Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Ring Expansion of 3-Hydroxyoxindoles to 4-Quinolones via Palladium-Catalyzed

C-C(acyl) Bond Cleavage

Zhi-Cong Huang,¹ Zhi-Ling Ruan,³ Hui Xu,¹ Hui-Xiong Dai^{1,2,3}*

¹State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

³School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.

*E-mail for Hui-Xiong Dai: hxdai@simm.ac.cn.

Content

1.	Gene	ral Information	2		
2.	Optimization Reaction Conditions				
3.	Expe	5			
	3.1 G	eneral procedure for the synthesis of 3-Hydroxyoxindoles 1	5		
	3.2	Synthesis of substrates: 1g-11	5		
	3.3	Synthesis of substrates: 2w	6		
	3.4	General procedure for the preparation of 3	6		
	3.5	Experimental procedure for the preparation of 4	6		
4.	Analy	ytical Data	8		
	4.1 C	haracterization of Starting Material	8		
	4.2 C	haracterization of Products	10		
5.	Supplementary References				
6.	X-Ra	y Crystallography Data of Compound 3h	20		
7.	NMR Spectra27				

1. General Information

All reagents were purchased from TCI, J&K, STREM, Sigma-Aldrich, Adamas-beta, and Energy Chemical of the highest purity grade, and used directly without further purification. ¹H and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 and Bruker AVANCE III 500 instruments. ¹⁹F NMR spectra were recorded on Bruker AVANCE III 500 instrument and are reported relative to the CFCl₃ as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.26 ppm (for ¹H NMR) or 77.0 ppm (for ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double ofdoublets, td = triple doublet, dt = double triplet, tt = triple triplet. EI-double focus magnetic-sector high resolution MS(EI-DFS-HRMS) was recorded on a DFS-Thermofischer instrument employing an ultra-high precision toroidal electrostatic analyzer (ESA) and a carefully refined magnetic analyzer at the Center for Mass Spectrometry, Shanghai Institute of Material Medica. ESI with TOF analyzer was carried out at the Center for Mass Spectrometry, Shanghai Institute of Material Medica. Solvents were purified prior to use according to conventional procedures. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether-ethyl acetate as the eluent. Solvents were purified prior to use according to conventional procedures.

2. Optimization Reaction Conditions

HO N N 1a ^{Me} +	Br Pd.cat., PPh ₃ , Cs ₂ CO ₃ Toluene, 120 °C	Me Me Ja
Entry	Pd.cat.	Yield (%)
1	Pd ₂ dba ₃	77
2	Pd(PPh ₃) ₄	76
3	PdCl ₂	74
4	Pd(OAc) ₂	74
5	$Pd(cod)Cl_2$	80
6	$Pd(acac)_2$	10
7	Pd(CH ₃ CN) ₂ Cl ₂	67
8	Pd(PPh ₃) ₂ Cl ₂	71
9	Pd(CH ₃ CN) ₄ (OTf) ₂	19

^a**1a** (0.1 mmol), **2a** (1.5 eq.), Pd cat. (10 mol%), PPh₃ (20 mol%), Cs₂CO₃ (2.0 eq.), toluene (2.0 mL), 120 °C, N₂. Yields were determined by ¹H NMR of crude products using 1,3,5-trioxane as internal standard.

Table S2. Screening of the phosphine ligands

^a**1a** (0.1 mmol), **2a** (1.5 eq.), Pd(cod)Cl₂ (10 mol%), P Ligand (20 mol%), Cs₂CO₃ (2.0 eq.), toluene (2.0 mL), 120 °C, N₂. Yields were determined by ¹H NMR of crude products using

1,3,5-trioxane as internal standard.

T 11.	0.2	с ·	· · · ·	41.	1
Table	N .3.	Screenin	g ot	the	pases
1	~~•	Sereenini	5 01	ci i c	ouses

	∕_Me ∕_O + ∕Ae	Br -	d(cod)Cl ₂ , PCy ₃ , E Toluene, 120	Base °C	Me N Me 3a
Entry	Base	Yield (%)	Entry	Base	Yield (%)
1	Li ₂ CO ₃	0	10	KH ₂ PO ₄	0
2	Na ₂ CO ₃	0	11	CH ₃ OLi	0
3	K_2CO_3	17	12	CH ₃ ONa	0
4	Cs_2CO_3	87	13	<i>t</i> BuONa	82
5	MgCO ₃	0	14	tBuOK	10
6	NaHCO ₃	0	15	LiOH	0
7	KHCO ₃	0	16	NaOH	88
8	K ₃ PO ₄	21	17	Ca(OH) ₂	0
9	K ₂ HPO ₄	13	18	NaH	trace

^a**1a** (0.1 mmol), **2a** (1.5 eq.), Pd(cod)Cl₂ (10 mol%), PCy₃ (20 mol%), Base (2.0 eq.), toluene (2.0 mL), 120 °C, N₂. Yields were determined by ¹H NMR of crude products using 1,3,5-trioxane as internal standard.

Table S4. Screening of the solvents

HO Me 1a	Br Pd(cod)Cl ₂ , PCy ₃ , NaOH Solvent, 120 °C	Me Me Me 3a
Entry	Solvent	Yield (%)
1	Toluene	88
2	MeCN	0
3	DCE	0
4	Dioxane	50
5	Hexane	0
6	DMF	0
7	DMSO	20

^a**1a** (0.1 mmol), **2a** (1.5 eq.), Pd(cod)Cl₂ (10 mol%), PCy₃ (20 mol%), NaOH (2.0 eq.), Solvent (2.0 mL), 120 °C, N₂. Yields were determined by ¹H NMR of crude products using 1,3,5-trioxane as internal standard.

3. Experimental Procedure

3.1 General procedure for the synthesis of 3-Hydroxyoxindoles 1¹

Step 1: Indoles **A** (10 mmol), iodine (3.05 g, 12 mmol, 1.2 equiv.) and dry DMSO (0.25 M) were added to an oven-dried 100 mL round bottom flask under argon gas. TBHP (5.0 - 6.0 M in Decane, 5.0 equiv.) was added dropwise over a period of 0.5 h at 80 °C. The mixture was then heated at 80 °C for 24 h. Upon the completion of reaction, after cooled to rt, the mixture was extracted with EtOAc (2 x 40 mL). The organic layer was washed with brine (40 mL), dried over anhydrous Na₂SO₄, and concentrated to give the crude product, which was further, purified by flash column chromatography on silica gel to give the desired isatins **B**.

Step 2: **B** (5 mmol, 1.0 equiv.), R^2I (6 mmol, 1.2 equiv.), K_2CO_3 (1.04 g, 7.5 mmol, 1.5 equiv.) and dry DMF (0.25 M) were mixed in an oven-dried 100 mL round bottom flask under argon gas. The reaction was allowed to stir for overnight at room temperature. Upon the completion of reaction, then the reaction mixture was extracted with EtOAc, washed with sat. NH₄Cl, brine, and dried over Na₂SO₄. The residues were purified by flash column chromatography on silica gel to give **C**.

Step 3: Grignard reagent (1.5 equiv.) was added dropwise to a solution of C (5.0 mmol, 1.0 equiv.) in dry THF (0.5 M) for 30 min using syringe pump at -78 °C. The mixture was then stirred at room temperature for 2 h. Upon the completion of reaction, then the reaction mixture was extracted with EtOAc, washed with sat. NH₄Cl, brine, and dried over Na₂SO₄. The residues were purified by flash column chromatography on silica gel to give **1**.

3.2 Synthesis of substrates: 1g-1l²

Step 1: Isatin **D** (735 mg, 5 mmol, 1.0 equiv.), MeI (852 mg, 6 mmol, 1.2 equiv.), K_2CO_3 (1.04 g, 7.5 mmol, 1.5 equiv.) and dry DMF (0.25 M) were mixed in an oven-dried 100 mL round bottom flask under argon gas. The reaction was allowed to stir for overnight at room temperature. Upon the completion of reaction, then the reaction mixture was extracted with EtOAc, and washed with sat. NH₄Cl, brine, and dried over Na₂SO₄. The solution was concentrated under reduced

pressure. The compound E was recrystallized from EtOAc and cooled hexane.

Step 2: **E** (805 mg, 5 mmol, 1.0 equiv.), alkyl bromides (7.5 mmol, 1.5 equiv.), Cp_2ZrCl_2 (146 mg, 0.5 mmol, 0.1 equiv.), zinc powder (640 mg, 10 mmol, 2 equiv.) and dry DMF (0.25 M) were added to an oven-dried 100 mL round bottom flask under argon gas. Upon the completion of reaction, then the reaction mixture was extracted with EtOAc, washed with 1M HCl, brine, and dried over Na₂SO₄. The residues were purified by flash column chromatography on silica gel to give **1**.

3.3 Synthesis of substrates: 2w³

4-Bromobenzoyl chloride (1.20 g, 5.5 mmol, 1.1 equiv.) was dissolved in DCM (10 mL) and added to a mixture of cholesterol (1.93 g, 5 mmol, 1.0 equiv.), DMAP (61 mg, 0.5 mmol, 0.1 equiv.) and Et₃N (1.01 g, 10 mmol, 2.0 equiv.) in DCM (10 mL). The reaction was allowed to stirred overnight at room temperature. Then, the mixture was quenched upon addition of NH₄Cl (aq. 10%), and extracted with DCM three times. The organic phase was washed with brine, concentrated and purified by silica gel flash chromatography to give the corresponding substituted aryl bromide **2w** (2.27 g) in 90% as white solid.

3.4 General procedure for the preparation of **3**.

An oven dried 25 mL Schlenk tube was charged with isatin-derived aryl alcohols 1 (0.1 mmol, 1.0 equiv.), aryl bromides 2 (0.15 mmol, 1.5 equiv.), $Pd(cod)Cl_2$ (2.9 mg, 0.01 mmol, 0.1 equiv.), PCy_3 (5.6 mg, 0.02 mmol, 0.2 equiv.), NaOH (8.0 mg, 0.2 mmol, 2.0 eq.), and 2.0 mL toluene. The tube was tightly capped and vigorously stirred in a pre-warmed oil bath maintained at 120 °C for a period of time under N₂ atmosphere. After cooling to room temperature, the reaction mixture was filtered through celite. The filtrate was extracted with EtOAc, and the organic layer was washed with brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane) to afford the products.

