- Electronic Supporting Information -

Photoredox cobalt dual catalysis toward C3-functionalization of quinoxalinones with alkenes and alkynes

Karunamayee Mondal,^{a†} Mahima Pilania,^{a†} Karthikeyan Jayabalan^b and Mahiuddin Baidya^a*

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India ^bDepartment of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India [†] These authors contributed equally to this work

E-mail: mbaidya@iitm.ac.in

Table of Contents

1.	General procedure
2.	Plausible reaction mechanism for product 3
3.	General procedure for C3-selective coupling of quinoxalin-2(1 <i>H</i>)-one (1) with alkene
4.	General procedure for C3-selective coupling of quinoxalin-2(1 <i>H</i>)-one (1) with alkyne
5.	Spectral data of synthesized compounds
6.	Crystallographic experimental dataS25
7.	Gram scale synthesis of compound 3a and 3x
8.	Post-synthetic manipulationsa) Synthesis of compound 6
9.	Mechanistic studies: a) Radical quenching experiments
10.	¹ H, ¹³ C and ¹⁹ F NMR Spectra of synthesized compoundsS35

General procedure

All non-aqueous reactions were carried out under an atmosphere of nitrogen in flame-dried glassware and were stirred using a magnetic stir plate. All reactions were carried out using commercial-grade solvent unless otherwise noted. CH₃CN, DCE, and CH₂Cl₂ were dried over calcium hydride. Dry THF was prepared by distilling over sodium ketyl.

All reactions were monitored by thin layer chromatography (TLC) on WhatmanPartisil® K6F TLC plates (silica gel 60 Å, 0.25 mm thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10g phosphomolybdic acid/ 100 mL ethanol; KMnO₄: 0.75g potassium permanganate, 5g K₂CO₃, / 100 mL water. Products were isolated by column chromatography (Merck silica gel 100-200µm). Yields refer to chromatographically and spectroscopically homogenous materials unless noted otherwise. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400 or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak CDCl₃ δ = 7.2600 ppm for ¹H, δ = 77.16 for ¹³C, DMSO-d6 δ = 2.500 ppm for ¹H, δ = 39.500 ppm for ¹³C; or calibrated to tetramethylsilane (δ = 0.00 ppm). All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet; dd, doublet of doublet; tr, broad; app, apparent.

Mass spectra were recorded by electrospray ionization (ESI) method on a Q-TOF Micro with lock spray source.

The crystal data were collected and integrated using a BrukerAxs kappa apex2 CCD diffractometer, with graphite monochromated Mo-Kα radiation.

Quinoxalin-2(1*H*)-ones **1** were synthesized following literature procedures (*Org. Lett.* **2013**, *15*, 5606–5609). Compound **1c** and **1d** were prepared following the reported procedure (*Bioorg. Med. Chem.* **2023**, *78*, 117152). Compound **1x** and **1y** were prepared as reported earlier (*Adv. Synth. Catal.* **2023**, *365*, 1020–1026.). Compounds **2** (styrene derivatives) were prepared following the reported procedure (*Eur. J. Med. Chem.* **2017**, *138*, 1089–1105). Styrene, 4-methylstyrene, DIPEA, cobalt bromide, and DPPP were purchased from Avra chemicals, TCI chemicals, and BLD chemicals.

Plausible reaction mechanism for product 3

A plausible reaction mechanism is depicted here. Upon irradiation with visible light, photoexcited $4CzIPN^*$ accepts an electron from HE to form $4CzIPN^{\bullet-}$. This species then reduces ligand-coordinated Co(II)-complex **A** to the low valent Co(I) species **B**. Next, Co(I) species transforms to Co(III)–H species **C** through oxidative addition with proton. Subsequent reaction with styrene (2) generates the alkyl Co(III) species **D**. It is then reduced by $4CzIPN^{\bullet-}$ to render alkyl Co(II) species **E**, which reacts with quinoxalin-2-one (1) to give intermediate **F**. Subsequent protonation yields reduced coupling product **G** and regenerates the active Co(II)-complex **A**. Further oxidation of **G** under photocatalysis furnishes the desired C3-functionalized products **3**.

