SUPPORTING INFORMATION

TPDYs: Strained Macrocyclic Diynes for Bioconjugation Processes

Bernard D'Onofrio,^{1‡} Corentin Cruché,^{1‡} Kirsten N. Hurdal,² Adem Hadjabdelhafid-Parisien,¹ Joelle N. Pelletier,^{1*} Radu Iftimie,^{1*} Rebecca L. Davis,^{2*} and Shawn K. Collins^{1*}

1. Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC CANADA H2V 0B3 *Correspondance* : shawn.collins@umontreal.ca

2. Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB, CANADA R3T
+ These authors contributed equally to this manuscript.

Table of Contents

GENERAL	3
SYNTHESIS OF TPDYS AND ADDUCTS	4
NMR SPECTRA	26
COMPUTATIONAL STRUCTURES	39
X-RAY CRYSTALLOGRAPHY	89

GENERAL

All reactions that were carried out under anhydrous conditions were performed under an inert argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 °C or had been flame dried and cooled under a stream of argon or nitrogen. All chemical products were obtained from Sigma-Aldrich Chemical Company, Oakwood Chemical or Alfa Aesar and were reagent quality. Technical solvents were obtained from VWR International Co. Anhydrous solvents (CH2Cl2, Et2O, THF, DMF, toluene, and n-hexane) were dried and deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following flash column silica gel chromatography. Organic compounds were purified using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, 0.25 mm, F254.). Visualization of TLC plate was performed by UV (254 nm), KMnO4 or p-anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous by thin layer chromatography (TLC) and by ¹H NMR. NMR spectra were taken in deuterated CDCl₃ using Bruker AV-400 and AV-500 instruments unless otherwise noted. Signals due to the solvent served as the internal standard (CHCl₃: δ 7.27 for ¹H, δ 77.0 for ¹³C). The acquisition parameters are shown on all spectra. The 1H NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. High resolution mass spectroscopy (HRMS) was done by the Centre régional de spectrométrie de masse at the Département de Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted. X-ray structures were obtained from a shock-cooled single crystal at 150 K on a Bruker Venture Metaljet k-geometry diffractometer with a Metal Jet using a Helios MX Mirror Optics as monochromator and a Bruker CMOS Photon III detector. The diffractometer was equipped with an Oxford Cryostream 700 low temperature device and used GaK_{α} radiation $(\lambda = 1.34139 \text{ Å})$. Computationals studies were done with a commercial computer equipped with 24 processor and 32 GB of RAM.

SYNTHESIS OF TPDYS AND ADDUCTS Synthesis of 3,5-TPDY : Multi-Step Synthesis:

Methyl 3,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2): In an open sealed tube was added methyl 3,5-dibromobenzoate (1.0 g, 3.4 mmol, 1 eq.), bis(pinacolato)diboron (1.99 g, 7.82 mmol, 2.3 eq.), and KOAc (2.0 g, 20.4 mmol, 6 eq.). Dry 1,4-dioxane (15 mL, [227 mM]) was added, and the mixture was purged with N₂ for 10 min. Under N₂ atomsphere, Pd(dppf)Cl₂ · CH₂Cl₂ (124 mg, 0.170 mmol, 0.05 eq.) was added. The reaction vial was sealed with a Teflon cap and the mixture was then heated to 90 °C for 16 h. The reaction mixture was cooled to room temperature, filtered through a thin pad of Celite (eluting with 50 mL EtOAc), and concentrated. Purification by column chromatography (4 to 12% AcOEt in Hexanes) afforded the desired product as a white solid (1.21 g, 92%). ¹H NMR (500 MHz, CDCl₃): δ 8.55 (d, *J* = 1.3 Hz, 2H), 8.45 – 8.41 (m, 1H), 3.91 (s, 3H), 1.35 (s, 24H); ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 145.6, 138.7, 129.1, 84.2, 77.4, 52.1, 25.0; HRMS (ESI): m/z calculated for C₂₀H₃₀[¹¹B]₂O₆ [M+H]⁺, 389.2301; found: 389.2304.

Methyl 2,2"-diethynyl-[1,1':3',1"-terphenyl]-5'-carboxylate (4): In a sealed tube vessel was added methyl 3,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (500 mg, 1.3 mmol, 1 eq.) and tripotassium phosphate (1.78 g, 7.7 mmol, 6 eq.). Toluene (26 mL [47 mM]) and H₂O (2.6 mL [47 mM]) were added, and the mixture was purged with N₂ for 10 min. Under N₂ atmosphere was added (2-bromophenylethynyl)trimethylsilane (631 µL, 3.0 mmol, 2.3 eq.), followed by SPhos (69.3 mg, 0.17 mmol, 0.13 eq.) and palladium acetate (18.8 mg, 0.084 mmol, 0.065 eq.). The vessel was sealed with a Teflon cap and the reaction mixture was then heated to 90 °C for 5 h. The reaction mixture was cooled to room temperature, filtered through a thin pad of Celite (eluting with 50 mL EtOAc), and concentrated. The crude mixture was diluted in AcOEt, washed with 10 mL of a saturated solution of K₂CO₃ and saturated brine, dried over Na₂SO₄, and concentrated in vacuo. The resulting solid was diluted in 5 mL of THF, and TBAF (6 mL, 1M in THF, 12 eq.) was added. The solution was stirred for 5 h. Then, 20 mL of water were added and the mixture was extracted with 3 x 10 mL of AcOEt. The combined organics were dried with MgSO₄ and then concentrated under reduced pressure. Purification by column chromatography (10% AcOEt in Hexanes) afforded the desired product as a brown solid (308 mg, 71 %). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 1.8 Hz, 2H), 7.99 (dd, J = 1.8, 1.8 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.50 – 7.40 (m, 4H), 7.40 – 7.30 (m, 2H), 3.95 (s, 3H), 3.09 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 143.4, 140.4, 134.7, 134.1, 130.0, 129.7, 129.7, 129.3, 127.7, 120.7, 83.0, 80.9, 52.4; HRMS (ESI): m/z calculated for C₂₄H₁₆O₂ [M+H]⁺, 337.1223; found: 337.1210.

Synthesis of 3,5-TPDY : One-Pot Synthesis:

Methyl 2,2"-diethynyl-[1,1':3',1"-terphenyl]-5'-carboxylate (4): In a sealed tube vessel was added XPhos-Pd G3 (8.46 mg, 10 µmol, 0.02 eq.), XPhos (9.53 mg, 20 µmol, 0.04 eq.), tetrahydroxydiboron (269 mg, 3 mmol, 6 eq.), and KOAc (294 mg, 3 mmol, 6 eq.). The vessel was sealed and the atmosphere was flushed with N_2 . Degassed EtOH (5 mL, [0.1M]) was added via syringe followed by the addition of the dibromoarene (147mg, 0.5 mmol, 1 eq.). The reaction mixture was then heated to 80 °C for 1.5 h. Then a needle outlet attached to a manifold under argon was inserted into the septum and degassed aqueous K₂CO₃ (6 eq., 1.8M, 1.67 mL, 3 mmol) and (2bromophenylethynyl)trimethylsilane (257 mg, 1 mmol, 2 eq.) were added via syringe. The manifold needle was removed, and the reaction mixture was again heated to 80 °C for 15 h. The reaction mixture was cooled to room temperature, filtered through a thin pad of Celite (eluting with 50 mL EtOAc), and concentrated. The crude solid diluted with 20 mL of water, and the mixture was extracted with EtOAc (3 \times 10 mL), and the combined organics were dried with MgSO₄ and then concentrated under reduced pressure. The resulting solid was diluted in 5 mL of THF, and TBAF (6 mL, 1M in THF, 12 eq.) was added. The solution was stirred for 5 h. Then, 20 mL of water was added, and the mixture was extracted with 3 x 10 mL of AcOEt. The combined organics were dried with MgSO₄ and then concentrated under reduced pressure. Purification by column chromatography (10% AcOEt in Hexanes) afforded the desired product as a brown solid (132 mg, 55%).

3,5-TPDY (5): To a solution of copper acetate (432 mg, 2.38 mmol, 4 eq.) in Et₂O:Pyridine 1:1 [3 mM] was slowly added over a period of 3 h a solution of methyl 2,2"-diethynyl-[1,1':3',1"-terphenyl]-5'-carboxylate (200 mg, 0.60 mmol, 1 eq.) in 20 mL of Et₂O:Pyridine 1:3. The solution was then stirred for an additional 2 h or until full consumption of the starting material observed by TLC. The solvent was removed, and the solution was diluted in CH₂Cl₂. The organic phase was then washed with 1M HCl twice, a saturated solution of NH₄OH four times and saturated brine. The organic phase was then dried over Na₂SO₄, and concentrated *in vacuo*, to give the pure product as an off-white solid (190 mg, 96%). Alternatively, the product can be purified by flash column chromatography (0 \rightarrow 1% AcOEt in Hexanes). ¹H NMR (400 MHz, CDCl₃): δ 8.55 (dd, *J* = 1.8, 1.8 Hz, 1H), 8.02 (d, *J* = 1.8 Hz, 2H), 7.62 (dd, *J* = 7.8, 1.3 Hz, 2H), 7.51 – 7.43 (m, 2H), 7.40 – 7.31 (m, 2H), 7.31 – 7.26 (m, 2H), 3.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.9, 147.9, 142.1, 140.4, 131.5, 130.5, 130.1, 129.9, 128.1, 127.7, 121.9, 107.6, 87.0, 52.4; HRMS (ESI): m/z calculated for C₂₄H₁₄O₂ [M+H]⁺, 335.1067; found: 335.1069.

Methyl 2,2"-bis((trimethylsilyl)ethynyl)-[1,1':3',1"-terphenyl]-5'-carboxylate (S1): In a sealed tube was added methyl 3,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (500 mg, 1.3 mmol, 1 eq.) and tripotassium phosphate (1.78 g, 7.7 mmol, 6 eq.). Toluene (26 mL [47 mM]) and H_2O (2.6 mL [47 mM]) were added, and the mixture was purged with N_2 for 10 min. Under N_2 atmosphere was added (2-bromophenylethynyl)trimethylsilane (631 µL, 3.0 mmol, 2.3 eq.), followed by SPhos (69.3 mg, 0.17 mmol, 0.13 eq.) and palladium acetate (18.8 mg, 0.084 mmol, 0.065 eq.). The vessel was sealed with a Teflon cap and the reaction mixture was then heated to 90 °C for 5 h. The reaction mixture was cooled to room temperature, filtered through a thin pad of Celite (eluting with 50 mL EtOAc), and concentrated. The crude mixture was diluted in AcOEt, washed with 10 mL of a saturated solution of K₂CO₃ and saturated brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash column chromatography $(0 \rightarrow 2\% \text{ AcOEt in Hexanes})$ afforded the pure product as a orange sticky solid (450 mg, 73 %). ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 1.8 Hz, 2H), 8.11 (dd, J = 1.8, 1.8 Hz, 1H), 7.60 (dd, J = 7.7, 1.4 Hz, 2H), 7.47 (dd, J = 7.8, 1.4 Hz, 2H), 7.40 $(ddd, J = 7.6, 7.6, 1.4 Hz, 2H), 7.31 (ddd, J = 7.5, 7.6 1.4, Hz, 2H), 3.94 (s, 3H), 0.04 (s, 18H); {}^{13}C$ NMR (101 MHz, CDCl₃): δ 167.2, 143.0, 140.2, 135.0, 133.7, 129.7, 129.7, 129.5, 129.0, 127.5, 121.6, 104.4, 98.2, 52.2, -0.3; **HRMS (ESI)**: m/z calculated for $C_{30}H_{32}O_2Si_2$ [M+H]⁺, 481.2014; found: 481.2007.

2,2''-Diethynyl-[1,1':3',1''-terphenyl]-5'-carboxylic acid (6): 2,2"-Diethynyl-[1,1':3',1"-terphenyl]-5'-carboxylate (140 mg, 0,42 mmol, 1 eq.) was dissolved in THF:H₂O 12:1 (4.4 mL, [96 mM]). Sodium methoxide (25% wt in MeOH, 2 mL, 18 eq.) was slowly added and the mixture was stirred at room temperature overnight. The solution was quenched with 1M HCl, and extracted three times with CH₂Cl₂. The organic phases were combined, washed with saturated brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash column chromatography (20→60% AcOEt in Hexanes) afforded the pure product as a orange powder (121 mg, 90%). NMR (400 MHz, CDCl₃): δ 8.43 – 8.38 (m, 2H), 8.07 – 8.02 (m, 1H), 7.69 – 7.62 (m, 2H), 7.50 – 7.42 (m, 4H), 7.41 – 7.31 (m, 2H), 3.11 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 143.2, 140.5, 135.5, 134.1, 130.3, 129.7, 129.3, 127.7, 120.7, 82.9, 81.0; HRMS (ESI): m/z calculated for C₂₃H₁₄O₂ [M+H]⁺, 323.1067; found: 323.1061.

2,5-Dioxopyrrolidin-1-yl 2,2''-diethynyl-[1,1':3',1''-terphenyl]-5'-carboxylate (S2c): 2,2''-Diethynyl-[1,1':3',1''-terphenyl]-5'-carboxylic acid (150 mg, 0.47 mmol, 1 eq.) and Nhydroxysuccinimide (64 mg, 0.56 mmol, 1.2 eq.) were dissolved in dry CH₂Cl₂ (7.5 mL, [62 mM]). N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (107 mg, 0.56 mmol, 1.2 eq.) was added and the mixture was stirred at room temperture overnight. The mixture was then diluted with 30 mL of CH₂Cl₂ and washed twice with 10 mL of water. The organic phase was dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (20→40% AcOEt in Hexanes) afforded the pure product as a off-white powder (142 mg, 73 %). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 1.7 Hz, 2H), 8.09 (dd, *J* = 1.7, 1.7 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.49 – 7.41 (m, 4H), 7.36 (ddd, *J* = 7.6, 5.2, 3.7 Hz, 2H), 3.13 (s, 2H), 2.91 (br, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 169.3, 162.0, 142.7, 140.9, 136.7, 134.1, 130.5, 129.6, 129.4, 128.0, 125.0, 120.8, 82.7, 81.3, 25.8; HRMS (ESI): m/z calculated for C₂₇H₁₇NO₄ [M+NH₄]⁺, 437.1496; found: 437.1507.

3,5-TPDY-OSucc (7): To a solution of copper acetate (482 mg, 2.65 mmol, 5.2 eq.) in Et₂O:Pyridine 1:1 [3 mM] was slowly added over a period of 3 h a solution of 2,5-dioxopyrrolidin-1-yl 2,2"diethynyl-[1,1':3',1"-terphenyl]-5'-carboxylate (214 mg, 0,51 mmol, 1 eq.) in 20 mL of Et₂O:Pyridine 1:3. The solution was then stirred for an additional 2 h or until full consumption of the starting material observed by TLC. The solvent was removed, and the solution was diluted in CH₂Cl₂. The organic phase was then washed with 1M HCl twice and saturated brine. The organic phase was then dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (20→60% AcOEt in Hexanes) afforded the pure product as an off-white powder (170 mg, 80 %). ¹H **NMR (400 MHz, CDCl₃):** δ 8.63 (dd, J = 1.7, 1.7 Hz, 1H), 8.10 (d, J = 1.8 Hz, 2H), 7.62 (dd, J =7.4, 1.1 Hz, 2H), 7.52 – 7.44 (m, 2H), 7.37 (dd, J = 7.6, 1.3 Hz, 2H), 7.31 – 7.20 (m, 2H), 2.92 (s, 4H); ¹³C **NMR (101 MHz, CDCl₃):** δ 169.3, 161.8, 147.2, 144.0, 141.0, 132.2, 130.4, 130.2, 128.4, 127.7, 124.9, 121.9, 107.2, 87.0, 25.8; **HRMS (ESI)**: m/z calculated for C₂₇H₁₅NO₄ [M+NH₄]⁺, 435.1339; found: 435.1334.

3,5-TPDY-PEG-NH₃Cl (8): 3,5-TPDY-OSucc (60 mg, 0.144 mmol, 1 eq.) and tert-butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate (65 mg, 0.262 mmol, 1.8 eq.) were dissolved in CH₂Cl₂(2 mL, [72 mM]) and the reaction was stirred at room temperature for 5 h. The solvent was then concentrated *in vacuo* and purification by by flash column chromatography (50 \rightarrow 100% AcOEt in Hexanes) afforded 3,5-TPDY-PEG-NHBoc. The product was then directly dissolved in 1 mL of HCl 4M in dioxane. The reaction was stirred until disparition of the starting material and then 7 mL of hexanes were added. The precipitate was filtered and rinsed with hexanes, affording the desired product as an off-white solid (22 mg, 34 %)¹H NMR (400 MHz, DMSO-d₆): δ 8.82 (dd, *J* = 5.6, 5.6 Hz, 1H), 8.40 (dd, *J* = 1.7, 1.7 Hz, 1H), 7.97 (br, 3H), 7.84 (d, *J* = 1.8 Hz, 2H), 7.76 (dd, *J* = 7.8, 1.3 Hz, 2H), 7.66 – 7.58 (m, 2H), 7.47 (ddd, *J* = 7.6, 7.6, 1.3 Hz, 2H), 7.39 (dd, *J* = 7.7, 1.4 Hz, 2H), 3.65 – 3.52 (m, 9H), 3.50 – 3.40 (m, 2H), 2.99 – 2.87 (m, 2H); ¹³C NMR (101 MHz, DMSO-d₆): δ 165.8, 147.6, 139.5, 139.3, 134.1, 130.8, 130.6, 129.2, 128.4, 127.5, 120.4, 107.9, 86.2, 69.7, 69.5, 68.9, 66.6.

Figure S1 : HPLC chromatogram of **3,5-TPDY-PEG-NH₃Cl**.

Strain-Promoted Alkyne-Azide Cycloadditions General procedure

General Protocol: To a solution of 3,5-TPDY (50 mg, 0.15 mmol, 1 eq.) in CH_2Cl_2 [15 mM] was added benzyl azide (50 mg, 0.37 mmol, 2.5 eq.) and the reaction was stirred at room temperature for 24 h. The solution was then concentrated *in vacuo*. Purification by flash column chromatography (1 \rightarrow 2% AcOEt in Hexanes) afforded the desired regioisomers as off-white solids (66 mg, 94%, 7:3).

Kinetic Measurements

The second order rate constants were measured using ¹H NMR spectroscopy in CDCl₃ at 25 °C using 1,3,5-trimethoxybenzene as an internal standard. A solution of the diyne [22 mM] and 1,3,5-

trimethoxybenzene [7mM] in 4 mL of CDCl₃ was prepared. In an NMR tube was added 0.5 mL of the solution. The tube was used to calibrate the NMR instrument and as a t=0 reference. Then, 0.25 mL (2.5 eq.) of a solution of benzylazide [110 mM] in CDCl₃ was added and the NMR tube was vigorously shaken and put into an NMR spectrometer immediately. Measurements were taken at the specified interval until 50% conversion was achieved. The experiment was repeated three times. The rate constants were estimated using the equation:

$$k = \frac{1}{t(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$$

k is the rate constant in $M^{-1} \times s^{-1}$

t is the reaction time in seconds

a is the initial concentration of benzyl azide in mol/L

b is the initial concentration of the alkyne in mol/L

x is the sum of the concentrations of the regioisomer in mol/L

$$\frac{1}{1-x} \ln \frac{b(a-x)}{a-x}$$

k is the slope of the graphic plot of $\overline{(a-b)}^{\times \ln \frac{1}{a(b-x)}}$ versus the reaction time

3,5-TPDY

Regioisomer 5c-triazole 1: ¹**H NMR (400 MHz, CDCl₃):** δ 8.35 (dd, J = 1.7, 1.7 Hz, 1H), 7.98 – 7.91 (m, 2H), 7.76 (dd, J = 7.8, 1.4 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.56 – 7.35 (m, 5H), 7.35 – 7.28 (m, 4H), 7.28 – 7.22 (m, 2H), 5.53 (d, J = 14.9 Hz, 1H), 5.36 (d, J = 14.8 Hz, 1H), 3.90 (s, 3H); ¹³**C NMR (176 MHz, CDCl₃):** δ 166.9, 149.4, 145.3, 141.9, 140.6, 140.0, 138.1, 134.7, 133.1, 131.4, 130.5, 129.9, 129.8, 129.7, 128.9, 128.8, 128.5, 128.5, 128.3, 128.2, 128.1, 128.1, 127.0, 122.3, 118.8, 103.3, 83.6, 53.1, 52.3; **HRMS (ESI)**: m/z calculated for C₃₁H₂₁N₃O₂ [M+H]⁺, 468.1707; found: 468.1708.

Regioisomer 5c-triazole 2: ¹**H NMR (400 MHz, CDCl₃):** δ 8.15 (dd, J = 1.8, 1.8 Hz, 1H), 7.87 (dd, J = 1.7, 1.7 Hz, 1H), 7.60 (dd, J = 7.7, 1.3 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.51 – 7.40 (m, 3H), 7.38 – 7.28 (m, 3H), 7.25 – 7.20 (m, 3H), 6.96 (dd, J = 1.7, 1.7 Hz, 1H), 6.68 – 6.63 (m, 2H), 5.64 (d, J = 14.8 Hz, 1H), 5.23 (d, J = 14.8 Hz, 1H), 3.91 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃):** δ 166.7, 145.0, 142.9, 141.5, 138.4, 138.3, 138.0, 134.2, 131.5, 130.3, 130.3, 129.9, 129.8, 129.6, 128.9, 128.5, 128.4, 128.1, 127.6, 126.9, 123.0, 96.4, 88.2, 53.5, 52.2; **HRMS (ESI)**: m/z calculated for C₃₁H₂₁N₃O₂ [M+H]⁺, 468.1707; found: 468.1708.

Note: Regioisomers configurations were confirmed by X-ray crystallography of the regioisomer **5c-triazole 1**.

Kinetics measurements were taken every 5 min for 40 minutes

Figure S2: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY Run 1

Figure S4: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY Run 3 Average rate constant: $k = 1.7 \pm 1 \cdot 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$

3,5-TPDY PEG

Note: exo and endo isomers not determined due to complex spectra.