3.5 Experimental procedure for the preparation of 4.

An oven dried 25 mL Schlenk tube was charged with isatin-derived aryl alcohols 10 (23.9 mg, 0.1

mmol), PhBr (23.3 mg, 0.15 mmol, 1.5 equiv.), Pd(cod)Cl₂ (2.9 mg, 0.01 mmol, 0.1 equiv.), PCy₃ (5.6 mg, 0.02 mmol, 0.2 equiv.), NaOH (8.0 mg, 0.2 mmol, 2.0 eq.), and 2.0 mL toluene. The tube was tightly capped and vigorously stirred in a pre-warmed oil bath maintained at 120 °C for 12 h under N₂ atmosphere. After cooling to room temperature, the reaction mixture was filtered through celite. The filtrate was extracted with EtOAc, and the organic layer was washed with brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc = 1:1) to afford the product **4** (27.1 mg, 86% yield).

4. Analytical Data

4.1 Characterization of Starting Material

Starting material **1a**, **1b**, **1f**, **1g-1i**, **1k**, **1l**, **1m**, **1n**, and **1o** are known products and are synthesized according to the general procedure 3.1 and 3.2.

3-ethyl-3-hydroxy-1-methylindolin-2-one (1a)⁴: Purification by flash column chromatography

on silica gel (Hexane/EtOAc = 4:1) afforded **1a** as a white solid. 42% yield (0.40 g). ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (dd, J = 7.3, 1.3 Hz, 1H), 7.33 (td, J = 7.8, 1.3 Hz, 1H), 7.11 (td, J = 7.5, 1.0 Hz, 1H), 6.84 (dd, J = 7.8, 0.9 Hz, 1H), 3.19 (d, J = 1.1 Hz, 3H), 2.08-1.94 (m, 2H), 0.75 (t, J = 7.5 Hz, 3H).

3-ethyl-3-hydroxy-1,4-dimethylindolin-2-one (1b)⁴: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) afforded 1b as a yellow solid. 38% yield (0.39 g). ¹H NMR (500 MHz, CDCl₃) δ 7.21 (td, J = 7.8, 1.5 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 3.18 (d, J = 1.1 Hz, 3H), 2.95-2.62 (m, 1H), 2.45 (s, 3H), 2.27-2.01 (m, 2H), 0.59 (t, J = 7.6, 3H).

3-ethyl-3-hydroxy-1,5-dimethylindolin-2-one (1c): Purification by flash column Me $\stackrel{\text{HO}}{\underset{\text{Me}}{}}$ chromatography on silica gel (Hexane/EtOAc = 4:1) afforded 1c as a yellow solid. 50% yield (0.51 g). m.p. 106-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 1.6 Hz, 1H), 7.16-7.09 (m, 1H), 6.74 (d, J = 7.8 Hz, 1H), 3.31 (s, 1H), 3.18 (m, 3H), 2.36 (s, 3H), 2.06-1.93 (m, 2H), 0.75 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 178.4, 141.2, 132.7, 129.9, 129.7, 124.7, 108.1, 77.4, 31.6, 26.2, 21.1, 7.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₁₅NNaO₂ 228.0995; Found 228.0994.

3-ethyl-5-fluoro-3-hydroxy-1-methylindolin-2-one (1d): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) afforded 1d as a white solid. 44% yield (0.46 g). m.p. 117-118 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.17-7.11 (m, 1H), 7.06-6.99 (m, 1H), 6.79-6.74 (m, 1H), 3.96-3.42 (m, 1H), 3.18 (d, J = 2.8 Hz, 3H), 2.07-1.92 (m, 2H), 0.78-0.70 (m, 3H). ¹³C NMR

(125 MHz, CDCl₃) δ 178.5, 159.7 (d, J = 239.5 Hz), 139.5, 131.7, 115.8 (d, J = 23.8 Hz), 112.3 (d, J = 25.0 Hz), 109.1 (d, J = 8.8 Hz), 77.6, 31.7, 26.4, 7.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -119.69 – -119.85 (m, 1F). **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₃FNO₂ 210.0925; Found 210.0927.

3-ethyl-3-hydroxy-1-methyl-5-(trifluoromethoxy)indolin-2-one (1e): Purification by flash $F_3CO + F_3CO +$

 $= 254.7 \text{ Hz}, 117.5, 109.0, 76.6, 30.9, 25.4, 6.9. {}^{19}\text{F NMR} (470 \text{ MHz}, \text{CDCl}_3) \delta -58.35. \text{ HRMS}$ (ESI) m/z: $[\text{M+H}]^+$ Calcd for $\text{C}_{12}\text{H}_{13}\text{F}_3\text{NO}_3$ 276.0842; Found 276.0842.

chromatography on silica gel (Hexane/EtOAc = 2:1) afforded **1f** as a red solid. 52% yield (0.57 g). ¹H NMR (500 MHz, CDCl₃) δ 7.00 (d, J = 2.5 Hz, 1H), 6.87-6.83 (m, 1H), 6.75 (d, J = 8.5 Hz, 1H), 3.81 (s, 3H), 3.18 (d, J =0.9 Hz, 3H), 3.06-2.77 (m, 1H), 2.02-1.93 (m, 2H), 0.74 (t, J = 7.4, 3H).

3-benzyl-3-hydroxy-1-methylindolin-2-one (1g)²: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:1) afforded 1g as a white solid. 70% yield (0.89 g). ¹**H NMR** (500 MHz, CDCl₃) δ 7.29-7.24 (m, 1H), 7.19-7.10 (m, 4H), 7.08-7.03 (m, 1H), 6.97-6.93 (m, 2H), 6.65 (d, J = 7.8 Hz, 1H), 3.31 (d, J = 12.9 Hz, 1H), 3.14 (d, J = 12.9 Hz, 1H), 3.01 (s, 3H). Me

3-hydroxy-1-methyl-3-(4-methylbenzyl)indolin-2-one (1h)²: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:1) afforded **1h** as a white solid. 54% yield (0.72 g). ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.24 (m, 1H), 7.17 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.07-7.03 (m, 1H), 6.94 (d, J = 7.7 Hz, 2H), 6.85 (d, J = 7.9 Hz, 2H), 6.67 (d, J = 7.7 Hz, 1H), 3.26 (d, J = 13.0 Hz, 1H), 3.08 (d, J = 13.0 Hz, 1H), 3.03 (s, 3H),

2.87 (s, 1H), 2.25 (s, 3H).

Me

3-(4-chlorobenzyl)-3-hydroxy-1-methylindolin-2-one (1i)²: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:1) afforded 1i as a HС white solid. 64% yield (0.92 g). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 1H), 7.20-7.04 (m, 4H), 6.91-6.86 (m, 2H), 6.68 (d, J = Мe 7.8 Hz, 1H), 3.26 (d, J = 12.9 Hz, 1H), 3.09 (d, J = 13.0 Hz, 1H), 3.03 (s,

3H), 2.72 (s, 1H).

3-(cyclohexylmethyl)-3-hydroxy-1-methylindolin-2-one (1j): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:1) afforded 1j as a light yellow liquid. 36% yield (0.45 g). m.p. 124-126 °C ¹H NMR (500 MHz, HQ $CDCl_3$) δ 7.39-7.31 (m, 2H), 7.13-7.08 (m, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.19 (s, 3H), 2.73 (s, 1H), 1.97-1.86 (m, 2H), 1.58-1.43 (m, 5H), 1.17-1.03 Me (m, 4H), 0.94 -0.83 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 143.6, 130.3, 129.8, 124.3, 123.2, 108.6, 76.5, 45.8, 34.5, 34.2, 33.5, 26.4, 26.2. HRMS (ESI-ESA) m/z:

 $[M]^+$ Calcd for C₁₆H₂₂NO₂ 260.1645; Found 260.1647.

3-hydroxy-1,3-dimethylindolin-2-one (1k)⁴: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) afforded **1k** as an white solid. 50% yield (0.44 HO Me g). ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (dd, J = 7.3, 1.3 Hz, 1H), 7.33 (td, J = 7.8, 1.3 Hz, 1H), 7.11 (td, J = 7.5, 1.0 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 3.20 (s, Me 3H), 1.61 (s, 3H).

ethyl 2-(3-hydroxy-1-methyl-2-oxoindolin-3-yl) acetate (11)²: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) afforded 11 as an orange CO₂Et solid. 72% yield (0.90 g). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dd, J = 7.4, 1.3 Hz, 1H), 7.35 (td, J = 7.8, 1.3 Hz, 1H), 7.09 (td, J = 7.6, 1.0 Hz, 1H), 6.84 (d, Мe J = 7.8 Hz, 1H), 4.49-4.41 (m, 1H), 4.18-4.09 (m, 2H), 3.21 (d, J = 1.2 Hz,

3H), 2.94 (d, *J* = 14.0 Hz, 1H), 2.90 (d, *J* = 14.0 Hz, 1H), 1.23-1.16 (m, 3H).

1,3-diethyl-3-hydroxyindolin-2-one (1m)⁵: Purification by flash column chromatography on

silica gel (Hexane/EtOAc = 4:1) afforded **1m** as a white solid. 52% yield (0.53 g). ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (dd, J = 7.3, 1.3 Hz, 1H), 7.32 (td, J = 7.7, 1.3 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 3.86-3.77 (m, 1H), 3.73-3.64 (m, 1H), 3.14-2.67 (m, 1H), 2.06-1.94 (m, 2H), 1.28-1.25 (m, 3H).

(m, 3H), 0.74-0.71 (m, 3H).

3-ethyl-3-hydroxy-1-phenylindolin-2-one (1n)⁶: Purification by flash column chromatography

on silica gel (Hexane/EtOAc = 4:1) afforded **1n** as a white solid. 40% yield (0.51 g). ¹H NMR (500 MHz, DMSO- d_6) δ 7.59 (t, J = 7.8 Hz, 2H), 7.50-7.44 (m, 1H), 7.43-7.37 (m, 3H), 7.27 (td, J = 7.7, 1.3 Hz, 1H), 7.13 (td, J = 7.5, 1.0 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 6.15 (s, 1H), 1.96-1.91 (m, 2H), 0.71 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 177.6, 143.4, 134.7, 131.5, 130.1, 129.5, 128.4, 127.0, 124.5, 123.4, 109.2, 76.5, 31.5, 8.0.