At this juncture, another alternative mechanism (for example, the one shown below) cannot be also ruled out.

General procedure for C3-selective coupling of quinoxalin-2(1H)-one (1) with alkene

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1** (0.2 mmol, 1.0 equiv), and alkene **2** (0.6 mmol, 3.0 equiv) under the nitrogen atmosphere. The reaction tube was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (1.5 mL) were added via a syringe. Then, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 24 h. After completion of the reaction (TLC monitored), brine solution was added and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel to get C3-alkyl quinoxalin-2(1*H*)-one (**3**).

Before the reaction

During the reaction

After the reaction

General procedure for C3-selective coupling of quinoxalin-2(1*H*)-one (1) with alkyne

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1** (0.2 mmol, 1.0 equiv), and alkyne (0.6 mmol, 3.0 equiv) under the nitrogen atmosphere. The reaction tube was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (1.5 mL) were added via a syringe. Then, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 24 h. After completion (TLC monitored), brine solution was added and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel to get C3-alkenyl quinoxalin-2(1*H*)-one (**4**).

Spectral Data of Synthesized Compounds

Compound, **3a**: Yellow solid; mp = 84-86 °C; eluent (20% ethyl acetate in hexane). Yield: 93% (68 mg); ¹H NMR (400 MHz, **CDCl₃**) δ 7.79 – 7.76 (m, 1H), 7.52 – 7.46 (m, 1H), 7.33 – 7.28 (m, 5H), 7.24 – 7.17 (m, 3H), 7.16 – 7.12 (m, 2H), 7.10 – 7.07 (m, 2H), 3.65 (s, 3H, CH₃), 3.54 – 3.50 (m, 1H, CH), 3.31 – 3.27 $(m, 2H, CH_2), 2.53 - 2.48 (m, 2H, CH_2), 2.15 - 1.98 (m, 2H, CH_2), 2.15 (m, 2H, CH_2$ CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 159.5(C), 155.1(C), 144.9(C), 142.6(C), 133.1(C), 132.8(C), 129.9(CH), 129.7(CH), 128.51(CH), 128.45(CH), 128.3(CH), 128.1(CH), 126.3(CH), 125.7(CH), 123.6(CH), 113.6(CH), 42.8(CH), 41.1(CH₃), 33.9(CH₃), 29.2(CH₃). 37.9(CH₃), HRMS (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₅H₂₄N₂OH⁺ 369.1961; Found 369.1964.

Compound, **3b**: Yellow liquid; eluent (15% ethyl acetate in hexane). Yield: 95% (75 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.33 – 7.25 (m, 5H), 7.23 – 7.16 (m, 2H), 7.15 – 7.12 (m, 1H), 7.09 – 7.06 (m, 2H), 7.00 (s, 1H), 3.61 (s, 3H), 3.53 – 3.45 (m, 1H), 3.28 – 3.24 (m, 2H), 2.51 – 2.46 (m, 2H), 2.38 (s, 3H), 2.33 (s, 3H), 2.12 – 1.96 (m, 2H).¹³C NMR (101 **MHz, CDCl**₃) δ 158.1(C), 155.1(C), 145.0(C), 142.6(C), 139.4(C). 132.4(C), 131.2(C), 131.1(C), 129.9(CH). 128.5(CH), 128.4(CH), 128.3(CH), 128.1(CH), 126.2(CH), 125.7(CH), 114.2(CH), 42.9(CH), 41.1(CH₂), 37.9(CH₂), 33.9(CH₂), 29.0(CH₃), 20.5(CH₃), 19.2(CH₃). **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{27}H_{28}N_2OH^+$ 397.2274; Found 397.2285.

