmol, 1 equiv) in dichloromethane was injected into it at 0 °C. After the mixture was stirred until TLC showed that benzenesulfonyl chloride was totally consumed at room temperature. Water was added to the reaction mixture and extracted with dichloromethane (3 x 15 mL). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure. The residue was purified by column chromatography (ethyl acetate: petroleum ether) on silica gel or recrystallized from ethyl acetate/petroleum ether to give the corresponding products.

Step B: To a solution of sulfonamide (1.0 equiv.) in anhydrous THF (0.5 M), *n*-butyllithium (2.5 M in hexanes, 2.1 equiv) was added dropwise at 0 °C. The

¹ (a) D. K. Barange, T. C. Nishad, N. K. Swamy, V. Bandameedi, D. Kumar, B. R. Sreekanth, K. Vyas, M. Pal, *J. Org. Chem.* 2007, **72**, 8547–8550. (b) B. M. Rao, J. S. Yadav, B. Sridharb, B. V. S. Reddy, *Org. Biomol. Chem.*, 2018, 16, 5163–5166.

reaction mixture was stirred at 0 °C for 15 minutes and then warmed to room temperature. After stirring for one hour at room temperature the solution was cooled to –78 °C and stirred for further 15 minutes. Then, a solution of iodine (1.1 equiv.) in anhydrous THF (0.73 M) was added until the brown colour persisted. The reaction mixture was stirred for one hour at –78 °C and subsequently quenched by addition of NH₄Cl (sat. aq. solution) followed by NaS₂O₅ (sat. aq. solution). The aqueous phase was extracted with EtOAc (3 x15 ml), the combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. Separation by flash column chromatography afforded sulfonamides **II-8** as colorless solids.

Step C: A mixture of 2-iodo-*N*-methyl bezenesulfonamide (10 mmol, 1.0 equiv), 10% Pd/C (3 mol%, 0.3 mmol, 31.9 mg), PPh₃ (12 mol%, 1.2 mmol, 314.7 mg), CuI (5.4 mol%, 0.54 mmol, 102.8 mg) and Et₃N (3 equiv., 30 mmol, 4.2 mL) in acetonitrile (20 mL) was stirred at 25 °C for 30 min under nitrogen. To this mixture was added appropriate terminal alkyne (15 mmol) slowly with stirring. The reaction mixture was then stirred at 80 °C for 10 h, cooled to room temperature, diluted with EtOAc (50 mL) and filtered through celite. The filtrate was collected and concentrated under vacuum. The residue was purified by column chromatography (SiO₂) to afford the desired product.

(2) *o*-(1-Alkynyl)benzenesulfonamides **3a-3u** are prepared according to the known methods. (*Note: commercially available 2-bromobenzenesulfonyl chloride was used for the synthesis of* **3a-3e**, **3s-3u** *directly. The corresponding 2-bromobenzenesulfonyl chlorides for the synthesis of* **3o-3r** *were prepared according to the reported procedure.*² *Other iodine analogous was prepared according to step* **A** *and* **B**.)

General Procedure B

² N. Radhoff, A. Studer, Angew. Chem. Int. Ed., 2021, 60, 3561–3565.

Step D:³ A mixture of 2-iodo-*N*-methyl bezenesulfonamide⁴ (10 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (5 mol%), CuI (5 mol%), terminal alkyne (15 mmol, 1.5 equiv) and triethylamine (80 mmol, 8 equiv) in tetrahydrofuran (20 mL) was stirred at 25 °C for 30 min under nitrogen. To this mixture was added appropriate terminal alkyne (15 mmol) slowly with stirring. The reaction mixture was then stirred at 80 °C for 10 h, cooled to room temperature, diluted with EtOAc (50 mL) and filtered through celite. The filtrate was collected and concentrated under vacuum. The residue was purified by column chromatography (SiO₂) to afford the desired products (50 – 90%). **3a-3b**, **3d-3f** are known compounds.⁵ **3c**, **3g-3t** are new compounds and their characterization data are listed as follows.

4-(*tert***-Butyl)-***N***-methyl-2-(phenylethynyl)benzenesulfonamide (1j)** was prepared as a brown solid from 4-(*tert*-butyl)-2-iodo-N-methylbenzenesulfonamide (1.76 g, 5 mmol) and ethynylbenzene according to the General Procedure A (eluent: petroleum

³ Y. Tao, S. R. Gilbertson, Chem. Commun., 2018, 54, 11292-11295.

⁴ F. W. Friese, C. Mück-Lichtenfeld, A. Studer, Nat. Commun., 2018, 9, 2808.

⁵. (a) Y. Ohta, H. Chiba, S. Oishi, N. Fujii, H. Ohno, *J. Org. Chem.*, 2009, **74**, 7052-7058.
(b) D. K. Rayabarapu, A. Zhou, K. O. Jeon, T. Samarakoon, A. Rolfe, H. Siddiqui, P. R. Hanson, *Tetrahedron*, 2009, **65**, 3180-3188.

ether / ethyl acetate: 5:1) in 70% yield (1.14 g).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.62 – 7.59 (m, 2H), 7.48 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.41 – 7.38 (m, 3H), 5.05 (q, *J* = 5.5 Hz, 1H), 2.61 (d, *J* = 5.4 Hz, 3H), 1.36 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 136.4, 131.7, 131.3, 129.7, 129.3, 128.6, 125.6, 121.9, 120.1, 96.6, 86.1, 35.0, 30.9, 29.5.

HRMS (ESI–TOF) m/z [M + H]⁺: calcd. for [C₁₉H₂₂NO₂S]⁺ 328.1366, found 328.1356.

336.1048.

N,4-Dimethyl-2-(naphthalen-2-ylethynyl)benzenesulfonamide (1x) was prepared as a yellow solid from 2-iodo-*N*,4-dimethylbenzenesulfonamide (0.93 g, 3 mmol) and 1-ethynylnaphthalene according to the General Procedure A (eluent: petroleum ether / ethyl acetate: 5:1) in 90% yield (0.90 g). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (brs, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.86 (dd, *J* = 7.2, 3.7 Hz, 3H), 7.61 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.29 (dt, *J* = 8.1, 1.2 Hz, 1H), 5.08 (q, *J* = 5.5 Hz, 1H), 2.62 (d, *J* = 5.5 Hz, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.0, 136.3, 134.6, 133.1, 132.8, 132.0, 129.8, 129.1, 128.3, 127.9, 127.8 (2C), 127.2, 126.8, 120.4, 119.1, 97.3, 86.0, 29.5, 21.1. **HRMS** (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₂₀H₁₈NO₂S]⁺ 336.1053, found

N-Cyclohexyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3c) was prepared as a black oil from 2-bromo-*N*-cyclohexylbenzenesulfonamide (1.59 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 75% yield (1.25 g). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.59 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.49 – 7.40 (m, 2H), 5.30 (d, *J* = 7.0 Hz, 1H), 3.05 (s, 1H), 1.75 – 1.58 (m, 4H), 1.48 – 1.43 (m, 1H), 1.21 – 1.11 (m, 5H), 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8, 134.4, 131.7, 128.7, 128.3, 119.9, 103.8, 101.8, 52.7, 33.5, 25.0, 24.3, -0.48.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₇H₂₆NO₂SSi]⁺ 336.1448, found 336.1443.

N,5-Dimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3g) was prepared as a brown oil from 2-iodo-*N*,5-dimethylbenzenesulfonamide (1.56 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 70% yield (0.98 g).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 1.8 Hz, 1H), 7.22 – 7.19 (m, 1H), 5.15 (q, *J* = 5.5 Hz, 1H), 2.52 (d, *J* = 5.5 Hz, 3H), 2.32 (s, 3H), 0.23 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8, 136.9, 134.8, 129.4, 129.3, 119.7, 102.8, 101.2, 29.2, 20.9, -0.7.

HRMS (ESI-TOF) m/z [M + H]⁺: calcd. for [C13H20NO2SSi]⁺ 282.0979, found

4-Methoxy-*N***-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3h)** was prepared as a brown oil from 2-iodo-4-methoxy-*N*-methylbenzenesulfonamide (1.64 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 85% yield (1.26 g).

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.9 Hz, 1H), 7.08 (d, *J* = 2.7 Hz, 1H), 6.91 (dd, *J* = 8.8, 2.7 Hz, 1H), 5.09 (q, *J* = 5.5 Hz, 1H), 3.83 (s, 3H), 2.55 (d, *J* = 5.5 Hz, 3H), 0.27 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 162.0, 131.6, 131.6, 121.6, 119.5, 114.1, 103.2, 101.0, 55.7, 29.4, -0.6.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₃H₁₉NNaO₃SSi]⁺ 320.0747, found 320.0742.

3i

4-(*tert***-Butyl)-***N***-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3i)** was prepared as a yellow solid from 4-(tert-butyl)-2-iodo-*N*-methylbenzenesulfonamide (1.77 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 85% yield (1.37 g). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H),

S10

7.46 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.20 (q, *J* = 5.5 Hz, 1H), 2.59 (d, *J* = 5.4 Hz, 3H), 1.32 (s, 9H), 0.29 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.9, 137.0, 131.6, 129.4, 126.0, 119.6, 102.6, 101.8, 35.0, 30.9, 29.4, -0.4.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₆H₂₅NNaO₂SSi]⁺ 346.1267, found 346.1263.

N-Methyl-3-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-4-sulfonamide (3j) was prepared as a brown solid from 3-iodo-*N*-methyl-[1,1'-biphenyl]-4-sulfonamide (1.87 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 90% yield (1.54 g).

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 1.9 Hz, 1H), 7.66 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.50 – 7.42 (m, 3H), 5.25 (q, *J* = 5.4 Hz, 1H), 2.65 (d, *J* = 5.5 Hz, 3H), 0.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 145.1, 138.4, 138.3, 133.0, 130.1, 129.0, 128.7, 127.2, 127.2, 120.5, 103.6, 101.3, 29.5, -0.5.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₈H₂₂NO₂SSi]⁺ 344.1135, found 344.1136.

N-Methyl-4-(trifluoromethoxy)-2-((trimethylsilyl)ethynyl)benzenesulfonam ide (3k) was prepared as a red oil from 2-iodo-*N*-methyl-4-(trifluoromethoxy)benzenesulfonamide (1.91 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 65% yield (1.14 g).