3-hydroxy-1-methyl-3-phenylindolin-2-one (10)⁶: Purification by flash column chromatography HO Ph (0.68 g). ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.29 (m, 7H), 7.11 (td, J = 7.9, 1.1 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 3.45 (s, 1H), 3.27 (s, 3H).

(38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,1 2,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4- bromobenzoate (2w)³:

Purification by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) afforded **2w** as a white solid. 90% yield (2.56 g). ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 5.42 (d, *J* = 5.1 Hz, 1H), 4.88-4.81 (m, 1H), 2.45 (d, *J* = 8.1 Hz, 2H), 2.06-1.89 (m, 5H), 1.88-1.80 (m, 1H), 1.77-1.68 (m, 1H), 1.60-1.57 (m, 1H), 1.54-1.45 (m, 4H), 1.39-1.22 (m, 8H), 1.21-1.09 (m, 6H), 1.05-0.97 (m, 3H), 0.92 (d, 0.86 (d, *J* = 6 Hz, 2H), 0.69 (c, 2H)

J = 6.6 Hz, 3H), 0.88 (d, *J* = 6.6 Hz, 3H), 0.86 (d, *J* = 6.6 Hz, 3H), 0.69 (s, 3H).

4.2 Characterization of Products

1,3-dimethyl-2-phenylquinolin-4(1*H***)-one (3a)⁷:** Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3a** as an orange solid. 86% yield (21.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.55 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.68-7.64 (m, 1H), 7.57-7.43 (m, 5H), 7.40-7.36 (m, 1H), 7.28 -7.27 (m, 1H), 3.46 (s, 3H), 1.86 (s, 3H).

1,3-dimethyl-2-(*m*-tolyl)quinolin-4(1*H*)-one (3c): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3c as an orange solid. 57% yield (15.0 mg). m.p. 131-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 .Me (dd, J = 8.0, 1.7 Hz, 1H), 7.70-7.64 (m, 1H), 7.50 (d, J = 8.5 Hz, 1H),

7.44-7.37 (m, 2H), 7.33-7.29 (m, 1H), 7.11-7.04 (m, 2H), 3.48 (s, 3H), 2.44 (s, 3H), 1.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 151.5, 141.1, 139.2, 135.7, 131.9, 129.9, 129.2, 129.0, 127.1, 125.6, 125.2,

123.2, 118.2, 115.6, 37.3, 21.6, 13.5. **HRMS** (EI-ESA) m/z: [M]⁺ Calcd for C₁₈H₁₇NO 263.1305; Found 263.1301.

2-(3-fluorophenyl)-1,3-dimethylquinolin-4(1H)-one (3d): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3d as an orange solid. 84% yield (22.4 mg). m.p. 145-146 °C. ¹H NMR (500 MHz, Me CDCl₃) δ 8.54 (dd, J = 8.1, 1.7 Hz, 1H), 7.71-7.65 (m, 1H), 7.61-7.47 (m, 2H), 7.43-7.37 (m, 1H), 7.26-7.19 (m, 1H), 7.14-7.00 (m, 2H), 3.48 (s, Йe 3H), 1.86 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 163.1 (d, J =

Ме

.Me

Ňе

246.5 Hz), 149.6, 141.0, 137.6 (d, J = 8.0 Hz), 132.1, 131.2 (d, J = 8.8 Hz), 127.0, 125.1, 124.5 (d, J = 3.3 Hz), 123.3, 118.1, 116.4 (d, J = 21.3 Hz), 115.9 (d, J = 21.3 Hz), 115.5, 37.3, 13.4. ¹⁹F **NMR** (470 MHz, CDCl₃) δ -110.75 – -110.84 (m, 1F). **HRMS** (EI-ESA) m/z: [M]⁺ Calcd for C₁₇H₁₄FNO 267.1054; Found 267.1054.

1,3-dimethyl-2-(p-tolyl)quinolin-4(1H)-one (3e): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3e as a yellow solid. 90% yield (23.7 mg). m.p. 175-176 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.55 Me (dd, J = 8.1, 1.7 Hz, 1H), 7.68-7.63 (m, 1H), 7.49 (d, J = 8.6 Hz, 1H),7.40-7.36 (m, 1H), 7.34 (d, J = 7.7 Hz, 2H), 7.19-7.12 (m, 2H), 3.47 (s, Ŵе 3H), 2.46 (s, 3H), 1.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5,

151.5, 141.0, 139.1, 132.8, 131.8, 129.9, 128.4, 127.0, 125.1, 123.1, 118.3, 115.6, 37.3, 21.5, 13.5. **HRMS** (EI-ESA) m/z: $[M]^+$ Calcd for C₁₈H₁₇NO 263.1305; Found 263.1299.

2-(4-fluorophenyl)-1,3-dimethylquinolin-4(1H)-one (3f)⁷: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3f as a white solid. 82% yield (18.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.53 Me (dd, J = 8.1, 1.7 Hz, 1H), 7.70-7.64 (m, 1H), 7.48 (d, J = 8.6 Hz, 1H),7.41-7.36 (m, 1H), 7.30-7.21 (m, 4H), 3.47 (s, 3H), 1.85 (s, 3H). ¹⁹F 'î Me NMR (470 MHz, CDCl₃) δ -111.33.

2-(4-chlorophenyl)-1,3-dimethylquinolin-4(1H)-one (3g): Purification by flash column

chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3g** as an orange solid. 79% yield (22.4 mg). m.p. 110-111 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (dd, J = 8.1, 1.7 Hz, 1H), 7.69-7.64 (m, 1H), 7.57-7.52 (m, 2H), 7.48 (d, J = 8.6 Hz, 1H), 7.41-7.36 (m, 1H), 7.27-7.23 (m, 2H), 3.46 (s, 3H), 1.85 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 149.9, 141.0,

135.4, 134.0, 132.1, 130.1, 129.6, 127.0, 125.1, 123.3, 118.3, 115.5, 37.3, 13.4. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₇H₁₄CINO 283.0758; Found 283.0732.

1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)quinolin-4(1*H***)-one (3h):** Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3h** as a yellow solid. 57% yield (18.1 mg). m.p. 132-133 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (dd, J = 8.1, 1.7 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.72-7.66 (m, 1H), 7.53-7.39 (m, 4H), 3.46 (s, 3H), 1.84 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 149.5, 141.1, 139.3, 132.3, 131.5

(q, J = 28.8 Hz), 129.3, 127.1, 126.5 (d, J = 3.8 Hz), 125.2, 123.9 (q, J = 270 Hz), 123.5, 118.2, 115.5, 37.5, 13.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.77. HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₁₈H₁₄F₃NO 317.1022; Found 317.0993.

2-(4-methoxyphenyl)-1,3-dimethylquinolin-4(1*H*)-one (3i)⁸: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3i as a red solid. 71% yield (19.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.54 (dd, J = 8.1, 1.7 Hz, 1H), 7.68-7.63 (m, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.40-7.35 (m, 1H), 7.22-7.16 (m, 2H), 7.09-7.02 (m, 2H), 3.90 (s, 3H), 3.48 (s, 3H).

1,3-dimethyl-2-(4-(trifluoromethoxy)phenyl)quinolin-4(1*H***)-one (3j): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3j as a light red solid. 92% yield (30.6 mg). m.p. 134-135 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.53 (dd, J = 8.0, 1.7 Hz, 1H), 7.70-7.64 (m, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.44-7.33 (m, 5H), 3.47 (s, 3H), 1.84 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 177.4, 149.7, 141.0, 134.2, 132.1, 130.4, 127.0, 125.1, 123.3, 121.7, 120.5 (q, J = 10.1 mm)**

256.3 Hz), 118.4, 115.6, 37.4, 13.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -57.75. HRMS (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₈H₁₄F₃NO₂ 333.0971; Found 333.0971.

1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3k):** Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3k as a yellow solid. 95% yield (30.5 mg). m.p. 154-155 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (dd, J = 8.1, 1.7 Hz, 1H), 7.71-7.61 (m, 3H), 7.49 (d, J = 8.6 Hz, 1H), 7.41-7.35 (m, 1H), 7.26-7.23 (m, 2H), 3.47 (s, 3H), 1.86 (s, 3H), 0.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 151.3, 142.0, 141.0, 135.9, 134.1, 131.9, 127.7, 126.9, 125.1,

123.1, 118.1, 115.6, 37.4, 13.5, -1.1. **HRMS** (EI-ESA) *m*/*z*: [M]⁺ Calcd for C₂₀H₂₃NOSi 321.1543; Found 321.1534.

2-([1,1'-biphenyl]-4-yl)-1,3-dimethylquinolin-4(1H)-one (3l): Purification by flash column

chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 31 as a yellow solid. 90% yield (29.2 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (dd, J = 8.1, 1.7 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.71-7.66 (m, 3H), 7.54-7.48 (m, 3H), 7.45-7.38 (m, 2H), 7.38-7.34 (m, 2H), 3.53 (s, 3H), 1.93 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5,

151.1, 142.1, 141.1, 140.1, 134.6, 132.0, 129.1, 129.1, 128.1, 127.9, 127.3, 127.1, 125.2, 123.3, 118.4, 115.6, 37.5, 13.6. HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₂₃H₁₉NO 325.1461; Found 325.1461.

2-(3,5-dimethylphenyl)-1,3-dimethylquinolin-4(1H)-one (3m): Purification by flash column

Ме

chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3m** as a white solid. 91% yield (25.2 mg). m.p. 160-161 °C. ¹H NMR (500 MHz, $CDCl_3$) δ 8.55 (dd, J = 8.1, 1.7 Hz, 1H), 7.68-7.62 (m, 1H), 7.49 (d, J =8.6 Hz, 1H), 7.42-7.35 (m, 1H), 7.12 (d, J = 1.9 Hz, 1H), 6.87 (d, J =1.7 Hz, 2H), 3.47 (s, 3H), 2.40 (s, 6H), 1.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 151.7, 141.0, 138.9, 135.6, 131.8, 130.7, 127.0,

126.1, 125.1, 123.0, 118.0, 115.5, 37.3, 21.5, 13.5. HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₁₉H₁₉NO 277.1461; Found 277.1442.