Compound, **3c**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 89% (89 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 2.2 Hz, 1H), 7.70 (dd, J = 8.7, 2.2 Hz, 1H), 7.60 – 7.59 (m, 2H), 7.29 (d, J = 8.6 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 7.03 – 6.98 (m, 6H), 3.88 (s, 3H), 3.67 (s, 3H), 3.53 – 3.48 (m, 1H), 3.33 – 3.23 (m, 2H), 2.48 – 2.42 (m, 2H), 2.30 (s, 3H), 2.28 (s, 3H), 2.09 – 1.96 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 159.6, 155.0, 141.8, 139.6, 136.4, 135.7, 135.1, 133.1, 132.2, 131.9, 129.2, 129.0, 128.4, 128.1, 128.0, 127.3, 114.6(2C), 114.0, 55.5, 42.4, 41.4, 38.1, 33.5, 29.2, 21.2, 21.1. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₃₄N₂O₂H⁺ 503.2693; Found 503.2694.

Compound, **3d**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 86% (87 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.98 (d, J = 2.2 Hz, 1H), 7.69 (dd, J = 8.6, 2.2 Hz, 1H), 7.59 – 7.57 (m, 2H), 7.46 – 7.44 (m, 2H), 7.31 – 7.28 (m, 1H), 7.2 (dd, J = 7.9, 1.7 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 7.05 – 6.99 (m, 4H), 3.66 (s, 3H), 3.55 – 3.47 (m, 1H), 3.35 – 3.23 (m, 2H), 2.54 – 2.41 (m, 2H), 2.31 – 2.29 (m, 6H), 2.10 – 1.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 154.9, 141.7, 139.5, 138.1, 135.7, 135.4, 135.1, 133.8, 133.0, 132.5, 129.3, 129.2, 129.0, 128.4, 128.3, 127.9, 127.7, 127.1, 114.2, 42.3, 41.3, 38.1, 33.4, 29.2, 21.2, 21.1. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₃₁ClN₂OH⁺ 507.2198; Found 507.2206.

Compound, **3e**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 85% (70 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 7.46 (dd, J = 8.8, 2.8 Hz, 1H), 7.24 – 7.17 (m, 4H), 7.11 – 7.09 (m, 2H), 7.05 – 6.98 (m, 4H), 3.63 (s, 3H), 3.50 – 3.45 (m, 1H), 3.31 – 3.23 (m, 2H), 2.51 – 2.42 (m, 2H), 2.31 – 2.30 (m, 6H), 2.08 – 1.96 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 158.7 (d, J = 243.2 Hz), 154.7, 141.7, 139.5, 135.7, 135.1, 133.3 (d, J = 11.2 Hz), 129.8, 129.1, 129.0, 128.4, 127.9, 117.3 (d, J = 23.9 Hz), 115.3 (d, J = 22.4 Hz), 114.6 (d, J = 8.8 Hz), 42.2, 41.2, 38.2, 33.4, 29.4, 21.2, 21.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -110.43. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₇FN₂OH⁺ 415.2180; Found 415.2175.

Compound, **3f**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 94% (81 mg); ¹**H NMR (400 MHz, CDCl3)** δ 7.75 (d, J = 2.4 Hz, 1H), 7.44 (dd, J = 8.9, 2.4 Hz, 1H), 7.21 – 7.19 (m, 2H), 7.16 (d, J = 8.9 Hz, 1H), 7.09 (d, J = 7.9 Hz, 2H), 7.05 – 6.97 (m, 4H), 3.61 (s, 3H), 3.51 – 3.43 (m, 1H), 3.29 – 3.22 (m, 2H), 2.51 – 2.39 (m, 2H), 2.30 (bs, 6H), 2.07 – 1.96 (m, 2H). ¹³C NMR (101 MHz, CDCl3) δ 161.1, 155.0, 141.7, 139.5, 135.7, 135.1, 133.4, 131.9, 129.6, 129.3, 129.2, 129.0, 128.9, 128.4, 128.0, 114.7, 42.1, 41.1, 38.2, 33.4, 29.3, 21.15, 21.09. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₇ClN₂OH⁺ 431.1885; Found 431.1880.