Kinetics measurements were taken every 60 sec for 12 minutes

Figure S7: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY PEG Run 1

Figure S9: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY PEG Run 3 Average : k = 91.4 x 10⁻³ M⁻¹ s⁻¹

3,5-TPDY Cycloaddition with EDA

To a solution of 3,5-TPDY (30 mg, 0.0897 mmol, 1 eq.) in CH₂Cl₂ [15 mM] was added ethyl diazoacetate solution 13 % in CH₂Cl₂ (180 uL, 0.224 mmol, 2.5 eq.) and the reaction was stirred at room temperature for 3 h. The solution was then concentrated *in vacuo*. Purification by flash column chromatography (5 : 20 : 75 \rightarrow 20 : 20 : 60 (AcOEt : CH₂Cl₂ : Hexanes)) afforded the desired regioisomers as a pale yellow solid (40 mg, 99%, 7.2:1). *Note: exo and endo isomers were separated and NMR spectra shown below.*

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.20 (dd, J = 1.7 Hz, 1H), 7.96 – 7.91 (m, 2H), 7.68 (dd, J = 7.7, 1.2 Hz, 1H), 7.52 – 7.41 (m, 2H), 7.41 – 7.30 (m, 4H), 7.26 – 7.22 (m, 1H), 4.31 – 4.11 (m, 2H), 3.89 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³**C NMR (101 MHz, CDCl₃):** 167.1, 160.3, 145.8, 142.2, 141.3, 140.1, 138.1, 134.3, 130.6, 130.0, 129.8, 129.7, 129.1, 128.1, 128.0, 127.8, 127.6, 127.1, 126.9, 122.9, 96.9, 87.6, 77.5, 77.2, 76.8, 61.4, 52.3, 14.0; **HRMS (ESI)**: m/z calculated for C₂₈H₂₀N₂O₄ [M+H]⁺, 449.1515; found: 449.1496

¹**H** NMR (400 MHz, Chloroform-*d*): δ 8.44 (dd, J = 1.7 Hz, 1H), 7.94 (dd, J = 1.6 Hz, 1H), 7.86 (dd, J = 1.6 Hz, 1H), 7.65 (dd, J = 7.6, 1.3 Hz, 1H), 7.50 – 7.39 (m, 5H), 7.36 – 7.30 (m, 2H), 4.38 – 4.22 (m, 2H), 3.87 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 160.7, 144.6, 142.3, 141.5, 138.9, 138.7, 132.1, 131.2, 130.7, 130.3, 129.7, 129.5, 129.2, 129.2, 128.3, 128.2, 128.1, 127.8, 126.6, 124.3, 104.4, 96.7, 88.8, 61.4, 52.3, 14.2. HRMS (ESI): m/z calculated for C₂₈H₂₀N₂O₄ [M+H]⁺, 449.14958; found: 449.14931

Kinetics measurements were taken every 90 sec for 45 minutes

Figure 10: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with ethyl diazoacetate Run 1

Figure 11: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with ethyl diazoacetate Run 2

Figure 12: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with ethyl diazoacetate Run 3

Average rate constant: $k = 1.2 \text{ x } 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$

3,5-TPDY Cycloaddition with 3,6-di-2-pyridyl-1,2,4,5-tetrazine

To a solution of 3,5-TPDY (17.9 mg, 0.0535 mmol, 1 eq.) in CH_2Cl_2 [15 mM] was added 3,6-di-2pyridyl-1,2,4,5-tetrazine (31.6 mg, 0.134 mmol, 2.5 eq.) and the reaction was stirred at room temperature for 24 h. The solution was then concentrated *in vacuo*. Purification by flash column chromatography (AcOEt in Hexanes) afforded the desired product as a dark yellow solid (8 mg, 28 %).

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.79 – 8.72 (m, 1H), 8.48 – 8.40 (m, 2H), 8.05 (dd, J = 1.7 Hz, 1H), 7.87 (dd, J = 1.7 Hz, 1H), 7.84 – 7.73 (m, 3H), 7.73 – 7.62 (m, 2H), 7.44 (td, J = 7.4, 1.8 Hz, 1H), 7.40 – 7.30 (m, 2H), 7.30 – 7.18 (m, 4H), 7.16 – 7.09 (m, 1H), 6.99 (td, J = 7.7, 1.4 Hz, 1H), 6.66 – 6.60 (m, 1H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 160.9, 159.4, 156.3, 155.4, 148.9, 148.6, 145.7, 143.2, 141.6, 140.5, 140.4, 137.5, 136.6, 136.2, 136.1, 131.9, 130.4, 130.2, 129.8, 128.2, 128.0, 127.9, 127.4, 127.4, 126.9, 126.1, 125.0, 124.8, 124.1, 123.8, 122.7, 122.7, 104.9, 91.0, 52.3; HRMS (ESI): m/z calculated for C₃₆H₂₂N₄O₂ [M+H]⁺, 543.1816; found: 543.1817.

Kinetics measurements were taken every 40 min for 33 hours

Figure 13: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with 3,6-di-2-pyridyl-1,2,4,5-tetrazine Run 1

Figure 14: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with 3,6-di-2-pyridyl-1,2,4,5-tetrazine Run 2

Figure 15: Plot of $\frac{1}{(a-b)} \times \ln \frac{b(a-x)}{a(b-x)}$ versus the reaction time for 3,5-TPDY cycloaddition with 3,6-di-2-pyridyl-1,2,4,5-tetrazine Run 3

Average rate constant: $k = 1.7 \times 10^{-4} M^{-1} s^{-1}$

Bioligation Experiments

MTG expression and purification

mTG expression and purification and activity assay were performed as previously reported.¹ Activity greater than 20 U/mg of purified mTG was assessed, and purity was determined over 85% on 15% reducing SDS-PAGE.

hFc expression and purification

E. coli Shuffle T7 express transformed with pET-22b hFc and SOX plasmid were propagated overnight at 37 °C, 230 rpm in a 20 mL LB preculture with ampicillin (100 µg/mL) and chloramphenicol (50 µg/mL). A culture of LB media (500 mL) containing ampicillin and chloramphenicol was inoculated with an initial OD₆₀₀ of 0.1 and propagated at 37 °C, 230 rpm. When OD_{600} reached 0.7-1.0, protein expression was induced by addition of 1 mM IPTG and the culture was incubated overnight at 22 °C, 230 rpm. Cells were pelleted at 5 500 ×g for 10 min and resuspended in 30 mL of IMAC-A buffer (50 mM Tris-HCl pH 8, 600 mM NaCl, 20 mM imidazole). The cell suspension was lysed using 3 cycles of 30 s sonication with 30 s rest on ice between cycles. The lysate was centrifuged at 50 000 \times g and filtered through 0.22 micron and applied to a 1 mL HisTrap Ni-NTA column (Cytiva) at a flow rate of 1 mL/min pre-equilibrated with IMAC-A buffer. After flow-through elution, the column was washed with 5 CV of 5% IMAC-B buffer (50 mM Tris-HCl pH 8, 600 mM NaCl, 500 mM imidazole), followed by protein elution through 10 CV of 100% IMAC-B buffer. Fractions (1 mL) were pooled according to the A₂₈₀ peak and dialyzed overnight against PBS buffer pH 7.2 (137 mM NaCl, 2.7 mM KCl, 9.2 mM Na₂HPO₄, 1.8 mM KH₂PO₄) at 4 °C. Protein was concentrated to 5 mg/mL using a 15 mL Amicon (Millipore Sigma, MWCO 10 kDa), supplemented with 10% glycerol and stored at -72 °C. Protein concentration was measured at 280 nm using a theoretical extinction coefficient of 71680 M⁻¹cm⁻¹ and a molecular weight of 54 kDa. Protein purity greater than 85% and proper folding of hFc was assessed on a 15% non-reducing SDS-PAGE gel.

GB1 expression and purification

E. coli BL21 (DE3) transformed with the pET-15b Gb1 I6Q variant were propagated overnight at 37°C, 230 rpm in a 20 mL LB preculture with ampicillin (100 µg/mL). The culture of LB media (500 mL) with ampicillin was inoculated at an initial OD₆₀₀ of 0.1 and propagated at 37°C, 230 rpm. When the OD₆₀₀ reached 0.7-1.0, protein expression was carried out by adding 1 mM IPTG and the culture was incubated overnight at 22°C, 230 rpm. Cells were pelleted at 5,500 ×g for 10 min and resuspended in 30 mL IMAC-A buffer. The cell suspension was lysed by 3 cycles of 30 s sonication with 30 s rest on ice between cycles. The lysate was centrifuged at $50,000 \times g$, filtered through 0.22 micron and applied to a 1 mL HisTrap Ni-NTA column (Cytiva) at a flow rate of 1 mL/min, preequilibrated with IMAC-A buffer. After flow-through elution, the column was washed with 5 CV of 5% IMAC-B buffer followed by protein elution through 10 CV of 100% IMAC-B buffer. Fractions (1 mL) were pooled according to the A280 peak, and buffer exchanged with a 5 mL HiTrap desalting column (Cytiva) to PBS buffer pH 7.2 at 4 °C. Protein was concentrated to 5 mg/mL using a 15 mL Amicon (MWCO 3 kDa, Millipore Sigma), supplemented with 10% glycerol and stored at -72 °C. Protein concentration was measured at 280 nm using a theoretical extinction coefficient of 9970 M⁻¹cm⁻¹ and a molecular weight of 8475 Da. Protein purity greater than 85% was assessed on a 10% reducing tricine gel.

¹ Deweid, L.; Hadjabdelhafid-Parisien, A.; Lafontaine, K.; Rochet, L. N. C.; Kolmar, H.; Pelletier, J. N., Chapter Five -Glutamine-walking: Creating reactive substrates for transglutaminase-mediated protein labeling. In *Methods Enzymol.*, Tawfik, D. S., Ed. Academic Press: 2020; Vol. 644, pp 121-148.

SDS-PAGE analysis of conjugation reaction to proteins

Proteins (hFc or Gb1, 50 μ M) were incubated in presence of 3,5-TPDY-PEG-NH₃Cl (1 mM), sulfo-Cy5 azide (2 mM, Lumiprobe) and mTG (5 μ M) in PBS buffer pH 7.2, 15% (v/v) DMSO at room temperature. Control reactions were run in the absence of mTG to evaluate background fluorescence on gels and in presence N-(1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl-1,8-diamino-3,6-dioxaoctane (BCN-amine, 1 mM, VWR) as a reference for mTG conjugation. Reactions were stopped by adding of 4% (v/v) formic acid and aliquots (10 μ L) were resolved on 16,5% reducing tricine gels (Gb1) or 15% non-reducing tris-glycine SDS-PAGE gel (hFc). Fluorescence was revealed with an iBright FL1500 imaging system (ThermoFischer) using the Cy5 filter (Ex 608-632 nm, Em 675-720 nm) with an exposure time of 500 ms prior to Coomassie staining. Fluorescence intensity was quantified using ImageJ software.

Figures for additional MTG-mediated conjugation of B domain of protein G (Gb1).

Figure S16: MTG-mediated conjugation of B domain of protein G (Gb1). Upper gel image: Fluorescence of sulfo-Cy-5 (500 ms exposure) Lower gel image: Coomassie stained to confirm equal loading of the protein. MW: molecular weight marker. The presence/absence (+ or -) of mTG is indicated. The bar graph represents fluorescence-fold increase relative to background (no mTG) for each reaction.

Thiol competition experiments.

NMR SPECTRA

COMPUTATIONAL STRUCTURES

The reaction energy profiles of each SPAAC reaction were examined using density functional theory (DFT) calculations using Gaussian16c.01.² All geometries were optimized using B3LYP functional with Grimme's dispersion correction (D3BJ) with the Popel triple zeta basis set (6-311+G(d,p)) in a continuum solvation model (SMD) with a dielectric constant for dichloromethane. Frequency calculations were performed in conjunction with all optimizations to confirm each structure as either a minimum (zero imaginary frequencies) or transition state structure (one imaginary frequency). Single point calculations were performed on the optimized and transition state structures using SMD(DCM)HF/STO-3G for a more accurate energy and molecular orbital depiction. NBO orbitals were calculated using single points from SMD(DCM)HF/STO-3G.³ VESTA was used to visualize

² Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A., Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Rendell, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma K.; Farkas, O.; Foresman, J. B.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2016.

³ NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold

all molecular orbitals (isovalue = 0.3).⁴ NCI plots were calculated using NCIPlot.⁵ NBO orbitals and NCI plots were visualized using VMD.

Figure S17: *top*: Distortion/interaction analysis for the cycloadditions between benzyl azide, a: A (1,4-diphenylbutadiyne) and b: B (3,5-TPDY 5). *bottom*: Orbital interaction diagrams for the respective cycloadditions (isovalue = 0.3). All bond lengths are reported in Angstroms.

Table S1. Experimental and computational parameters for cycloadditions.

⁴ Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272

⁵ VMD: Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics 1996, 14, 33

CO ₂ Me	Entry	<u>diyne</u>	Reagent	Kobs (M ⁻¹ s ⁻¹)	∆HOMO _X - LUMO _{divae} (eV)	Δ <u>HOMO_{divoe}</u> -LUMO _X (eV)	∆G [‡] (kcal∙ mol ⁻¹)	∆ʇ (kcal∙ mol⁻¹)	∆Ed [‡] (kcal∙ mol⁻¹)	(∠●)	(∠●)
	1	А	BnN₃		12.8	12.9	30.2	19.6	31.1		
	2	В	BnN₃	1.7·10 ⁻²	12.1	12.2	22.3	8.3	19.7	10	6
	3	В	N ₂ CO ₂ Et	1.2·10 ⁻²	11.6	12.0	22.5	9.7	22.1	8	9
	4	В	8	1.7·10 ⁻⁴	12.1	9.5	23.7	11.9	29.5	9	16

Figure S18: NBO analysis of orbital interactions in 1,4-diphenyl-1,3-butadiyne (A) and 3,5-TPDY 5 (B) (isovalue = 0.3).

Ball and Stick Models of Transition States.

The lowest energy transition state for 3,5-TPDY and N_2CO_2Et was chosen for modeling of the reaction. Experimentally, a mixture of regioisomers was observed, and the pseudo-endo R transition state structure (**TSC**) was computationally determined to be equal in energy to the pseudo-endo S transition state structure (**TSC**_{EndoS}). Experimentally, the enantiomers of both regioisomers were not identified, but due to the computationally determined small energy barrier difference it is likely that both are present with a slight preference for the lower barrier enantiomer.

Table S2. Transition States for enantiomers of both regio-isomers of 3,5-TPDY and N₂CO₂Et.

TSC	TSC _{EndoS}
-----	----------------------

TSB-Pseudo Exo	TSC

Table S3. Transition States of both regio-isomers of 3,5-TPDY and BnN₃

As both regioisomers are equal The pseudo-endo conformer (**TSB**) was chosen as a model for the reaction as it was shown to be experimentally preferred.

Table S4. Transition state of tetrazine with 3,5-TPDY, energy is relative to starting material

NCI Plot

Figure S19. NCI plot of B.

Molecular Orbitals of Other Systems

FIGURE S20. ORBITAL INTERACTION DIAGRAMS FOR THE RESPECTIVE CYCLOADDITIONS (ISOVALUE = 0.3)

NBO Orbitals

1,4-diphenyl-1,3-butadiyne (A)

NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy

1 C 1 S Cor(1S) 1.99995 -10.96225 2 C 1 S Val(2S) 1.08053 -0.19337 3 C 1 px Val(2p) 0.97593 0.14653 4 C 1 py Val(2p) 0.99372 0.06901 5 C 1 pz Val(2p) 0.99377 0.06850 6 C 2 S Cor(1S) 1.99994 -10.96985 7 C 2 S Val(2S) 1.08423 -0.19988 8 C 2 px Val(2p) 0.97549 0.14283 9 C 2 py Val(2p) 0.97862 0.06866 10 C 2 pz Val(2p) 0.97865 0.06815 11 C 3 S Cor(1S) 1.99990 -10.99407 12 C 3 S Val(2S) 1.06054 -0.19180 13 C 3 px Val(2p) 0.93617 0.15325 14 C 3 py Val(2p) 1.01260 0.05963 15 C 3 pz Val(2p) 1.01279 0.05912 16 C 4 S Cor(1S) 1.99994 -10.96985 17 C 4 S Val(2S) 1.08423 -0.19988 18 C 4 px Val(2p) 0.97550 0.14283 19 C 4 py Val(2p) 0.97863 0.06865 20 C 4 pz Val(2p) 0.97865 0.06816

21 C 5 S Cor(1S) 1.99995 -10.96225 22 C 5 S Val(2S) 1.08053 -0.19337 23 C 5 px Val(2p) 0.97593 0.14653 24 C 5 py Val(2p) 0.99372 0.06900 25 C 5 pz Val(2p) 0.99377 0.06851 26 C 6 S Cor(1S) 1.99995 -10.96565 27 C 6 S Val(2S) 1.08323 -0.19611 28 C 6 px Val(2p) 0.99001 0.13856 29 C 6 py Val(2p) 0.97553 0.07462 30 C 6 pz Val(2p) 0.97555 0.07412 31 H 7 S Val(1S) 0.95341 0.07095 32 H 8 S Val(1S) 0.95104 0.06876 33 H 9 S Val(1S) 0.95104 0.06876 34 H 10 S Val(1S) 0.95341 0.07095 35 H 11 S Val(1S) 0.95365 0.06934 36 C 12 S Cor(1S) 1.99943 -10.92543 37 C 12 S Val(2S) 1.07461 -0.19514 38 C 12 px Val(2p) 0.96376 0.28678 39 C 12 py Val(2p) 0.97689 0.03292 40 C 12 pz Val(2p) 0.97692 0.03290 41 C 13 S Cor(1S) 1.99946 -10.92294 42 C 13 S Val(2S) 1.03741 -0.17034 43 C 13 px Val(2p) 0.97283 0.29025 44 C 13 py Val(2p) 1.03410 0.02128 45 C 13 pz Val(2p) 1.03408 0.02128 46 C 14 S Cor(1S) 1.99946 -10.92294 47 C 14 S Val(2S) 1.03742 -0.17034 48 C 14 px Val(2p) 0.97283 0.29025 49 C 14 py Val(2p) 1.03409 0.02128 50 C 14 pz Val(2p) 1.03409 0.02128 51 C 15 S Cor(1S) 1.99943 -10.92544 52 C 15 S Val(2S) 1.07463 -0.19515 53 C 15 px Val(2p) 0.96375 0.28678 54 C 15 py Val(2p) 0.97690 0.03291 55 C 15 pz Val(2p) 0.97691 0.03291 56 C 16 S Cor(1S) 1.99990 -10.99408 57 C 16 S Val(2S) 1.06055 -0.19182 58 C 16 px Val(2p) 0.93615 0.15325 59 C 16 py Val(2p) 1.01266 0.05947 60 C 16 pz Val(2p) 1.01273 0.05928 61 C 17 S Cor(1S) 1.99994 -10.96985 62 C 17 S Val(2S) 1.08424 -0.19988 63 C 17 px Val(2p) 0.97549 0.14283 64 C 17 py Val(2p) 0.97863 0.06849 65 C 17 pz Val(2p) 0.97864 0.06831 66 C 18 S Cor(1S) 1.99994 -10.96985 67 C 18 S Val(2S) 1.08423 -0.19988

68 C 18 px Val(2p) 0.97550 0.14283 69 C 18 py Val(2p) 0.97863 0.06850 70 C 18 pz Val(2p) 0.97864 0.06831 71 C 19 S Cor(1S) 1.99995 -10.96225 72 C 19 S Val(2S) 1.08053 -0.19337 73 C 19 px Val(2p) 0.97593 0.14653 74 C 19 py Val(2p) 0.99374 0.06884 75 C 19 pz Val(2p) 0.99375 0.06866 76 H 20 S Val(1S) 0.95104 0.06876 77 C 21 S Cor(1S) 1.99995 -10.96225 78 C 21 S Val(2S) 1.08053 -0.19337 79 C 21 px Val(2p) 0.97593 0.14653 80 C 21 py Val(2p) 0.99374 0.06884 81 C 21 pz Val(2p) 0.99376 0.06866 82 H 22 S Val(1S) 0.95104 0.06876 83 C 23 S Cor(1S) 1.99995 -10.96565 84 C 23 S Val(2S) 1.08323 -0.19611 85 C 23 px Val(2p) 0.99001 0.13856 86 C 23 py Val(2p) 0.97553 0.07447 87 C 23 pz Val(2p) 0.97555 0.07427 88 H 24 S Val(1S) 0.95341 0.07095 89 H 25 S Val(1S) 0.95341 0.07095 90 H 26 S Val(1S) 0.95365 0.06934

Natural Bond Orbitals (Summary):

Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote)

```
Molecular unit 1 (C16H10)
1. BD (1) C1 - C2 1.98883 -0.79394 68(v),62(v),66(v),61(v),60(g),57(g)
2. BD (1) C1 - C6 1.98918 -0.78832 67(v),60(v),58(v),63(v),68(g),57(g)
3. BD (2) C 1 - C 6 1.65082 -0.25066 59(v),64(v)
4. BD (1) C1 - H7 1.98902 -0.65747 58(v),66(v),60(v),68(v),55(g),54(g)
5. BD (1) C 2 - C 3 1.98028 -0.78563 70(v),57(v),65(v),55(v),63(v),60(g),62(g)
6. BD (2) C 2 - C 3 1.64421 -0.25181 64(v),56(v),71(v)
7. BD (1) C 2 - H 8 1.98924 -0.66221 55(v),61(v),62(v),58(g),57(v),54(g)
8. BD (1) C 3 - C 4 1.98028 -0.78562 70(v),67(v),60(v),66(v),54(v),65(g),62(g)
9. BD (1) C 3 - C 12 1.99020 -0.81353 54(v),63(v),69(g),61(g),58(g),72(v),60(v),65(v)
10. BD (1) C 4 - C 5 1.98883 -0.79395 68(v),62(v),55(v),58(v),65(g),67(g)
11. BD (2) C 4 - C 5 1.66846 -0.25669 56(v),59(v)
12. BD (1) C 4 - H 9 1.98924 -0.66221 66(v),58(v),62(v),61(g),67(v),63(g)
13. BD (1) C 5 - C 6 1.98918 -0.78831 57(v),65(v),61(v),54(v),68(g),67(g)
14. BD (1) C 5 - H 10 1.98902 -0.65747 61(v),55(v),65(v),68(v)66(g),63(g)
15. BD (1) C 6 - H 11 1.98939 -0.65931 54(v),63(v),57(v),67(v),55(g),66(g)
16. BD (1) C 12 - C 13 1.99743 -0.99143 62(g)
```

```
17. BD (2) C 12 - C 13 1.93866 -0.33778 75(v),58(v),61(v)
18. BD (3) C 12 - C 13 1.91479 -0.33391 74(v),59(v)
19. BD (1) C 13 - C 14 1.99786 -0.88789 62(v),76(v)
20. BD (1) C 14 - C 15 1.99743 -0.99143 76(g)
21. BD (2) C 14 - C 15 1.93866 -0.33778 71(v),77(v),78(v)
22. BD (3) C 14 - C 15 1.91480 -0.33392 70(v),79(v)
23. BD (1) C 15 - C 16 1.99020 -0.81350 80(v),83(v),73(g),78(g),77(g),72(v),82(v),84(v)
24. BD (1) C 16 - C 17 1.98028 -0.78562 74(v),86(v),84(v),85(v),83(v),82(g),76(g)
25. BD (1) C 16 - C 18 1.98028 -0.78563 74(v),89(v),82(v),87(v),80(v),84(g),76(g)
26. BD (2) C 16 - C 18 1.64422 -0.25182 81(v),88(v),75(v)
27. BD (1) C 17 - C 19 1.98883 -0.79394 90(v),76(v),87(v),78(v),82(g),86(g)
28. BD (2) C 17 - C 19 1.66846 -0.25668 88(v),79(v)
29. BD (1) C 17 - H 20 1.98924 -0.66221 85(v),78(v),76(v),77(g),86(v),80(g)
30. BD (1) C 18 - C 21 1.98883 -0.79395 90(v),76(v),85(v),77(v),84(g),89(g)
31. BD (1) C 18 - H 22 1.98924 -0.66221 87(v),77(v),76(v),78(g),89(v),83(g)
32. BD (1) C 19 - C 23 1.98918 -0.78831 89(v),82(v),77(v),83(v),90(g),86(g)
33. BD (1) C 19 - H 24 1.98902 -0.65747 77(v),87(v),82(v),90(v),85(g),80(g)
34. BD (1) C 21 - C 23 1.98918 -0.78832 86(v),84(v),78(v),80(v),90(g),89(g)
35. BD (2) C 21 - C 23 1.65082 -0.25066 79(v),81(v)
36. BD (1) C 21 - H 25 1.98902 -0.65747 78(v),85(v),84(v),90(v),87(g),83(g)
37. BD (1) C 23 - H 26 1.98939 -0.65931 83(v),80(v),86(v),89(v),85(g),87(g)
38. CR (1) C 1 1.99995 -10.96222
39. CR (1) C 2 1.99994 -10.96976
40. CR (1) C 3 1.99990 -10.99413
41. CR (1) C 4 1.99994 -10.96976
42. CR (1) C 5 1.99995 -10.96223
43. CR (1) C 6 1.99995 -10.96563
44. CR (1) C 12 1.99943 -10.92550 72(v),62(g),69(g)
45. CR (1) C 13 1.99946 -10.92314 62(v),72(g),73(v),69(g)
46. CR (1) C 14 1.99946 -10.92314 76(v),72(g),69(v),73(g)
47. CR (1) C 15 1.99943 -10.92551 72(v),76(g),73(g)
48. CR (1) C 16 1.99990 -10.99413
49. CR (1) C 17 1.99994 -10.96976
50. CR (1) C 18 1.99994 -10.96976
51. CR (1) C 19 1.99995 -10.96223
52. CR (1) C 21 1.99995 -10.96222
53. CR (1) C 23 1.99995 -10.96563
54. BD*(1) C1 - C2 0.01039 0.87924
55. BD*(1) C1 - C6 0.01097 0.87285
56. BD*(2) C 1 - C 6 0.32947 0.24728 64(v),59(v)
57. BD*(1) C1 - H7 0.01011 0.73607
58. BD*(1) C 2 - C 3 0.01677 0.85131
59. BD*(2) C 2 - C 3 0.37802 0.23253 56(v),64(v),71(v)
60. BD*(1) C 2 - H 8 0.00999 0.73284
61. BD*(1) C 3 - C 4 0.01677 0.85129
62. BD*(1) C 3 - C 12 0.01245 0.82695
63. BD*(1) C 4 - C 5 0.01039 0.87925
```

64. BD*(2) C 4 - C 5 0.31489 0.24955 56(v),59(v) 65. BD*(1) C 4 - H 9 0.00999 0.73284 66. BD*(1) C 5 - C 6 0.01097 0.87284 67. BD*(1) C 5 - H 10 0.01011 0.73607 68. BD*(1) C 6 - H 11 0.01008 0.73442 69. BD*(1) C 12 - C 13 0.00395 1.21535 70. BD*(2) C 12 - C 13 0.06878 0.39362 71. BD*(3) C 12 - C 13 0.09976 0.38645 72. BD*(1) C 13 - C 14 0.00334 0.92893 73. BD*(1) C 14 - C 15 0.00395 1.21536 74. BD*(2) C 14 - C 15 0.06877 0.39362 75. BD*(3) C 14 - C 15 0.09975 0.38646 76. BD*(1) C 15 - C 16 0.01245 0.82689 77. BD*(1) C 16 - C 17 0.01677 0.85128 78. BD*(1) C 16 - C 18 0.01677 0.85130 79. BD*(2) C 16 - C 18 0.37802 0.23253 88(v),81(v),75(v) 80. BD*(1) C 17 - C 19 0.01039 0.87924 81. BD*(2) C 17 - C 19 0.31490 0.24955 88(v),79(v) 82. BD*(1) C 17 - H 20 0.00999 0.73284 83. BD*(1) C 18 - C 21 0.01039 0.87924 84. BD*(1) C 18 - H 22 0.00999 0.73284 85. BD*(1) C 19 - C 23 0.01097 0.87284 86. BD*(1) C 19 - H 24 0.01011 0.73607 87. BD*(1) C 21 - C 23 0.01097 0.87285 88. BD*(2) C 21 - C 23 0.32948 0.24728 81(v),79(v) 89. BD*(1) C 21 - H 25 0.01011 0.73607 90. BD*(1) C 23 - H 26 0.01008 0.73442 _____ Total Lewis 103.32902 (97.4802%) Valence non-Lewis 2.67098 (2.5198%) Rydberg non-Lewis 0.00000 (0.0000%) -----Total unit 1 106.00000 (100.0000%) Charge unit 1 0.00000 Sorting of NBOs: 48 40 49 50 41 39 53 43 51 42 Sorting of NBOs: 52 38 47 44 46 45 20 16 19 9 Sorting of NBOs: 23 10 30 27 1 2 34 13 32 25 Sorting of NBOs: 5 8 24 12 7 31 29 37 15 33 Sorting of NBOs: 14 4 36 21 17 22 18 11 28 26 Sorting of NBOs: 6 35 3 79 59 88 56 81 64 71 Sorting of NBOs: 75 70 74 60 84 82 65 68 90 89 Sorting of NBOs: 67 57 86 76 62 77 61 78 58 85 Sorting of NBOs: 66 55 87 80 54 83 63 72 69 73 Reordering of NBOs for storage: 48 40 49 50 41 39 53 43 51 42 Reordering of NBOs for storage: 52 38 47 44 46 45 20 16 19 9 Reordering of NBOs for storage: 23 10 30 27 1 2 34 13 32 25 Reordering of NBOs for storage: 5 8 24 12 7 31 29 37 15 33

Reordering of NBOs for storage: 14 4 36 21 17 22 18 11 28 26 Reordering of NBOs for storage: 6 35 3 79 59 88 56 81 64 71 Reordering of NBOs for storage: 75 70 74 60 84 82 65 68 90 89 Reordering of NBOs for storage: 67 57 86 76 62 77 61 78 58 85 Reordering of NBOs for storage: 66 55 87 80 54 83 63 72 69 73

<u>3,5-TPDY 5 (B)</u>

Natural Bond Orbitals (Summary):

	Principal Delocalizations	
NBO Occ	supancy Energy (geminal, vicinal, remote)	
		=
Molecular unit 1 (C24H14O2	2)	
1. BD(1)C 1 - C 2	1.98386 -0.78853 96(v), 102(v), 105(v), 93(g)	
	94(v),99(v),91(g),104(v)	
	90(g)	
2. BD (2) C 1 - C 2	1.63731 - 0.24533 95(v), 100(v), 105(v), 103(v)	
	104(v)	
3. BD (1) C 1 - C 6	1.98373 -0.78810 101(v),93(v),119(v),102(g)	
	97(v),92(v),91(g),118(v)	
	88(g)	
4. BD (1) C 1 - H 7	1.98851 -0.65921 92(v),99(v),93(v),102(v)	
	90(g),88(g)	
5. BD (-1) C -2 - C -3	1.98245 -0.78865 98(v),91(v),105(v),90(v)	
	$9^{\prime}(v), 9^{\prime}(g), 96(g), 103(v)$	
6. BD (1) C 2 - C 10	1.9/8/1 - 0.72297 109(v),94(v),90(v),106(v)	
	103(g),88(g),92(g),110(v)	
	104(g), 108(v), 96(v), 91(v)	
7. BD(1)C 3-C 4	1.98565 - 0.79397 101(V),93(V),138(V),98(g)	
	140(V),99(V),88(V),90(g) 1 (5210 - 0.254(0.100(c)) 80(c) 120(c)	
8. BD (2) C 3 - C 4	$1.05310 -0.23409 \ 100(V),89(V),139(V)$	
9. BD (1) C 3 - H 8	1.98805 -0.00123 97(V),88(V),98(V),93(V)	
10 PD(1) C 4 C 5	92(g),94(g) 1 09450 0 70199 06(x) 102(x) 140(x) 129(x)	
10. BD(1)C 4-C 3	1.90439 -0.79188 90(v),102(v),140(v),158(v)	
11 PD (1) C 4 C $\frac{34}{24}$	52(v), 50(g), 50(v), 101(g) 1 07826 0 76282 141(y) 140(a) 00(y) 128(a)	
11. BD (1) C 4-C 34	1.57850 -0.70285 141(v),140(g),55(v),158(g) 02(v) 04(g) 07(g) 101(v)	
	92(v), 94(g), 97(g), 101(v) 96(v)	
12 BD(1) C 5 - C 6	1.98279 = 0.78988 = 91(y) = 98(y) = 119(y) = 88(y)	
12.00(1)0.5=0.0	94(y) 102(g) 101(g) 117(y)	
13 BD(2) C 5 - C 6	1.64593 - 0.24958 89(y) 95(y) 119(y) 117(y)	
	118(v)	
14. BD (1) C 5 - H 9	1.98813 -0.66120.94(v).90(v).98(v).102(v)	
	99(g),97(g)	
15. BD (1) C 6 - C 20	1.97874 -0.72305 123(v),97(v),88(v),120(v)	
15. BD (1) C 6 - C 20	99(g),97(g) 1.97874 -0.72305 123(v),97(v),88(v),120(v)	

		117(g),90(g),99(g),124(v)
		101(v),122(v),118(g),91(v)
16. BD (1) C 10 - C 11	1.97157 -0.77439 136(v),110(v),112(v),89(v)
		93(g),109(v),111(v),104(g)
		106(g)
17. BD (1) C 10 - C 12	1.98317 -0.78980 115(v),108(v),89(v),113(v)
		93(g),106(v),88(v),110(g)
		103(g)
18. BD (2) C 10 - C 12	1.65599 -0.25154 114(v),107(v),89(v),88(v)
		92(v)
19. BD (1) C 11 - C 13	1.98287 -0.79009 136(v),116(v),93(v),113(v)
		104(v),112(g),108(g),103(g)
20. BD (2) C 11 - C 13	1.65440 -0.25531 114(v),105(v),137(v)
21. BD (1) C 11 - C 32	1.98914 -0.81047 111(v),104(v),135(g),103(g)
		93(v),112(v)
22. BD (1) C 12 - C 14	1.98914 -0.79056 116(v),93(v),111(v),103(v)
		115(g),110(g)
23. BD (1) C 12 - H 15	1.98830 -0.65677 113(v),103(v),93(v),115(v)
		104(g),109(g)
24. BD (1) C 13 - C 16	1.98918 -0.79477 115(v),108(v),109(v),103(v)
		116(g),112(g)
25. BD (1) C 13 - H 17	1.98878 -0.66178 103(v),113(v),108(v),116(v)
		106(g),111(g)
26. BD (1) C 14 - C 16	1.98918 -0.78938 112(v),110(v),106(v),104(v)
		115(g),116(g)
27. BD (2) C 14 - C 16	$1.65162 -0.25132 \ 107(v), 105(v)$
28. BD (1) C 14 - H 18	1.98915 -0.65923 104(v), 111(v), 110(v), 116(v)
		113(g),109(g)
29. BD (I) C 16 - H 19	$1.98916 -0.65829 \ 106(v), 109(v), 112(v), 115(v)$
20 DD (1) 0 20 0 21	113(g), 111(g)
30. BD (I) C 20 - C 21	1.9/156 -0.7/431 132(V),124(V),126(V),100(V) 102(x) 122(x) 125(x) 118(x)
		102(g), 123(v), 123(v), 118(g)
21 DD (1) C 20 C 22	120(g) 1.02219 0.72069 120(x) 122(x) 100(x) 127(x)
эт. вр (I) C 20 - C 22	1.96516 -0.76908 129(V),122(V),100(V),127(V) 102(x) 120(x) 00(x) 124(x)
		102(g), 120(v), 90(v), 124(g)
22 DD (2) C 20 C 22	117(g) 1.65584 0.25127 128(y) 121(y) 100(y) 00(y)
52. DD (2) C 20 - C 22	1.05584 -0.25157 128(0), 121(0), 100(0), 50(0)
33 BD (1) C 21 $-$ C 23	1.98286 = 0.78006 = 132(y) = 130(y) = 102(y) = 127(y)
55. DD (1) C 21 - C 25	118(y) 126(g) 122(g) 117(g)
34 RD (2) C 21 - C 23	1.65440 = 0.25520 = 128(v) = 119(v) = 133(v)
35. BD (1) C $21 - C 30$	$1.98915 - 0.81053 \ 125(v) \ 118(v) \ 131(\sigma) \ 117(\sigma)$
	., 0 21 0 50	102(v).126(v)
36. BD (1) C 22 - C 24	1.98914 -0.79040 130(v).102(v).125(v).117(v)
(, c _ .	129(g),124(g)
37. BD (1) C 22 II 25	1.98830 = 0.65657 + 127(y) + 117(y) + 102(y) + 129(y)
- 1	I) C 22 - H 23	1.90000 -0.00007 -127(0),117(0),102(0),129(0)
32. BD (33. BD (34. BD (35. BD (2) C 20 - C 22 1) C 21 - C 23 2) C 21 - C 23 1) C 21 - C 23	1.65584 -0.25137 128(v),121(v),100(v),90(v) 99(v) 1.98286 -0.78996 132(v),130(v),102(v),127(v) 118(v),126(g),122(g),117(g) 1.65440 -0.25520 128(v),119(v),133(v) 1.98915 -0.81053 125(v),118(v),131(g),117(g) 102(v),126(v)

38. BD (1) C 23 - C 26 1.98918 $-0.79465 \ 129(v), 122(v), 123(v), 117(v)$ 130(g), 126(g)39. BD (1) C 23 - H 27 1.98878 $-0.66167 \ 117(v), 127(v), 122(v), 130(v)$ 120(g), 125(g)40. BD (1) C 24 - C 26 1.98918 -0.78922 126(v),124(v),120(v),118(v) 129(g), 130(g)41. BD (2) C 24 - C 26 1.65150 -0.25113 121(v),119(v) 42. BD (1) C 24 - H 28 1.98915 $-0.65904 \ 118(v), 125(v), 124(v), 130(v)$ 127(g), 123(g)43. BD (1) C 26 - H 29 1.98916 -0.65814 120(v),123(v),126(v),129(v) 127(g), 125(g)-0.96546 122(g) 44. BD (1) C 30 - C 31 1.99651 45. BD (2) C 30 - C 31 1.93941 -0.34876 136(v),120(v),117(v),134(g),89(r) 46. BD (3) C 30 - C 31 1.90505 $-0.33171 \ 137(v), 121(v)$ 47. BD (1) C 31 - C 33 1.99629 -0.87234 48. BD (1) C 32 - C 33 1.99652 -0.96553 108(g) -0.34878 132(v),106(v),103(v),134(g) 49. BD (2) C 32 - C 33 1.93953 50. BD (3) C 32 - C 33 1.90506 -0.33173 133(v),107(v) 51. BD (1) C 34 - O 35 1.99314 - 1.05945 140(g), 98(g), 94(v)52. BD (2) C 34 - O 35 -0.42790 95(v),139(g) 1.98327 53. BD (1) C 34 - O 36 1.98405 -0.94029 141(g),98(g),138(g),142(v),97(v) 54. BD (1) O 36 - C 37 -0.80241 138(v),98(v),140(g),144(g),143(g),142(g) 1.98196 55. BD (1) C 37 - H 38 1.99626 $-0.66101 \ 140(v), 141(g)$ 56. BD (1) C 37 - H 39 -0.66139 141(g) 1.99708 57. BD (1) C 37 - H 40 1.99707 -0.66146 141(g) 58. CR (1) C 1 1.99994 -10.97029 59. CR (1) C 2 1.99990 -10.98063 60. CR (1) C 3 1.99994 -10.96745 61. CR (1) C 4 1.99990 -10.97593 62. CR (1) C 5 1.99994 -10.96669 63. CR (1) C 6 1.99990 -10.98056 64. CR (1) C 10 1.99990 -10.98953 65. CR (1) C 11 1.99989 -10.99625 66. CR (1) C 12 1.99994 -10.96111 67. CR (1) C 13 1.99994 -10.96877 68. CR (1) C 14 1.99995 -10.96498 69. CR (1) C 16 1.99994 -10.96182 70. CR (1) C 20 1.99990 -10.98939 71. CR (1) C 21 1.99989 -10.99613 72. CR (1) C 22 1.99994 -10.96094 73. CR (1) C 23 1.99994 -10.96868 74. CR (1) C 24 1.99995 -10.96483 75. CR (1) C 26 1.99994 -10.96168 76. CR (1) C 30 1.99941 -10.92295 134(v),122(g),132(g) 1.99935 -10.92422 122(v),132(g),134(g),135(v) 77. CR (1) C 31 78. CR (1) C 32 1.99941 -10.92283 134(v),108(g),136(g) 79. CR (1) C 33 1.99935 -10.92428 108(v),136(g),134(g),131(v)

80. CR (1) C 34	1.99991 -11.11154 140(g)
81. CR (1) O 35	1.99999 -20.08615
82. CR (1) O 36	1.99999 -20.20865
83. CR (1) C 37	1.99982 -11.03993 141(g)
84. LP (1) O 35	1.99814 -0.94744
85. LP (2) O 35	1.89080 -0.33197 140(v),98(v),141(r)
86. LP (1) O 36	$1.98319 -0.80782 \ 138(v), 98(v), 142(v), 144(v), 143(v), 96(r)$
87. LP (2) O 36	1.84520 -0.36932 139(v),143(v),144(v)
88. BD*(1) C 1 - C 2	0.01569 0.86233
89. BD*(2) C 1 - C 2	0.33698 0.24717 100(v),95(v),105(v),103(v), 128(r),104(v)
90. BD*(1) C 1 - C 6	0.01576 0.86170
91. BD*(1) C 1 - H 7	0.01165 0.73908
92. BD*(1) C 2 - C 3	0.01494 0.86922
93. BD*(1) C 2 - C 10	0.02237 0.74418
94. BD*(1) C 3 - C 4	0.01398 0.87231
95. BD*(2) C 3 - C 4	0.36089 0.24075 89(v),100(v),139(v)
96. BD*(1) C 3 - H 8	0.01249 0.73735
97. BD*(1) C 4 - C 5	0.01334 0.87430
98. BD*(1) C 4 - C 34	0.06541 0.70848
99. BD*(1) C 5 - C 6	0.01465 0.87098
100. BD*(2) C 5 - C 6	0.33585 0.24790 89(v),95(v),119(v),117(v), 118(v)
101. BD*(1) C 5 - H 9	0.01293 0.73561
102. BD*(1) C 6 - C 20	0.02239 0.74453
103. BD*(1) C 10 - C 11	0.02356 0.82514
104. BD*(1) C 10 - C 12	0.01455 0.87058
105. BD*(2) C 10 - C 12	0.32610 0.24930 114(v), 89(v), 107(v), 92(v), 88(v), 119(r)
106. BD*(1) C 11 - C 13	0.01680 0.85666
107. BD*(2) C 11 - C 13	0.37355 0.23395 $114(v),105(v),137(v)$
108. BD*(1) C 11 - C 32	0.01344 0.82522
109. BD*(1) C 12 - C 14	0.01105 0.87597
110. BD*(1) C 12 - H 15	0.01101 0.73654
111. BD*(1) C 13 - C 16	0.01036 0.88087
112. BD*(1) C 13 - H 17	0.00985 0.73310
113. BD*(1) C 14 - C 16	0.01090 0.87528
114. BD*(2) C 14 - C 16	0.33002 $0.24/66$ $105(v), 107(v)$
115. BD*(1) C 14 - H 18	0.01009 0.73466
116. BD*(1) C 16 - H 19	0.0101/ 0.73621
117. BD*(1) C 20 - C 21	0.02354 0.82534
118. BD*(1) C 20 - C 22	0.01454 $0.870860.22600$ 0.24050 $128() 100() 121() 00()$
119. BD*(2) С 20 - С 22	0.52009 0.24930 128(V), 100(V), 121(V), 99(V)
120 DD*(1) C 21 C 22	90(y),103(r)
120. $DD^{*}(1) \cup 21 - \cup 23$ 121 $DD^{*}(2) \cup 21 \cup 23$	$0.01000 0.03073 \\ 0.27268 0.22402 129(m) 110(m) 122(m)$
121. $DD^{*}(2) \cup 21 - \cup 23$ 122 $DD^{*}(1) \cup 21 \cup 23$	$0.37500 0.23402 120(V), 119(V), 133(V) \\ 0.01242 0.82525$
$122. DD^{*}(1) C 21 - C 30$ 122 DD*(1) C 22 C 24	0.01105 0.02353
$123. \text{ BD}^{+}(-1) C 22 - C 24$ $124 \text{ BD}^{+}(-1) C 22 - U 25$	0.01103 0.07019
127. DD (1) C 22 - Π 23 125 BD*(1) C 22 C 26	0.01035 0.88102
123. DD (1) C $23 - C 20$	0.01033 0.00102