1,3-dimethyl-2-(naphthalen-2-yl)quinolin-4(1H)-one (3n): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3n as a black solid. 64% yield (19.1 mg). m.p. > 200 °C. ¹H NMR (500 MHz, Me $CDCl_3$) δ 8.58 (dd, J = 8.2, 1.7 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.98-7.89 (m, 2H), 7.81-7.77 (m, 1H), 7.72-7.65 (m, 1H), 7.64-7.57 (m, 2H), 7.51 (d, J = 8.6 Hz, 1H), 7.43-7.34 (m, 2H), 3.49 (s, 3H), 1.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 151.8, 150.3, 148.0, 141.1, 136.5,

133.8, 132.1, 130.9, 129.6, 128.3, 128.1, 127.1, 125.2, 123.3, 122.3, 118.5, 115.6, 37.5, 13.5. **HRMS** (EI-ESA) m/z: $[M]^+$ Calcd for C₂₁H₁₇NO 299.1305; Found 299.1290.

2-(2,3-dihydrobenzofuran-5-yl)-1,3-dimethylquinolin-4(1H)-one (30): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded Me **30** as a brown solid. 70% yield (20.4 mg). m.p. 197-198 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.54 \text{ (dd}, J = 8.1, 1.7 \text{ Hz}, 1\text{H}), 7.770-7.62 \text{ (m, 1H)},$ 7.49 (d, J = 8.6 Hz, 1H), 7.40-7.35 (m, 1H), 7.08 (d, J = 1.5 Hz, 1H), Ŵе 6.99 (dd, J = 8.1, 1.9 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.68 (td, J = 8.7, 1H), 4.68 (td, J = 8.7,

1.3 Hz, 2H), 3.50 (s, 3H), 3.31 (td, J = 8.7, 2.6 Hz, 2H), 1.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 160.7, 151.6, 141.0, 131.8, 128.6, 128.2, 127.8, 126.9, 125.2, 125.1, 123.1, 118.6, 115.6, 109.9, 71.7, 37.3, 29.7, 13.6. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₉H₁₇NO₂ 291.1254; Found 291.1226.

2-(benzo[d][1,3]dioxol-5-yl)-1,3-dimethylquinolin-4(1H)-one (3p): Purification by flash column

chromatography on silica gel (Hexane/EtOAc = 2:3) afforded **3p** as a white solid. 68% yield (19.9 mg). m.p. $> 200 \,{}^{\circ}\text{C}$. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (dd, J = 8.1, 1.7 Hz, 1H), 7.69-7.62 (m, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.42-7.34 (m, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.76-6.71 (m, 2H), 6.08 (s, 2H), 3.51 (s, 3H), 1.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 150.8, 148.4, 148.2, 141.0, 131.9, 129.2, 127.0, 125.1, 123.2, 122.4, 118.5, 115.6, 109.1, 109.0, 101.7, 37.2, 13.5. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₈H₁₅NO₃ 293.1046; Found 293.1030.

2-(benzo[b]thiophen-5-yl)-1,3-dimethylquinolin-4(1*H***)-one (3q): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3q as a yellow solid. 80% yield (24.4 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.58 (dd,** *J* **= 8.1, 1.7 Hz, 1H), 8.05 (d,** *J* **= 8.2, Hz, 1H), 7.74 (d,** *J* **= 1.6 Hz, 1H), 7.71-7.65 (m, 1H), 7.60 (d,** *J* **= 5.4 Hz, 1H), 7.51 (d,** *J* **= 8.6 Hz, 1H), 7.45-7.38 (m, 2H), 7.24 (dd,** *J* **= 8.2, 1.6 Hz, 1H), 3.48**

(s, 3H), 1.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 151.3, 141.1, 140.4, 140.0, 131.9, 131.7, 128.3, 127.0, 125.2, 124.3, 124.0, 123.7, 123.5, 123.2, 118.6, 115.6, 37.4, 13.6. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₉H₁₅NOS 305.0869; Found 305.0850.

1,3-dimethyl-[2,6'-biquinolin]-4(1*H***)-one (3r):** Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded **3r** as an orange solid. 67% yield (20.1 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.05 (dd, J = 4.3, 1.7 Hz, 1H), 8.57 (dd, J = 8.1, 1.7 Hz, 1H), 8.34- 8.24 (m, 2H), 7.81 (d, J = 1.9 Hz, 1H), 7.74-7.66 (m, 1H), 7.63 (dd, J = 8.6, 2.0 Hz, 1H), 7.58-7.48 (m, 2H), 7.44-7.39 (m, 1H), 3.50 (s, 3H), 1.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 151.2, 141.1, 133.2, 133.0, 132.0,

129.3, 128.4, 128.1, 127.3, 127.2, 127.1, 125.8, 125.2, 123.2, 118.5, 115.6, 37.5, 13.6. **HRMS** (EI-ESA) m/z: [M]⁺ Calcd for C₂₀H₁₆N₂O 300.1257; Found 300.1233.

2-(benzofuran-5-yl)-1,3-dimethylquinolin-4(1*H***)-one (3s): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3s as a deep red solid. 64% yield (18.5 mg). m.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.57 (dd, J = 8.1, 1.7 Hz, 1H), 7.76 (d, J = 2.1 Hz, 1H), 7.70-7.65 (m, 2H), 7.54-7.48 (m, 2H), 7.43-7.37 (m, 1H), 7.19 (dd, J = 8.4, 1.8 Hz, 1H), 6.87 (dd, J = 2.2, 1.0 Hz, 1H), 3.47 (s, 3H), 1.87 (**

3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 177.5, 154.9, 151.5, 146.5, 141.0, 131.9, 130.4, 128.2, 127.0, 125.2, 124.7, 123.2, 121.5, 118.7, 115.6, 112.4, 106.9, 37.4, 13.6. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₉H₁₅NO₂ 289.1097; Found 289.1069.

1,3-dimethyl-2-(1-methyl-1H-indol-5-yl)quinolin-4(1*H***)-one (3t): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3t** as a white solid. 81% yield (24.5 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.69-7.62 (m, 1H), 7.53-7.45 (m, 3H), 7.42-7.36 (m, 1H), 7.18 (d, *J* = 3.1 Hz, 1H), 7.07 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.56 (dd, *J* = 3.1, 0.8 Hz, 1H), 3.87 (s, 3H), 3.47 (s, 3H),

1.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 152.9, 141.0, 136.6, 131.7, 130.3, 128.6, 126.9, 126.7, 125.2, 122.9, 121.7, 121.1, 118.7, 115.7, 110.0, 101.5, 37.4, 33.1, 13.7. HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₂₀H₁₈N₂O 302.1414; Found 302.1398.

2-(dibenzo[b,d]thiophen-1-yl)-1,3-dimethylquinolin-4(1H)-one (3u): Purification by flash

column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded 3u as a yellow solid. 83% yield (29.5 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃)) δ 8.59 (dd, J = 8.1, 1.7 Hz, 1H), 8.20-8.15 (m, 1H), 8.10-8.07 (m, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.94-7.90 (m, 1H), 7.72-7.67 (m, 1H), 7.56-7.48 (m, 3H), 7.45-7.40 (m, 1H), 7.36 (dd, *J* = 8.1, 1.7 Hz, 1H), 3.52 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 151.1, 141.1, 140.3,

140.0, 136.3, 135.0, 132.1, 132.0, 127.7, 127.1, 126.7, 125.2, 124.9, 123.8, 123.3, 123.2, 122.0, 121.7, 118.7, 115.6, 37.5, 13.7. **HRMS** (EI-ESA) m/z: [M]⁺ Calcd for C₂₃H₁₇NOS 355.1025; Found 355.1011.

1,3-dimethyl-2-(thiophen-3-yl)quinolin-4(1H)-one (3v): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:2) afforded **3v** as a yellow .Me

Ме

solid. 51% yield (13.0 mg). m.p. 85-86 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (dd, J = 8.1, 1.7 Hz, 1H), 7.69-7.64 (m, 1H), 7.55 (dd, J = 4.9, 2.9 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.42-7.36 (m, 1H), 7.34 (dd, J = 2.9, 1.3 Hz,

1H), 7.06 (dd, J = 4.9, 1.3 Hz, 1H), 3.51 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 146.7, 141.1, 135.6, 132.0, 127.8, 127.4, 127.0, 125.3, 125.1, 123.2, 119.3, 115.6, 37.2, 13.5. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₁₅H₁₃NOS 255.0712; Found 255.0710.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthr-en-3-yl

4-(1,3-dimethyl-4-oxo-1,4-dihydroquinolin-2-yl)benzoate (3w): Purification by flash column

chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3w as a white solid. 60% yield (39.7 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, J = 8.1 Hz, 1H), 8.24 (d, J = 8.1 Hz, 2H), 7.70 (dd, J = 8.7, 6.9 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 7.45-7.37 (m 3H), 5.47-5.43 (m, 1H), 4.97-4.88 (m, 1H), 3.46 (s, 3H), 2.51 (d, J = 8.1 Hz, 2H), 2.09-1.92 (m, 5H), 1.85 (s, 3H), 1.79-1.74 (m, 1H), 1.63-1.47 (m, 6H),

1.38-1.32 (m, 3H), 1.31-1.20 (m, 5H), 1.17-1.11 (m, 3H), 1.09 (s, 3H), 1.06-0.98 (m, 3H), 0.93 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.6 Hz, 3H), 0.70 (s, 3H). ¹³C NMR (125) MHz, CDCl₃) δ 177.5, 165.3, 150.2, 141.1, 139.9, 139.6, 132.2, 131.8, 130.6, 128.8, 127.2, 125.3, 123.5, 123.2, 118.1, 115.5, 75.3, 56.8, 56.3, 50.2, 42.5, 39.9, 39.7, 38.4, 37.4, 37.2, 36.8, 36.3, 35.9, 32.1, 32.0, 28.4, 28.2, 28.0, 24.5, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 13.4, 12.0. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₄₅H₆₀NO₃ 662.4568; Found 662.4570.

1,3,5-trimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3x): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3x as a yellow solid. 23% yield (7.7 mg). m.p. 150-151 °C. ¹H NMR .Me $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.68-7.64 \text{ (m, 2H)}, 7.49 \text{ (dd, } J = 8.7, 7.2 \text{ Hz}, 1\text{H}),$ 7.34 (d, J = 8.6 Hz, 1H), 7.27-7.23 (m, 2H), 7.14-7.09 (m, 1H), 3.43 (s, Me TMS 3H), 3.04 (s, 3H), 1.82 (s, 3H), 0.33 (s, 9H). ¹³C NMR (125 MHz,

CDCl₃) δ 180.1, 150.0, 142.9, 141.9, 141.9, 136.2, 134.1, 130.9, 127.8, 126.2, 123.9, 119.3, 113.6, 38.2, 24.7, 13.7, -1.0. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₂₁H₂₅NOSi 335.1700; Found 335.1697.