Compound, **3g**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 81% (77 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (m, 1H), 7.52 – 7.48 (m, 1H), 7.34 – 7.30 (m, 1H), 7.24 – 7.20 (m, 2H), 7.10 (d, J = 7.8 Hz, 2H), 7.06 – 6.98 (m, 4H), 3.65 (s, 3H), 3.55 – 3.46 (m, 1H), 3.33 – 3.24 (m, 2H), 2.53 – 2.43 (m, 2H), 2.32 – 2.30 (m, 6H), 2.10 – 1.98 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 159.6, 155.1, 141.8, 139.6, 135.7, 135.1, 133.1, 132.8, 129.9, 129.7, 129.1, 129.0, 128.4, 128.0, 123.6, 113.6, 42.4, 41.3, 38.1, 33.5, 29.2, 21.2, 21.1. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₇BrN₂OH⁺ 475.1380; Found 475.1383.

Compound, **3h**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 88% (74 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 8.04 (d, J = 2.0 Hz, 1H), 7.71 (dd, J = 8.7, 1.9 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.20 – 6.98 (m, 6H), 3.63 (s, 3H), 3.49 – 3.42 (m, 1H), 3.32 – 3.23 (m, 2H), 2.50 – 2.39 (m, 2H), 2.30 (s, 6H), 2.04 – 1.97 (m, 2H). ¹³C **NMR (101 MHz, CDCl**₃) δ 161.9, 154.6, 141.4, 139.4, 136.3, 135.9, 135.2, 134.1, 132.31, 132.25, 129.2, 129.0, 128.4, 127.9, 118.2, 114.7, 107.1, 42.0, 41.0, 38.3, 33.4, 29.4, 21.15, 21.11. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃OH⁺ 422.2227; Found 422.2223.

Compound, **3i**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 91% (82 mg); ¹H NMR (**500** MHz, CDCl₃) δ 7.82 (s, 1H), 7.33 (s, 1H), 7.29 – 7.28 (m, 4H), 7.23 (d, J = 7.3 Hz, 2H), 7.19 – 7.14 (m, 2H), 7.09 (dd, J = 7.5, 1.6 Hz, 2H), 3.59 (s, 3H), 3.49 – 3.43 (m, 1H), 3.29 – 3.23 (m, 2H), 2.51 – 2.47 (m, 2H), 2.07 – 2.00 (m, 2H).¹³C NMR (**101** MHz, CDCl₃) δ 161.2, 154.5, 144.6, 142.5, 133.8, 132.6, 131.9, 130.7, 128.5(2C), 128.4, 128.1, 127.4, 126.5, 125.8, 115.1, 42.7, 41.0, 38.1, 33.9, 29.4. HRMS (ESI/TOF-Q) m/z:

Compound, **3***j*: Yellow solid; mp = 112-114 °C; eluent (15%) ethyl acetate in hexane). Yield: 91% (77 mg); ¹H NMR (400 **MHz, CDCl**₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 7.7 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 3.63 (s, 3H), 3.50 - 3.43(m, 1H), 3.35 – 3.23 (m, 2H), 2.50 – 2.41 (m, 2H), 2.30 (s, 6H), 2.07 – 1.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 154.3, 141.2, 139.2, 135.8, 135.1, 134.8, 133.4, 130.6, 129.1, 128.9, 128.3, 127.8, 126.4, 118.2, 117.7, 112.7, 42.1, 41.2, 38.1, 33.3, 29.2, 21.03, 20.99. **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₈H₂₇N₃OH⁺ 422.2227; Found 422.2229.

Compound, 3k: Yellow liquid; eluent (15% ethyl acetate in hexane). Yield: 87% (78 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.57 - 7.53 (m, 2H), 7.49 - 7.45 (m, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.03 - 6.97 (m, 4H), 3.71 (s, 3H), 3.55 – 3.48 (m, 1H), 3.32 – 3.28 (m, 2H), 2.53 – 2.43 (m, 2H), 2.29 – 2.28 (m, 6H), 2.13 – 1.98 (m, 2H). ¹³C NMR (101 **MHz, CDCl₃**) δ 160.2, 154.9, 141.8, 139.6, 135.7, 135.1, 133.5, 132.2, 131.9, 129.8, 129.2, 129.0, 128.8, 128.5, 128.4, 128.0, 127.7, 127.3, 125.3, 109.9, 42.5, 41.4, 38.2, 33.5, 29.2, 21.2, 21.1. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₁H₃₀N₂OH⁺ 447.2431; Found 447.2433.