126. BD*(1) C 23 - H 27	0.00985	0.73315	
127. BD*(1) C 24 - C 26	0.01090	0.87543	
128. BD*(2) C 24 - C 26	0.33000	0.24783	119(v),121(v),89(r)
129. BD*(1) C 24 - H 28	0.01008	0.73487	
130. BD*(1) C 26 - H 29	0.01016	0.73638	
131. BD*(1) C 30 - C 31	0.00553	1.15687	
132. BD*(2) C 30 - C 31	0.06538	0.42971	
133. BD*(3) C 30 - C 31	0.10656	0.38987	137(v),121(v)
134. BD*(1) C 31 - C 33	0.00569	0.89994	
135. BD*(1) C 32 - C 33	0.00551	1.15708	
136. BD*(2) C 32 - C 33	0.06545	0.42970	
137. BD*(3) C 32 - C 33	0.10652	0.38993	133(v),107(v)
138. BD*(1) C 34 - O 35	0.02023	0.92853	
139. BD*(2) C 34 - O 35	0.18471	0.26436	95(v)
140. BD*(1) C 34 - O 36	0.08446	0.69442	
141. BD*(1) O 36 - C 37	0.01712	0.58847	
142. BD*(1) C 37 - H 38	0.00705	0.69989	
143. BD*(1) C 37 - H 39	0.01310	0.69316	
144. BD*(1) C 37 - H 40	0.01313	0.69298	

Total Lewis 169.68730 (97.5214%) Valence non-Lewis 4.31270 (2.4786%) Rydberg non-Lewis 0.00000 (0.0000%)

Total unit 1 174.00000 (100.0000%) Charge unit 1 0.00000

NATURAL POPULATIONS: Natural atomic orbital occupancies

NA	O A	tom N	o lang Typ	be(AO) C	Decupancy	Energy
1	С	1 S	Cor(1S)	1.99994	-10.97039	
2	С	1 S	Val(2S)	1.09019	-0.20368	
3	С	1 px	Val(2p)	0.96388	0.14744	
4	С	1 py	Val(2p)	0.99018	0.12398	
5	С	1 pz	Val(2p)	0.96855	0.01184	
6	С	2 S	Cor(1S)	1.99990	-10.98068	
7	С	2 S	Val(2S)	1.07951	-0.20361	
8	С	2 px	Val(2p)	0.95421	0.15162	
9	С	2 py	Val(2p)	0.96269	0.14136	
10	С	2 pz	Val(2p)	1.00806	0.00481	
11	С	3 S	Cor(1S)	1.99994	-10.96756	
12	С	3 S	Val(2S)	1.08760	-0.20034	
13	С	3 px	Val(2p)	0.99001	0.13555	
14	С	3 py	Val(2p)	0.96939	0.13801	
15	С	3 pz	Val(2p)	0.97394	0.00570	
16	С	4 S	Cor(1S)	1.99990	-10.97597	

17	С	4 S	Val(2S)	1.08685	-0.20983
18	С	4 px	Val(2p)	0.97942	0.14817
19	С	4 py	Val(2p)	0.96044	0.12848
20	С	4 pz	Val(2p)	1.03717	-0.00765
21	С	5 S	Cor(1S)	1.99994	-10.96681
22	С	5 S	Val(2S)	1.08765	-0.20015
23	С	5 px	Val(2p)	0.98301	0.13789
24	С	5 py	Val(2p)	0.97702	0.13518
25	С	5 pz	Val(2p)	0.97283	0.00603
26	С	6 S	Cor(1S)	1.99990	-10.98062
27	С	6 S	Val(2S)	1.07916	-0.20323
28	С	6 px	Val(2p)	0.94870	0.15062
29	С	6 py	Val(2p)	0.96870	0.14227
30	С	6 pz	Val(2p)	1.00809	0.00499
31	Н	7 S	Val(1S)	0.94951	0.07408
32	Н	8 S	Val(1S)	0.94670	0.07444
33	Н	9 S	Val(1S)	0.94825	0.07281
34	С	10 S	Cor(1S)	1.99990	-10.98966
35	С	10 S	Val(2S)	1.08694	-0.21266
36	С	10 px	Val(2p)	0.95928	0.12260
37	С	10 py	Val(2p)	0.94934	0.11449
38	С	10 pz	Val(2p)	0.96904	0.06318
39	С	11 S	Cor(1S)	1.99989	-10.99620
40	С	11 S	Val(2S)	1.06621	-0.19775
41	С	11 px	Val(2p)	0.96529	0.12679
42	С	11 py	Val(2p)	0.99174	0.09301
43	С	11 pz	Val(2p)	0.99739	0.05026
44	С	12 S	Cor(1S)	1.99994	-10.96118
45	С	12 S	Val(2S)	1.08456	-0.19656
46	С	12 px	Val(2p)	0.97135	0.13011
47	С	12 py	Val(2p)	0.99418	0.09654
48	С	12 pz	Val(2p)	0.99864	0.05451
49	С	13 S	Cor(1S)	1.99994	-10.96885
50	С	13 S	Val(2S)	1.08324	-0.19861
51	С	13 px	Val(2p)	0.96616	0.12740
52	С	13 py	Val(2p)	0.98573	0.09597
53	С	13 pz	Val(2p)	0.98643	0.05541
54	С	14 S	Cor(1S)	1.99995	-10.96500
55	С	14 S	Val(2S)	1.08239	-0.19501
56	С	14 px	Val(2p)	0.98428	0.12180
57	С	14 py	Val(2p)	0.97680	0.10564
58	C	14 pz	Val(2p)	0.98313	0.05940
59	H	15 S	Val(1S)	0.95468	0.07076
60	C	16 S	Cor(1S)	1.99994	-10.96184
61	C	16 S	Val(2S)	1.07948	-0.19219
62	C	16 px	Val(2p)	0.98887	0.12178
63	С	16 py	Val(2p)	0.98622	0.10262

64	С	16 pz	Val(2p)	0.98911	0.05973
65	Н	17 S	Val(1S)	0.95078	0.06884
66	Н	18 S	Val(1S)	0.95322	0.06961
67	Н	19 S	Val(1S)	0.95288	0.07108
68	С	20 S	Cor(1S)	1.99990	-10.98952
69	С	20 S	Val(2S)	1.08681	-0.21241
70	С	20 px	Val(2p)	0.95179	0.13926
71	С	20 py	Val(2p)	0.95679	0.09919
72	С	20 pz	Val(2p)	0.96914	0.06224
73	С	21 S	Cor(1S)	1.99989	-10.99609
74	С	21 S	Val(2S)	1.06617	-0.19762
75	С	21 px	Val(2p)	0.96667	0.13923
76	С	21 py	Val(2p)	0.98945	0.08193
77	С	21 pz	Val(2p)	0.99850	0.04914
78	С	22 S	Cor(1S)	1.99994	-10.96101
79	С	22 S	Val(2S)	1.08454	-0.19633
80	С	22 px	Val(2p)	0.97193	0.14431
81	С	22 py	Val(2p)	0.99327	0.08389
82	С	22 pz	Val(2p)	0.99886	0.05356
83	С	23 S	Cor(1S)	1.99994	-10.96876
84	С	23 S	Val(2S)	1.08323	-0.19850
85	С	23 px	Val(2p)	0.96329	0.14193
86	С	23 py	Val(2p)	0.98848	0.08271
87	С	23 pz	Val(2p)	0.98647	0.05452
88	С	24 S	Cor(1S)	1.99995	-10.96485
89	С	24 S	Val(2S)	1.08239	-0.19483
90	С	24 px	Val(2p)	0.98062	0.13880
91	С	24 py	Val(2p)	0.98057	0.08998
92	С	24 pz	Val(2p)	0.98290	0.05862
93	Η	25 S	Val(1S)	0.95455	0.07109
94	С	26 S	Cor(1S)	1.99994	-10.96170
95	С	26 S	Val(2S)	1.07946	-0.19204
96	С	26 px	Val(2p)	0.99042	0.13522
97	С	26 py	Val(2p)	0.98449	0.09054
98	С	26 pz	Val(2p)	0.98930	0.05881
99	Н	27 S	Val(1S)	0.95078	0.06892
100	Н	28 S	Val(1S)	0.95316	0.06985
101	H	29 S	Val(1S)	0.95288	0.07123
102	C	30 S	Cor(1S)	1.99940	-10.92292
103	C	30 S	Val(2S)	1.07/841	-0.19556
104	C	30 px	Val(2p)	0.99840	0.17128
105	C	30 py	Val(2p)	0.96754	0.08554
106	C	30 pz	Val(2p)	0.95338	0.09202
107	C	31 S	Cor(1S)	1.99936	-10.92404
108	C	31 S	Val(2S)	1.04685	-0.16/36
109	C	31 px	val(2p)	0.96426	0.24/35
110	C	31 py	val(2p)	1.02/02	0.04236

111	С	31 pz	Val(2p)	1.03275	0.03602
112	С	32 S	Cor(1S)	1.99940	-10.92280
113	С	32 S	Val(2S)	1.07837	-0.19543
114	С	32 px	Val(2p)	0.99343	0.20776
115	С	32 py	Val(2p)	0.97297	0.04685
116	С	32 pz	Val(2p)	0.95359	0.09414
117	С	33 S	Cor(1S)	1.99936	-10.92410
118	С	33 S	Val(2S)	1.04672	-0.16741
119	С	33 px	Val(2p)	0.96547	0.26183
120	С	33 py	Val(2p)	1.02591	0.02703
121	С	33 pz	Val(2p)	1.03225	0.03700
122	С	34 S	Cor(1S)	1.99991	-11.11157
123	С	34 S	Val(2S)	1.04005	-0.24435
124	С	34 px	Val(2p)	0.77164	0.19051
125	С	34 py	Val(2p)	0.90848	0.11267
126	С	34 pz	Val(2p)	0.88592	-0.02257
127	0	35 S	Cor(1S)	1.99999	-20.08609
128	0	35 S	Val(2S)	1.80496	-1.05119
129	0	35 px	Val(2p)	1.57870	-0.20216
130	0	35 py	Val(2p)	1.63878	-0.22835
131	0	35 pz	Val(2p)	1.30071	-0.14039
132	0	36 S	Cor(1S)	1.99999	-20.20865
133	0	36 S	Val(2S)	1.72298	-1.02190
134	0	36 px	Val(2p)	1.40498	-0.17741
135	0	36 py	Val(2p)	1.32689	-0.14636
136	0	36 pz	Val(2p)	1.82064	-0.35870
137	С	37 S	Cor(1S)	1.99982	-11.03995
138	С	37 S	Val(2S)	1.08273	-0.22552
139	С	37 px	Val(2p)	1.03959	0.04007
140	С	37 py	Val(2p)	0.80790	0.09375
141	С	37 pz	Val(2p)	1.03538	0.04469
142	Η	38 S	Val(1S)	0.94645	0.06172
143	Н	39 S	Val(1S)	0.95197	0.05906
144	Н	40 S	Val(1S)	0.95214	0.05883

NBO Key

Sorting of NBOs:	82	81	80	83	65	71	64	70	59	63	
Sorting of NBOs:	61	58	67	73	60	62	68	74	69	75	
Sorting of NBOs:	66	72	79	77	76	78	51	48	44	84	
Sorting of NBOs:	53	47	35	21	86	54	24	38	7	10	
Sorting of NBOs:	22	36	19	33	12	17	31	26	40	5	
Sorting of NBOs:	1	3	16	30	11	15	6 2	25 3	39 5	57	
Sorting of NBOs:	56	9	14	55	28	4	42	29	43	23	
Sorting of NBOs:	37	52	87	49	45	85	50	46	20	34	
Sorting of NBOs:	8	18	32	27	41	13	2 1	107	121	95	
Sorting of NBOs:	89	114	128	3 10	0 10	05 1	19 1	139	133	137	136

Sorting of NBOs:	132	141	144	143	14	0 14	2 9	8 1	12 1	126	115	
Sorting of NBOs:	129	101	116	130	11	0 12	4 9	69	91 9	93 1	02	
Sorting of NBOs:	103	108	117	122	10	6 12	0 9	0 8	88 9	92 1	04	
Sorting of NBOs:	118	99	94	97	113	127	109	12	3 11	11 1	25	
Sorting of NBOs:	134	138	131	135								
Reordering of NBOs	for storage:	82	81	80	83	65	71	64	70	59	63	
Reordering of NBOs	for storage:	61	58	67	73	60	62	68	74	69	75	
Reordering of NBOs	for storage:	66	72	79	77	76	78	51	48	44	84	
Reordering of NBOs	for storage:	53	47	35	21	86	54	24	38	7	10	
Reordering of NBOs	for storage:	22	36	19	33	12	17	31	26	40	5	
Reordering of NBOs	for storage:	1	3	16	30	11	15	6 2	25 3	39 5	57	
Reordering of NBOs	for storage:	56	9	14	55	28	4	42	29	43	23	
Reordering of NBOs	for storage:	37	52	87	49	45	85	50	46	20	34	
Reordering of NBOs	for storage:	8	18	32	27	41	13	2 1	107	121	95	
Reordering of NBOs	for storage:	89	114	128	8 10	0 10)5 1	19 1	139	133	137	136
Reordering of NBOs	for storage:	132	141	14	4 14	13 1	40 1	42	98	112	126	115
Reordering of NBOs	for storage:	129	101	11	6 13	30 1	10 1	24	96	91	93	102
Reordering of NBOs	for storage:	103	108	3 11	7 12	22 1	06 1	20	90	88	92	104
Reordering of NBOs	for storage:	118	99	94	97	113	3 12	7 1(09 1	23	111	125
Reordering of NBOs	for storage:	134	138	3 13	1 13	35						

Coordinates

<u>3,5-TPDY</u>

HF = -1073.4528074 hartrees

Zero-point correction=	0.303750 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.254542
Sum of electronic and zero-point Energy	gies= -1073.149057
Sum of electronic and thermal Enthalpi	ies= -1073.127577
Sum of electronic and thermal Free End	ergies= -1073.198266

Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type Х Y Ζ 1 0 0.164626 -0.631977 -0.564570 6 2 6 0 -1.149909 -0.163931 -0.384627 3 6 0 -1.342473 1.194859 -0.094136 4 6 0 -0.245429 2.056233 0.034849 5 6 0 1.057110 1.556298 -0.081136 6 6 1.280548 0.203112 -0.369472 0 7 1 0 0.322162 -1.664218 -0.852086 8 1 1.576084 0.055178 0 -2.345751 9 1 1.894276 2.226936 0.078924 0 10 0 -2.351011 -1.056077 -0.449589 6 11 0 -2.465397 -2.252508 0.327659 6 12 6 0 -3.449755 -0.677761 -1.23343013 6 0 -3.653480 -3.007184 0.289416 14 -4.621814 -1.438449 -1.269227 6 0 15 1 0 -3.379214 0.225512 -1.832387 16 6 0 -4.725577 -2.603804 -0.503719 17 0 -3.721588 -3.908874 0.889949 1 1 -5.450036 -1.120085 -1.895546 18 0 19 -5.635266 -3.196331 1 0 -0.525325 20 6 0 2.692400 -0.293480 -0.417369 21 6 3.145504 -1.405094 0.362059 0 22 0 3.639928 0.395976 -1.186391 6 23 6 0 4.504190 -1.774062 0.340635 24 6 0 4.985011 0.016574 -1.205575 25 1 0 3.312874 1.240253 -1.786214 26 6 0 5.419028 -1.068515 -0.438081 27 1 0 4.828338 -2.616933 0.943048 28 1 0 5.690128 0.568427 -1.820245 29 1 0 6.463623 -1.364805 -0.446793 30 2.184755 -2.127744 6 0 1.123155 31 1.137579 -2.588211 6 0 1.561006 32 -1.343892 -2.659991 1.102825 6 0

33	6	0	-0.212171	-2.791233	1.552465
34	6	0	-0.414020	3.507025	0.337269
35	8	0	0.512570	4.293126	0.471609
36	8	0	-1.704697	3.871301	0.444579
37	6	0	-1.958273	5.264123	0.738348
38	1	0	-3.043467	5.355495	0.783631
39	1	0	-1.510851	5.538034	1.697293
40	1	0	-1.553091	5.900018	-0.053111

$\underline{N_2CO_2Et}$

HF = -415.985719 hartreesZero-point correction=0.104481 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.070578Sum of electronic and zero-point Energies=-415.881238Sum of electronic and thermal Enthalpies=-415.871758Sum of electronic and thermal Free Energies=-415.915141

Center	Atom	nic A	tomic	Coordinate	es (Angstroms
Number	Nur	nber	Туре	X Y	Z
1	6	0	-0.226226	0.186871	0.000267
2	8	0	-0.385511	1.402863	0.000161
3	8	0	0.974056	-0.425173	0.000142
4	6	0	-1.294324	-0.801563	0.000206
5	7	0	-2.523723	-0.360542	-0.000249
6	7	0	-3.586841	0.039781	-0.000248
7	1	0	-1.150481	-1.873596	0.000963
8	6	0	2.147825	0.438635	-0.000086
9	1	0	2.109267	1.076827	-0.888240
10	1	0	2.109535	1.076917	0.888016
11	6	0	3.365939	-0.460385	-0.000211
12	1	0	3.383824	-1.097688	-0.890349
13	1	0	4.270159	0.157706	-0.000288
14	1	0	3.383997	-1.097718	0.889903

Standard orientation:

<u>BnN</u>₃

HF = -435.1939152 hartrees

Zero-point correction=	0.132001 (Hartree/Particle)
Thermal correction to Gibbs Free Ener	gy= 0.096325
Sum of electronic and zero-point Energy	gies= -435.061915
Sum of electronic and thermal Enthalpa	ies= -435.052481
Sum of electronic and thermal Free En	ergies= -435.097590

Center Number	Aton Nu	nic mber	Atomic Type	Cooi X	rdinate Y	s (Angstrom Z	s)
1	7	0	2.707467	-1.40	5230	-0.812934	
2	7	0	2.429421	-0.35	5624	-0.454129	

3	7	0	2.206220	0.815777	-0.149184
4	6	0	1.154370	1.016434	0.905977
5	1	0	1.494777	0.543591	1.833964
6	1	0	1.128299	2.096105	1.053751
7	6	0	-0.194747	0.484463	0.486054
8	6	0	-1.046132	1.259038	-0.316764
9	6	0	-0.592379	-0.809303	0.853773
10	6	0	-2.275601	0.749938	-0.741515
11	1	0	-0.742477	2.261810	-0.607191
12	6	0	-1.823315	-1.320633	0.429349
13	1	0	0.059722	-1.414553	1.478747
14	6	0	-2.666611	-0.541907	-0.369047
15	1	0	-2.929100	1.359903	-1.359078
16	1	0	-2.122443	-2.322702	0.723911
17	1	0	-3.624035	-0.936801	-0.697339

<u>N₂CO₂Et Pseudo-Endo S</u>

HF = -1489.4230025 hartreesZero-point correction=0.409244 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.345768Sum of electronic and zero-point Energies=-1489.013759Sum of electronic and thermal Enthalpies=-1488.982989Sum of electronic and thermal Free Energies=-1489.077235

Center	Aton	nic A	tomic	Coordinate	es (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	6	0	1.194297	-0.036866	-1.087507
2	6	0	2.116805	0.939535	-0.673396
3	6	0	3.238377	0.532459	0.061204
4	6	0	3.414658	-0.817814	0.397050
5	6	0	2.448743	-1.764148	0.032716
6	6	0	1.321501	-1.379715	-0.704984
7	1	0	0.354251	0.252297	-1.707339
8	1	0	3.959714	1.269120	0.394923
9	1	0	2.576225	-2.797079	0.338355
10	6	0	1.897011	2.393913	-0.931980
11	6	0	0.671520	3.038095	-0.572083
12	6	0	2.928123	3.180029	-1.462434
13	6	0	0.531469	4.426062	-0.758377
14	6	0	2.772131	4.556349	-1.652560

15	1	0	3.862806	2.701098	-1.740044
16	6	0	1.572050	5.180423	-1.298691
17	1	0	-0.401573	4.901836	-0.472554
18	1	0	3.586188	5.136740	-2.076999
19	1	0	1.446644	6.249673	-1.441528
20	6	0	0.297065	-2.398560	-1.082628
21	6	0	-1.076519	-2.294959	-0.704531
22	6	0	0.708586	-3.520878	-1.816367
23	6	0	-1.972540	-3.306662	-1.111069
24	6	0	-0.193234	-4.510432	-2.212838
25	1	0	1.755433	-3.604454	-2.094289
26	6	0	-1.542330	-4.395174	-1.865698
27	1	0	-3.014765	-3.229223	-0.821685
28	1	0	0.155955	-5.360670	-2.791448
29	1	0	-2.255826	-5.154886	-2.171221
30	6	0	-1.555866	-1.185890	0.076935
31	6	0	-1.593728	0.014790	0.451462
32	6	0	-0.381115	2.241074	-0.032343
33	6	0	-1.044837	1.262085	0.278844
34	6	0	4.597071	-1.288016	1.173909
35	8	0	4.786653	-2.450579	1.501900
36	8	0	5.450175	-0.293236	1.480742
37	6	0	6.625530	-0.664081	2.236208
38	1	0	7.175334	0.264858	2.387768
39	1	0	6.339044	-1.099748	3.196951
40	1	0	7.230400	-1.379278	1.672651
41	7	0	-3.114341	-2.106628	1.499517
42	7	0	-3.381513	-1.124282	2.040702
43	6	0	-3.143149	0.193432	2.096639
44	6	0	-4.147453	1.113483	1.521598
45	8	0	-4.071607	2.323374	1.665122
46	8	0	-5.067461	0.477805	0.784467
47	6	0	-6.041218	1.308519	0.080814
48	1	0	-5.495747	1.987793	-0.580878
49	1	0	-6.585590	1.901608	0.821662
50	6	0	-6.952364	0.374244	-0.685036
51	1	0	-7.699387	0.964586	-1.226196
52	1	0	-6.386189	-0.216788	-1.412121
53	1	0	-7.475860	-0.307167	-0.006667
54	1	0	-2.581671	0.529366	2.962148