1,3,6-trimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3y): Purification by flash

column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3y** as an orange solid. 91% yield (30.5 mg). m.p. 160-161 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.37-8.32 (m, 1H), 7.69-7.64 (m, 2H), 7.48 (dd, J = 8.7, 2.2 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.26-7.22 (m, 2H), 3.45 (s, 3H), 2.49 (s, 3H), 1.86 (s,

3H), 0.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 151.0, 141.9, 139.2, 136.0, 134.0, 133.3, 132.9, 127.7, 126.2, 125.0, 117.8, 115.5, 37.4, 21.0, 13.6, -1.1. HRMS (EI-ESA) *m/z*: [M]⁺ Calcd for C₂₁H₂₅NOSi 335.1700; Found 335.1676.

6-fluoro-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3z): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 3z as an orange solid. 69% yield (23.4 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.18 (dd, J = 9.1, 3.1 Hz, 1H), 7.72-7.65 (m, 2H), 7.50 (dd, J = 9.4, 4.2 Hz, 1H), 7.42-7.37 (m, 1H), 7.25 (d, J = 7.9 Hz, 2H), 3.49 (s, 3H), 1.86 (s, 3H), 0.34 (s,**

9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 160.0 (d, J = 242.6 Hz), 151.6, 142.3, 137.7, 135.7, 134.2, 127.7, 126.6 (d, J = 25.4 Hz), 120.5 (d, J = 25.0 Hz), 117.9 (d, J = 7.5 Hz), 117.8, 111.4 (d, J = 21.3 Hz), 37.8, 13.6, -1.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -118.60 – -118.81 (m,1H). HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₂₀H₂₂FNOSi 339.1449; Found 339.1435.

1,3-dimethyl-6-(trifluoromethoxy)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3aa):

Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:2) afforded **3aa** as a yellow solid. 85% yield (34.4 mg). m.p. > 200 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.40 (t, J = 1.9 Hz, 1H), 7.72-7.67 (m, 2H), 7.57-7.49 (m, 2H), 7.26-7.23 (m, 2H), 3.49 (s, 3H), 1.86 (s, 3H), 0.34 (s,

9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 151.7, 145.0, 142.4, 139.4, 135.5, 134.2, 127.6, 125.4, 120.7 (q, J = 256.3 Hz), 118.4, 117.7, 37.7, 13.6, -1.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -58.01. HRMS (EI-ESA) m/z: [M]⁺ Calcd for C₂₁H₂₂F₃NO₂Si 405.1366; Found 405.1349.

6-methoxy-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ab): Purification by

flash column chromatography on silica gel (Hexane/EtOAc = 2:3) afforded **3ab** as a white solid. 75% yield (26.3 mg). m.p. 192-193 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 3.1 Hz, 1H), 7.70-7.65 (m, 2H), 7.46 (d, J = 9.3 Hz, 1H), 7.30 (dd, J = 9.3, 2.8 Hz, 1H), 7.26-7.23 (m, 2H), 3.96 (s, 3H), 3.48 (s, 3H),

1.88 (s, 3H), 0.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 156.0, 150.7, 142.0, 136.0, 135.8, 134.1, 127.8, 122.7, 117.4, 105.7, 55.9, 37.6, 13.6, -1.0. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₂₁H₂₅NO₂Si 351.1649; Found 351.1620.

1-methyl-3-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ac): Purification by flash

column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ac** as a white solid. 90% yield (34.5 mg). m.p. 196-197 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 8.61-8.56 (m, 1H), 7.76-7.68 (m, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.47-7.37 (m, 3H), 7.15-7.00 (m, 7H), 3.54 (d, J = 1.9 Hz, 3H), 0.23 (d, J = 1.9 Hz, 9H). ¹³C NMR (125

MHz, CDCl₃) δ 176.4, 152.3, 141.62, 141.56, 135.8, 135.3, 133.2, 132.4, 131.5, 128.9, 127.6, 127.5, 126.7, 126.2, 124.3, 123.7, 115.9, 37.9, -1.1. **HRMS** (EI-ESA) *m/z*: [M]⁺ Calcd for C₂₅H₂₅NOSi 383.1700; Found 383.1681.

1-methyl-3-(p-tolyl)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ad): Purification by

flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ad** as a white solid. 77% yield (30.6 mg). m.p. 147-149 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (dd, J = 8.1, 1.7 Hz, 1H), 7.75-7.68 (m, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.45-7.39 (m, 3H), 7.15-7.10 (m, 2H), 6.91 (s, 4H), 3.53 (s, 3H), 2.21 (s, 3H), 0.24 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 152.2, 141.53, 141.48,

135.6, 135.50, 133.2, 132.6, 132.3, 131.3, 128.9, 128.3, 127.6, 126.7, 124.3, 123.6, 115.9, 37.9, 21.3, -1.1. **HRMS** (ESI-ESA) *m/z*: [M]⁺ Calcd for C₂₆H₂₈NOSi 398.1935; Found 3398.1933.

3-(4-chlorophenyl)-1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ae):

Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ae** as a white solid. 81% yield (33.9 mg). m.p. 188-190 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dd, J = 8.1, 1.6 Hz, 1H), 7.76-7.71 (m, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.48-7.41 (m, 3H), 7.14-7.06 (m, 4H), 7.01-6.94 (m, 2H), 3.54 (s, 3H), 0.26 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 152.4, 142.1,

141.5, 135.0, 134.3, 133.4, 132.9, 132.6, 132.0, 128.7, 127.8, 127.5, 126.6, 123.9, 123.0, 116.0, 37.9, -1.1. **HRMS** (ESI-ESA) *m/z*: [M]⁺ Calcd for C₂₅H₂₅ClNOSi 418.1388; Found 418.1388.

3-cyclohexyl-1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3af): Purification by

TMS

flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3af** as a white solid. 78% yield (30.3 mg). m.p. 173-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 8.5 Hz, 3H), 7.45 (d, J = 8.7 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.4 Hz, 2H), 3.38 (s, 3H), 2.43 (q, J = 13.1, 12.7 Hz, 2H),

1.98 (t, J = 12.2 Hz, 1H), 1.65 (d, J = 13.2 Hz, 2H), 1.50 (d, J = 12.9 Hz, 1H), 1.40 (d, J = 12.8 Hz, 2H), 1.33-1.21 (m, 1H), 0.92 (q, J = 13.3 Hz, 2H), 0.35 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 177.4, 151.4, 141.8, 140.8, 136.3, 133.8, 131.7, 127.3, 126.9, 126.6, 126.0, 123.0, 115.3, 41.6, 37.4, 29.2, 27.1, 25.8, -1.1. **HRMS** (EI-ESA) m/z: [M]⁺ Calcd for C₂₅H₃₁NOSi 389.2169; Found 389.2152.

(m, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.48-7.43 (m, 1H), 7.42-7.38 (m, 2H), 6.39 (s, 1H), 3.65 (s, 3H), 0.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 155.3, 143.0, 142.0, 136.1, 133.8, 132.6, 127.9, 126.9, 126.7, 124.0, 116.2, 112.6, 37.6, -1.1. HRMS (ESI-ESA) m/z: [M]⁺ Calcd for C₁₉H₂₂NOSi 308.1465; Found 308.1468.

Ethyl 1-methyl-4-oxo-2-(4-(trimethylsilyl)phenyl)-1,4-dihydroquinoline-3-carbo-xylate (3ah):

Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ah** as a red liquid. 68% yield (25.8 mg). ¹**H NMR** (500 MHz, CDCl₃) δ 7.65-7.60 (m, 2H), 7.56-7.53 (m, 2H), 7.26-7.22 (m, 1H), 6.92-6.89 (m, 1H), 6.81-6.75 (m, 2H), 4.40 (q, J = 7.1 Hz, 2H), 3.24 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 0.32 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 168.3, 166.5, 144.6, 143.1, 141.8, 134.1, 134.0, 130.5, 127.2, 125.4, 123.6, 122.0, 120.8, 108.3, 62.2, 26.1, 14.1, -1.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₆NO₃Si 380.1676; Found 380.1675.

1-ethyl-3-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3ai): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ai** as an orange liquid. 89% yield (29.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dd, J = 8.2, 1.7 Hz, 1H), 7.69-7.63 (m, 3H), 7.52 (d, J= 8.7 Hz, 1H), 7.40-7.35 (m, 1H), 7.28-7.24 (m, 2H), 4.00 (q, J = 7.1 Hz, 2H), 1.80 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 0.34 (s, 9H). ¹³C NMR

(125 MHz, CDCl₃) δ 177.3, 151.0, 141.9, 139.6, 135.8, 134.1, 131.8, 127.4, 127.3, 125.6, 123.0, 118.3, 115.8, 43.5, 14.4, 13.5, -1.0. **HRMS** (EI-ESA) *m*/*z*: [M]⁺ Calcd for C₂₁H₂₅NOSi 335.1700; Found 335.1683.

3-methyl-1-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3aj): Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded **3ai** as an orange solid. 86% yield (32.9 mg). m.p. 194-196 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58-8.52 (m, 1H), 7.44-7.37 (m, 1H), 7.35-7.23 (m, 6H), 7.11-7.05 (m, 2H), 7.02 (d, *J* = 7.7 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 1H), 1.94 (s, 3H), 0.20 (s, 9H). ¹³C NMR (125 MHz, 2H) = 8.6 Hz, 1H), 1.94 (s, 3H), 0.20 (s, 9H).

CDCl₃) δ 178.1, 150.8, 142.0, 140.8, 139.9, 135.4, 132.9, 131.4, 130.3, 129.4, 128.7, 128.6, 126.5, 124.6, 123.3, 118.2, 117.9, 13.3, -1.2. **HRMS** (ESI-ESA) m/z: [M]⁺ Calcd for C₂₅H₂₆NOSi 384.1778; Found 384.1777.

N-(2-benzoylphenyl)-N-methylbenzamide (4)⁹: Purification by flash column chromatography on silica gel (Hexane/EtOAc = 1:1) afforded 4 as an yellow oil. 86% yield (27.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.45 (m, 2H), 7.35-7.14 (m, 10H), 7.01-6.98 (m, 2H), 3.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.8, 170.0, 144.5, 136.5, 136.0, 135.5, 133.1,131.8, 130.5, 130.2, 129.6, 129.5, 129.1, 128.2, 127.7, 126.4, 39.2.