Compound, 31: Yellow liquid; eluent (10% ethyl acetate in hexane). Yield: 93% (92 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.30 (t, J =7.6 Hz, 1H), 7.24 - 7.20 (m, 3H), 7.09 (d, J = 7.9 Hz, 2H), 7.04 - 6.98 (m, 4H), 4.18 (t, J = 7.8 Hz, 2H), 3.53 - 3.44 (m, 1H), 3.34 – 3.21 (m, 2H), 2.52 – 2.43 (m, 2H), 2.303 – 2.296 (m, 6H), 2.10 – 1.98 (m, 2H), 1.72 – 1.67 (m, 2H), 1.47 – 1.36 (m, 4H), 1.33 - 1.28 (m, 6H), 0.92 - 0.88 (m, 3H).¹³C NMR (**101 MHz, CDCl**₃) δ 159.7, 154.7, 141.8, 139.6, 135.6, 135.0, 133.1, 132.3, 130.1, 129.5, 129.1, 129.0, 128.4, 128.0, 123.3, 113.6, 42.5, 42.4, 41.2, 38.1, 33.5, 31.9, 29.4, 29.3, 27.4, 27.1, 22.7, 21.15, 21.08, 14.2. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₄₂N₂OH⁺ 495.3370; Found 495.3376.

Compound, **3m**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield**: 90% (94 mg); ¹**H NMR (400 MHz , CDCl**₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.24 – 7.20 (m, 3H), 7.09 (d, J = 7.9 Hz, 1H), 7.05 – 6.98 (m, 4H), 4.18 (t, J = 7.8 Hz, 2H), 3.53 – 3.44 (m, 1H), 3.34 – 3.21 (m, 2H), 2.52 – 2.41 (m, 2H), 2.304 – 2.296 (m, 6H), 2.09 – 1.97 (m, 2H), 1.72 – 1.67 (m, 2H), 1.45 – 1.39 (m, 2H), 1.29 – 1.28 (m, 12H), 0.90 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 154.7, 141.8, 139.6, 135.6, 135.0, 133.1, 132.3, 130.1, 129.5, 129.1, 129.0, 128.4, 128.0, 123.3, 113.6, 42.5, 42.4, 41.3, 38.1, 33.5, 32.0, 29.6(2C), 29.44, 29.41, 27.4, 27.1, 22.8, 21.15, 21.08, 14.2. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₆H₄₆N₂OH⁺ 523.3683; Found 523.3698.

Compound, **3n**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 85% (81 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.77 (dd, J = 7.8, 1.6 Hz, 1H), 7.39 – 7.27 (m, 5H), 7.25 – 7.14 (m, 6H), 7.10 (d, J = 7.6 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 6.81 – 6.79 (m, 2H), 5.36 (s, 2H), 3.76 (s, 3H), 3.58 – 3.50 (m, 1H), 3.42 – 3.29 (m, 2H), 2.54 – 2.50 (m, 2H), 2.23 – 2.00 (m, 2H). ¹³C NMR (**101 MHz, CDCl**₃) δ 159.8, 159.2, 155.1, 144.6, 142.6, 133.1, 132.5, 129.9, 129.7, 128.53, 128.45, 128.4(2C), 128.2, 127.5, 126.3, 125.8, 123.6, 114.5, 114.4, 55.4, 45.4, 43.4, 41.1, 38.2, 34.0. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₂H₃₀N₂OH⁺ 475.2380; Found 475.2381.