<u>TSC</u>

HF = -1489.4251436 hartrees

Zero-point correction=	0.409310 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.347612
Sum of electronic and zero-point Energ	ies= -1489.015833
Sum of electronic and thermal Enthalpi	es= -1488.985223
Sum of electronic and thermal Free Ene	ergies= -1489.077532

 Center	Atom	ic A	tomic	Coordinate	
Number	Nun	nber	Туре	X Y	Z
1	6	0	-0.317070	-0.377615	-1.683264
2	6	0	-1.634080	-0.220686	-1.219795
3	6	0	-2.021574	1.025122	-0.709345
4	6	0	-1.103110	2.083731	-0.650733
5	6	0	0.219404	1.891372	-1.070413
6	6	0	0.628639	0.651194	-1.574873
7	1	0	-0.011803	-1.325811	-2.110291
8	1	0	-3.028604	1.162097	-0.332765
9	1	0	0.931323	2.704055	-0.974008
10	6	0	-2.594178	-1.364421	-1.183266
11	6	0	-2.261815	-2.590924	-0.526785
12	6	0	-3.876786	-1.229222	-1.728658
13	6	0	-3.214989	-3.622860	-0.451923
14	6	0	-4.812263	-2.266126	-1.655369
15	1	0	-4.139328	-0.300438	-2.227312
16	6	0	-4.480278	-3.464526	-1.016425
17	1	0	-2.952059	-4.544816	0.057435
18	1	0	-5.795829	-2.136140	-2.097423
19	1	0	-5.204099	-4.271801	-0.954243
20	6	0	2.057437	0.435373	-1.954628
21	6	0	2.883878	-0.502442	-1.267916
22	6	0	2.624013	1.206125	-2.978815
23	6	0	4.234417	-0.636755	-1.648007
24	6	0	3.960294	1.050565	-3.355659
25	1	0	1.997542	1.929820	-3.492836
26	6	0	4.765035	0.120152	-2.690289
27	1	0	4.862845	-1.337285	-1.107153
28	1	0	4.368849	1.653467	-4.161375
29	1	0	5.806264	-0.006065	-2.972434
30	6	0	2.356164	-1.274758	-0.176210
31	6	0	1.478214	-1.958370	0.410668
32	6	0	-0.960543	-2.715352	0.045368
33	6	0	0.207727	-2.470232	0.311435

34	6	0	-1.472045	3.416949	-0.095908
35	8	0	-0.736116	4.393056	-0.103105
36	8	0	-2.712852	3.440163	0.425608
37	6	0	-3.153972	4.700423	0.978921
38	1	0	-4.166881	4.518576	1.338220
39	1	0	-2.504378	5.002860	1.804395
40	1	0	-3.155056	5.475679	0.208215
41	7	0	3.820221	-0.872915	1.490227
42	7	0	3.213755	-1.372714	2.336376
43	6	0	2.073918	-2.016254	2.621832
44	6	0	0.939098	-1.231799	3.157820
45	8	0	-0.061598	-1.771937	3.601327
46	8	0	1.102226	0.086997	3.000642
47	6	0	-0.055602	0.933985	3.278624
48	1	0	-0.308658	0.836365	4.338522
49	1	0	-0.894172	0.566035	2.680491
50	6	0	0.329519	2.349017	2.906655
51	1	0	-0.525143	3.011336	3.079730
52	1	0	1.168901	2.701870	3.514472
53	1	0	0.605563	2.411970	1.850536
54	1	0	2.176892	-3.048603	2.937575

<u>N₂CO₂Et Pseudo-Exo R</u>

HF = -1489.4195728 hartrees

Zero-point correction=	0.409269 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.346066
Sum of electronic and zero-point Energy	gies= -1489.010304
Sum of electronic and thermal Enthalpe	ies= -1488.979568
Sum of electronic and thermal Free End	ergies= -1489.073507

Center Number	Atom Nur	nic A nber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	1.406822	0.182642	-1.161944
2	6	0	2.618927	0.515709	-0.535141
3	6	0	3.285614	-0.474541	0.198548
4	6	0	2.731816	-1.757498	0.324784
5	6	0	1.486904	-2.047196	-0.250433
6	6	0	0.807426	-1.072698	-0.990147
7	1	0	0.905008	0.919739	-1.777496
8	1	0	4.220636	-0.239896	0.693846
9	1	0	1.050342	-3.029946	-0.107323
10	6	0	3.162469	1.906336	-0.574193
11	6	0	2.362043	3.029457	-0.190657

12	6	0	4.500348	2.132467	-0.921300
13	6	0	2.928912	4.317577	-0.180562
14	6	0	5.048248	3.418930	-0.915837
15	1	0	5.116209	1.286024	-1.211955
16	6	0	4.260284	4.512992	-0.545911
17	1	0	2.313005	5.159457	0.120366
18	1	0	6.086170	3.563514	-1.201294
19	1	0	4.680777	5.514273	-0.537967
20	6	0	-0.526880	-1.364493	-1.596722
21	6	0	-1.708406	-0.666340	-1.210574
22	6	0	-0.621467	-2.352000	-2.587121
23	6	0	-2.916563	-0.950410	-1.875351
24	6	0	-1.831181	-2.632235	-3.227039
25	1	0	0.278137	-2.891287	-2.870590
26	6	0	-2.978658	-1.914610	-2.879546
27	1	0	-3.811120	-0.404269	-1.600729
28	1	0	-1.872004	-3.396153	-3.998032
29	1	0	-3.922677	-2.110163	-3.379710
30	6	0	-1.667323	0.323207	-0.151314
31	6	0	-1.113404	1.342363	0.339297
32	6	0	1.004965	2.796840	0.183562
33	6	0	-0.069116	2.223131	0.316012
34	6	0	3.412625	-2.835839	1.096860
35	8	0	2.957322	-3.959358	1.257046
36	8	0	4.596247	-2.447150	1.606229
37	6	0	5.321395	-3.434205	2.374154
38	1	0	6.233814	-2.933352	2.697888
39	1	0	4.732546	-3.752080	3.238580
40	1	0	5.560638	-4.300599	1.751919
41	7	0	-2.733317	0.626784	2.292675
42	7	0	-2.086495	1.575569	2.385243
43	6	0	-3.056076	-0.404693	1.490943
44	6	0	-4.461664	-0.497394	1.030270
45	8	0	-4.935483	-1.528942	0.582395
46	8	0	-5.102973	0.676352	1.104834
47	6	0	-6.481505	0.709567	0.622795
48	1	0	-6.484281	0.404882	-0.427854
49	1	0	-7.063702	-0.015812	1.198911
50	6	0	-6.985072	2.124269	0.808423
51	1	0	-6.380208	2.834187	0.235181
52	1	0	-8.019488	2.186382	0.454176
53	1	0	-6.963311	2.413408	1.864047
54	1	0	-2.571610	-1.339999	1.757438

--

<u>N₂CO₂Et Pseudo-Exo S</u>

HF = -1489.4239634 hartrees

9637 (Hartree/Particle)
0.348111
-1489.014326
-1488.983783
-1489.075852

Center	Atom	ic 1	Atomic	Coordinate	s (Angstroms)
Number	Nurr	ıber	Туре	X Y	Ζ
1	6	0	1.144030	-0.389125	1.199616
2	6	0	2.325687	0.100665	0.618220
3	6	0	2.332263	1.410067	0.118512
4	6	0	1.172335	2.197035	0.175149
5	6	0	-0.013563	1.664639	0.697152
6	6	0	-0.040196	0.360221	1.203191
7	1	0	1.136036	-1.379838	1.637890
8	1	0	3.230761	1.806953	-0.339566
9	1	0	-0.915298	2.267634	0.691201
10	6	0	3.537869	-0.758140	0.461163
11	6	0	3.468428	-2.044225	-0.164208
12	6	0	4.792994	-0.283283	0.862679
13	6	0	4.646135	-2.792415	-0.350501
14	6	0	5.953549	-1.041552	0.680328
15	1	0	4.856745	0.692165	1.336499
16	6	0	5.879251	-2.298860	0.073318
17	1	0	4.579770	-3.761862	-0.834601
18	1	0	6.910411	-0.650078	1.013199
19	1	0	6.777652	-2.891069	-0.073772
20	6	0	-1.316566	-0.210719	1.728893
21	6	0	-1.954460	-1.331534	1.124655
22	6	0	-1.931168	0.398991	2.832214
23	6	0	-3.162407	-1.806694	1.670633
24	6	0	-3.126134	-0.088177	3.365828
25	1	0	-1.450652	1.262851	3.282848
26	6	0	-3.738038	-1.203245	2.786115
27	1	0	-3.651688	-2.655510	1.204080
28	1	0	-3.573246	0.399216	4.227266
29	1	0	-4.666565	-1.594102	3.191803
30	6	0	-1.381412	-1.969698	-0.044413
31	6	0	-0.376592	-2.448806	-0.630510
32	6	0	2.194512	-2.524055	-0.590509
33	6	0	0.976220	-2.607413	-0.693925
34	6	0	1.139360	3.593384	-0.345159
35	8	0	0.145731	4.306316	-0.337416
36	8	0	2.327847	4.000967	-0.826913

37	6	0	2.380690	5.346100	-1.353739
38	1	0	3.407190	5.481742	-1.694487
39	1	0	1.683099	5.455776	-2.188072
40	1	0	2.138045	6.070684	-0.571993
41	7	0	-2.296553	-2.659544	-2.470052
42	7	0	-1.265598	-3.114161	-2.702941
43	6	0	-3.010016	-1.952959	-1.579065
44	1	0	-3.862719	-2.463557	-1.145288
45	6	0	-3.067962	-0.495778	-1.861854
46	8	0	-2.390770	0.075522	-2.700884
47	8	0	-3.902263	0.099160	-1.003501
48	6	0	-3.906546	1.561031	-1.001405
49	1	0	-2.872088	1.904988	-0.913825
50	1	0	-4.308828	1.902342	-1.959858
51	6	0	-4.755847	2.003859	0.169621
52	1	0	-4.336105	1.643912	1.113822
53	1	0	-4.784512	3.098396	0.196895
54	1	0	-5.781825	1.633687	0.074620

 $\frac{\mathbf{TSA}}{\mathbf{HF}} = -1050.8598628 \text{ hartrees}$

Zero-point correction=	0.334021 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.275747
Sum of electronic and zero-point Energy	gies= -1050.525842
Sum of electronic and thermal Enthalpi	ies= -1050.502670
Sum of electronic and thermal Free End	ergies= -1050.584116

Center	Atom	nic A	tomic	Coordinate	es (Angstroms)
Number	Nur	nber	Туре	X Y	Z
1	6	0	-0.932712	4.440809	0.737110
2	6	0	-0.281355	3.207582	0.784672
3	6	0	-0.728674	2.136867	-0.017503
4	6	0	-1.839131	2.331503	-0.862679
5	6	0	-2.479649	3.569677	-0.908692
6	6	0	-2.032345	4.627332	-0.108226
7	1	0	-0.580574	5.256685	1.362011
8	1	0	0.571794	3.062099	1.440233
9	1	0	-2.187292	1.509354	-1.479197
10	1	0	-3.330687	3.708263	-1.569491
11	1	0	-2.536813	5.588629	-0.142642
12	6	0	-0.017582	0.883878	0.026168
13	6	0	1.032857	0.193938	0.035432
14	6	0	2.377268	-0.054249	-0.016985
15	6	0	3.575645	-0.296868	-0.055471

16	6	0	4.973402	-0.567586	-0.103721
17	6	0	5.439006	-1.889259	-0.281182
18	6	0	5.912299	0.479650	0.025554
19	6	0	6.807943	-2.150527	-0.328529
20	1	0	4.720952	-2.697445	-0.380700
21	6	0	7.278952	0.206625	-0.020769
22	1	0	5.559437	1.497443	0.160740
23	6	0	7.731364	-1.106354	-0.198138
24	1	0	7.155019	-3.170623	-0.466162
25	1	0	7.992431	1.019501	0.080355
26	1	0	8.796859	-1.314527	-0.234598
27	7	0	-0.888738	-1.575887	0.250564
28	7	0	-1.593507	-0.541137	0.135567
29	7	0	0.227008	-1.914826	0.177705
30	6	0	-2.797220	-0.392809	0.987646
31	1	0	-3.008212	0.677735	0.970244
32	1	0	-2.559750	-0.683727	2.016378
33	6	0	-3.975241	-1.175368	0.450706
34	6	0	-4.188392	-2.498663	0.861067
35	6	0	-4.845340	-0.600236	-0.486046
36	6	0	-5.255352	-3.238152	0.341951
37	1	0	-3.516871	-2.949295	1.588004
38	6	0	-5.912891	-1.337594	-1.006396
39	1	0	-4.686135	0.426660	-0.805415
40	6	0	-6.119138	-2.658847	-0.594075
41	1	0	-5.412927	-4.262312	0.668695
42	1	0	-6.583450	-0.881520	-1.729533
43	1	0	-6.949413	-3.232049	-0.997146

TSB-Pseudo Exo

HF = -1508.6327564 hartreesZero-point correction=0.436674 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.372246Sum of electronic and zero-point Energies=-1508.196082Sum of electronic and thermal Enthalpies=-1508.165427Sum of electronic and thermal Free Energies=-1508.260510

Center	Aton	nic A	tomic	Coordinate	es (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	6	0	1.993064	-0.187600	1.124206
2	6	0	3.171032	-0.301659	0.366020
3	6	0	3.594698	0.804846	-0.382368
4	6	0	2.839040	1.986402	-0.392695
5	6	0	1.632904	2.055352	0.315979
6	6	0	1.192325	0.962564	1.072924
7	1	0	1.683272	-1.011986	1.755070
8	1	0	4.497898	0.737635	-0.977533
9	1	0	1.036673	2.959956	0.262511
10	6	0	3.939736	-1.580167	0.285790
11	6	0	3.306494	-2.814977	-0.063626
12	6	0	5.327610	-1.578121	0.476475
13	6	0	4.081753	-3.981520	-0.201831
14	6	0	6.084195	-2.746716	0.346761
15	1	0	5.818981	-0.646452	0.742158
16	6	0	5.459890	-3.950527	0.006498
17	1	0	3.588200	-4.908988	-0.475379
18	1	0	7.157028	-2.714557	0.513133
19	1	0	6.042852	-4.860763	-0.098327
20	6	0	-0.102657	1.043443	1.813661
21	6	0	-1.184558	0.144375	1.576725
22	6	0	-0.274958	2.061653	2.762977
23	6	0	-2.368961	0.283257	2.328865
24	6	0	-1.456700	2.189799	3.495677
25	1	0	0.544098	2.753989	2.935907
26	6	0	-2.503849	1.288353	3.283284
27	1	0	-3.184714	-0.407605	2.145431
28	1	0	-1.554161	2.983411	4.230691
29	1	0	-3.425293	1.370585	3.852264
30	6	0	-1.068299	-0.897385	0.587096
31	6	0	-0.461194	-1.808822	-0.026860
32	6	0	1.893665	-2.822736	-0.261684
33	6	0	0.726763	-2.454464	-0.230050

34	6	0	3.259757	3.184127	-1.174675
35	8	0	2.623881	4.227124	-1.230138
36	8	0	4.426574	3.003825	-1.820230
37	6	0	4.906292	4.118989	-2.605198
38	1	0	5.846892	3.781065	-3.040145
39	1	0	4.188696	4.367502	-3.391470
40	1	0	5.071410	4.990990	-1.967007
41	7	0	-3.037108	-0.912240	-0.378270
42	7	0	-2.774495	-1.794182	-1.227338
43	7	0	-1.982892	-2.593935	-1.528865
44	6	0	-3.733973	0.321407	-0.821815
45	1	0	-3.485962	1.058610	-0.056533
46	1	0	-3.316772	0.656939	-1.776731
47	6	0	-5.231429	0.128554	-0.908386
48	6	0	-5.814258	-0.346620	-2.091493
49	6	0	-6.048319	0.391577	0.199827
50	6	0	-7.194016	-0.558383	-2.165695
51	1	0	-5.185593	-0.550801	-2.955048
52	6	0	-7.428623	0.181304	0.127873
53	1	0	-5.601580	0.763503	1.118470
54	6	0	-8.003833	-0.295719	-1.055008
55	1	0	-7.635963	-0.924690	-3.088153
56	1	0	-8.053216	0.391816	0.991664
57	1	0	-9.076459	-0.458773	-1.112258

-
$\frac{\mathbf{TSB}}{\mathbf{HF}} = -1508.6335045 \text{ hartrees}$

Zero-point correction=	0.436586 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.373202
Sum of electronic and zero-point Energy	gies= -1508.196919
Sum of electronic and thermal Enthalph	ies= -1508.166291
Sum of electronic and thermal Free End	ergies= -1508.260303

Center Number	Atomic Numb	er	Atomic Type	Coordinate X Y	s (Angstroms) Z
					<i>L</i>
1	6	0	-1.441537	-0.008798	-1.061301
2	6	0	-2.349106	-0.994500	-0.635705
3	6	0	-3.500751	-0.592728	0.053821
4	6	0	-3.722108	0.763177	0.334994
5	6	0	-2.771898	1.721709	-0.038286
6	6	0	-1.614508	1.343030	-0.731027
7	1	0	-0.576979	-0.297560	-1.646924
8	1	0	-4.210552	-1.336868	0.395491
9	1	0	-2.934348	2.760791	0.227183
10	6	0	-2.085513	-2.451870	-0.830782
11	6	0	-0.859683	-3.052678	-0.402946
12	6	0	-3.077758	-3.283105	-1.366279
13	6	0	-0.680204	-4.442685	-0.529767
14	6	0	-2.883289	-4.661593	-1.495945
15	1	0	-4.012627	-2.838437	-1.695171
16	6	0	-1.683058	-5.242633	-1.075590
17	1	0	0.252761	-4.884300	-0.193368
18	1	0	-3.668046	-5.277486	-1.925488
19	1	0	-1.528273	-6.313218	-1.171530
20	6	0	-0.608342	2.380586	-1.110295
21	6	0	0.751517	2.343204	-0.674579
22	6	0	-1.030419	3.462319	-1.897118
23	6	0	1.624185	3.376763	-1.073243
24	6	0	-0.151162	4.474790	-2.286557
25	1	0	-2.067040	3.496469	-2.219947
26	6	0	1.184358	4.425248	-1.877739
27	1	0	2.654391	3.347037	-0.737698
28	1	0	-0.507736	5.292279	-2.906438
29	1	0	1.880126	5.204276	-2.175416
30	6	0	1.236477	1.267898	0.152450
31	6	0	1.267436	0.075666	0.540972
32	6	0	0.153024	-2.207903	0.139546
33	6	0	0.774598	-1.198049	0.440387
34	6	0	-4.936775	1.228340	1.063762

35	8	0	-5.172792	2.397811	1.331150
36	8	0	-5.762007	0.219999	1.401386
37	6	0	-6.964803	0.585246	2.115223
38	1	0	-7.485560	-0.354074	2.301629
39	1	0	-6.713309	1.076745	3.058695
40	1	0	-7.582063	1.250581	1.505864
41	7	0	2.802545	2.203936	1.515482
42	7	0	3.078951	1.205222	2.047243
43	7	0	2.724549	0.012106	2.189389
44	6	0	3.760300	-1.049683	2.234031
45	1	0	4.251202	-1.014791	3.212019
46	1	0	3.185834	-1.976884	2.178989
47	6	0	4.760525	-0.947982	1.105599
48	6	0	4.455692	-1.466039	-0.161600
49	6	0	5.978080	-0.280090	1.296874
50	6	0	5.356255	-1.322663	-1.220105
51	1	0	3.509426	-1.976900	-0.316819
52	6	0	6.881055	-0.135510	0.238419
53	1	0	6.219813	0.125888	2.276234
54	6	0	6.571193	-0.656251	-1.022106
55	1	0	5.110836	-1.729969	-2.197044
56	1	0	7.823339	0.381107	0.398780
57	1	0	7.272187	-0.545313	-1.844775

<u>TSD</u>

HF = -1864.0352728 hartreesZero-point correction=0.492933 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.424285Sum of electronic and zero-point Energies=-1863.542340Sum of electronic and thermal Enthalpies=-1863.506944Sum of electronic and thermal Free Energies=-1863.610988

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Ζ
1	6	0	0.977053	-1.411899	-1.471278
2	6	0	2.206409	-1.721142	-0.869113
3	6	0	2.215700	-2.623066	0.202688
4	6	0	1.015534	-3.178735	0.672324
5	6	0	-0.207748	-2.806434	0.098827
6	6	0	-0.234815	-1.905582	-0.970736
7	1	0	0.954821	-0.758128	-2.335082
8	1	0	3.151325	-2.871335	0.689987
9	1	0	-1.130453	-3.209799	0.501864
10	6	0	3.467714	-1.050503	-1.301777
11	6	0	3.548688	0.373160	-1.412218
12	6	0	4.625149	-1.799100	-1.547443
13	6	0	4.765709	0.982748	-1.766306
14	6	0	5.827921	-1.182606	-1.906147
15	1	0	4.577848	-2.881180	-1.465476
16	6	0	5.898466	0.209352	-2.016526
17	1	0	4.810932	2.065112	-1.835656
18	1	0	6.706488	-1.790800	-2.100630
19	1	0	6.831519	0.691365	-2.292556
20	6	0	-1.518849	-1.462723	-1.587059
21	6	0	-1.918761	-0.094560	-1.573491
22	6	0	-2.336684	-2.389473	-2.243832
23	6	0	-3.085079	0.298721	-2.260688
24	6	0	-3.502118	-1.990477	-2.903552
25	1	0	-2.037942	-3.433656	-2.253741
26	6	0	-3.866159	-0.640412	-2.927069
27	1	0	-3.380285	1.341858	-2.238047
28	1	0	-4.116059	-2.731049	-3.407635
29	1	0	-4.764144	-0.321863	-3.447263
30	6	0	-1.157721	0.873557	-0.838614
31	6	0	-0.105864	1.510114	-0.542970
32	6	0	2.380239	1.137521	-1.126183
33	6	0	1.239654	1.473714	-0.853626
34	6	0	0.987006	-4.141725	1.810862
	-	~			