5. Supplementary References

1. (a) Zi, Y.; Cai, Z. J.; Wang, S. Y.; Ji, S. J. Synthesis of Isatins by I₂/TBHP Mediated Oxidation of Indoles. *Org. Lett.* **2014**, *16*, 3094–3097. (b) Samineni, R.; Madapa, J.; Srihari, P.; Mehta, G. Spiroannulation of Oxindoles via Aryne and Alkyne Incorporation: Substituent-Diverted, Transition-Metal-Free, One-Pot Access to Spirooxindoles. *Org. Lett.* **2017**, *19*, 3119–3122. (c) Jia, W. L.; He, J.; Yang, J. J.; Gao, X. W.; Liu, Q.; Wu, L. Z. Homocoupling of 3-Halooxindole via Visible-Light Photocatalysis: A Mild Access to 3,3'-Bioxindoles. *J. Org. Chem.* **2016**, *81*, 7172–7181.

2. Chouhan, M.; Sharma, R.; Nair, V.A. Cp₂ZrCl₂-induced Reformatsky and Barbier reactions on isatins: an efficient synthesis of 3-substituted-3-hydroxyindolin-2-ones. *Appl. Organometal. Chem.* **2011**, *25*, 470-475.

3. Shen, Y. Y.; Gu, Y. T.; Martin, R. *sp*³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. *J. Am. Chem. Soc.* **2018**, *140*, 12200–12209.

Gorokhovik, I.; Neuville, L.; Zhu J. Trifluoroacetic Acid-Promoted Synthesis of 3-Hydroxy,
 3-Amino and Spirooxindoles from α-Keto-N-Anilides. *Org. Lett.* 2011, *13*, 5536–5539.

5. Chen, G.; Lin, J.; Zhang, J.; Wu, Y.; Gu, X. F.; Hao, X. J.; Zhang, Y. Autocatalytic synthesis of 3-ethyl-3-hydroxy-indole-2-ones and their neuroprotection and antitumor activities' evaluation. *Comptes Rendus Chimie*, **2018**, *21*, 471–474.

6. Nishio, T. Synthesis of 3-Hydroperoxyindolin-2-ones and Oxidation of Sulphides to Sulphoxides by 3-Hydroperoxyindoli n-2-one. *J. Chem. Soc., Perkin Trans.* 1991, *1*, 1717-1720.
7. Brown, M. F. Eur. Pat. Appl. 811613, 1997.

8. Rocha, D. H. A.; Pinto, D. C. G. A.; Silva, A. M. S. Synthesis and cyclisation studies of (E)-2-aryl-1-methyl-3-styrylquinolin-4(1H)-ones. *Tetrahedron*. **2015**, *71*, 7717-7721.

9. Dong, Y.-Q.; Shi, X.-N.; Cao, L.-Y.; Baia, J.; Zhuo, C.-X. Molybdenum-catalyzed carbonyl-carbonylolefination reaction for heterocycle syntheses. *Org. Chem. Front.*, **2023**, *10*, 3544-3552.

6. X-Ray Crystallography Data of Compound 3h

Figure S1. X-ray structures of 3h

X-ray-quality crystal was obtained by slow violation of **3h** solution in hexane and ethyl ether at room temperature under air. Thermal ellipsoids drawn at the 50 % probability level. X-ray diffractions of single crystals was carried out at 100(2) K on a Bruker D8 VENTURE diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). Integration and scaling of intensity data was performed using the SAINT program. Data were corrected for the effects of absorption using SADABS. The structures were solved by direct method and refined with full-matrix least-squares technique using SHELX-2014 software. Non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were placed in calculated positions and refined with a riding model.

Table S5 Crystal data and structure refinement for DD.

DD
$C_{36}H_{28}F_6N_2O_2$
634.60
150.0
orthorhombic
Pnma
25.784(2)
6.9333(6)
16.7815(18)
90
90
90
3000.0(5)
4

$\rho_{calc}g/cm^3$	1.405
μ/mm^{-1}	0.113
F(000)	1312.0
Crystal size/mm ³	$0.12\times0.08\times0.05$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.984 to 52.766
Index ranges	$-26 \le h \le 32, -8 \le k \le 8, -17 \le l \le 20$
Reflections collected	17528
Independent reflections	$3262 [R_{int} = 0.0818, R_{sigma} = 0.0579]$
Data/restraints/parameters	3262/312/275
Goodness-of-fit on F ²	1.017
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0628, wR_2 = 0.1427$
Final R indexes [all data]	$R_1 = 0.1363, wR_2 = 0.1911$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.31

Table S6 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for DD. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
O(2)	2561.0(8)	7500	8031.4(13)	41.8(6)
O(1)	3849.6(8)	2500	7579.3(14)	47.8(6)
N(1)	2469.3(10)	2500	6368.7(15)	39.5(7)
N(2)	3929.8(10)	7500	6795.0(15)	40.1(7)
F(2)	88.8(9)	2500	8109.2(15)	120.5(12)
F(1)	354.0(7)	3989(3)	9099.3(12)	111.4(7)
C(6)	3405.4(12)	2500	6344.0(19)	38.1(8)
C(8)	2931.7(12)	2500	7617.8(18)	37.1(8)
C(2)	2928.7(12)	2500	5940.8(19)	37.5(8)
C(7)	3423.8(12)	2500	7215(2)	38.4(8)
C(11)	1962.8(12)	2500	7601.7(18)	38.2(8)
C(21)	2532.0(12)	7500	6337.8(19)	38.4(8)
C(17)	3468.4(12)	7500	6367.5(19)	35.0(7)
C(23)	3472.8(12)	7500	8052.4(19)	37.9(8)
C(10)	2477.2(12)	2500	7190.3(19)	36.2(7)
C(22)	2979.3(12)	7500	7650.5(18)	35.4(7)
C(16)	2993.7(12)	7500	6784.3(18)	36.1(7)

C(18)	3468.4(13)	7500	5532.5(19)	42.0(8)
C(25)	3922.6(12)	7500	7617.8(19)	38.4(8)
C(27)	4432.5(12)	7500	8034.8(19)	39.8(8)
C(14)	981.5(12)	2500	8298.0(19)	40.6(8)
C(19)	3009.2(13)	7500	5123(2)	46.0(9)
C(15)	456.5(13)	2500	8642(2)	49.2(9)
C(3)	2926.7(14)	2500	5104.5(19)	44.5(9)
C(1)	1981.0(12)	2500	5927.3(19)	45.7(9)
C(9)	2923.4(13)	2500	8515(2)	47.1(9)
C(20)	2538.3(13)	7500	5522.2(19)	43.6(8)
C(12)	1719.5(9)	4213(3)	7791.1(15)	50.3(7)
C(13)	1228.8(9)	4206(3)	8134.4(16)	51.4(7)
C(24)	3475.3(13)	7500	8946.5(19)	48.4(9)
C(5)	3869.1(13)	2500	5901(2)	46.3(9)
C(00W)	3859.3(15)	2500	5084(2)	53.0(10)
C(4)	3385.4(14)	2500	4694(2)	52.6(10)
C(28)	4664.7(9)	9213(4)	8251.3(16)	58.1(7)
C(30)	5357.4(14)	7500	8889(2)	52.1(10)
C(26)	4419.6(13)	7500	6346(2)	52.4(10)
C(29)	5122.1(10)	9216(4)	8676.1(17)	62.7(8)
C(31)	5851.9(16)	7500	9337(3)	73.2(12)
F(5)	6233.7(13)	8284(7)	8943(3)	151(2)
F(3)	6023.0(14)	5764(6)	9525(3)	99.8(13)
F(4)	5818.5(16)	8338(7)	10017(2)	161(2)

Table S7 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for DD. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(2)	36.9(12)	46.2(12)	42.2(12)	0	3.9(10)	0
O(1)	32.8(12)	55.4(13)	55.2(14)	0	-3.5(11)	0
N(1)	37.3(14)	46.9(14)	34.3(13)	0	-1.1(12)	0
N(2)	34.6(14)	45.3(14)	40.5(14)	0	0.4(12)	0
F(2)	35.3(13)	259(4)	67.0(16)	0	-4.8(12)	0
F(1)	62.5(11)	110.4(13)	161.5(16)	-65.6(12)	54.5(10)	-17.5(9)
C(6)	36.7(17)	35.8(15)	41.8(16)	0	2.3(13)	0
C(8)	37.0(16)	36.5(15)	37.8(16)	0	-1.9(13)	0
			S22			

C(2)	33.9(16)	38.7(16)	39.8(16)	0	6.9(13)	0
C(7)	34.6(16)	31.5(14)	48.9(18)	0	-2.4(14)	0
C(11)	36.1(17)	43.0(16)	35.4(17)	0	1.4(14)	0
C(21)	32.7(17)	38.1(16)	44.4(17)	0	1.6(14)	0
C(17)	32.4(15)	36.3(15)	36.4(16)	0	0.1(13)	0
C(23)	36.6(16)	36.0(15)	41.0(17)	0	-0.7(14)	0
C(10)	35.6(16)	35.4(15)	37.6(16)	0	1.9(13)	0
C(22)	33.4(16)	31.8(14)	41.1(17)	0	3.7(13)	0
C(16)	38.2(16)	31.2(14)	39.0(16)	0	-1.1(13)	0
C(18)	45.4(19)	44.2(17)	36.5(17)	0	4.3(14)	0
C(25)	36.6(17)	36.1(15)	42.7(17)	0	-3.8(14)	0
C(27)	33.3(17)	46.9(17)	39.3(18)	0	3.6(14)	0
C(14)	31.4(16)	52.0(17)	38.4(18)	0	-1.1(14)	0
C(19)	47.7(19)	54.0(19)	36.2(18)	0	-0.4(15)	0
C(15)	39.4(19)	51.1(18)	57(2)	0	4.1(16)	0
C(3)	44.7(19)	49.8(18)	39.1(17)	0	2.5(15)	0
C(1)	36.7(18)	62(2)	38.2(18)	0	-4.9(15)	0
C(9)	42.3(19)	59(2)	39.8(17)	0	-4.6(16)	0
C(20)	43.5(18)	44.6(18)	42.6(18)	0	-6.2(15)	0
C(12)	44.0(14)	40.8(12)	66.1(16)	-4.6(12)	9.8(12)	-5.6(10)
C(13)	39.0(13)	45.4(12)	69.7(17)	-10.8(12)	6.2(12)	1.2(11)
C(24)	40(2)	64(2)	41.1(18)	0	-3.0(16)	0
C(5)	37.5(18)	42.2(17)	59(2)	0	6.5(16)	0
C(00W)	54(2)	49.8(19)	55(2)	0	16.5(17)	0
C(4)	59(2)	55(2)	43(2)	0	11.2(16)	0
C(28)	46.0(14)	45.7(13)	82.6(19)	2.1(13)	-18.0(13)	-1.5(11)
C(30)	41.8(19)	57(2)	57(2)	0	-9.5(17)	0
C(26)	35.6(18)	71(2)	51(2)	0	1.9(16)	0
C(29)	48.0(15)	51.8(14)	88(2)	-4.5(14)	-17.4(14)	-4.6(12)
C(31)	53(2)	82(3)	85(3)	0	-22(2)	0
F(5)	46.1(19)	221(6)	186(4)	91(3)	-28(2)	-37(2)
F(3)	67(2)	96(2)	136(3)	4(2)	-54(2)	22.7(19)
F(4)	114(3)	229(6)	139(3)	-104(3)	-78(2)	72(3)