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.8 Hz, 1H), 7.45 (dt, *J* = 1.9, 1.0 Hz, 1H), 7.29 (ddd, *J* = 8.7, 2.5, 1.1 Hz, 1H), 5.16 (q, *J* = 5.4 Hz, 1H), 2.63 (d, *J* = 5.4 Hz, 3H), 0.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.4, 138.5, 131.6, 126.0, 122.5, 120.6, 120.1 (q, *J*_{C-F} = 260.8 Hz), 105.77, 99.70, 29.43, -0.6.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₃H₁₇F₃NO₃SSi]⁺ 352.0645, found 352.0638.

4-Fluoro-*N***-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (31)** was prepared as a red oil from 4-fluoro-2-iodo-*N*-methylbenzenesulfonamide (1.58 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 60% yield (0.86 g).

¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 8.8, 5.5 Hz, 1H), 7.32 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.18 – 7.13 (m, 1H), 5.13 (d, *J* = 5.4 Hz, 1H), 2.61 (d, *J* = 5.4 Hz, 3H), 0.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.2 (d, *J*_{C-F} = 256.3 Hz), 136.4, 132.2 (d, *J*_{C-F} = 9.1 Hz), 122.8 (d, *J*_{C-F} = 10.1 Hz), 121.5 (d, *J*_{C-F} = 24.2 Hz), 116.2, 116.0, 105.2 (d, *J*_{C-F} = 3.0 Hz), 29.4, -0.6.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₂H₁₇FNO₂SSi]⁺ 286.0728, found 286.0723.

4-Chloro-N-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3m) oil was prepared as а vellow from 4-chloro-2-iodo-N-methylbenzenesulfonamide (1.65 5 mmol) and g, ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 70% yield (1.05 g).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 1H), 7.60 (d, *J* = 2.1 Hz, 1H), 7.42 (dd, *J* = 8.5, 2.1 Hz, 1H), 5.14 (q, *J* = 5.4 Hz, 1H), 2.60 (d, *J* = 5.4 Hz, 3H), 0.29 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 138.4, 134.1, 130.8, 128.9, 121.8, 105.3, 99.8, 29.4, -0.6.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₂H₁₇ClNO₂SSi]⁺ 302.0432, found 302.0424.

N-Methyl-4-(trifluoromethyl)-2-((trimethylsilyl)ethynyl)benzenesulfonami

de (3n) was prepared as a red solid from 2-iodo-*N*-methyl-4-(trifluoromethyl)benzenesulfonamide (1.83 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 68% yield (1.14 g).

¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 1H), 7.87 (d, *J* = 1.8 Hz, 1H), 7.70 (ddd, *J* = 8.2, 1.9, 0.8 Hz, 1H), 5.22 (q, *J* = 5.3 Hz, 1H), 2.63 (d, *J* = 5.4 Hz, 3H), 0.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 143.4, 134.1 (q, J_{C-F} = 33.5 Hz), 131.3 (q, J_{C-F} = 3.7

Hz), 130.0, 125.3 (q, *J*_{C-F} = 3.6 Hz), 122.7 (q, *J*_{C-F} = 274.1 Hz), 121.2, 106.0, 99.8, 29.3, -0.7.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₃H₁₇F₃NO₂SSi]⁺ 336.0696, found 336.0690.

4,5-Dichloro-*N***-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3o)** was prepared as a yellow oil from 4,5-dichloro-2-iodo-*N*-methylbenzenesulfonamide (1.82 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 65% yield (1.09g).

¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.68 (s, 1H), 5.14 (q, *J* = 5.3 Hz, 1H), 2.62 (d, *J* = 5.4 Hz, 3H), 0.27 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 139.6, 136.7, 135.6, 133.3, 131.1, 119.6, 106.0, 98.9, 29.4, -0.7.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₂H₁₇Cl₂NO₂SSi]⁺ 336.0043, found 336.0041.

4-chloro-*N*,**5-dimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3p)** was prepared as a white solid from 4-chloro-2-iodo-*N*,5-dimethylbenzenesulfonamide (1.73 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 63% yield (0.99g). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 0.8 Hz, 1H), 7.60 (s, 1H), 5.17 – 5.13 (q, *J* = 5.4 Hz, 1H), 2.60 (d, *J* = 5.5 Hz, 3H), 2.43 (s, 3H), 0.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 138.1, 137.7, 134.5, 131.6, 118.8, 104.0, 100.0, 29.4, 20.1, -0.5.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₃H₁₉ClNO₂SSi]⁺ 316.0589, found 316.0582.

N,3,5-Trimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (3q) was prepared as a white solid from 2-iodo-*N*,3,5-trimethylbenzenesulfonamide (1.63 g, 5 mmol) and ethynyltrimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 60% yield (0.89g). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.68 (m, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 5.34 (q, *J* = 5.5 Hz, 1H), 2.59 (d, *J* = 5.5 Hz, 3H), 2.45 (s, 3H), 2.37 (s, 3H), 0.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 139.8, 138.9, 134.2, 127.7, 116.4, 107.4, 100.3, 29.5, 21.4, 20.9, -0.3.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₄H₂₂NO₂SSi]⁺ 296.1135, found 296.1125.

N-methyl-2-((trimethylsilyl)ethynyl)naphthalene-1-sulfonamide **(3r)** was prepared as a yellow oil from 2-iodo-*N*-methylnaphthalene-1-sulfonamide (1.74 g, 5 mmol) and ethynyltrimethylsilane according to the General

Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 50% yield (0.79g). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (d, *J* = 8.9 Hz, 1H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.57 (m, 3H), 5.90 (q, *J* = 5.5 Hz, 1H), 2.75 (d, *J* = 5.3 Hz, 3H), 0.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 137.9, 133.8, 132.4, 130.3, 130.1, 128.6, 128.5, 127.5, 126.0, 119.8, 105.4, 103.6, 29.7, -0.5.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₆H₂₀NO₂SSi]⁺ 318.0979, found 318.0971.

2-((*tert***-Butyldimethylsilyl)ethynyl)-***N***-methylbenzenesulfonamide (3s) was prepared as a brown oil from 2-bromo-***N***-methylbenzenesulfonamide (1.25 g, 5 mmol) and tert-butyl(ethynyl)dimethylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 80% yield (1.24 g). ¹H NMR (400 MHz, CDCl₃) \delta 8.01 (dd,** *J* **= 7.7, 1.5 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.54 – 7.44 (m, 2H), 5.27 (q,** *J* **= 5.4 Hz, 1H), 2.58 (d,** *J* **= 5.5 Hz, 3H), 1.00 (s, 9H), 0.23 (s, 6H).**

¹³C NMR (101 MHz, CDCl₃) δ 139.9, 134.7, 132.1, 129.4, 128.8, 120.2, 102.3, 101.9, 29.3, 26.0, 16.7, -4.9.

HRMS (ESI–TOF) m/z [M + H]⁺: calcd. for [C₁₅H₂₄NO₂SSi]⁺ 310.1292, found 310.1288.

N-Methyl-2-((triisopropylsilyl)ethynyl)benzenesulfonamide (3t) was prepared as a white solid from 2-bromo-*N*-methylbenzenesulfonamide (1.25 g, 5 mmol) and ethynyltriisopropylsilane according to the General Procedure B (eluent: petroleum ether / ethyl acetate: 5:1) in 85% yield (1.49 g).

¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.66 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.54 – 7.45 (m, 2H), 5.37 (d, *J* = 5.8 Hz, 1H), 2.59 (d, *J* = 5.5 Hz, 3H), 1.28 – 1.09 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 139.7, 135.1, 132.1, 129.4, 128.7, 120.4, 103.1, 100.8, 29.3, 18.6, 11.3.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₈H₃₀NO₂SSi]⁺ 352.1761, found 352.1763.

IV. Synthesis of Mono-Carboxylic Esters

General Procedure C

Under air, to an over-dried 20 mL Schlenk tube equipped with a Teflon cap was added o-(1-alkynyl)benzene sulfonamides (0.2 mmol), K₂CO₃ (0.6 mmol, 3 equiv, 82.8 mg) and DMSO (2.0 mL). The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with CO₂ (1 atm) in three times. Then, the Schlenk tube was stirred at 25 °C for 48 h. After that, MeI (0.8 mmol, 4 equiv, 52 μ L) was added into the reaction mixture, and the reaction mixture was stirred at 50 °C for about 1 h, then, the reaction mixture was terminated by saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired product.

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2*H*)-ylidene)-2-phenyla cetate (2a) was prepared as a brown oil from N,4-dimethyl-2-(phenylethynyl)benzenesulfonamide (57.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 75% yield with the ratio of Z/*E* configuration in 1:5 (51.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 0.2H), 7.47 (s, 1H), 7.45 – 7.40 (m, 2H), 7.39 (s, 1H), 7.37 – 7.34 (m, 3H), 3.87 (s, 3H), 2.68 (s, 0.6H), 2.66 (s, 3H), 2.48 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.1, 137.5, 134.8, 131.9, 130.3, 129.8, 128.7, 128.5, 127.8, 124.7, 121.2, 113.3, 53.0, 31.8, 22.2.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₇NNaO₄S]⁺ 366.0770, found 366.0777.

Methyl

(*E*)-2-(2-benzyl-5-methyl-1,1-dioxidobenzo[d]isothiazol-3(2*H*)-ylidene)-2-ph enylacetate (2b) was prepared as a brown oil from N-benzyl-4-methyl-2-(phenylethynyl)benzenesulfonamide (72.2 mg, 0.2 mmol) and CO_2 (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 53% yield with the ratio of Z/E configuration in 1:10 (44.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 0.1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.40 (s, 1H), 7.35 – 7.28 (m, 3.7H), 7.24 – 7.20 (m, 0.3H), 7.20 – 7.09 (m, 5H), 6.93 – 6.90 (m, 0.2H), 6.75 – 6.74 (m, 2H), 5.18 (s, 0.2H), 4.43 (s, 2H), 3.78 (s, 3H), 3.54 (s, 0.3H), 2.46 (s, 3H), 2.02 (s, 0.3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 144.0, 143.5, 134.6, 134.1, 133.9, 131.7, 131.5, 131.2, 130.4, 129.8, 129.1, 128.7, 128.4, 127.9 (2C), 127.3, 127.0, 124.3, 121.2, 121.0, 116.4, 52.8, 52.1, 47.9, 46.7, 22.2, 21.7.