35	8	0	-0.034457	-4.635736	2.266304
36	8	0	2.212396	-4.419519	2.291038
37	6	0	2.273660	-5.337564	3.406328
38	1	0	3.333149	-5.429453	3.645353
39	1	0	1.722628	-4.934973	4.260213
40	1	0	1.859070	-6.308686	3.123445
41	6	0	-0.370808	2.803652	1.041330
42	6	0	-2.574002	1.581289	0.862433
43	6	0	-3.808282	0.775765	0.697503
44	6	0	-3.814124	-0.566045	1.104282
45	6	0	-4.973098	-1.315634	0.913951
46	1	0	-2.928410	-1.005212	1.548733
47	6	0	-5.978032	0.642217	-0.041824
48	6	0	-6.081697	-0.702054	0.329659
49	1	0	-5.005155	-2.359567	1.210379
50	1	0	-6.821304	1.152335	-0.501649
51	1	0	-7.005056	-1.246142	0.158507
52	6	0	0.930112	3.534005	1.130964
53	6	0	1.116872	4.738230	0.440981
54	6	0	2.363598	5.359084	0.515753
55	1	0	0.307701	5.170465	-0.135822
56	6	0	3.087879	3.551022	1.915143
57	6	0	3.372813	4.757272	1.268059
58	1	0	2.541696	6.293692	-0.007658
59	1	0	3.850761	3.047612	2.504460
60	1	0	4.359203	5.202346	1.351554
61	7	0	-1.750936	1.235576	1.925240
62	7	0	-0.644283	1.865764	2.041496
63	7	0	-2.573909	2.909012	0.476893
64	7	0	-1.465043	3.542091	0.590831
65	7	0	-4.869326	1.371721	0.126071
66	7	0	1.897802	2.942832	1.848637

Pseudo-Endo S

HF = -1489.5165663 hartreesZero-point correction=0.414052 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.351188Sum of electronic and zero-point Energies=-1489.102514Sum of electronic and thermal Enthalpies=-1489.072876Sum of electronic and thermal Free Energies=-1489.165378

Center Number	Atomi Num	lc A lber	Atomic Type	Coordinate X Y	es (Angstroms) Z
1	6	0	1.245217	-0.051405	-1.370931
2	6	0	2.151801	0.888171	-0.860699
3	6	0	3.131484	0.459445	0.039951
4	6	0	3.159091	-0.881224	0.460442
5	6	0	2.172146	-1.778009	0.024870
6	6	0	1.200007	-1.359903	-0.889646
7	1	0	0.512402	0.261548	-2.105861
8	1	0	3.839918	1.171077	0.448425
9	1	0	2.167383	-2.793064	0.407654
10	6	0	1.912151	2.332536	-1.124950
11	6	0	0.625763	2.878660	-0.820096
12	6	0	2.912249	3.191303	-1.588919
13	6	0	0.388144	4.252099	-1.005231
14	6	0	2.660760	4.554663	-1.776862
15	1	0	3.893494	2.783172	-1.813696
16	6	0	1.398854	5.083515	-1.488232
17	1	0	-0.588897	4.657779	-0.762050
18	1	0	3.450260	5.200960	-2.149175
19	1	0	1.203036	6.141725	-1.632884
20	6	0	0.106108	-2.258549	-1.365088
21	6	0	-1.206257	-2.218437	-0.831991
22	6	0	0.394935	-3.158944	-2.402043
23	6	0	-2.178123	-3.087975	-1.372207
24	6	0	-0.580541	-4.005799	-2.929026
25	1	0	1.406271	-3.185861	-2.797507
26	6	0	-1.878158	-3.963084	-2.413509
27	1	0	-3.183934	-3.070238	-0.964902
28	1	0	-0.328272	-4.690269	-3.733736
29	1	0	-2.652620	-4.611338	-2.812803
30	6	0	-1.658390	-1.402240	0.321186
31	6	0	-1.612592	-0.083045	0.697824
32	6	0	-0.369146	2.005024	-0.282717
33	6	0	-0.984297	1.041112	0.144395

34	6	0	4.186335	-1.384033	1.416524
35	8	0	4.233840	-2.532084	1.834272
36	8	0	5.071341	-0.436668	1.778273
37	6	0	6.101865	-0.841530	2.707903
38	1	0	6.701452	0.052304	2.880029
39	1	0	5.655679	-1.188814	3.643368
40	1	0	6.714735	-1.636042	2.274126
41	7	0	-2.447973	-2.113648	1.291163
42	7	0	-2.874801	-1.366997	2.209515
43	6	0	-2.404490	0.009928	1.977388
44	6	0	-3.602105	0.969373	1.919170
45	8	0	-3.783896	1.870129	2.713326
46	8	0	-4.395191	0.671967	0.891929
47	6	0	-5.590618	1.496191	0.706793
48	1	0	-5.269495	2.533893	0.578118
49	1	0	-6.196659	1.424032	1.614468
50	6	0	-6.313070	0.963455	-0.510795
51	1	0	-7.215590	1.559768	-0.681657
52	1	0	-5.681118	1.029632	-1.402227
53	1	0	-6.610752	-0.079812	-0.364822
54	1	0	-1.781365	0.309527	2.826953

<u>C (Pseudo-Endo R)</u>

HF = -1489.5195017 hartrees

Zero-point correction=	0.414524 (Hartree/Particle)
Thermal correction to Gibbs Free Energy	gy= 0.354936
Sum of electronic and zero-point Energy	gies= -1489.104978
Sum of electronic and thermal Enthalpe	es= -1489.075701
Sum of electronic and thermal Free End	ergies= -1489.164565

Center Number	Aton Nu	nic A mber	Atomic Type	Coordinate X Y	es (Angstroms) Z
1	6	0	-0.168025	-1.432903	-1.361060
2	6	0	-1.511779	-1.105050	-1.133586
3	6	0	-1.929186	0.212912	-1.338985
4	6	0	-0.996882	1.190724	-1.725996
5	6	0	0.362373	0.864539	-1.841202
6	6	0	0.784956	-0.453652	-1.642296
7	1	0	0.158706	-2.457565	-1.221552
8	1	0	-2.961441	0.488905	-1.155751
9	1	0	1.081362	1.645530	-2.064605
10	6	0	-2.381438	-2.103283	-0.453169
11	6	0	-1.949627	-2.626265	0.806148

12	6	0	-3.623601	-2.499065	-0.954865
13	6	0	-2.765403	-3.535133	1.501619
14	6	0	-4.423662	-3.409949	-0.255912
15	1	0	-3.960208	-2.096738	-1.906046
16	6	0	-3.992824	-3.930119	0.968311
17	1	0	-2.432821	-3.919280	2.460809
18	1	0	-5.381384	-3.712430	-0.669318
19	1	0	-4.613596	-4.636662	1.511032
20	6	0	2.227330	-0.843684	-1.647028
21	6	0	2.998367	-0.860062	-0.458907
22	6	0	2.828121	-1.223851	-2.855690
23	6	0	4.352884	-1.242144	-0.533797
24	6	0	4.166824	-1.615632	-2.910761
25	1	0	2.230460	-1.206309	-3.762577
26	6	0	4.932087	-1.626326	-1.741598
27	1	0	4.951135	-1.239091	0.372169
28	1	0	4.607966	-1.905883	-3.859948
29	1	0	5.975331	-1.926792	-1.768631
30	6	0	2.514107	-0.414569	0.867790
31	6	0	1.455877	-0.719872	1.683713
32	6	0	-0.712872	-2.147081	1.341062
33	6	0	0.336161	-1.546853	1.513152
34	6	0	-1.395676	2.607401	-1.959101
35	8	0	-0.656434	3.461420	-2.426761
36	8	0	-2.665985	2.859450	-1.592670
37	6	0	-3.137553	4.210952	-1.794991
38	1	0	-4.167438	4.212756	-1.437884
39	1	0	-2.532063	4.915921	-1.220024
40	1	0	-3.100045	4.472263	-2.855759
41	7	0	3.350591	0.534605	1.550104
42	7	0	2.881921	0.866060	2.671410
43	6	0	1.626844	0.144536	2.912462
44	6	0	0.426570	1.092864	3.070241
45	8	0	-0.467484	0.900777	3.869620
46	8	0	0.476382	2.082411	2.183126
47	6	0	-0.670957	2.989680	2.120596
48	1	0	-0.887834	3.343265	3.131998
49	1	0	-1.526894	2.414144	1.754783
50	6	0	-0.295194	4.118390	1.186566
51	1	0	-1.148438	4.797111	1.083890
52	1	0	0.552709	4.686528	1.582087
53	1	0	-0.032538	3.741759	0.194681
54	1	0	1.720669	-0.433593	3.837237

TSC Pseudo-Exo R

HF = -1489.5116077 hartreesZero-point correction=0.414168 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.352369Sum of electronic and zero-point Energies=-1489.097440Sum of electronic and thermal Enthalpies=-1489.067869Sum of electronic and thermal Free Energies=-1489.159239

Atomic Center Atomic Coordinates (Angstroms) Number Number Type Х Y Ζ 1 0 1.299651 6 -1.428831 0.364938 2 6 0 0.614028 -2.640962 0.517400 3 6 0 -3.209696 -0.601603 -0.0018834 6 0 -2.535744 -1.834963 0.024397 5 6 0 -1.266107 -1.935706 0.614344 6 0 6 -0.702503 -0.825678 1.249432 7 1 0 -0.999146 1.217024 1.814203 8 1 0 -4.145300 -0.505674 -0.5409719 1 0 -0.728330 -2.876652 0.565636 10 6 0 -3.158674 1.894265 0.388679 6 0 11 -2.286012 2.863087 -0.198958 12 6 0 -4.475249 2.263539 0.677561 13 0 -2.756892 4.162407 -0.452665 6 14 6 0 -4.931286 3.561168 0.421744 15 1 0 -5.143918 1.528509 1.116468 16 6 0 -4.071327 4.510471 -0.138459 17 1 0 -2.088806 4.888586 -0.90504818 1 0 -5.955956 3.828785 0.662751 19 1 0 -4.423541 5.518419 -0.336313 20 6 0 0.666079 -0.820688 1.848693 21 6 0 1.794658 -0.341026 1.135971 22 6 0 0.819807 -1.230451 3.180827 23 6 0 3.030462 -0.264872 1.810598 24 6 0 2.053750 -1.158458 3.828744 25 0 -0.051397 -1.601373 3.713185 1 26 6 0 3.160819 -0.656848 3.141769 27 1 0 3.896932 0.133931 1.296091 28 1 0 2.144768 -1.480844 4.861832 29 1 0 4.124996 -0.573054 3.634240 30 6 0 1.778141 -0.004761 -0.310099 31 6 0 1.090307 0.896523 -1.075089 32 6 0 -0.965678 2.447125 -0.566477 33 6 0 0.044806 1.801756 -0.783843 34 6 0 -3.104261 -3.053992 -0.618223

35	8	0	-2.533616	-4.134238	-0.669620
36	8	0	-4.327222	-2.846924	-1.140132
37	6	0	-4.951512	-3.979988	-1.785566
38	1	0	-5.915237	-3.614357	-2.139967
39	1	0	-4.341267	-4.324659	-2.624395
40	1	0	-5.090903	-4.795481	-1.071118
41	7	0	2.337652	-0.137821	-2.607581
42	7	0	1.488052	0.774278	-2.458529
43	6	0	2.625830	-0.763331	-1.302832
44	6	0	4.146924	-0.772521	-1.094425
45	8	0	4.810458	-1.785157	-1.006374
46	8	0	4.623675	0.471007	-1.043618
47	6	0	6.067618	0.627734	-0.860830
48	1	0	6.353031	0.102189	0.055254
49	1	0	6.569264	0.153411	-1.709146
50	6	0	6.346224	2.112310	-0.782326
51	1	0	5.819792	2.565539	0.063768
52	1	0	7.421388	2.268528	-0.644819
53	1	0	6.037990	2.618462	-1.702566
54	1	0	2.305197	-1.811016	-1.356931

TSC Pseudo-Exo S

HF = -1489.5145255 hartrees

Zero-point correction=	0.414206 (Hartree/Particle)
Thermal correction to Gibbs Free Ener	gy= 0.352782
Sum of electronic and zero-point Energy	gies= -1489.100320
Sum of electronic and thermal Enthalpa	ies= -1489.070813
Sum of electronic and thermal Free En	ergies= -1489.161743

Center	Atomic	;	Atomic	Coordinate	s (Angstroms)
Number	Numb	ber	Туре	X Y	Ζ
1	6	0	1.273848	-0.513186	1.262641
2	6	0	2.392884	0.174754	0.774808
3	6	0	2.252720	1.519510	0.417420
4	6	0	0.994525	2.140455	0.499686
5	6	0	-0.134386	1.400808	0.882084
6	6	0	0.002757	0.061545	1.257329
7	1	0	1.379483	-1.545242	1.577517
8	1	0	3.104503	2.068214	0.032077
9	1	0	-1.110511	1.873809	0.871135
10	6	0	3.623046	-0.601022	0.459135
11	6	0	3.510627	-1.746730	-0.389383
12	6	0	4.889831	-0.222811	0.912679
13	6	0	4.662231	-2.475901	-0.732290
14	6	0	6.028030	-0.958751	0.566154
15	1	0	4.980461	0.651071	1.551517
16	6	0	5.913306	-2.086337	-0.252489
17	1	0	4.567506	-3.339363	-1.383296
18	1	0	7.001274	-0.651414	0.937644
19	1	0	6.795913	-2.658612	-0.522087
20	6	0	-1.161930	-0.806099	1.602109
21	6	0	-1.769710	-1.649315	0.639845
22	6	0	-1.645509	-0.810353	2.918151
23	6	0	-2.841863	-2.471783	1.043799
24	6	0	-2.701213	-1.638227	3.303359
25	1	0	-1.177551	-0.153740	3.646040
26	6	0	-3.295271	-2.481111	2.360713
27	1	0	-3.317342	-3.116768	0.311527
28	1	0	-3.054451	-1.624900	4.330271
29	1	0	-4.114753	-3.134834	2.644113
30	6	0	-1.439078	-1.662653	-0.802699
31	6	0	-0.320790	-1.909377	-1.550504
32	6	0	2.219743	-2.077551	-0.912147
33	6	0	1.038278	-2.085797	-1.210996

34	6	0	0.795798	3.570813	0.130122
35	8	0	-0.277601	4.153254	0.191257
36	8	0	1.930171	4.167372	-0.279667
37	6	0	1.822878	5.556217	-0.666487
38	1	0	2.828702	5.849599	-0.967126
39	1	0	1.126693	5.665377	-1.502089
40	1	0	1.484010	6.161978	0.178090
41	7	0	-1.875336	-1.621546	-3.128114
42	7	0	-0.661797	-1.898818	-2.957216
43	6	0	-2.518627	-1.407767	-1.832176
44	1	0	-3.377028	-2.084815	-1.747062
45	6	0	-3.015433	0.044451	-1.703870
46	8	0	-2.547066	0.984202	-2.311314
47	8	0	-3.976064	0.115411	-0.784211
48	6	0	-4.431004	1.453615	-0.399342
49	1	0	-3.549962	2.057995	-0.166112
50	1	0	-4.944495	1.896791	-1.257393
51	6	0	-5.342394	1.284258	0.795970
52	1	0	-4.805900	0.825833	1.632614
53	1	0	-5.704285	2.268119	1.112851
54	1	0	-6.207622	0.661611	0.546830

B (BnN₃ pseudo-Endo)

HF = -1508.7686577 hartreesZero-point correction=0.442549 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.380803Sum of electronic and zero-point Energies=-1508.326109Sum of electronic and thermal Enthalpies=-1508.296816Sum of electronic and thermal Free Energies=-1508.387855

Center	Atomi	с <i>I</i>	Atomic	Coordinate	 s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	-1.507984	-0.039415	-1.389417
2	6	0	-1.936044	-1.287358	-0.914477
3	6	0	-2.911473	-1.327817	0.086303
4	6	0	-3.401892	-0.131465	0.637001
5	6	0	-2.878146	1.103091	0.224462
6	6	0	-1.916889	1.152687	-0.790384
7	1	0	-0.787720	0.003298	-2.198650
8	1	0	-3.255079	-2.282267	0.468449
9	1	0	-3.221310	2.014314	0.702799
10	6	0	-1.200541	-2.508878	-1.339662
11	6	0	0.221025	-2.536072	-1.192496
12	6	0	-1.846743	-3.652085	-1.818755
13	6	0	0.939332	-3.691716	-1.544552
14	6	0	-1.121140	-4.796296	-2.167188
15	1	0	-2.927390	-3.639122	-1.928192
16	6	0	0.270684	-4.814812	-2.032842
17	1	0	2.018153	-3.701234	-1.424149
18	1	0	-1.643549	-5.669994	-2.545882
19	1	0	0.834550	-5.702188	-2.304521
20	6	0	-1.300726	2.431728	-1.255994
21	6	0	-0.025330	2.870302	-0.822804
22	6	0	-2.009530	3.204760	-2.189058
23	6	0	0.489912	4.068456	-1.358520
24	6	0	-1.485140	4.389669	-2.706557
25	1	0	-2.988630	2.860783	-2.510343
26	6	0	-0.222755	4.819617	-2.291351
27	1	0	1.466065	4.409357	-1.029029
28	1	0	-2.055686	4.966480	-3.428825
29	1	0	0.206418	5.735263	-2.687752
30	6	0	0.798357	2.237153	0.240626
31	6	0	1.300820	0.945693	0.481146
32	6	0	0.864116	-1.385688	-0.637708
33	6	0	1.122104	-0.310195	-0.128603
34	6	0	-4.441722	-0.127477	1.704975

35	8	0	-4.868227	0.882039	2.246896
36	8	0	-4.874623	-1.363568	2.016907
37	6	0	-5.884580	-1.449851	3.047567
38	1	0	-6.099742	-2.513436	3.151314
39	1	0	-5.504498	-1.042767	3.988166
40	1	0	-6.783333	-0.905217	2.746636
41	7	0	1.313017	3.049758	1.214032
42	7	0	2.075459	2.359809	2.023542
43	7	0	2.076797	1.090947	1.601184
44	6	0	2.867329	0.067560	2.291077
45	1	0	3.147762	0.514460	3.247846
46	1	0	2.215286	-0.786956	2.485985
47	6	0	4.089397	-0.353282	1.498095
48	6	0	4.338420	-1.709068	1.255156
49	6	0	4.986513	0.608719	1.012118
50	6	0	5.474548	-2.102801	0.539899
51	1	0	3.638414	-2.456899	1.618802
52	6	0	6.117141	0.217346	0.291439
53	1	0	4.795339	1.663553	1.192770
54	6	0	6.364950	-1.140352	0.054961
55	1	0	5.657317	-3.157860	0.355660
56	1	0	6.804922	0.970099	-0.083689
57	1	0	7.244523	-1.443935	-0.505869

BnN3 Pseudo-exo

HF = -1508.7673096 hartreesZero-point correction=0.442683 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.381461Sum of electronic and zero-point Energies=-1508.324627Sum of electronic and thermal Enthalpies=-1508.295375Sum of electronic and thermal Free Energies=-1508.385848

Center Number	Aton Nu	nic A mber	Atomic Type	Coordinate X Y	es (Angstroms) ZZ
1	6	0	1.776789	-0.410669	1.242513
2	6	0	3.018205	-0.318057	0.600146
3	6	0	3.411803	0.918159	0.078049
4	6	0	2.544191	2.021482	0.154295
5	6	0	1.260719	1.877484	0.704128
6	6	0	0.869389	0.650441	1.245554
7	1	0	1.477415	-1.353924	1.685041
8	1	0	4.366127	1.013275	-0.427169
9	1	0	0.578664	2.721051	0.694354
10	6	0	3.775391	-1.570959	0.332491

11	6	0	3.107157	-2.650837	-0.324888
12	6	0	5.127091	-1.714526	0.659606
13	6	0	3.811272	-3.834034	-0.606742
14	6	0	5.816287	-2.897300	0.371726
15	1	0	5.638622	-0.893599	1.154107
16	6	0	5.156907	-3.957490	-0.257332
17	1	0	3.298103	-4.647053	-1.110818
18	1	0	6.864214	-2.989634	0.641984
19	1	0	5.689112	-4.877467	-0.480461
20	6	0	-0.494939	0.375684	1.787749
21	6	0	-1.486171	-0.259786	1.001494
22	6	0	-0.769827	0.654802	3.133774
23	6	0	-2.701236	-0.631715	1.605305
24	6	0	-1.990590	0.303058	3.713789
25	1	0	-0.005538	1.143359	3.731295
26	6	0	-2.954059	-0.357904	2.949015
27	1	0	-3.453621	-1.138689	1.011433
28	1	0	-2.178972	0.530645	4.759008
29	1	0	-3.900362	-0.656511	3.390001
30	6	0	-1.351669	-0.489630	-0.459694
31	6	0	-0.528440	-1.270238	-1.287338
32	6	0	1.745752	-2.462917	-0.731666
33	6	0	0.652031	-1.994224	-0.991903
34	6	0	2.920100	3.354812	-0.396030
35	8	0	2.183196	4.330803	-0.397651
36	8	0	4.169114	3.380468	-0.896176
37	6	0	4.609623	4.635410	-1.462676
38	1	0	5.628517	4.454788	-1.805216
39	1	0	3.969018	4.919620	-2.301647
40	1	0	4.594969	5.422189	-0.703943
41	7	0	-2.223182	0.082706	-1.342889
42	7	0	-1.972903	-0.309933	-2.608390
43	7	0	-0.959001	-1.125888	-2.583799
44	6	0	-3.293601	1.056939	-1.104575
45	1	0	-2.988476	1.684906	-0.266033
46	1	0	-3.324599	1.681857	-2.001345
47	6	0	-4.651808	0.433167	-0.839589
48	6	0	-5.073159	-0.724355	-1.506939
49	6	0	-5.513081	1.045006	0.080336
50	6	0	-6.337598	-1.264007	-1.252233
51	1	0	-4.414240	-1.210190	-2.220425
52	6	0	-6.780831	0.510991	0.328967
53	1	0	-5.185976	1.934247	0.613344
54	6	0	-7.195673	-0.648169	-0.334897
55	1	0	-6.651113	-2.165050	-1.772125
56	1	0	-7.437480	0.993551	1.047608
57	1	0	-8.177402	-1.069431	-0.137457