Table S8 Bond Lengths for DD.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(2)	C(22)	1.254(4)	C(23)	C(22)	1.440(4)
O(1)	C(7)	1.256(4)	C(23)	C(25)	1.370(4)
N(1)	C(2)	1.385(4)	C(23)	C(24)	1.500(4)
N(1)	C(10)	1.379(4)	C(22)	C(16)	1.454(4)
N(1)	C(1)	1.461(4)	C(18)	C(19)	1.369(5)
N(2)	C(17)	1.389(4)	C(25)	C(27)	1.489(4)
N(2)	C(25)	1.381(4)	C(27)	C(28)	1.379(3)
N(2)	C(26)	1.471(4)	C(27)	$C(28)^{2}$	1.379(3)
F(2)	C(15)	1.303(4)	C(14)	C(15)	1.472(5)
F(1)	C(15)	1.313(3)	C(14)	$C(13)^{1}$	1.372(3)
C(6)	C(2)	1.403(4)	C(14)	C(13)	1.372(3)
C(6)	C(7)	1.463(4)	C(19)	C(20)	1.386(5)
C(6)	C(5)	1.408(4)	C(3)	C(4)	1.368(5)
C(8)	C(7)	1.437(4)	C(12)	C(13)	1.390(3)
C(8)	C(10)	1.374(4)	C(5)	C(00W)	1.370(5)
C(8)	C(9)	1.506(4)	C(00W)	C(4)	1.386(5)
C(2)	C(3)	1.403(4)	C(28)	C(29)	1.378(3)
C(11)	C(10)	1.495(4)	C(30)	C(29)	1.383(3)
C(11)	$C(12)^{1}$	1.380(3)	C(30)	$C(29)^{2}$	1.383(3)
C(11)	C(12)	1.380(3)	C(30)	C(31)	1.480(5)
C(21)	C(16)	1.407(4)	C(31)	F(5)	1.305(5)
C(21)	C(20)	1.369(4)	C(31)	F(3)	1.320(4)
C(17)	C(16)	1.410(4)	C(31)	F(4)	1.283(5)
C(17)	C(18)	1.401(4)			

Table S9 Bond Angles for DD.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	N(1)	C(1)	118.3(3)	C(17)	C(16)	C(22)	121.2(3)
C(10)	N(1)	C(2)	120.4(3)	C(19)	C(18)	C(17)	120.1(3)
C(10)	N(1)	C(1)	121.3(3)	N(2)	C(25)	C(27)	117.3(3)
C(17)	N(2)	C(26)	118.1(3)	C(23)	C(25)	N(2)	122.9(3)
C(25)	N(2)	C(17)	120.3(3)	C(23)	C(25)	C(27)	119.8(3)
C(25)	N(2)	C(26)	121.6(3)	C(28)	C(27)	C(25)	120.47(15)
C(2)	C(6)	C(7)	120.7(3)	$C(28)^{2}$	C(27)	C(25)	120.47(15)

C(2)	C(6)	C(5)	119.3(3)	C(28)	C(27)	$C(28)^{2}$	118.9(3)
C(5)	C(6)	C(7)	120.0(3)	C(13)	C(14)	C(15)	120.41(15)
C(7)	C(8)	C(9)	118.8(3)	$C(13)^{1}$	C(14)	C(15)	120.41(15)
C(10)	C(8)	C(7)	120.5(3)	$C(13)^{1}$	C(14)	C(13)	119.2(3)
C(10)	C(8)	C(9)	120.7(3)	C(18)	C(19)	C(20)	121.0(3)
N(1)	C(2)	C(6)	119.9(3)	F(2)	C(15)	F(1)	104.7(2)
N(1)	C(2)	C(3)	121.0(3)	F(2)	C(15)	$F(1)^1$	104.7(2)
C(6)	C(2)	C(3)	119.0(3)	F(2)	C(15)	C(14)	113.6(3)
O(1)	C(7)	C(6)	120.9(3)	F(1)	C(15)	$F(1)^{1}$	103.7(3)
O(1)	C(7)	C(8)	122.9(3)	F(1)	C(15)	C(14)	114.5(2)
C(8)	C(7)	C(6)	116.2(3)	$F(1)^{1}$	C(15)	C(14)	114.5(2)
C(12)	C(11)	C(10)	120.62(15)	C(4)	C(3)	C(2)	120.0(3)
$C(12)^{1}$	C(11)	C(10)	120.63(15)	C(21)	C(20)	C(19)	119.5(3)
C(12)	C(11)	$C(12)^{1}$	118.7(3)	C(11)	C(12)	C(13)	120.4(2)
C(20)	C(21)	C(16)	121.5(3)	C(14)	C(13)	C(12)	120.6(2)
N(2)	C(17)	C(16)	119.2(3)	C(00W)	C(5)	C(6)	120.9(3)
N(2)	C(17)	C(18)	121.1(3)	C(5)	C(00W)	C(4)	119.2(3)
C(18)	C(17)	C(16)	119.7(3)	C(3)	C(4)	C(00W)	121.6(3)
C(22)	C(23)	C(24)	118.2(3)	C(29)	C(28)	C(27)	120.6(2)
C(25)	C(23)	C(22)	119.9(3)	C(29)	C(30)	$C(29)^{2}$	118.7(3)
C(25)	C(23)	C(24)	121.9(3)	C(29)	C(30)	C(31)	120.63(17)
N(1)	C(10)	C(11)	116.7(3)	$C(29)^2$	C(30)	C(31)	120.63(16)
C(8)	C(10)	N(1)	122.3(3)	C(28)	C(29)	C(30)	120.5(3)
C(8)	C(10)	C(11)	121.0(3)	F(5)	C(31)	C(30)	113.1(4)
O(2)	C(22)	C(23)	121.4(3)	F(5)	C(31)	F(3)	104.4(4)
O(2)	C(22)	C(16)	122.1(3)	F(3)	C(31)	C(30)	114.2(2)
C(23)	C(22)	C(16)	116.5(3)	F(4)	C(31)	C(30)	113.2(4)
C(21)	C(16)	C(17)	118.1(3)	F(4)	C(31)	F(5)	108.2(4)
C(21)	C(16)	C(22)	120.7(3)	F(4)	C(31)	F(3)	102.9(4)

Table S10 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for DD.

Atom	x	У	Z	U(eq)
H(21)	2208.35	7500	6608.46	46
H(18)	3787.68	7500	5249.84	50
H(19)	3013.14	7500	4557.4	55

H(3)	2607.01	2500	4823.25	53
H(1A)	1690.97	2367.87	6300.83	55
H(1B)	1977.76	1417.66	5551.74	55
H(1C)	1946.56	3714.47	5633.24	55
H(9A)	2701.44	1448.62	8705.07	71
H(9B)	2786.88	3734.83	8706.94	71
H(9C)	3276.51	2316.55	8717.63	71
H(20)	2222.22	7500	5231.37	52
H(12)	1888.4	5404.13	7686.24	60
H(13)	1063.33	5394.04	8256.74	62
H(24A)	3468.59	8832.36	9141.19	73
H(24B)	3789.67	6857.01	9139.14	73
H(24C)	3169.12	6810.63	9143.1	73
H(5)	4192.79	2500	6170.88	56
H(00W)	4173.69	2500	4788.93	64
H(4)	3378.85	2500	4128.36	63
H(28)	4507.84	10402.16	8106.39	70
H(26A)	4454.78	8720.64	6056.53	79
H(26B)	4419.65	6426.58	5966.06	79
H(26C)	4710.92	7352.78	6716.19	79
H(29)	5277.12	10406.81	8823.4	75

Table S11 Atomic Occupancy for DD.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H(1A)	0.5	H(1B)	0.5	H(1C)	0.5
H(9A)	0.5	H(9B)	0.5	H(9C)	0.5
H(24A)	0.5	H(24B)	0.5	H(24C)	0.5
H(26A)	0.5	H(26B)	0.5	H(26C)	0.5
F(5)	0.5	F(3)	0.5	F(4)	0.5

7. NMR Spectra

3-ethyl-3-hydroxy-1,4-dimethylindolin-2-one (1b). ¹H NMR (500 MHz, CDCl₃)

S27

3-ethyl-3-hydroxy-1,5-dimethylindolin-2-one (1c). ¹H NMR (500 MHz, CDCl₃)

3-ethyl-3-hydroxy-1,5-dimethylindolin-2-one (1c). ¹³C NMR (125 MHz, CDCl₃)

3-ethyl-5-fluoro-3-hydroxy-1-methylindolin-2-one (1d). ¹H NMR (500 MHz, CDCl₃)

3-ethyl-5-fluoro-3-hydroxy-1-methylindolin-2-one (1d). ¹³C NMR (125 MHz, CDCl₃)

3-ethyl-5-fluoro-3-hydroxy-1-methylindolin-2-one (1d). ¹⁹F NMR (470 MHz, CDCl₃)

3-ethyl-3-hydroxy-1-methyl-5-(trifluoromethoxy) indolin-2-one (1e). ¹H NMR (500 MHz, CDCl₃)