HRMS (ESI-TOF) m/z [M + Na]⁺: calcd. for [C₂₄H₂₁NNaO₄S]⁺ 442.1083, found 442.1086.

Methyl

(E)-2-(2-(tert-butyl)-5-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-

2-phenylacetate (2c) was prepared as a brown oil from N-(tert-butyl)-4-methyl-2-(phenylethynyl)benzenesulfonamide (65.4 mg, 0.2 mmol) and CO_2 (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 38% yield with the ratio of Z/E configuration in 1:19 (29.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.9 Hz, 1H), 7.71 (s, 1H), 7.66 – 7.64 (m, 2H), 7.42 – 7.35 (m, 4H), 3.78 (s, 0.16H), 3.47 (s, 3H), 2.46 – 2.45 (m, 3.16H), 1.14 (s, 9H), 1.07 (s, 0.5 H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 143.1, 142.8, 139.0, 133.7, 130.1, 129.9, 129.6, 128.6, 128.1, 126.6, 124.4, 122.6, 65.5, 52.6, 30.8, 21.9.

HRMS (ESI-TOF) m/z [M + Na]⁺: calcd. for [C₂₁H₂₃NNaO₄S]⁺ 408.1240, found 408.1244.

Methyl

(*E*)-2-(2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-phenylaceta te (2f) was prepared as a brown oil from *N*-methyl-2-(phenylethynyl)benzenesulfonamide (54.2 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 52% yield (34.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.86 (m, 1H), 7.75 – 7.71 (m, 1H), 7.67 – 7.61 (m, 2H), 7.43 – 7.34 (m, 5H), 3.87 (s, 3H), 2.67 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 137.1, 134.6, 133.1, 132.3, 130.9, 129.9, 129.7, 128.6, 128.5, 124.3, 121.3, 113.8, 52.9, 31.7.

HRMS (ESI-TOF) m/z [M + H]⁺: calcd. for [C₁₇H₁₆NO₄S]⁺ 330.0795, found 330.0787.

Methyl

(*E*)-2-(2,6-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-phenyla cetate (2g) was prepared as a brown oil from N,5-dimethyl-2-(phenylethynyl)benzenesulfonamide (57.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 66% yield with the ratio of Z/*E* configuration in 1:2.8 (45.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.78 (m, 0.35H), 7.66 (s, 1H), 7.62 – 7.58 (m, 1.7H), 7.48 – 7.34 (m, 8H), 3.85 (s, 3H), 3.53 (s, 1.06H), 2.91 (s, 1.06H), 2.66 (s, 3H), 2.49 (s, 3H), 2.39 (s, 1.06H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 166.6, 146.2, 142.2, 137.7, 136.6, 134.9, 134.8, 134.3(2C), 132.5, 132.1, 130.3, 130.1, 129.8, 128.6, 128.4, 128.2, 127.9, 127.4, 124.3, 121.3, 119.7, 115.4, 112.8, 52.9, 52.1, 33.2, 31.8, 21.4, 20.3.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₇NNaO₄S]⁺ 366.0770, found 366.0774.

Methyl

(*E*)-2-(2,7-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-phenyla cetate (2h) was prepared as colorless oil from *N*,2-dimethyl-6-(phenylethynyl)benzenesulfonamide (57.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 17% yield with the ratio of Z/*E* configuration in 1:3.3 (11.6 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.67 (brs, 0.3H), 7.60 (t, *J* = 7.6 Hz, 0.6H), 7.48 – 7.39 (m, 6H), 7.37 – 7.35 (m, 3H), 3.87 (s, 3H), 3.86 (s, 0.9H), 2.66 (s, 3.9H), 2.50 (s, 0.9H), 2.48 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.1, 142.3, 137.5, 134.9, 134.3, 132.0, 130.4, 129.9, 129.8, 128.7 (2C), 128.6, 127.9, 124.7, 124.4, 121.4, 121.2, 119.9, 113.3, 53.0, 31.8 (2C), 22.2, 21.4.

HRMS (ESI-TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₈H₁₈NO₄S]⁺ 344.0951, found 344.0947.

Methyl

(*E*)-2-(5-methoxy-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2phenylacetate (2i) was prepared as a brown oil from 4-methoxy-*N*-methyl-2-(phenylethynyl)benzenesulfonamide (60.2 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 71% yield (51.0 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.6 Hz, 1H), 7.40 – 7.35 (m, 5H), 7.19 (d, *J* = 2.1 Hz, 1H), 7.13 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.65 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 163.4, 137.2, 134.8, 132.2, 129.7, 128.7, 128.5, 124.7, 122.8, 117.6, 113.6, 108.9, 55.8, 53.0, 31.9.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₇NNaO₅S]⁺ 382.0720, found 382.0724.

Methyl

(E)-2-(5-(tert-butyl)-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-

2-phenylacetate (2j) was prepared as colorless oil from 4-(*tert*-butyl)-*N*-methyl-2-(phenylethynyl)benzenesulfonamide (65.4 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 65% yield (50.1 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (m, 2H), 7.67 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.43 – 7.36 (m, 5H), 3.89 (s, 3H), 2.66 (s, 3H), 1.36 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 157.2, 137.4, 134.8, 130.1, 129.8, 129.7, 128.7 (2C), 128.5, 121.1, 121.0, 113.2, 53.0, 35.6, 31.9, 31.1.

HRMS (ESI-TOF) m/z [M + H]⁺: calcd. for [C₂₁H₂₄NO₄S]⁺ 386.1421, found 386.1418.

Methyl

(E)-2-(5-methoxy-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-

phenylacetate (2k) was prepared as a brown oil from 4-fluoro-N-methyl-2-(phenylethynyl)benzenesulfonamide (57.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 72% yield (50.0 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.6, 5.0 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.37 – 7.31 (m, 3H), 3.88 (s, 3H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 165.2 (*J*_{C-F}= 254.7 Hz), 136.3 (*J*_{C-F}= 3.1 Hz), 134.4, 132.9 (*J*_{C-F}= 10.2 Hz), 129.7, 128.8, 128.7, 128.5 (*J*_{C-F}= 2.8 Hz), 123.5 (*J*_{C-F}=

10.1 Hz), 118.8 (q, J_{C-F} = 24.6 Hz), 115.1, 111.8 (J_{C-F} = 27.0 Hz), 53.2, 32.0.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₇H₁₄FNNaO₄S]⁺ 370.0520, found 370.0520.

Methyl

(*E*)-2-(5-chloro-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-ph enylacetate (2l) was prepared as a brown oil from 4-chloro-N-methyl-2-(phenylethynyl)benzenesulfonamide (61.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 77% yield (56.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 1H), 7.69 – 7.68 (m, 1H), 7.59 (dd, J = 8.3, 1.6 Hz, 1H), 7.44 – 7.34 (m, 5H), 3.88 (s, 3H), 2.66 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 169.0, 139.8, 136.0, 134.3, 131.8, 131.1, 130.8, 129.7, 128.8, 128.7, 124.7, 122.5, 115.0, 53.2, 32.0.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₇H₁₄ClNNaO₄S]⁺ 386.0224, found 386.0232.

(*E*)-2-(2-methyl-1,1-dioxido-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-yli dene)-2-phenylacetate (2m) was prepared as a brown oil from N-methyl-2-(phenylethynyl)-4-(trifluoromethyl)benzenesulfonamide (67.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) g in 85% yield with the ratio of Z/*E* configuration in 1:13.6 (67.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 0.1H), 8.07 – 8.05 (m, 0.1H), 8.02 – 8.00 (m, 1H), 7.98 (s, 1H), 7.89 – 7.86 (m, 1H), 7.82 – 7.79 (m, 0.1H), 7.56 – 7.46 (m, 0.46H), 7.46 – 7.36 (m, 5H), 3.88 (s, 3H), 3.40 (s, 0.24H), 3.05 (s, 0.24H), 2.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 167.1, 135.7, 135.4 (*J*_{C-F} = 1.7 Hz), 135.3, 135.0, 134.1, 131.0, 129.7, 129.0, 128.9, 128.8, 127.7 (*J*_{C-F} = 3.6 Hz), 122.9 (*J*_{C-F} = 274.6 Hz), 122.8, 122.3, 121.8 (q, *J*_{C-F} = 4.2 Hz), 115.7, 53.1, 52.2, 35.1, 32.0.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₄F₃NNaO₄S]⁺ 420.0488, found 420.0491.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2*H*)-ylidene)-2-(*p*-tolyl) acetate (2n) was prepared as a brown oil from *N*,4-dimethyl-2-(*p*-tolylethynyl)benzenesulfonamide (59.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 72% yield (51.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.43(m, 2H), 7.28 – 7.22 (m, 4H, overlapped with CDCl₃), 3.89 (s, 3H), 2.71 (s, 3H), 2.49 (s, 3H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.0, 138.6, 137.0, 131.8, 130.4, 129.8, 129.6 (2C), 129.4, 124.5, 121.1, 113.5, 52.9, 31.8, 22.1, 21.3.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₉H₁₉NNaO₄S]⁺ 380.0927, found 380.0924.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-(m-tolyl) acetate (20) was prepared as a brown oil from *N*,4-dimethyl-2-(*m*-tolylethynyl)benzenesulfonamidee (59.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 69% yield (51.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.28 – 7.23 (m, 1H), 7.14 – 7.13 (m, 3H), 3.84 (s, 3H), 2.64 (s, 3H), 2.44 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.0, 138.4, 136.9, 134.6, 131.8, 130.3, 130.2, 129.8, 129.3, 128.5, 126.9, 124.5, 121.1, 113.4, 52.9, 31.6, 22.1, 21.4.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₉H₁₉NNaO₄S]⁺ 380.0927, found 380.0935.