HF = -1864.095677 hartrees	
Zero-point correction=	0.495567 (Hartree/Particle)
Thermal correction to Gibbs Free Ener	-gy= 0.428617
Sum of electronic and zero-point Energy	gies= -1863.600110
Sum of electronic and thermal Enthalp	ies= -1863.565360
Sum of electronic and thermal Free En	ergies= -1863.667060

Standard orientation:

Center	Atomi	с <i>и</i>	Atomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	0.925522	-1.821887	-1.553779
2	6	0	2.122450	-1.936848	-0.836212
3	6	0	2.069318	-2.353909	0.497176
4	6	0	0.825208	-2.591613	1.107243
5	6	0	-0.365567	-2.343243	0.407250
6	6	0	-0.317573	-1.943697	-0.930104
7	1	0	0.959153	-1.507169	-2.591144
8	1	0	2.981452	-2.432905	1.077457
9	1	0	-1.314458	-2.441807	0.922776
10	6	0	3.351618	-1.351834	-1.439371
11	6	0	3.308944	0.019407	-1.848249
12	6	0	4.548213	-2.059168	-1.577926
13	6	0	4.455921	0.616693	-2.397468
14	6	0	5.682990	-1.451659	-2.127310
15	1	0	4.586281	-3.097406	-1.260652
16	6	0	5.634661	-0.117154	-2.540926
17	1	0	4.417530	1.659472	-2.696772
18	1	0	6.601058	-2.022273	-2.233366
19	1	0	6.514237	0.354892	-2.968470
20	6	0	-1.503947	-1.480571	-1.710203
21	6	0	-1.942615	-0.138209	-1.616927
22	6	0	-2.119576	-2.339303	-2.631584
23	6	0	-2.978296	0.300288	-2.461057
24	6	0	-3.155202	-1.893511	-3.454957
25	1	0	-1.772890	-3.366497	-2.701174
26	6	0	-3.577473	-0.563794	-3.376930
27	1	0	-3.318256	1.328062	-2.387009
28	1	0	-3.621822	-2.578063	-4.157473
29	1	0	-4.373208	-0.199659	-4.020123
30	6	0	-1.413262	0.818634	-0.604166
31	6	0	-0.176999	1.371357	-0.473593
32	6	0	2.108583	0.760802	-1.598247
33	6	0	1.008888	1.094270	-1.189435

D

34	6	0	0.716250	-3.022087	2.529591
35	8	0	-0.342790	-3.210831	3.111471
36	8	0	1.914503	-3.187259	3.119468
37	6	0	1.897551	-3.586814	4.508373
38	1	0	2.945425	-3.660463	4.799469
39	1	0	1.384503	-2.835129	5.113835
40	1	0	1.400370	-4.553890	4.621041
41	6	0	-0.079022	2.301024	0.727757
42	6	0	-2.342302	1.302135	0.496798
43	6	0	-3.747746	0.750008	0.530691
44	6	0	-3.980995	-0.514992	1.080255
45	6	0	-5.277441	-1.027333	1.045093
46	1	0	-3.167419	-1.083400	1.516240
47	6	0	-5.955921	0.996989	-0.045010
48	6	0	-6.289822	-0.257025	0.471131
49	1	0	-5.489641	-2.009244	1.457258
50	1	0	-6.716253	1.626984	-0.500779
51	1	0	-7.313377	-0.614366	0.420518
52	6	0	1.259573	2.945694	0.980275
53	6	0	1.518304	4.266575	0.606650
54	6	0	2.804395	4.771266	0.811606
55	1	0	0.739677	4.877333	0.164809
56	6	0	3.410864	2.636324	1.720060
57	6	0	3.772728	3.942648	1.377935
58	1	0	3.042037	5.792807	0.530261
59	1	0	4.137173	1.958648	2.162562
60	1	0	4.785478	4.292265	1.551653
61	7	0	-1.619631	0.958024	1.827443
62	7	0	-0.510068	1.451541	1.939766
63	7	0	-2.316759	2.809469	0.482604
64	7	0	-1.191600	3.301440	0.594917
65	7	0	-4.711788	1.496524	-0.024419
66	7	0	2.182693	2.140111	1.526113

1,4-diphenyl-1,3-butadiyne (A) and 3,5-TPDY 5 (B)

HF = -1050.9990446 hartreesZero-point correction=0.340369 (Hartree/Particle)Thermal correction to Gibbs Free Energy=0.285981Sum of electronic and zero-point Energies=-1050.658676Sum of electronic and thermal Enthalpies=-1050.636987Sum of electronic and thermal Free Energies=-1050.713064

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Ζ
	(0 (054(0	2 2(5050	0.072722
1	0	0	-0.605460	3.203930 1.902172	-0.8/3/22
2	0	0	-0.528644	1.8931/3	-1.112264
3	6	0	0.525378	1.1330/1	-0.5684/0
4	6	0	1.493979	1.///3//	0.223343
5	6	0	1.412834	3.151/22	0.456662
6	6	0	0.365381	3.899765	-0.090453
7	l	0	-1.421013	3.840283	-1.303616
8	l	0	-1.278287	1.405916	-1.727260
9	1	0	2.295812	1.202788	0.672810
10	1	0	2.165361	3.634649	1.073322
11	1	0	0.304387	4.968477	0.094171
12	6	0	0.567020	-0.310990	-0.817683
13	6	0	-0.453635	-1.268319	-0.766441
14	6	0	-1.810075	-1.084806	-0.415846
15	6	0	-2.970532	-0.885218	-0.108146
16	6	0	-4.324264	-0.616887	0.250660
17	6	0	-5.278996	-1.654695	0.293272
18	6	0	-4.721680	0.700421	0.566203
19	6	0	-6.599944	-1.375436	0.643539
20	1	0	-4.976650	-2.668991	0.051647
21	6	0	-6.045319	0.967269	0.914831
22	1	0	-3.988034	1.500367	0.536275
23	6	0	-6.987999	-0.066991	0.954876
24	1	0	-7.327809	-2.181246	0.673937
25	1	0	-6.341376	1.984141	1.156441
26	1	0	-8.017863	0.145159	1.227307
27	7	0	1.348422	-2.337526	-1.356368
28	7	0	1 660957	-1 032022	-1 188613
20	, 7	0	0.078945	-2 487815	-1 100320
30	6	0	3 032208	-0 591481	-1 443082
31	1	0	2 983077	0.416290	-1 860943
32	1	0	3 421615	-1 258008	-2 216856
32	6	0	3.721013	-0.617273	-0.216616
34	6	0	3 719910	-1 514754	0.838270
	~			1,217/27	

35	6	0	5.009138	0.272761	-0.155087
36	6	0	4.581570	-1.519236	1.940238
37	1	0	2.885116	-2.208285	0.807480
38	6	0	5.874377	0.263350	0.942169
39	1	0	5.167772	0.982045	-0.964072
40	6	0	5.661486	-0.632807	1.995467
41	1	0	4.406715	-2.217126	2.754326
42	1	0	6.706995	0.960485	0.977914
43	1	0	6.328810	-0.637020	2.852702

X-RAY CRYSTALLOGRAPHY 3,5-TPDY

The data for **3,5-TPDY** crystalised from DCM/Et₂O, were collected from a shock-cooled single crystal at 150 K on a Bruker Venture Metaljet k-geometry diffractometer with a Metal Jet using Helios MX Mirror Optics as monochromator and a Bruker CMOS Photon III detector. The diffractometer was equipped with an Oxford Cryostream 700 low temperature device and used Ga K_{α} radiation ($\lambda = 1.34139$ Å). All data were integrated with *SAINT* (2020) and a multi-scan absorption correction using *SADABS* 2016/2 was applied. ^{6,7}The structure was solved by dual methods with *XT* and refined by full-matrix least-squares methods against F^2 using *XL*.^{8,9} Structure solution and refinement cycles were performed within the graphical user interface of *OLEX2*. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were located from difference Fourier map and refined isotropically.¹⁰ This report and the CIF file were generated using FinalCif.¹¹

Empirical formula	$C_{24}H_{14}O_2$
Formula weight	334.35
Temperature [K]	150
Crystal system	monoclinic
Space group (number)	$P2_{1}/c_{(14)}$
a [Å]	3.8764(2)
<i>b</i> [Å]	38.1644(16)
<i>c</i> [Å]	10.9214(6)
α [°]	90
β [°]	99.461(2)
γ [°]	90

Table S5. Crystal data and structure refinement for 3,5-TPDY

⁶ Bruker, SAINT, (2020), Bruker AXS Inc., Madison, Wisconsin, USA.

⁷ L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3–10,

doi:10.1107/S1600576714022985.

⁸ G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8, doi:10.1107/S2053273314026370.

⁹ G. M. Sheldrick, Acta Cryst. 2015, C71, 3–8, doi:10.1107/S2053229614024218.

¹⁰ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard & amp; H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341,

doi:10.1107/S0021889808042726

¹¹ D. Kratzert, FinalCif, V84, https://www.xs3.uni-freiburg.de/research/finalcif.

Volume [Å ³]	1593.74(14)
Ζ	4
$ ho_{ m calc} [m gcm^{-3}]$	1.393
$\mu [\mathrm{mm}^{-1}]$	0.443
<i>F</i> (000)	696
Crystal size [mm ³]	0.02×0.02×0.3
Crystal colour	clear light colourless
Crystal shape	Needle
Radiation	Ga K_{α} (λ =1.34139 Å)
20 range [°]	4.03 to 113.91 (0.80 Å)
Index ranges	$-4 \le h \le 4$
	$-45 \le k \le 47$
	$-13 \le l \le 13$
Reflections collected	14884
Independent reflections	3171
	$R_{\rm int} = 0.0525$
	$R_{\rm sigma} = 0.0457$
Completeness to	100.0 %
$\theta = 53.594^{\circ}$	
Data / Restraints /	3171 / 0 / 292
Parameters	
Goodness-of-fit on F^2	1.054
Final R indexes	$R_1 = 0.0452$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1017$
Final R indexes	$R_1 = 0.0737$
[all data]	$wR_2 = 0.1134$
Largest peak/hole [eÅ-3]	0.25/-0.18
Extinction coefficient	0.0034(5)

Table S6. Atomic coordinates and Ueq $[Å^2]$ for 3,5-TPDY

Atom	x	у	z	$U_{ m eq}$
01	-0.0166(4)	0.72812(3)	0.62060(13)	0.0414(4)
O2	0.1030(4)	0.69897(3)	0.80075(11)	0.0342(4)
C1	0.4569(5)	0.61153(4)	0.63393(16)	0.0239(4)
C2	0.5315(5)	0.57862(4)	0.70878(16)	0.0242(4)
C3	0.4162(5)	0.54509(4)	0.66197(17)	0.0262(4)
C4	0.2508(5)	0.54262(4)	0.53539(18)	0.0278(4)
C5	0.1553(5)	0.54790(4)	0.42597(18)	0.0279(4)
C6	0.1468(5)	0.56668(5)	0.31805(17)	0.0287(4)
C7	0.2256(5)	0.59050(5)	0.25602(17)	0.0282(4)
C8	0.3617(5)	0.62283(5)	0.21693(16)	0.0261(4)
C9	0.4584(5)	0.64908(5)	0.30824(16)	0.0253(4)
C10	0.4211(5)	0.64508(4)	0.44125(16)	0.0244(4)
C11	0.5165(5)	0.61480(4)	0.51158(16)	0.0225(4)
H11	0.630(5)	0.5956(5)	0.4759(16)	0.022(5)
C12	0.2838(5)	0.67308(5)	0.49973(17)	0.0257(4)
H12	0.215(5)	0.6949(5)	0.4551(17)	0.031(5)
C13	0.2381(5)	0.67109(4)	0.62301(17)	0.0253(4)
C14	0.3186(5)	0.64009(5)	0.68907(17)	0.0252(4)
H14	0.276(5)	0.6377(4)	0.7740(17)	0.019(4)
C15	0.0928(5)	0.70227(5)	0.67809(17)	0.0283(4)
C16	-0.0152(7)	0.72892(6)	0.8629(2)	0.0415(6)
H16A	0.113(7)	0.7501(7)	0.842(2)	0.059(7)
H16B	0.055(7)	0.7247(6)	0.951(3)	0.066(8)

H16C	-0.263(9)	0.7338(7)	0.835(2)	0.071(9)
C17	0.6996(5)	0.58073(5)	0.83099(17)	0.0279(4)
H17	0.778(5)	0.6047(5)	0.8661(17)	0.031(5)
C18	0.7591(6)	0.55124(5)	0.90602(19)	0.0323(5)
H18	0.873(5)	0.5536(5)	0.9929(19)	0.033(5)
C19	0.6471(5)	0.51871(5)	0.85939(19)	0.0321(5)
H19	0.679(6)	0.4976(6)	0.9111(19)	0.041(6)
C20	0.4750(5)	0.51561(5)	0.73876(18)	0.0302(5)
H20	0.391(5)	0.4928(5)	0.7053(17)	0.026(5)
C21	0.5814(5)	0.68089(5)	0.26850(18)	0.0289(4)
H21	0.646(5)	0.6993(5)	0.3325(18)	0.034(5)
C22	0.6182(5)	0.68662(5)	0.14621(18)	0.0326(5)
H22	0.712(6)	0.7098(5)	0.1210(18)	0.036(5)
C23	0.5305(6)	0.66033(5)	0.05875(18)	0.0337(5)
H23	0.562(5)	0.6647(5)	-0.0282(19)	0.032(5)
C24	0.4019(5)	0.62883(5)	0.09401(18)	0.0312(5)
H24	0.338(6)	0.6100(5)	0.0298(19)	0.041(6)

 U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
O1–C15	1.208(2)	C21-C9-C10	118.91(16)
O2C15	1.340(2)	C11–C10–C9	123.94(16)
O2-C16	1.442(2)	С12-С10-С9	118.26(16)
C1–C2	1.501(2)	C12-C10-C11	117.81(16)
C1C11	1.398(2)	C1C11C10	121.75(16)
C1C14	1.394(2)	C1C11H11	118.3(10)
C2–C3	1.422(2)	С10-С11-Н11	120.0(10)
C2–C17	1.388(3)	С10-С12-Н12	121.2(11)
C3–C4	1.428(3)	C13-C12-C10	121.43(17)
C3–C20	1.400(3)	С13-С12-Н12	117.4(11)
C4–C5	1.208(3)	C12–C13–C14	119.65(17)
C5–C6	1.375(3)	C12C13C15	117.78(16)
С6-С7	1.203(3)	C14C13C15	122.54(16)
С7–С8	1.434(3)	C1C14H14	118.4(10)
С8–С9	1.419(2)	C13-C14-C1	120.60(17)
C8–C24	1.396(3)	C13-C14-H14	121.0(10)
C9–C10	1.491(2)	O1C15O2	123.14(17)
C9–C21	1.399(3)	O1C15C13	124.60(17)
C10-C11	1.403(2)	O2-C15-C13	112.25(15)
C10–C12	1.394(2)	O2C16H16A	109.2(15)
C11–H11	0.970(18)	O2C16H16B	106.0(16)
C12–H12	0.98(2)	O2C16H16C	112.2(16)
C12–C13	1.389(3)	H16A-C16-H16B	107(2)
C13–C14	1.394(2)	H16A-C16-H16C	106(2)
C13–C15	1.486(2)	H16B-C16-H16C	116(2)
C14–H14	0.972(18)	С2-С17-Н17	118.5(11)
C16–H16A	0.99(3)	C2C17C18	121.78(18)
C16–H16B	0.97(3)	С18-С17-Н17	119.7(11)
C16–H16C	0.98(3)	C17-C18-H18	120.1(11)
C17–H17	1.02(2)	C19–C18–C17	119.86(19)
C17–C18	1.389(3)	C19–C18–H18	120.0(11)
C18–H18	0.98(2)	С18-С19-Н19	121.5(12)
C18–C19	1.384(3)	C20–C19–C18	120.08(18)
C19–H19	0.98(2)	С20-С19-Н19	118.3(12)
C19–C20	1.380(3)	С3-С20-Н20	118.7(11)
C20–H20	0.978(19)	С19-С20-С3	120.56(18)
C21–H21	0.99(2)	С19-С20-Н20	120.8(11)
C21–C22	1.384(3)	C9–C21–H21	117.1(11)
C22–H22	1.01(2)	C22–C21–C9	122.07(18)
C22–C23	1.388(3)	С22-С21-Н21	120.9(11)
С23–Н23	0.99(2)	C21–C22–H22	120.0(11)

Table S7 Bond lengths and angles for 3,5-TPDY

C23–C24	1.380(3)	C21–C22–C23	119.83(18)
C24–H24	1.01(2)	С23-С22-Н22	120.2(11)
		С22-С23-Н23	118.9(11)
Atom-Atom-Atom	Angle [°]	C24–C23–C22	119.75(18)
C15–O2–C16	115.89(16)	С24-С23-Н23	121.3(11)
C11–C1–C2	123.21(16)	C8–C24–H24	120.0(12)
C14–C1–C2	118.18(16)	C23–C24–C8	120.91(18)
C14C1C11	118.60(16)	C23–C24–H24	119.1(12)
C3–C2–C1	122.43(16)		
C17–C2–C1	119.55(16)		
С17-С2-С3	117.89(16)		
C2–C3–C4	118.15(16)		
С20-С3-С2	119.82(17)		
C20–C3–C4	122.00(17)		
C5–C4–C3	164.18(19)		
C4–C5–C6	153.46(19)		
C7–C6–C5	154.71(19)		
С6-С7-С8	163.29(19)		
С9–С8–С7	117.73(16)		
C24–C8–C7	122.14(17)		
C24–C8–C9	120.13(17)		
C8–C9–C10	123.76(16)		
C21–C9–C8	117.28(17)		

Table S8. Torsion angles for 3,5-TPDY

Atom-Atom-Atom-	Torsion Angle
Atom	[°]
C1C2C3C4	5.6(3)
C1C2C3C20	-176.09(17)
C1–C2–C17–C18	176.77(17)
C2-C1-C11-C10	175.43(17)
C2C1C14C13	-178.76(17)
C2–C3–C4–C5	23.0(8)
C2–C3–C20–C19	-0.6(3)
C2-C17-C18-C19	-0.5(3)
C3–C2–C17–C18	0.7(3)
C3–C4–C5–C6	-0.3(11)
C4–C3–C20–C19	177.61(18)
C4–C5–C6–C7	0.4(8)
С5-С6-С7-С8	-10.9(11)
С6-С7-С8-С9	-14.9(8)
C6C7C8C24	164.8(6)
C7–C8–C9–C10	-1.0(3)
C7–C8–C9–C21	-178.21(17)
C7–C8–C24–C23	179.38(19)

C8-C9-C10-C11	44.6(3)
C8-C9-C10-C12	-135.56(19)
C8–C9–C21–C22	-1.8(3)
C9–C8–C24–C23	-0.9(3)
C9-C10-C11-C1	-176.08(17)
C9-C10-C12-C13	179.29(17)
C9–C21–C22–C23	0.2(3)
C10-C9-C21-C22	-179.13(18)
C10-C12-C13-C14	-2.4(3)
C10-C12-C13-C15	179.52(17)
C11-C1-C2-C3	-48.8(3)
C11-C1-C2-C17	135.40(19)
C11-C1-C14-C13	0.7(3)
C11-C10-C12-C13	-0.8(3)
C12C10C11C1	4.0(3)
C12C13C14C1	2.4(3)
C12C13C15O1	6.7(3)
C12C13C15O2	-171.90(16)
C14C1C2C3	130.66(19)
C14C1C2C17	-45.2(2)
C14C1C11C10	-4.0(3)
C14-C13-C15-O1	-171.34(19)
C14C13C15O2	10.0(3)
C15-C13-C14-C1	-179.54(17)
C16-O2-C15-O1	-2.0(3)
C16-O2-C15-C13	176.67(18)
C17-C2-C3-C4	-178.47(17)
C17-C2-C3-C20	-0.2(3)
C17-C18-C19-C20	-0.3(3)
C18-C19-C20-C3	0.9(3)
C20–C3–C4–C5	-155.2(7)
C21-C9-C10-C11	-138.25(19)
C21-C9-C10-C12	41.6(3)
C21-C22-C23-C24	1.0(3)
C22-C23-C24-C8	-0.7(3)
C24-C8-C9-C10	179.32(18)
C24-C8-C9-C21	2.1(3)

3,5-Triazole-Reg2

The data for 3,5-Triazole-Reg2, crystallised from DCM/Et₂O, were collected from a shock-cooled single crystal at 150 K on a Bruker Venture Metaljet k-geometry diffractometer with a Metal Jet using Helios MX Mirror Optics as monochromator and a Bruker CMOS Photon III detector. The diffractometer was equipped with an Oxford Cryostream 700 low temperature device and used Ga K_{α} radiation ($\lambda = 1.34139$ Å). All data were integrated with *SAINT* (2020) and a multi-scan absorption correction using *SADABS* 2016/2 was applied. ^{12,13}The structure was solved by dual methods with *XT* and refined by full-matrix least-squares methods against F^2 using *XL*.¹⁴¹⁵ Structure solution and refinement cycles were performed within the graphical user interface of *OLEX2*. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were located from difference Fourier map and refined isotropically.¹⁶ This report and the CIF file were generated using FinalCif.¹⁷

Empirical formula	$C_{31}H_{21}N_3O_2$
Formula weight	467.51
Temperature [K]	150
Crystal system	triclinic
Space group (number)	$P\overline{1}(2)$
<i>a</i> [Å]	9.1237(13)
<i>b</i> [Å]	10.4155(15)
<i>c</i> [Å]	12.6877(19)
α [°]	100.575(6)
β [°]	91.287(6)
γ [°]	93.604(6)
Volume [Å ³]	1182.2(3)
Ζ	2
$ ho_{ m calc} [m gcm^{-3}]$	1.313
$\mu [{ m mm}^{-1}]$	0.423

Table S9. Cryst	al data and	l structure	refinement	for 3	3,5-T	riazole-	Reg	2
					<i>)</i> -		<u></u>	

¹² Bruker, SAINT, (2020), Bruker AXS Inc., Madison, Wisconsin, USA.