3-ethyl-3-hydroxy-1-methyl-5-(trifluoromethoxy) indolin-2-one (1e). ¹³C NMR (125 MHz, Acetone-*d*₆)

3-ethyl-3-hydroxy-1-methyl-5-(trifluoromethoxy) indolin-2-one (1e). ¹⁹F NMR (470 MHz, CDCl₃)

3-ethyl-3-hydroxy-5-methoxy-1-methylindolin-2-one (1f). ¹H NMR (500 MHz, CDCl₃)

3-benzyl-3-hydroxy-1-methylindolin-2-one (1g). ¹H NMR (500 MHz, CDCl₃)

3-hydroxy-1-methyl-3-(4-methylbenzyl)indolin-2-one (1h). ¹H NMR (500 MHz, CDCl₃)

3-(4-chlorobenzyl)-3-hydroxy-1-methylindolin-2-one (1i). ¹H NMR (400 MHz, CDCl₃)

3-(cyclohexylmethyl)-3-hydroxy-1-methylindolin-2-one (1j). ¹H NMR (500 MHz, CDCl₃)

3-(cyclohexylmethyl)-3-hydroxy-1-methylindolin-2-one (1j). ¹H NMR (500 MHz, CDCl₃)

3-hydroxy-1,3-dimethylindolin-2-one (1k). ¹H NMR (500 MHz, CDCl₃)

ethyl 2-(3-hydroxy-1-methyl-2-oxoindolin-3-yl) acetate (11). ¹H NMR (500 MHz, CDCl₃)

1,3-diethyl-3-hydroxyindolin-2-one (1m). ¹H NMR (500 MHz, CDCl₃)

3-ethyl-3-hydroxy-1-phenylindolin-2-one (1n). ¹H NMR (500 MHz, DMSO-d₆)

3-ethyl-3-hydroxy-1-phenylindolin-2-one (1n). ¹³C NMR (125 MHz, DMSO-d₆)

(38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,1 2,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4- bromobenzoate (2w). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-phenylquinolin-4(1*H*)-one (3a). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(o-tolyl)quinolin-4(1H)-one (3b). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(*m*-tolyl)quinolin-4(1*H*)-one (3c). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(*m*-tolyl)quinolin-4(1*H*)-one (3c). ¹³C NMR (125 MHz, CDCl₃)

ď

ł

1.0 0.5 0.0 -0.5 -1.0

2-(3-fluorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3d). ¹H NMR (500 MHz, CDCl₃)

2-(3-fluorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3d). ¹³C NMR (125 MHz, CDCl₃)

5.0 f1 (ppm)

4.5 4.0 3.5 3.0 2.5 2.0 1.5

ä

8.5

8.0 7.5 7.0 6.5 6.0 5.5

10.5 10.0 9.5 9.0

2-(3-fluorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3d). ¹⁹F NMR (470 MHz, CDCl₃)

1,3-dimethyl-2-(p-tolyl)quinolin-4(1*H*)-one (3e). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(p-tolyl)quinolin-4(1*H*)-one (3e). ¹³C NMR (125 MHz, CDCl₃)

2-(4-fluorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3f). ¹H NMR (500 MHz, CDCl₃)

2-(4-fluorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3f). ¹⁹F NMR (470 MHz, CDCl₃)

2-(4-chlorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3g). ¹H NMR (500 MHz, CDCl₃)

2-(4-chlorophenyl)-1,3-dimethylquinolin-4(1*H*)-one (3g). ¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)quinolin-4(1*H***)-one (3h). ¹H NMR (500 MHz, CDCl₃)**

1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)quinolin-4(1*H***)-one (3h). ¹⁹F NMR (470 MHz, CDCl₃)**

S46

2-(4-methoxyphenyl)-1,3-dimethylquinolin-4(1*H*)-one (3i). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(4-(trifluoromethoxy)phenyl)quinolin-4(1*H***)-one (3j). ¹H NMR (500 MHz, CDCl₃)**

1,3-dimethyl-2-(4-(trifluoromethoxy)phenyl)quinolin-4(1*H***)-one (3j). ¹³C NMR (125 MHz, CDCl₃)**

1,3-dimethyl-2-(4-(trifluoromethoxy)phenyl)quinolin-4(1*H***)-one (3j). ¹⁹F NMR (470 MHz, CDCl₃)**

S48

1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3k). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3k). ¹³C NMR (125 MHz, CDCl₃)**

2-([1,1'-biphenyl]-4-yl)-1,3-dimethylquinolin-4(1*H*)-one (3l). ¹H NMR (500 MHz, CDCl₃)

2-([1,1'-biphenyl]-4-yl)-1,3-dimethylquinolin-4(1*H*)-one (3l). ¹³C NMR (125 MHz, CDCl₃)

2-(3,5-dimethylphenyl)-1,3-dimethylquinolin-4(1*H*)-one (3m). ¹H NMR (500 MHz, CDCl₃)

2-(3,5-dimethylphenyl)-1,3-dimethylquinolin-4(1*H*)-one (3m). ¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-2-(naphthalen-2-yl)quinolin-4(1*H*)-one (3n). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(naphthalen-2-yl)quinolin-4(1*H*)-one (3n).¹³C NMR (125 MHz, CDCl₃)

2-(2,3-dihydrobenzofuran-5-yl)-1,3-dimethylquinolin-4(1*H***)-one (30). ¹³C NMR (125 MHz, CDCl₃)**

2-(benzo[d][1,3]dioxol-5-yl)-1,3-dimethylquinolin-4(1H)-one (3p). ¹H NMR (500 MHz, CDCl₃)

2-(benzo[b]thiophen-5-yl)-1,3-dimethylquinolin-4(1H)-one (3q). ¹H NMR (500 MHz, CDCl₃)

2-(benzo[b]thiophen-5-yl)-1,3-dimethylquinolin-4(1H)-one (3q).¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-[2,6'-biquinolin]-4(1*H*)-one (3r). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-[2,6'-biquinolin]-4(1*H*)-one (3r). ¹³C NMR (125 MHz, CDCl₃)

2-(benzofuran-5-yl)-1,3-dimethylquinolin-4(1*H*)-one (3s).¹H NMR (500 MHz, CDCl₃)

2-(benzofuran-5-yl)-1,3-dimethylquinolin-4(1*H*)-one (3s). ¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-2-(1-methyl-1H-indol-5-yl)quinolin-4(1H)-one (3t). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(1-methyl-1H-indol-5-yl)quinolin-4(1H)-one (3t). ¹³C NMR (125 MHz, CDCl₃)

2-(dibenzo[*b,d*]thiophen-1-yl)-1,3-dimethylquinolin-4(1*H*)-one (3u). ¹H NMR (500 MHz, CDCl₃)

2-(dibenzo[*b,d*]thiophen-1-yl)-1,3-dimethylquinolin-4(1*H*)-one (3u). ¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-2-(thiophen-3-yl)quinolin-4(1*H*)-one (3v). ¹H NMR (500 MHz, CDCl₃)

1,3-dimethyl-2-(thiophen-3-yl)quinolin-4(1*H*)-one (3v).¹³C NMR (125 MHz, CDCl₃)

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthr-en-3-yl 4-(1,3-dimethyl-4-oxo-1,4-dihydroquinolin-2-yl)benzoate (3w). ¹³C NMR (125 MHz, CDCl₃)

1,3,6-trimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3y). ¹H NMR (500 MHz, CDCl₃)**

1,3,6-trimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3y). ¹³C NMR (125 MHz, CDCl₃)**

6-fluoro-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3z). ¹H NMR (500 MHz, CDCl₃)**

6-fluoro-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3z). ¹³C NMR (125 MHz, CDCl₃)**

6-fluoro-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3z). ¹⁹F NMR (470 MHz, CDCl₃)

1,3-dimethyl-6-(trifluoromethoxy)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3aa). ¹H NMR (500 MHz, CDCl₃)

S65

F 1000000 - 151.73 1.04 ì 1500000 - 1400000 - 1300000 1200000 Me F₃CO - 1100000 - 1000000 Me 900000 TMS 800000 3aa 700000 600000 500000 400000 300000 200000 100000 . 0 -100000 230 220 210 200 190 180 170 160 150 140 130 120 110 f1 (ppm) -10 100 90 70 60 50 40 30 20 10 0 80

1,3-dimethyl-6-(trifluoromethoxy)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3aa). ¹³C NMR (125 MHz, CDCl₃)

1,3-dimethyl-6-(trifluoromethoxy)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3aa). ¹⁹F NMR (470 MHz, CDCl₃)

6-methoxy-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3ab). ¹H NMR (500 MHz, CDCl₃)**

6-methoxy-1,3-dimethyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3ab). ¹³C NMR (125 MHz, CDCl₃)

1-methyl-3-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ac). ¹H NMR (400 MHz, CDCl₃)

1-methyl-3-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ac). ¹³C NMR (125 MHz, CDCl₃)

1-methyl-3-(p-tolyl)-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ad). ¹³C NMR (125 MHz, CDCl₃)

3-(4-chlorophenyl)-1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ae). ¹³C NMR (125 MHz, CDCl₃)

3-cyclohexyl-1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3af). ¹H NMR (400 MHz, CDCl₃)

3-cyclohexyl-1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3af). ¹³C NMR (125 MHz, CDCl₃)

1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ag). ¹H NMR (500 MHz, CDCl₃)

1-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3ag). ¹³C NMR (125 MHz, CDCl₃)

Ethyl 1-methyl-4-oxo-2-(4-(trimethylsilyl)phenyl)-1,4-dihydroquinoline-3-carbo-xylate (3ah). ¹³C NMR (125 MHz, CDCl₃)

Ethyl 1-methyl-4-oxo-2-(4-(trimethylsilyl)phenyl)-1,4-dihydroquinoline-3-carbo-xylate (3ah). ¹H NMR (500 MHz CDCl₂)

1-ethyl-3-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H***)-one (3ai). ¹H NMR (500 MHz, CDCl₃)**

1-ethyl-3-methyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1*H*)-one (3ai). ¹³C NMR (125 MHz, CDCl₃)

3-methyl-1-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3aj). ¹**H NMR** (500 MHz, CDCl₃)

3-methyl-1-phenyl-2-(4-(trimethylsilyl)phenyl)quinolin-4(1H)-one (3aj). ¹³C NMR (125 MHz, CDCl₃)

N-(2-benzoylphenyl)-N-methylbenzamide (4). ¹³C NMR (125 MHz, CDCl₃)