Methyl

(*E*)-2-(3-chlorophenyl)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)ylidene)acetate (2p) was prepared as a brown oil from 2-((3-chlorophenyl)ethynyl)-N,4-dimethylbenzenesulfonamide (63.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 38%

yield (28.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.41 –

7.37 (m, 1H), 7.34 – 7.30 (m, 2H), 7.24 – 7.21 (m, 1H), 3.79 (s, 3H), 3.24 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.2, 143.8, 139.4, 138.0, 135.2, 132.0, 130.8, 130.6, 130.3, 130.0, 129.1, 129.0, 127.0, 121.2, 109.8, 52.7, 30.6, 22.0.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₆ClNNaO₄S]⁺ 400.0381, found 400.0386.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-(o-tolyl) acetate (2q) was prepared as a brown oil from N,4-dimethyl-2-(o-tolylethynyl)benzenesulfonamide (59.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 67% yield (47.9 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.21 (m, 4H), 3.82 (s, 3H), 2.50 (s, 3H), 2.48 (s, 3H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 144.0, 138.0, 137.7, 134.4, 131.9, 130.6, 130.3, 129.8, 129.7, 128.9, 126.0, 125.1, 121.1, 111.9, 52.8, 30.1, 22.2, 19.8.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₉H₁₉NNaO₄S]⁺ 380.0927, found 380.0929.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2*H*)-ylidene)-2-(4-metho xyphenyl)acetate (2r) was prepared as a brown oil from 2-((4-methoxyphenyl)ethynyl)-N,4-dimethylbenzenesulfonamide (63.02 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 53% yield (39.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9, Hz, 1H), 7.44 – 7.41 (m, 2H), 7.30-7.27 (m, 2H), 6.94-6.92 (m, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 2.70 (s, 3H), 2.47 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 159.6, 144.0, 136.9, 131.7, 131.0, 130.5, 129.9, 126.8, 124.5, 121.1, 114.1, 113.4, 55.3, 52.9, 31.8, 22.2.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₉H₁₉NNaO₅S]⁺ 396.0876, found 396.0884.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[*d*]isothiazol-3(2*H*)-ylidene)-2-(4-propy lphenyl)acetate (2s) was prepared as a brown oil from *N*,4-dimethyl-2-((4-propylphenyl)ethynyl)benzenesulfonamide (65.4 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 66% yield with the ratio of Z/E configuration in 1:15 (50.8 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 0.07H), 7.45 – 7.41 (m, 2H), 7.28 – 7.26 (m, 2H), 7.22 – 7.20 (m, 2H), 3.87 (s, 3H), 3.79 (s, 0.2H), 3.25 (s, 0.2H), 2.68 (s, 3H), 2.65 – 2.59 (m, 2H), 2.47 (s, 3H), 1.69 – 1.64 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.0, 143.3, 137.0, 131.9, 131.7, 131.4, 130.4 (2C), 129.8, 129.6, 129.5, 128.7, 127.1, 124.5, 121.1, 120.8, 113.6, 52.9, 37.7, 31.6, 24.2, 22.1, 13.8.

HRMS (ESI-TOF) m/z [M + Na]⁺: calcd. for [C₂₁H₂₃NNaO₄S]⁺ 408.1240, found 408.1241.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-(4-fluoro phenyl)acetate (2t) was prepared as a brown oil from A name could not be generated for this structure. (60.6 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 65% yield with the ratio of *Z*/*E* configuration in 1:10 (45.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 0.1H), 7.46 – 7.43 (m, 2H), 7.36 – 7.29 (m, 2.2H), 7.18 – 7.13 (m, 0.2H), 7.13 – 7.08 (m, 2H), 3.86 (s, 3H), 3.78 (s, 0.3H), 3.23 (s, 0.3H), 2.67 (s, 3H), 2.47 (s, 3H), 2.11 (s, 0.3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 162.5 (*J*_{C-F}=250.6 Hz), 144.1, 138.0, 132.1, 131.6 (*J*_{C-F}= 8.3 Hz), 130.8 (*J*_{C-F}= 3.6 Hz), 130.2, 129.9, 124.7, 121.2, 115.9 (*J*_{C-F}= 21.8 Hz), 112.2, 53.0, 31.9, 22.2.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₆FNNaO₄S]⁺ 384.0676, found 384.0681.

Methyl

(*E*)-2-(4-chlorophenyl)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)ylidene)acetate (2u) was prepared as a brown oil from 2-((4-chlorophenyl)ethynyl)-N,4-dimethylbenzenesulfonamide. (63.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 53% yield with the ratio of Z/E configuration in 1:6.6 (40.0 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 0.15H), 7.47 – 7.43 (m, 2H), 7.40 – 7.37 (m, 2.15H), 7.31 – 7.27 (m, 2.45H), 7.00 (s, 0.15H), 6.00 (s, 0.15H), 3.87 (s, 3H), 3.18 (s, 0.45H), 2.69 (s, 3H), 2.48 (s, 3H), 2.23 (s, 0.45H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 144.2, 143.4, 138.4, 134.5, 133.9, 133.6, 133.4, 132.2, 131.2, 131.1, 130.9, 130.2, 130.0, 129.0 (2C), 124.9, 124.8, 121.2, 121.0, 111.9, 104.8, 53.0, 32.1, 29.7, 26.3, 22.2, 22.0.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₆ClNNaO₄S]⁺ 400.0381, found 400.0385.

Methyl

(*E*)-2-(cyclohex-1-en-1-yl)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2 H)-ylidene)acetate (2v) was prepared as a brown oil from 2-(cyclohex-2-en-1-ylethynyl)-N,4-dimethylbenzenesulfonamide (57.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 74% yield with the ratio of Z/*E* configuration in 1:1 (51.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.38 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.28 – 6.25 (m, 1H), 6.01 – 5.99 (m, 1H), 3.73(s, 3H), 3.16(s, 3H), 2.80 (s, 6H), 2.43 (s, 3H), 2.35 (s, 3H), 2.29 – 2.26 (m, 2H), 2.24 – 2.20 (m, 2H), 2.17 – 2.10 (m, 4H), 1.74 – 1.70 (m, 2H), 1.67 – 1.58 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 148.2, 142.7, 142.6, 136.5, 135.3, 134.5,

134.3, 133.1, 130.3, 130.1, 128.5, 128.2, 127.8, 125.6, 122.5, 121.6, 120.6, 113.2, 97.8, 84.6, 52.0, 37.7, 32.9, 28.6, 27.1, 25.7, 25.5, 22.3, 22.1, 21.9, 21.6, 21.3, 21.0. **HRMS** (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₂₁NNaO₄S]⁺ 370.1083, found 370.1086.

Methyl

(*Z*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-(thiophe n-2-yl)acetate (2w) was prepared as a brown oil from N,4-dimethyl-2-(thiophen-2-ylethynyl)benzenesulfonamide (58.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 48% yield with the ratio of Z/*E* configuration > 20:1 (33.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 1H), 7.51 – 7.50 (m, 1H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.12 – 7.10 (m, 1H), 7.02 – 7.00 (m, 1H), 6.19 (s, 1H), 3.80 (s, 3H), 3.25 (s, 3H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 143.9, 141.0, 137.4, 131.9, 130.3, 129.8, 129.7, 128.5, 127.8, 127.2, 120.9, 102.4, 52.6, 30.6, 22.0.

HRMS (ESI-TOF) m/z [M + Na]⁺: calcd. for [C₁₆H₁₅NNaO₄S₂]⁺ 372.0335, found 372.0335.

Methyl

(E)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-(naphth

alen-2-yl)acetate (**2x**) was prepared as a yellow solid from N,4-dimethyl-2-(naphthalen-2-ylethynyl)benzenesulfonamide (67.0 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 64% yield with the ratio of Z/E configuration in 1:12 (50.0 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 3.4H), 7.82 – 7.81 (m, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 0.1H), 7.54 – 7.51 (m, 3.2H), 7.48 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.10 (m, 0.1H), 3.90 (s, 3H), 3.24 (s, 0.25H), 2.67 (s, 3H), 2.50 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.1, 143.2, 137.8, 132.9, 132.8, 132.2, 132.0, 130.9, 130.3, 130.0, 129.9, 129.1, 128.4, 128.3 (2C), 128.2, 127.7 (2C), 127.5, 127.0, 126.9, 126.8, 126.5, 126.2, 125.0, 124.7, 121.2, 120.9, 113.2, 53.0, 32.0, 26.3, 22.2, 21.8.

HRMS (ESI-TOF) *m*/*z* [M + H]⁺: calcd. for [C₂₂H₂₀NO₄S]⁺ 394.1108, found 394.1107.

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)heptanoate (2y) was prepared as a brown oil from 2-(hept-1-yn-1-yl)-N,4-dimethylbenzenesulfonamide (55.8 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 30% yield (20.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 1H), 7.28 – 7.27(m, 2H), 3.90 (s, 3H), 3.28 (s, 3H), 2.60 – 2.56 (m, 2H), 2.42 (s, 3H), 1.71 – 1.65 (m, 2H), 1.40 – 1.33 (m, 4H), 0.91 – 0.90 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.8, 146.0, 142.6, 130.4, 128.6, 128.3, 125.7, 121.6, 115.2, 52.3, 31.6, 31.4, 31.3, 27.6, 22.2, 21.9, 13.9.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₇H₂₃NNaO₄S]⁺ 360.1240, found 360.1234.

(E)-Methyl

5-cyano-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)penta

noate (2z) was prepared as a brown oil from 2-(5-cyanopent-1-yn-1-yl)-N,4-dimethylbenzenesulfonamide (55.2 mg, 0.2 mmol) and CO₂ (1 atm) (eluent: dichloromethane / petroleum ether: 1:1) in 45% yield (30.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.34 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.29 (brs, 1H), 3.96 (s, 3H), 3.20 (s, 3H), 2.78 (t, *J* = 7.0 Hz, 2H), 2.50 (t, *J* = 6.7 Hz, 2H), 2.44 (s, 3H), 2.04 (t, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 167.2, 143.0, 142.9, 129.8, 129.5, 128.8, 126.2, 122.0, 119.3, 119.1, 53.0, 32.6, 29.3, 23.5, 21.9, 15.8.

HRMS (ESI-TOF) m/z [M + Na]⁺: calcd. for [C₁₆H₁₈N₂NaO₄S]⁺ 357.0879, found 357.0882.