¹³ L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3–10,

doi:10.1107/S1600576714022985.

¹⁴ G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8, doi:10.1107/S2053273314026370.

¹⁵ G. M. Sheldrick, Acta Cryst. 2015, C71, 3–8, doi:10.1107/S2053229614024218.

¹⁶ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard & amp; H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341,

doi:10.1107/S0021889808042726

¹⁷ D. Kratzert, FinalCif, V84, https://www.xs3.uni-freiburg.de/research/finalcif.

<i>F</i> (000)	488
Crystal size [mm ³]	0.11×0.15×0.16
Crystal colour	clear light colourless
Crystal shape	Block
Radiation	Ga <i>K</i> _α (λ=1.34139 Å)
2θ range [°]	6.17 to 114.03
	(0.80 Å)
Index ranges	$-11 \leq h \leq 11$
	$-12 \le k \le 12$
	$-15 \le 1 \le 15$
Reflections collected	45392
Independent	4777
reflections	$R_{\rm int} = 0.0292$
	$R_{\rm sigma} = 0.0169$
Completeness to	99.1 %
$\theta = 53.594^{\circ}$	
Data / Restraints /	4777 / 0 / 327
Parameters	
Goodness-of-fit on F^2	1.032
Final R indexes	$R_1 = 0.0350$
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.0907$
Final R indexes	$R_1 = 0.0385$
[all data]	$wR_2 = 0.0930$
Largest peak/hole	0.25/-0.18
[eÅ ⁻³]	
Extinction coefficient	0.0117(12)

Table S10. Atomic coordinates and Ueq $[{\rm \AA}^2]$ for 3,5-Triazole-Reg2

Atom	x	у	z	$U_{ m eq}$
01	0.15694(10)	0.53286(8)	0.95431(6)	0.0365(2)
C1	0.48365(11)	0.11700(10)	0.60471(9)	0.0260(2)
N1	0.62407(10)	0.11664(9)	0.64530(8)	0.0318(2)
O2	0.24689(14)	0.68273(9)	0.86332(8)	0.0591(3)
N2	0.62080(10)	0.05520(10)	0.72614(8)	0.0319(2)
C2	0.38860(11)	0.05039(10)	0.66364(8)	0.0235(2)
N3	0.48000(9)	0.01395(9)	0.73754(7)	0.0259(2)
C3	0.22969(11)	0.00773(10)	0.66190(8)	0.0228(2)
C4	0.11832(11)	0.09576(10)	0.68387(8)	0.0227(2)
C5	0.14799(10)	0.23858(10)	0.68437(8)	0.0232(2)
C6	0.16732(11)	0.27584(10)	0.58577(9)	0.0245(2)
H6	0.153167	0.211467	0.522211	0.029
C7	0.20701(11)	0.40531(10)	0.57716(9)	0.0255(2)
C8	0.25406(12)	0.43658(10)	0.47281(9)	0.0269(2)
C9	0.36228(12)	0.36261(10)	0.41537(9)	0.0276(2)
C10	0.42259(12)	0.26020(11)	0.46197(9)	0.0281(2)
C11	0.45392(11)	0.18791(10)	0.52139(9)	0.0273(2)
C12	0.19244(12)	-0.12662(10)	0.64908(9)	0.0269(2)
H12	0.266148	-0.186636	0.631066	0.032
C13	0.04983(12)	-0.17377(10)	0.66220(9)	0.0285(2)
H13	0.026376	-0.265338	0.653680	0.034

C14	-0.05859(11)	-0.08663(11)	0.68784(9)	0.0288(2)
H14	-0.155940	-0.118192	0.698903	0.035
C15	-0.02423(11)	0.04678(10)	0.69724(9)	0.0272(2)
H15	-0.099397	0.105802	0.713096	0.033
C16	0.20093(13)	0.54102(11)	0.43259(9)	0.0317(3)
H16	0.128221	0.590631	0.470283	0.038
C17	0.25266(15)	0.57380(11)	0.33813(10)	0.0371(3)
H17	0.215664	0.645538	0.311760	0.045
C18	0.35832(15)	0.50162(12)	0.28249(10)	0.0377(3)
H18	0.394084	0.524466	0.218175	0.045
C19	0.41235(13)	0.39599(12)	0.32016(9)	0.0333(3)
H19	0.483718	0.346281	0.280904	0.040
C20	0.15774(11)	0.33393(10)	0.77723(9)	0.0255(2)
H20	0.143731	0.310201	0.845294	0.031
C21	0.18837(11)	0.46514(10)	0.76933(9)	0.0271(2)
C22	0.21486(11)	0.49996(10)	0.66995(9)	0.0271(2)
H22	0.238401	0.589031	0.665874	0.033
C23	0.20122(13)	0.57203(11)	0.86499(10)	0.0328(3)
C24	0.16333(16)	0.63285(14)	1.04978(10)	0.0440(3)
H24A	0.098735	0.701572	1.039519	0.066
H24B	0.264491	0.670770	1.063779	0.066
H24C	0.131113	0.594138	1.110899	0.066
C25	0.44281(12)	-0.04244(11)	0.83198(9)	0.0280(2)
H25A	0.533745	-0.066436	0.865436	0.034
H25B	0.378098	-0.123238	0.809482	0.034
C26	0.36589(12)	0.05306(11)	0.91354(9)	0.0279(2)
C27	0.24242(13)	0.01146(13)	0.96249(10)	0.0374(3)
H27	0.203640	-0.076779	0.943186	0.045
C28	0.17464(15)	0.09837(15)	1.03997(11)	0.0464(3)
H28	0.090309	0.068927	1.073697	0.056
C29	0.22922(15)	0.22682(14)	1.06797(11)	0.0458(3)
H29	0.182487	0.286088	1.120540	0.055
C30	0.35220(17)	0.26875(13)	1.01914(11)	0.0469(3)
H30	0.390438	0.357165	1.038322	0.056
C31	0.42023(15)	0.18247(12)	0.94222(11)	0.0400(3)
H31	0.504758	0.212224	0.908874	0.048

 $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S11. Anisotropic displacement parameters (Å²) for 3,5-Triazole-Reg2. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2(a^*)^2 U_{11} + k^2(b^*)^2 U_{22} + ... + 2hka^*b^*U_{12}]$

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
O1	0.0447(5)	0.0311(4)	0.0306(4)	-0.0013(3)	0.0073(4)	-0.0026(4)
C1	0.0197(5)	0.0239(5)	0.0353(6)	0.0066(4)	0.0035(4)	0.0049(4)
N1	0.0203(4)	0.0329(5)	0.0454(6)	0.0145(4)	0.0028(4)	0.0047(4)
O2	0.0997(9)	0.0281(5)	0.0439(5)	-0.0028(4)	0.0162(5)	-0.0166(5)
N2	0.0189(4)	0.0346(5)	0.0451(6)	0.0144(4)	0.0010(4)	0.0031(4)
C2	0.0201(5)	0.0210(5)	0.0297(5)	0.0042(4)	0.0014(4)	0.0056(4)
N3	0.0181(4)	0.0268(4)	0.0343(5)	0.0088(4)	0.0010(3)	0.0038(3)
C3	0.0196(5)	0.0233(5)	0.0257(5)	0.0049(4)	0.0013(4)	0.0023(4)
C4	0.0208(5)	0.0229(5)	0.0242(5)	0.0034(4)	0.0005(4)	0.0028(4)

C5	0.0155(4)	0.0227(5)	0.0318(5)	0.0050(4)	0.0017(4)	0.0040(4)
C6	0.0202(5)	0.0236(5)	0.0293(5)	0.0026(4)	-0.0002(4)	0.0044(4)
C7	0.0212(5)	0.0254(5)	0.0309(5)	0.0068(4)	0.0000(4)	0.0048(4)
C8	0.0270(5)	0.0237(5)	0.0296(5)	0.0050(4)	-0.0030(4)	-0.0001(4)
C9	0.0282(5)	0.0251(5)	0.0294(5)	0.0059(4)	-0.0016(4)	0.0000(4)
C10	0.0243(5)	0.0286(5)	0.0318(6)	0.0058(4)	0.0055(4)	0.0035(4)
C11	0.0212(5)	0.0269(5)	0.0346(6)	0.0064(4)	0.0061(4)	0.0040(4)
C12	0.0244(5)	0.0234(5)	0.0331(6)	0.0040(4)	0.0012(4)	0.0055(4)
C13	0.0278(5)	0.0216(5)	0.0354(6)	0.0048(4)	-0.0009(4)	-0.0012(4)
C14	0.0203(5)	0.0294(6)	0.0362(6)	0.0061(5)	0.0009(4)	-0.0021(4)
C15	0.0198(5)	0.0272(5)	0.0348(6)	0.0050(4)	0.0027(4)	0.0040(4)
C16	0.0352(6)	0.0251(5)	0.0347(6)	0.0054(5)	-0.0035(5)	0.0038(4)
C17	0.0490(7)	0.0272(6)	0.0366(6)	0.0113(5)	-0.0081(5)	0.0013(5)
C18	0.0496(7)	0.0348(6)	0.0302(6)	0.0116(5)	0.0001(5)	-0.0026(5)
C19	0.0363(6)	0.0326(6)	0.0312(6)	0.0066(5)	0.0026(5)	0.0003(5)
C20	0.0213(5)	0.0258(5)	0.0297(5)	0.0051(4)	0.0032(4)	0.0036(4)
C21	0.0245(5)	0.0241(5)	0.0319(6)	0.0021(4)	0.0028(4)	0.0030(4)
C22	0.0252(5)	0.0210(5)	0.0355(6)	0.0056(4)	0.0018(4)	0.0036(4)
C23	0.0351(6)	0.0268(6)	0.0352(6)	0.0025(5)	0.0044(5)	0.0003(5)
C24	0.0483(8)	0.0443(7)	0.0330(7)	-0.0073(5)	0.0060(5)	-0.0061(6)
C25	0.0255(5)	0.0275(5)	0.0332(6)	0.0107(4)	-0.0007(4)	0.0039(4)
C26	0.0254(5)	0.0295(5)	0.0293(5)	0.0072(4)	-0.0048(4)	0.0030(4)
C27	0.0317(6)	0.0392(7)	0.0383(6)	0.0013(5)	0.0017(5)	-0.0038(5)
C28	0.0331(6)	0.0602(9)	0.0409(7)	-0.0033(6)	0.0047(5)	0.0001(6)
C29	0.0462(8)	0.0492(8)	0.0379(7)	-0.0064(6)	-0.0050(6)	0.0167(6)
C30	0.0603(9)	0.0311(6)	0.0460(8)	-0.0003(5)	-0.0040(6)	0.0025(6)
C31	0.0429(7)	0.0332(6)	0.0425(7)	0.0057(5)	0.0013(5)	-0.0036(5)

Table S12. Bond lengths and angles for 3,5-Triazole-Reg2

Atom-	Length	Atom-Atom-	Angle [°]
Atom	[Å]	Atom	ⁿ igic []
O1–C23	1.3355(14)	C23–O1–C24	115.71(9)
O1–C24	1.4428(14)	N1-C1-C2	108.75(9)
C1-N1	1.3705(14)	N1C1C11	120.46(9)
C1–C2	1.3915(15)	C2C1C11	130.57(10)
C1–C11	1.4268(15)	N2-N1-C1	108.79(9)
N1-N2	1.3047(14)	N1-N2-N3	107.77(8)
O2–C23	1.2051(15)	C1–C2–C3	138.21(10)
N2-N3	1.3482(12)	N3-C2-C1	103.20(9)
C2-N3	1.3616(13)	N3-C2-C3	118.50(9)
C2–C3	1.4880(14)	N2-N3-C2	111.48(9)
N3-C25	1.4654(14)	N2-N3-C25	118.77(9)
C3–C4	1.4096(14)	C2-N3-C25	128.99(9)
C3–C12	1.3979(15)	C4–C3–C2	123.24(9)
C4–C5	1.4939(14)	C12–C3–C2	117.38(9)
C4–C15	1.3924(14)	C12–C3–C4	119.01(9)
C5–C6	1.3879(15)	C3–C4–C5	121.21(9)
C5–C20	1.3918(15)	C15–C4–C3	119.05(9)
С6–Н6	0.9500	C15–C4–C5	119.56(9)

C6–C7	1.3986(15)	C6–C5–C4	117.05(9)
С7–С8	1.4864(15)	C6–C5–C20	119.26(9)
C7–C22	1.3873(15)	C20–C5–C4	123.70(9)
C8–C9	1.4218(15)	С5-С6-Н6	119.0
C8–C16	1.3920(15)	С5-С6-С7	121.98(10)
C9–C10	1.4425(15)	С7-С6-Н6	119.0
C9–C19	1.3956(16)	С6-С7-С8	120.06(9)
C10–C11	1.2011(16)	С22–С7–С6	118.21(10)
C12–H12	0.9500	С22–С7–С8	121.43(10)
C12–C13	1.3862(15)	C9–C8–C7	119.20(9)
С13–Н13	0.9500	C16–C8–C7	121.72(10)
C13–C14	1.3882(15)	C16–C8–C9	118.98(10)
C14–H14	0.9500	C8–C9–C10	118.03(10)
C14-C15	1.3877(15)	С19–С9–С8	119.40(10)
C15–H15	0.9500	C19–C9–C10	122.46(10)
C16–H16	0.9500	C11–C10–C9	164.25(11)
C16–C17	1.3896(17)	C10-C11-C1	171.22(11)
C17–H17	0.9500	С3-С12-Н12	119.4
C17–C18	1.3856(19)	C13–C12–C3	121.14(9)
C18–H18	0.9500	С13-С12-Н12	119.4
C18–C19	1.3901(17)	С12-С13-Н13	120.1
C19–H19	0.9500	C12–C13–C14	119.72(10)
C20–H20	0.9500	C14-C13-H13	120.1
C20–C21	1.3997(15)	C13–C14–H14	120.1
C21–C22	1.3965(16)	C15–C14–C13	119.75(10)
C21–C23	1.4858(16)	C15–C14–H14	120.1
C22–H22	0.9500	C4C15H15	119.4
C24–H24A	0.9800	C14-C15-C4	121.25(9)
C24–H24B	0.9800	С14-С15-Н15	119.4
C24–H24C	0.9800	C8-C16-H16	119.5
C25–H25A	0.9900	C17–C16–C8	120.99(11)
C25–H25B	0.9900	С17-С16-Н16	119.5
C25–C26	1.5151(15)	С16-С17-Н17	120.1
C26–C27	1.3825(16)	C18–C17–C16	119.84(11)
C26–C31	1.3867(17)	С18-С17-Н17	120.1
C27–H27	0.9500	C17–C18–H18	119.8
C27–C28	1.3925(18)	C17–C18–C19	120.44(11)
C28–H28	0.9500	С19-С18-Н18	119.8
C28–C29	1.378(2)	С9-С19-Н19	119.8
С29–Н29	0.9500	C18–C19–C9	120.33(11)
C29–C30	1.379(2)	С18-С19-Н19	119.8
С30–Н30	0.9500	С5-С20-Н20	120.3
C30–C31	1.3859(19)	C5-C20-C21	119.34(10)
C31–H31	0.9500	С21-С20-Н20	120.3
		C20–C21–C23	122.31(10)

	 C22-C21-C20	120.56(10)
	C22–C21–C23	117.07(10)
	C7–C22–C21	120.42(10)
	С7-С22-Н22	119.8
	C21-C22-H22	119.8
	O1-C23-C21	112.91(10)
	O2-C23-O1	122.93(11)
	O2-C23-C21	124.16(11)
	O1–C24–H24A	109.5
	O1–C24–H24B	109.5
	O1–C24–H24C	109.5
	H24A-C24-H24B	109.5
	H24A–C24–H24C	109.5
	H24B-C24-H24C	109.5
	N3-C25-H25A	109.4
	N3-C25-H25B	109.4
	N3-C25-C26	111.37(9)
	H25A-C25-H25B	108.0
	C26–C25–H25A	109.4
	C26-C25-H25B	109.4
	C27–C26–C25	120.36(10)
	C27–C26–C31	119.02(11)
	C31–C26–C25	120.60(10)
	С26-С27-Н27	119.9
	C26–C27–C28	120.28(12)
	С28-С27-Н27	119.9
	C27–C28–H28	119.8
	C29–C28–C27	120.36(13)
	C29–C28–H28	119.8
	С28-С29-Н29	120.2
	C28–C29–C30	119.53(12)
	С30-С29-Н29	120.2
	С29-С30-Н30	119.9
	C29–C30–C31	120.29(13)
	С31-С30-Н30	119.9
	C26-C31-H31	119.7
	C30–C31–C26	120.52(12)
	C30-C31-H31	119.7
·		-

Table S13. Torsion angles for 3,5-Triazole-Reg2

Atom-Atom-Atom-	Torsion Angle	Atom-Atom-Atom-	Torsion Angle
Atom	[°]	Atom	[°]
C1-N1-N2-N3	0.88(12)	C11–C1–C2–C3	9.6(2)

C1C2N3N2	0.36(11)	C12–C3–C4–C5	-172.05(10)
C1C2N3C25	170.10(10)	C12–C3–C4–C15	3.03(15)
C1–C2–C3–C4	-67.96(17)	C12-C13-C14-C15	1.76(17)
C1C2C3C12	119.09(14)	C13C14C15C4	-1.51(17)
N1C1C2N3	0.18(11)	C15-C4-C5-C6	-102.93(11)
N1C1C2C3	-175.92(11)	C15-C4-C5-C20	77.42(13)
N1-N2-N3-C2	-0.79(12)	C16-C8-C9-C10	176.11(10)
N1-N2-N3-C25	-171.71(9)	C16-C8-C9-C19	-0.17(16)
N2-N3-C25-C26	104.40(11)	C16-C17-C18-C19	0.41(19)
C2C1N1N2	-0.67(12)	C17-C18-C19-C9	-0.94(18)
C2-N3-C25-C26	-64.71(14)	C19–C9–C10–C11	168.0(4)
C2–C3–C4–C5	15.10(15)	C20–C5–C6–C7	4.78(15)
C2C3C4C15	-169.82(10)	C20–C21–C22–C7	1.86(16)
C2–C3–C12–C13	170.45(10)	C20–C21–C23–O1	-10.47(16)
N3-C2-C3-C4	116.36(11)	C20–C21–C23–O2	169.37(12)
N3-C2-C3-C12	-56.59(13)	С22-С7-С8-С9	124.37(11)
N3-C25-C26-C27	135.15(11)	C22–C7–C8–C16	-52.04(15)
N3-C25-C26-C31	-46.48(14)	C22-C21-C23-O1	172.36(10)
C3-C2-N3-N2	177.41(9)	C22–C21–C23–O2	-7.80(18)
C3-C2-N3-C25	-12.85(16)	C23–C21–C22–C7	179.08(10)
C3-C4-C5-C6	72.12(13)	C24–O1–C23–O2	1.56(18)
C3–C4–C5–C20	-107.53(12)	C24O1C23C21	-178.59(10)
C3-C4-C15-C14	-0.91(16)	C25-C26-C27-C28	177.92(11)
C3–C12–C13–C14	0.42(17)	C25-C26-C31-C30	-178.10(11)
C4–C3–C12–C13	-2.82(16)	C26-C27-C28-C29	0.5(2)
C4C5C6C7	-174.88(9)	C27–C26–C31–C30	0.28(19)
C4–C5–C20–C21	178.96(9)	C27-C28-C29-C30	-0.4(2)
C5-C4-C15-C14	174.25(10)	C28-C29-C30-C31	0.2(2)
С5-С6-С7-С8	168.36(9)	C29–C30–C31–C26	-0.1(2)
С5-С6-С7-С22	-5.46(15)	C31–C26–C27–C28	-0.47(18)
C5–C20–C21–C22	-2.58(15)		
C5–C20–C21–C23	-179.65(10)		
C6–C5–C20–C21	-0.69(15)		
C6–C7–C8–C9	-49.24(14)		
C6C7C8C16	134.35(11)		
C6-C7-C22-C21	2.08(15)		
С7-С8-С9-С10	-0.41(15)		
С7-С8-С9-С19	-176.68(10)		
C7–C8–C16–C17	176.08(10)		
C8-C7-C22-C21	-171.65(10)		
C8-C9-C10-C11	-8.1(5)		
C8–C9–C19–C18	0.81(17)		
C8-C16-C17-C18	0.23(18)		
C9–C8–C16–C17	-0.35(16)		
C10-C9-C19-C18	-175.30(11)		

C11-C1-N1-N2	174.51(10)	
C11-C1-C2-N3	-174.35(11)	

Table S14. Hydrogen bonds for 3,5-Triazole-Reg2

D –Н···А [Å]	d(D– H) [Å]	d(H···A) [Å]	d(D…A) [Å]	<(DHA) [°]
C25–H25B····O2 ^{#1}	0.99	2.49	3.3696(15)	147.2

Symmetry transformations used to generate equivalent atoms: #1: +X, -1+Y, +Z;