V. Synthesis of Gem-Dicarboxylic Esters

General Procedure D

Under air, to an over-dried 20 mL vessel was added *o*-(1-alkynyl)benzene sulfonamide (0.2 mmol), K₂CO₃ (0.6 mmol, 3 equiv, 82.8 mg) and DMSO (2.0 mL). The vessel was fixed into a stainless steel autoclave. Then the autoclave was sealed and CO₂ was introduced from a cylinder. The reaction was carried out at 25 °C under magnetic stirring for 48 h and the pressure was kept constant (40 atm) during the reaction. As the reaction was completed, the vessel was cooled to room temparature and the pressure was released slowly to atmospheric pressure. After that, MeI (0.8 mmol, 4 equiv, 52 μ L) was added into the reaction mixture, and the reaction mixture was stirred at room temperature for about 2 h. Then, the reaction mixture was saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired product.

Figure S1 The setup for the synthesis of gem-dicarboxylic esters

Dimethyl

2-(2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2*H***)-ylidene)malonate (4a) was prepared as an oil from** *N***-methyl-2-((trimethylsilyl)ethynyl)benzene sulfonamide 3a** (53.4 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 65% yield (40.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88(m, 1H), 7.76 – 7.64 (m, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 164.3, 145.3, 133.7, 132.6, 132.1, 128.2, 125.9, 121.7, 101.9, 53.2, 52.8, 30.7.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₃H₁₃NNaO₆S]⁺ 334.0356, found 334.0352.

4b

Dimethyl

2-(2-benzyl-1,1-dioxidobenzo[d]isothiazol-3(2*H*)-ylidene)malonate (4b) was prepared as an oil from *N*-benzyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide **3b** (68.6 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 55% yield (42.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.96 (m, 1H), 7.77 – 7.73 (m, 1H), 7.70 –
7.66 (m, 1H), 7.62 – 7.60 (m, 1H), 7.30 – 7.26 (m, 3H), 7.19 – 7.16 (m, 2H), 5.13 (s, 2H), 3.78 (s, 3H), 3.52 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 163.4, 140.7, 133.7, 132.5, 132.4, 131.8, 128.6, 128.4, 128.0, 127.6, 125.5, 121.8, 104.2, 53.2, 52.4, 46.8.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₉H₁₈NO₆S]⁺ 388.0849, found 388.0852.

Dimethyl

2-(2-cyclohexyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malonate(4c)waspreparedasanoilfromN-cyclohexyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(67.0mg,0.2mmol)and CO_2 (4MPa)according to the General Procedure**D** (eluent: ethylacetate / petroleumether:1:5)in 40% yield(30.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.70 – 7.59 (m, 3H), 3.86 (s, 6H), 3.80 – 3.75 (m, 1H), 2.18 – 2.15 (m, 4H), 1.89 – 1.85 (m, 2H), 1.66 – 1.62 (m, 1H), 1.22 – 1.13 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 165.1, 144.2, 133.6, 133.2, 132.4, 129.0, 125.5, 120.8, 104.2, 62.5, 53.0, 29.5, 26.6, 25.1.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₂₁NNaO₆S]⁺ 402.0982, found 402.0981.

Me₀

4d'

Metyl

(E)-2-(2-(tert-butyl)-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)acetate (4d') prepared oil from was as an N-(tert-butyl)-2-((trimethylsilyl)ethynyl)benzenesulfonamide (61.8mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure D (eluent: ethyl acetate / petroleum ether: 1:5) in 80% yield (47.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.03 – 9.01 (m, 1H), 7.78 – 7.74 (m, 1H), 7.68 – 7.61 (m, 2H), 5.82 (s, 1H), 3.79 (s, 3H), 1.83 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 143.4, 133.6, 133.1, 131.7, 128.5, 127.6, 120.1, 98.6, 59.7, 51.8, 28.6. **HRMS** (ESI-TOF) m/z [M + H]⁺: calcd. for [C₁₄H₁₈NO₄S]⁺ 296.0951, found

296.0952.

Dimethyl

2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malonate(4f)waspreparedasanoilfromN,4-dimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(56.2 mg, 0.20.2mmol)and CO_2 (4 MPa)according to the General Procedure **D** (eluent: ethylacetate / petroleum ether:1:5)in 64% yield(41.6 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.9 Hz, 1H), 7.52 – 7.48 (m, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.18 (s, 3H), 2.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.4, 145.6, 144.8, 133.5, 129.5, 128.5, 126.2, 121.4, 101.4, 53.1, 52.8, 30.8, 22.2.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₄H₁₅NNaO₆S]⁺ 348.0512, found 348.0512.

Dimethyl

2-(2,6-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malonate(4g)waspreparedasanoilfromN,5-dimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(56.2 mg, 0.20.2mmol)and CO_2 (4 MPa)according to the General Procedure **D** (eluent: ethylacetate / petroleum ether:1:5)in 62% yield(40.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.68 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.47 – 7.44 (m, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.18 (s, 3H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.5, 145.7, 144.2, 134.6, 132.3, 125.8, 125.6, 121.7, 101.2, 53.1, 52.7, 30.7, 21.5.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₄H₁₆NO₆S]⁺ 326.0693, found 326.0691.

Dimethyl

2-(5-methoxy-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malona
te (4h) was prepared as an oil from
4-methoxy-N-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (59.4 mg,
0.2 mmol) and CO₂ (4 MPa) according to the General Procedure D (eluent: ethyl acetate / petroleum ether: 1:5) in 65% yield (44.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.6 Hz, 1H), 7.23 – 7.17 (m, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 3.84 (s, 3H), 3.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 164.4, 163.7, 145.4, 130.5, 124.2, 123.1, 118.8, 110.9, 101.7, 56.0, 53.2, 52.8, 30.9.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₄H₁₆NO₇S]⁺ 342.0642, found 342.0641.

Dimethyl

2-(5-(tert-butyl)-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malonate(4i)waspreparedasanoilfrom4-(tert-butyl)-N-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(64.6mg, 0.2 mmol)and CO2 (4 MPa) according to the General Procedure D (eluent:ethyl acetate / petroleum ether:1:5) in 65% yield (47.7 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.74 (dd, *J* = 8.2, 1.6 Hz, 1H), 3.90 (s, 3H), 3.84 (s, 3H), 3.18 (s, 3H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 164.3, 157.8, 145.9, 130.3, 129.3, 128.2, 122.8, 121.2, 101.2, 53.1, 52.7, 35.7, 31.0, 30.8.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₇H₂₁NNaO₆S]⁺ 390.0982, found 390.0979.

Dimethyl

2-(2-methyl-1,1-dioxido-5-phenylbenzo[d]isothiazol-3(2H)-ylidene)malonat

e (4j) was prepared as an oil from *N*-methyl-3-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-4-sulfonamide (68.6 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure D (eluent: ethyl acetate / petroleum ether: 1:5) in 67% yield (51.9 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 3H), 7.55 – 7.45 (m, 5H), 3.88 (s, 3H), 3.86 (s, 3H), 3.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 164.3, 147.1, 145.2, 138.7, 131.5, 130.5, 129.3, 129.0, 128.9, 127.3, 124.7, 121.9, 101.9, 53.2, 52.8, 30.8.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₉H₁₈NO₆S]⁺ 388.0849, found 388.0848.

Dimethyl

2-(2-methyl-1,1-dioxido-5-(trifluoromethoxy)benzo[d]isothiazol-3(2H)-ylide ne)malonate (4k) was prepared as an oil from N-methyl-4-(trifluoromethoxy)-2-((trimethylsilyl)ethynyl)benzenesulfonamid e (70.2 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 60% yield (47.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 1H), 7.66 – 7.65 (m, 1H), 7.56 – 7.53 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 164.1, 152.8, 143.5, 130.8, 130.2, 124.9, 123.5, 120.1 (q, *J*_{C-F} = 261.5 Hz), 118.3, 103.4, 53.3, 53.0, 30.9.

HRMS (ESI–TOF) m/z [M + H]⁺: calcd. for [C₁₄H₁₃F₃NO₇S]⁺ 396.0359, found 396.0359.

Dimethyl

2-(5-fluoro-2-methyl-1,1-dioxidobenzo[*d*]isothiazol-3(2*H*)-ylidene)malonate (41) was prepared as an oil from 4-fluoro-*N*-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (57.0 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure D (eluent: ethyl acetate / petroleum ether: 1:5) in 65% yield (42.8 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.6, 4.9 Hz, 1H), 7.50 (dd, *J* = 9.6, 2.2 Hz, 1H), 7.44 – 7.39 (m, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 165.4 (d, $J_{C-F} = 253.8$ Hz), 164.1, 143.7 (d, $J_{C-F} = 2.8$ Hz), 131.1 (d, $J_{C-F} = 11.0$ Hz), 128.2 (d, $J_{C-F} = 3.0$ Hz), 123.9 (d, $J_{C-F} = 10.0$ Hz), 120.4 (d, $J_{C-F} = 24.0$ Hz), 113.6 (d, $J_{C-F} = 27.0$ Hz), 103.0, 53.3, 52.9, 30.7.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₃H₁₂FNNaO₆S]⁺ 352.0262, found 352.0262.

Dimethyl

2-(5-chloro-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malonate(4m)waspreparedasanoilfrom4-chloro-N-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(60.2 mg,

0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 60% yield (41.4 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H),

7.67 (dd, *J* = 8.3, 1.7 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 3.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 164.1, 143.7, 140.4, 132.8, 130.4, 123.0, 126.3, 122.7, 103.0, 53.3, 52.9, 30.7.

HRMS (ESI–TOF) m/z [M + Na]⁺: calcd. for [C₁₃H₁₂ClNNaO₆S]⁺ 367.9966, found 367.9969.

Dimethyl

2-(2-methyl-1,1-dioxido-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-yliden

e)malonate (4n) was prepared as a oil from N-methyl-4-(trifluoromethyl)-2-((trimethylsilyl)ethynyl)benzenesulfonamide (67.0 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 70% yield (53.1 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 2H), 7.98 – 7.95 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.21 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 164.0, 143.4, 135.7 (d, *J*_{C-F} = 33.4 Hz), 135.0, 129.5 (q, *J*_{C-F} = 3.3 Hz), 129.2, 123.5 (q, *J*_{C-F} = 4.0 Hz), 122.6 (q, *J*_{C-F} = 274.6 Hz), 122.5, 103.6, 53.3, 53.1, 30.8.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₄H₁₂F₃NNaO₆S]⁺ 402.0230, found 402.0233.

Dimethyl

2-(5,6-dichloro-2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malo nate (40) was prepared as an oil from 4,5-dichloro-N-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (67.0 mg, 0.2 mmol) and CO₂ (4 MPa) according to the General Procedure **D** (eluent: ethyl acetate / petroleum ether: 1:5) in 50% yield (37.9 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.92 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 164.1, 143.1, 138.9, 137.7, 131.4, 128.1, 127.6, 123.2, 103.4, 53.4, 53.0, 30.8.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₃H₁₂Cl₂NO₆S]⁺ 379.9757, found 379.9756.

Dimethyl

2-(5-chloro-2,6-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)malo

nate(4p)waspreparedasanoilfrom4-chloro-N,5-dimethyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide(63.0mg, 0.2 mmol)and CO2 (4 MPa) according to the General Procedure D (eluent:ethyl acetate / petroleum ether:1:5) in 62% yield (44.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.73 (m, 2H), 3.90 (s, 3H), 3.84 (s, 3H), 3.17

(s, 3H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 164.2, 144.2, 142.2, 140.6, 130.4, 127.3, 126.6, 123.1, 102.1, 53.2, 52.9, 30.7, 20.7.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₄H₁₅ClNO₆S]⁺ 360.0303, found 360.0307.

Dimethyl

2-(2-methyl-3,3-dioxidonaphtho[1,2-d]isothiazol-1(2H)-ylidene)malonate(4r)waspreparedasanoilfromN-methyl-1-((trimethylsilyl)ethynyl)naphthalene-2-sulfonamide(63.4 mg, 0.20.2mmol)and CO_2 (4 MPa)according to the General Procedure **D**(eluent: ethylacetate / petroleum ether:1:5)in 35% yield(25.2 mg)

¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.06 (d, *J* = 8.9 Hz, 1H), 7.98 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.62 (d, *J* = 8.9 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.4, 146.0, 134.6, 134.0, 129.9, 129.7, 128.7, 128.6, 127.3, 124.7, 123.9, 120.5, 102.4, 53.2, 52.8, 30.9.

HRMS (ESI–TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₇H₁₆NO₆S]⁺ 362.0693, found 362.0686.

MeO₂C 4a'

Methyl (E)-2-(2-methyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)acetate was prepared as an oil from 2-ethynyl-N-methylbenzenesulfonamide (39.0mg, 0.2 mmol) and CO₂ (4 MPa) (eluent: ethyl acetate / petroleum ether: 1:5) in 81% yield (41.0 mg).

¹H NMR (400 MHz, CDCl₃) δ 9.36 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.88 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.77 – 7.65 (m, 2H), 5.36 (s, 1H), 3.79 (s, 3H), 3.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.3, 144.7, 133.8, 133.1, 132.0, 129.6, 127.5, 121.0, 94.7, 51.7, 26.4.

HRMS (ESI–TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₁H₁₁NNaO₄S]⁺276.0301, found 276.0307.

VI. The Control Experiment and Proposed Mechanism

Scheme S1. Control experiments

(a) The isotope labelling experiment of 1a with D₂O

O-(1-Alkynyl)benzene sulfonamides **1a** (0.2 mmol, 57.0 mg), K₂CO₃ (0.6 mmol, 82.8 mg), D₂O (72.3 μ L, 4.0 mmol, 20 equiv) and DMSO (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction

vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N₂ in three times. Then, the Schlenk tube was stirred at 25 °C for 48 h. After that, the reaction mixture was diluted by 5 mL saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EA 5/1) to give the D-labelled compound **D-2B** as a slight yellow oil in 75% yield (42.9 mg, 96%D) with the *dr* of 1:5.8. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 1.22H), 7.58 (brs, 1H), 7.44 – 7.36 (m, 6H), 7.31 – 7.26 (m, 1.2H), 6.94 (s, 0.16H), 6.59 (s, 0.04H), 3.20 (s, 0.52H), 2.94 (s, 3H), 2.50 (s, 3H), 2.18 (s, 0.52H).

Compound 2B was synthesized by the reported procedure⁶

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.43 – 7.35 (m, 5H), 7.31 – 7.26 (m, 1H + overlapped with CDCl₃), 6.59 (s, 1H), 2.94 (s, 3H), 2.50 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.0, 134.1, 134.0, 132.8, 131.0, 129.6, 128.9, 128.2, 127.4, 120.9, 120.9, 105.5, 32.1, 21.9.

(b) The control experiment with 3a

⁶ A. S. Reddy, A. L. S. Kumari, S. Saha, K. C. K. Swamy, *Adv. Synth. Catal.*, 2016, **358**, 1625–1638.

N-Methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide (0.2 mmol, 53.4 mg), K₂CO₃ (3 equiv, 82.8 mg) and DMSO (2 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N₂ in three times. Then, the Schlenk tube was stirred at room temperature for 48 h. After that, the reaction mixture was diluted by 5 mL saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6) and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EA= 5/1) to give the compound **4A** in 63% yield (24.6 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.61 – 7.56 (m, 1H), 5.00 (t, *J* = 2.2 Hz, 1H), 4.47 (t, *J* = 2.2 Hz, 1H), 3.15 (d, *J* = 1.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 133.0, 132.0, 130.3, 121.4, 121.0, 84.6, 25.8.

(c) The isotope labelling experiment of 3a with D₂O

N-Methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide 3a (0.2 mmol, 53.4

mg), K₂CO₃ (0.6 mmol, 82.8 mg), D₂O (72.3 μ L, 4.0 mmol, 20 equiv) and DMSO (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N₂ in three times. Then, the Schlenk tube was stirred at 25 °C for 48 h. After that, the reaction mixture was diluted by 5 mL saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EA 5/1) to give the D-labelled compound **D-4A** as a white solid in 71% yield (28.1 mg, 68% D).

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.79 (m, 1H), 7.73 – 7.70 (m, 1H), 7.65 – 7.61 (m, 1H), 7.58 – 7.54 (m, 1H), 4.98 (d, *J* = 2.8 Hz, 0.32H), 4.45 (d, *J* = 2.8 Hz, 0.32H), 3.12 (s, 3H).

(d) The carbon anion trapping reaction with PhCHO

O-(1-Alkynyl)benzene sulfonamides **1a** (0.2 mmol, 57.0 mg), K₂CO₃ (0.6 mmol, 82.8 mg), PhCHO (40.6 μ L, 0.4 mmol) and DMSO (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N₂ in three times. Then, the Schlenk tube was stirred at 25 °C for 48 h. After that, the reaction mixture was diluted by 5 mL saturated brine and extracted with ethyl acetate (EA) for at least 6 times (2 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash

chromatography (PE/EA 5/1) to give compound **5** as a colorless oil in 67% yield (52.4 mg) with the *Z*/*E* ratio of 1:12.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.4 Hz, 0.24H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.69 (s, 1H), 7.48 – 7.45 (m, 0.42H), 7.42 – 7.38 (m, 3H), 7.36 – 7.28 (m, 3.5H), 7.25 – 7.22 (m, 3H), 7.08 – 7.05 (m, 2H), 6.47 (s, 1H), 2.62 – 2.61 (m, 0.5H), 2.50 (s, 3H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 140.7, 135.3, 134.5, 133.5, 132.8, 132.2, 130.8, 130.3, 128.5, 128.4, 128.1 (2C), 127.7, 126.2 (2C), 121.4, 72.0, 33.3, 22.2. HRMS (ESI-TOF) *m*/*z* [M + H]⁺: calcd. for [C₂₃H₂₂NO₃S]⁺ 392.1315, found 392.1309.

(e) Control experiment of 4a' and CO₂

Under air, to an over-dried 20 mL vessel was added **4a'** (0.2 mmol, 50.6 mg), K_2CO_3 (0.6 mmol, 3 equiv, 82.8 mg) and DMSO (2.0 mL). The vessel was fixed into a stainless steel autoclave. Then the autoclave was sealed and CO₂ was introduced from a cylinder. The reaction was carried out at 25 °C under magnetic stirring for 48 h and the pressure was kept constant (4 MPa) during the reaction. As the reaction was completed, the vessel was cooled to room temperature and the pressure was released slowly to atmospheric pressure. After that, MeI (0.8 mmol, 4 equiv, 52 µL) was added into the reaction mixture, and the reaction mixture was stirred at room temperature for about 2 h. After the analyzing by TLC, none of newly generated product could be detected, only **4a'** could be detected.

Based on the above results and some relative works,⁷ a reasonable

⁷ (a) D. Rambabu, N. S. P. V. Murthy, K. R. S. Prasad, A. Kandale, G. S. Deora, M. V.

mechanism is proposed in Scheme S1. Firstly, the sulfamine group in o-(1-alkynyl)benzenesulfonamide **1** is deprotonated by base, affording the sulfamide anion **A**. Next, 5-*exo-dig* annulation of intermediate **A** generates the vinyl anion intermediate **B**. Sequentially, nucleophilic addition of its vinyl anion to CO₂ leads to intermediate **C**. Then, esterification of **C** furnishes the product **2**. Alternatively, when the alkyne bounded with TMS, desilylation would lead to the carbon anion **D**, which undergoes sequential carboxylation with a second molecule of CO₂ and esterification to afford the double carboxylation product **4**.

Scheme S2. Proposed Mechanism

B. Rao and M. Pal, *Tetrahedron Lett.*, 2012, **53**, 6577–6583. (b) S. Debnath and S. Mondal, *J. Org. Chem.*, 2015, **80**, 3940–3948. (c) B. M. Rao, J. S. Yadav, B. Sridharb and B. V. S. Reddy, *Org. Biomol. Chem.*, 2018, **16**, 5163–5166. (d) Q. Xiao, J. Sheng, Z. Chen and J. Wu, *Chem. Commun.*, 2013, **49**, 8647–8649.

VII. Gram-Scale Reaction and Derivation

(a) Gram-scale reaction of 1a and CO₂

Under air, to an over-dried 100 mL Schlenk tube equipped with a Teflon cap was o-(1-alkynyl)benzene sulfonamides **1a** (3.5 mmol, 1.0 g), K₂CO₃ (10.5 mmol, 3 equiv, 1.45 g) and DMSO (20.0 mL). The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with CO_2 (1 atm) in three times. Then, the Schlenk tube was stirred at 25 °C for 48 h. After that, MeI (14.0 mmol, 4 equiv, 0.88 mL) was added into the reaction mixture, and the reaction mixture was stirred at 50 °C for about 1 h, then, the reaction mixture was saturated brine and extracted with ethyl acetate (EA) for at least 6 times (10 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (dichloromethane / petroleum ether: 1:1) to give the pure desired product **2a** (70%, 840.3 mg).

(b) Gram-scale reaction of 3a and CO₂

Under air, to an over-dried 100 mL polytetrafluoroethylene (PTFE) reaction vessel, *N*-methyl-2-((trimethylsilyl)ethynyl)benzenesulfonamide **3a** (3.75 mmol, 1.0 g), K₂CO₃ (11.2 mmol, 3 equiv, 1.55 g) and DMSO (20.0 mL) was added sequentially. The vessel was fixed into a stainless-steel autoclave

with a pressure-regulating system. Then the autoclave was sealed and CO₂ was introduced from a cylinder (4 MPa). Then, the autoclave was stirred at 25 °C for 48 h. After that, MeI (15.0 mmol, 4 equiv, 0.94 mL) was added into the reaction mixture, and the reaction mixture was stirred at 25 °C for about 1 h, then, the reaction mixture was saturated brine and extracted with ethyl acetate (EA) for at least 6 times (10 mL × 6). Subsequently, the combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (ethyl acetate / petroleum ether: 1:5) to give the pure desired product **4a** (60%, 734.7 mg).

(c) Reduction of 2a by LiAlH₄

Under N₂, to a 50 mL round bottom flask equipped with a stir bar was added **2a** (0.5 mmol, 171.6 mg), anhydrous THF (4 mL) and the reaction mixture was cooled down to 0 °C. Then, LiAlH₄ (2 mmol, 75.9 mg, 4 equiv) was added to the mixture slowly. After that, the reaction mixture was allowed to warm to room temperature and stirred overnight. Upon completion (monitored by TLC), it was quenched with aqueous NaOH solution and filtered through a plug of celite. Then, the reaction mixture was extracted with ethyl acetate (3 × 15 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to afford compound **6** as a white solid in 69% yield (109.1 mg).

¹H NMR (300 MHz, CDCl₃) 7.84 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.24 – 7.20 (m, 3H + overlapped with CDCl₃), 7.10 – 7.01 (m, 3H), 6.71 (s, 1H), 5.57 (brs, 1H), 4.55 (s, 2H), 2.56 (d, *J* = 5.1 Hz, 3H), 2.06 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 144.4, 142.5, 137.4, 135.8, 133.6, 133.1, 129.9, 128.6, 128.4, 127.6, 127.3, 122.8, 66.9, 28.9, 21.1.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₇H₁₉NNaO₃S]⁺ 340.0978, found 340.0980.

(d) Reduction of 2a by H₂

In a 10 mL vial, 10 wt% Pd/C (22.0 mg, 0.01 mmol) was added to a solution of compound **2a** (64.1 mg, 0.225 mmol) in MeOH (4.0 mL) at room temperature. The 10 mL vial was placed in a 100 mL reaction still which was filled with H₂ (40 atm). The reaction mixture was then stirred for 48 h at 25 °C. Upon completion, the mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (3:1 petroleum ether: EtOAc) to obtain **(e)** in 60% yield (46.6 mg) with the *dr* ratio of about 1:8.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.8 Hz, 0.16H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.44 – 7.27 (m, 4H), 7.20 – 7.15 (m, 3.24H), 5.71 (brs, 1H), 4.83 (d, *J* = 9.4 Hz, 0.14H), 4.78 (d, *J* = 10.3 Hz, 1H), 3.94 (d, *J* = 9.3 Hz, 0.16H), 3.91 (d, *J* = 10.4 Hz, 1H), 3.73 (s, 3H), 3.70 (s, 0.36H), 2.98 (s, 3H), 2.41 (s, 0.36H), 2.39 (s, 0.36H), 2.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 143.6, 142.3, 136.3, 134.8, 134.4, 133.0, 130.5, 130.2, 129.5, 129.0, 128.9, 128.8, 128.5, 128.2, 126.4, 125.0, 121.2, 120.8, 67.2, 66.5, 57.4, 57.1, 52.5, 52.3, 36.2, 33.5, 21.8, 21.4.

HRMS (ESI-TOF) *m*/*z* [M + Na]⁺: calcd. for [C₁₈H₁₉NNaO₄S]⁺ 368.0927, found 368.0930.

(e) The reaction of 2a with 2-hydroxyisoindoline-1,3-dione

Methyl

(*E*)-2-(2,5-dimethyl-1,1-dioxidobenzo[d]isothiazol-3(2H)-ylidene)-2-phenyla cetate (68.6 mg, 0.2 mmol), NaOH (0.5 mmol, 2.5 equiv, 20 mg) was dissolved into a mixture of MeOH (6 mL) and H₂O (3 mL). The obtained solution was heated at 60 °C for 2 h in oil bath. After cooled to room temperature, ethyl acetate and H₂O was added and the water phase was collected. Then 1 mol/L HCl was added to adjust the pH to 1 and followed by the extraction by ethyl acetate. The collected organic phase was dried by MgSO₄ and evaporated in vacuo. The obtained white solid was used in the next step without further purification.

То solution Α in THF (2 added а of mL) was 2-hydroxyisoindoline-1,3-dione (41 1.66 0.33 mg, equiv, mmol), 4-dimethylaminopyridine (1.2 mg, 5 mol%) and dicyclohexylcarbodiimide (62 mg, 1.5 equiv, 0.3 mmol) sequentially. Then, the reaction mixture was stirred at room temperature overnight. The mixture was filtered and evaporated in vacuo. The obtained crude was then purified by silica chromatography (2:1 petroleum ether: EtOAc) to give pure 8 (28.5 mg, 30% yield) with the Z/E ratio of 2:1.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 0.5H), 7.92 (dd, *J* = 5.5, 3.1 Hz, 1H), 7.88 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.83 – 7.77 (m, 3.5H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.58 (dd,

J = 6.8, 2.9 Hz, 2H), 7.52 (m, 4H), 7.48 – 7.38 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 1H), 6.14 (s, 1H), 3.36 (s, 3H), 2.74 (s, 1.5H), 2.61 (s, 1.5H), 2.09 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.1, 163.1, 162.6, 162.2, 162.1, 161.5, 148.8, 145.4, 144.9, 144.1, 142.9, 134.9, 134.7 (2C), 134.6, 134.0, 133.0, 132.5, 131.7, 130.8, 130.7, 129.8 (2C), 129.5, 129.4, 129.3 (2C), 129.1, 129.0, 128.9, 128.8, 128.7, 127.9, 126.7, 126.5, 124.0, 123.9, 123.8, 121.1, 121.0, 105.1, 103.5, 31.6, 31.5, 21.9, 21.8.

HRMS (ESI-TOF) m/z [M + H]⁺: calcd. for [C₂₅H₁₉N₂O₆S]⁺ 475.0958, found 475.0972.

(f) Derivation of 2c

A solution of 2c (77.0 mg, 0.2 mmol) in CF₃CO₂H (0.5 mL) was stirred at room temperature for about 3 h. Then, the mixture was terminated by saturated brine water and extracted by ethyl acetate. The collected organic phase was dried by Na₂SO₄ and evaporated in vacuo. The obtained crude was then purified by silica chromatography (1:1 petroleum ether: EtOAc) to give 2c' as colorless oil in 31% yield (20.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.57 (dd, *J* = 7.4, 2.2 Hz, 2H), 7.49 – 7.46 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 1H), 3.47 (s, 3H), 2.49 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.6, 143.2, 142.5, 134.6, 130.9, 130.8, 128.9, 128.8, 128.6, 128.5, 126.1, 121.3, 111.4, 52.2, 22.0.

HRMS (ESI-TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₇H₁₆NO₄S]⁺ 330.0795, found 330.0792.

IIX. Synthesis of TACE Inhibitor

Procedure:

the *o*-(1-alkynyl)benzenesulfonamide **3z** Steps A-B: Firstly, was synthesized according to the General Procedure B by using 2-bromobenzenesulfonyl chloride (2.5 g, 10 mmol) and 4-methoxyaniline (1.5 g, 12 mmol), furnishing IM-A in 86% yield (2.9 g, 8.6 mmol). Then, Sonogashira reaction of IM-A with ethynyltrimethylsilane (1 g, 10.3 mmol) lead to 3z as yellow oil in 75% yield (2.3 g, 6.5 mmol).

Steps C: Then, the mono-carboxylation reaction of 3z with CO₂ was conducted according to General Procedure C furnished product 4z' as brown oil in 66% yield (1.5 g, 4.3 mmol).

Steps D-E: In a 20 mL vial, 10 wt % Pd/C (34.5 mg) was added to a solution of compound **4z'** (345 mg, 1 mmol) in MeOH (10 mL) at room temperature. The 20 mL vial was placed in a 100 mL reaction still which was filled with H₂ (40 atm). The reaction mixture was then stirred for 48 h at 25 °C. Upon completion, the mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo and the residue purified by flash column chromatography (5:1 petroleum ether: EtOAc) to obtain **10** as colorless oil in 44% yield (152.7 mg).

In a 50 mL round bottle flask, compound **11** (173.5 mg, 0.5 mmol), NaOH (1.25 mmol, 2.5 equiv, 50 mg) was dissolved into a mixture of MeOH (10 mL) and H₂O (5 mL). The obtained solution was heated at 65 °C for 3 h in oil bath. After cooled to room temperature, ethyl acetate and H₂O was added and the water phase was collected. Then 1 mol/L HCl was added to adjust the pH to 1 and followed by the extraction by ethyl acetate. The collected organic phase was dried by MgSO₄ and evaporated in vacuo, furnishing compound **10** as a white solid in 91% yield (151.5 mg), which was used in the next step without further purification.

Steps F: To a solution of compound **12** in THF (2 mL) was added 1,1'-carbonyldiimidazole (48 mg, 1.5 equiv, 0.3 mmol). The reaction mixture was stirred at room temperature for 1h. Then hydroxylamine hydrochloride (27.8 mg, 2 equiv, 0.4 mmol) was added, then, the reaction mixture was stirred at room temperature overnight. The mixture was filtered and evaporated in vacuo. The obtained crude was then purified by silica chromatography (1:1 petroleum ether: EtOAc) to give pure **11** (29.9 mg, 43% yield).

¹H NMR (400 MHz, CDCl₃) δ 9.13 (brs, 1H), 7.78 (d, *J* = 7.3 Hz, 1H), 7.53 (q, *J* = 7.4, 6.9 Hz, 2H), 7.43 (s, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 5.35 – 5.34 (m, 1H), 3.78 (s, 3H), 2.71 – 2.67 (m, 1H), 2.48 – 2.45 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 149.0, 136.1, 134.2, 133.3, 129.9, 129.1,

125.9, 124.3, 121.5, 115.2, 59.6, 55.5, 37.1.

HRMS (ESI-TOF) *m*/*z* [M + H]⁺: calcd. for [C₁₆H₁₇N₂O₅S]⁺ 349.0853, found 349.0847.

IX. Crystallographic Data of 2a and 4f

(a) X-Ray crystallographic data of 2a

The crystal structures have been deposited at the Cambridge Crystallographic Data Centre (2174206, **2a**). The data can be obtained free of charge via the internet at https://www.ccdc.cam.ac.uk/structures/. The measurements were taken in a Bruker APEX-II CCD diffractometer. The crystal was kept at 128.0 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the SHELXL refinement package using Least Squares minimisation.

Method of crystallization: A solution of **2a** in ethyl acetate and hexane was evaporated the solvent slowly at room temperature.

Figure S1. Solid state structure of **2a**. Thermal ellipsoids are drawn at the 30% probability level, and hydrogen atoms are omitted for clarity.

2348034
C18H17NO4S
343.38
128.00

Table S1 Crystallographic data of complex 2a

Crystal system	monoclinic
Space group (number)	P2 ₁ /c (14)
<i>a</i> [Å]	9.907(4)
<i>b</i> [Å]	10.099(4)
<i>c</i> [Å]	17.406(7)
α [°]	90
β[°]	104.78(3)
γ [°]	90
Volume [ų]	1683.8(12)
Ζ	4
$ ho_{ m calc} [m gcm^{-3}]$	1.355
μ [mm ⁻¹]	1.239
F(000)	720
Crystal size [mm ³]	0.3×0.2×0.2
Crystal colour	clear light colourless
Crystal shape	block
Radiation	GaK _α (λ=1.34138 Å)
2θ range [°]	8.88 to 105.94 (0.84 Å)
Index ranges	$-11 \le h \le 11$
	$-12 \le k \le 7$
	$-20 \le l \le 20$
Reflections collected	11571
Independent reflections	2909
	$R_{\rm int} = 0.1688$
	$R_{\text{sigma}} = 0.1287$
Completeness to θ = 52.968°	98.0 %
Data / Restraints / Parameters	2909/0/221
Goodness-of-fit on F ²	0.998
Final <i>R</i> indexes	$R_1 = 0.0818$
[<i>l</i> ≥2σ(<i>l</i>)]	$wR_2 = 0.2078$
Final <i>R</i> indexes	$R_1 = 0.1198$
[all data]	$wR_2 = 0.2496$
Largest peak/hole [eÅ-3]	0.38/-0.46
Extinction coefficient	0.039(6)

(b) X-Ray crystallographic data of 4f

The crystal structures have been deposited at the Cambridge Crystallographic Data Centre (2280046, **4f**). The data can be obtained free of charge via the internet at https://www.ccdc.cam.ac.uk/structures/. The

measurements were taken in a Bruker APEX-II CCD diffractometer. The crystal was kept at 128.0 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the SHELXL refinement package using Least Squares minimisation.

Method of crystallization: A solution of **4f** in ethyl acetate and hexane was evaporated the solvent slowly at room temperature.

Figure S2. Solid state structure of **4f**. Thermal ellipsoids are drawn at the 30% probability level.

CCDC number	2280046
Empirical formula	C ₁₄ H ₁₅ NO ₆ S
Formula weight	325.33
Temperature [K]	150.00
Crystal system	triclinic
Space group (number)	$P\overline{1}$ (2)
<i>a</i> [Å]	7.9471(6)
<i>b</i> [Å]	7.9767(6)
<i>c</i> [Å]	12.2761(10)
α [°]	74.518(2)
β [°]	88.476(3)
γ [°]	84.620(2)
Volume [Å ³]	746.66(10)

Table S2 Crystallographic data of complex 4f

Ζ	2
$ ho_{ m calc} [m gcm^{-3}]$	1.447
$\mu \ [\mathrm{mm}^{-1}]$	0.246
<i>F</i> (000)	340
Crystal size [mm ³]	0.3×0.2×0.2
Crystal colour	clear light colourless
Crystal shape	block
Radiation	Mo <i>K</i> _α (λ=0.71073 Å)
2θ range [°]	5.15 to 55.11 (0.77 Å)
Index ranges	$-10 \le h \le 10$
	$-10 \le k \le 10$
	$-15 \le l \le 15$
Reflections collected	14032
Independent reflections	3395
	$R_{\rm int} = 0.0634$
	$R_{\rm sigma} = 0.0514$
Completeness to	98.9 %
$\theta = 25.242^{\circ}$	
Data / Restraints / Parameters	3395/0/203
Absorption correction	0.5337/0.7456
T _{min} /T _{max} (method)	(multi-scan)
Goodness-of-fit on F^2	1.079
Final <i>R</i> indexes	$R_1 = 0.0539$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1171$
Final <i>R</i> indexes	$R_1 = 0.0733$
[all data]	$wR_2 = 0.1375$
Largest peak/hole [eÅ ⁻³]	0.45/-0.61

03 34 34 34 34 34 34 34 34 34 3	8 0 7 0 8
43. 33.4.33 33.4.22 23.27.72 23.22 2	5.9 7.0 6.6

-29.47 -21.12

CDCl₃, 101 MHz

f1 (ppm) -10

	-142.75 $\int 134.36$ $\int 131.73$ $\int 128.66$ -119.91	~103.84 ~101.80	$\frac{77.32}{77.00}$	-52.71	-33.46 $\int 25.02$ $\int 24.28$	0.48
CDCl ₃ , 101 MHz						

OSOMe TMS 3g CDCl ₃ , 101 MHz	142.77 136.86 134.80 129.35 129.29 -119.68	∠102.76 ~101.24	$\underbrace{\overbrace{77.32}^{77.32}}_{76.68}$	-29.20 -20.86	0.67
10 200 190 180 170 160 15	0 140 130 120	110 100 90 f1 (ppm)	80 70 60 50 40	30 20 10	0 -10

Meo Meo TMS 3h CDCl ₃ , 101 MHz	<pre> { 131.62 131.55 131.55 119.49 119.49 114.09 103.17 100.97</pre>	$ \begin{array}{c} 77.32 \\ 77.00 \\ 76.68 \\ -55.68 \end{array} $	-29.36
10 200 190 180 170 160 150 140	130 120 110 100 90 fl (ppm)	80 70 60 50 40	30 20 10 0 -10

^O ^S ^N ^{Me} ^H TMS 3i	-155.86	-137.02 -131.65 -129.42 -119.59	$\overbrace{101.81}^{102.62}$	$\frac{77.32}{77.00}$	29.43	-0.45
CDCl ₃ , 101 MHz						
₽₩₽₽₽₽₩₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	r Kanan wang kan kanan kana		چې د لېدار د مړې ول لې د مړې ول لې د مړې ول لې د مړې ول لې د مړې ول	nda tanah da jarah sa Tanah da jarah sa kanah da jarah sa makan j	لوداره، داره معرفة عبر المار المعرفية ماري من معرفي عدارة المراجب المعرفية المراجب المعرفية المراجب المراجب ال الم	nga ya kata mana mana mana kata kata kata kata kata kata kata k
10 200 190 180 170	160 150	140 130 120	110 100 f1 (ppm)	90 80 70	60 50 40 30 20 1	0 0 -10

			·		·	· 1		·			·	· 1			· 1	· · ·		· 1		· · ·	· 1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1 (pr	om)										

	·	· · ·	, , ,		· ·		'	, l ,		·	'	'	·	·	·	·	' '	·	'		· 1	
10	200	190	180	170	160	150	140	130	120	110	100 f1 (pp	90 om)	80	70	60	50	40	30	20	10	0	-1

	 139.86 134.72 132.08 129.42 128.76 120.15 	$\begin{pmatrix} 102.29 \\ 101.90 \end{pmatrix}$	$\frac{77.32}{77.00}$			-16.72	4.92
GDCl ₃ , 101 MHz							
10 200 190 180 170 160 150	140 130 120	110 100 90	0 80 70 60) 50 40	30	20 10	0 -10

f1 (ppm)

f1 (ppm) -10

f1 (ppm) -10

CDCl₃, 400 MHz

		$ \sqrt{138.72} \sqrt{133.03} \sqrt{131.98} \sqrt{130.34} $	$\begin{pmatrix} 121.39\\ 121.00 \end{pmatrix}$								-25.83				
O O O N-Me H H AA CDCl₃, 101 MHz															
₩₽₩₽₽₩₽₽₩₽₩₽₩₽₽₽₽₩₽₩₽₽₽₽₩₽₩₽₽₽₩₽₩₽₽₩₽₽₩	₩₩₽₽₽ [₩] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩) Hysen defines to the state of	ŦħţſţĹijĸĸĿMħĸĸĸŔţŧġſŔġĬ	Rest-La ³ ,λοιλογία ογίαγδα διγίη		Medgu ne Jaal pir valkal Party	y(f))PF-lan-y(1-Py-u(ra)-a-iriy	ήνι στο ματικού τη της της της της της της της της της	Walder Tradition of Walder	nouse land	ntall A. Jan Anna A. Salara an	สหรุกแปลล์ครามสาร	nov stil dødelje of web	- Hall and the first of the first
200 190 180 170	160 150	140 130	120	110 100 f1) 90 (ppm)	80	70	60	50	40	30	20	10	0	-10