Compound, **30**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 89% (87 mg); ¹**H NMR** (**500 MHz, CDCl₃**) δ 7.81 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.34 – 7.28 (m, 6H), 7.25 – 7.15 (m, 6H), 7.11 (d, J = 6.9 Hz, 2H), 6.86 (d, J = 7.3 Hz, 2H), 4.36 (t, J = 7.6 Hz, 2H), 3.80 (s, 3H), 3.56 – 3.50 (m, 1H), 3.37 – 3.27 (m, 2H), 2.93 – 2.90 (m, 2H), 2.57 – 2.51 (m, 2H), 2.16 – 2.03 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 158.7, 154.6, 144.7, 142.6, 133.0, 132.2, 130.1, 129.9 129.7, 128.5, 128.4, 128.3, 128.1, 126.3, 125.7, 123.4, 114.3 (2C), 113.4, 55.4, 44.0, 42.9, 41.0, 38.0, 33.9, 32.6. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₃₂N₂O₂H⁺ 489.2537; Found 489.2535.

Compound, **3p**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 88% (86 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.9, 1.6 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.30 – 7.28 (m, 1H), 7.25 – 7.23 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.12 – 7.08 (m, 3H), 7.06 – 7.00 (m, 4H), 6.97 – 6.93 (m, 1H), 6.92 – 6.90 (m, 1H), 6.83 – 6.80 (m, 1H), 5.41 (s, 2H), 3.56 – 3.49 (m, 1H), 3.41 – 3.27 (m, 2H), 2.52 – 2.48 (m, 2H), 2.302 – 2.297 (m, 6H), 2.12 – 2.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, *J* = 246.8 Hz), 159.8, 154.9, 141.4, 139.4, 137.9 (d, *J* = 7.1 Hz), 135.6, 134.9, 133.0, 132.2, 130.5 (d, *J* = 8.4 Hz), 129.9, 129.6, 129.0, 128.9, 128.3, 127.9, 123.6, 122.3 (d, *J* = 3.2 Hz), 114.6 (d, *J* = 21.2 Hz), 114.0, 113.8 (d, *J* = 22.4 Hz), 45.3, 42.8, 41.0, 38.3, 33.4, 21.0, 20.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -110.26. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₃₁FN₂OH⁺ 491.2493; Found 491.2491.

Compound, **3q**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 83% (83 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.78 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.25 – 7.15 (m, 5H), 7.08 (d, *J* = 7.7 Hz, 2H), 7.04 – 6.98 (m, 4H), 6.79 – 6.77 (m, 1H), 6.72 – 6.71 (m, 1H), 6.69 – 6.66 (m, 1H), 5.41 (s, 2H), 3.74 (s, 3H), 3.56 – 3.48 (m, 1H), 3.37 – 3.27 (m, 2H), 2.50 – 2.45 (m, 2H), 2.29 (bs, 6H), 2.10 – 1.99 (m, 2H). ¹³C **NMR (101 MHz, CDCl**₃) δ 160.2, 159.9, 155.1, 141.7, 139.6, 137.1, 135.7, 135.1, 133.1, 132.5, 130.1, 130.0, 129.7, 129.2, 129.0, 128.4, 128.0, 123.6, 119.1, 114.5, 113.0, 112.81, 55.3, 45.9, 42.8, 41.3, 38.4, 33.5, 21.2, 21.1. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₃₄N₂O₂H⁺ 503.2693; Found 503.2697.

Compound, **3r**: Yellow solid; mp = 84–86 °C; eluent (15% ethyl acetate in hexane). **Yield:** 92% (84 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 7.7 Hz, 2H), 7.04 – 7.01 (m, 3H), 6.98 (d, J = 7.6 Hz, 2H), 5.04 – 4.93 (m, 2H), 3.75 (s, 3H), 3.50 – 3.44 (m, 1H), 3.26 (d, J = 7.4 Hz, 2H), 2.49 – 2.40 (m, 2H), 2.30 – 2.29 (m, 6H), 2.08 – 1.95 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 159.5, 154.6, 141.7, 139.5, 135.7, 135.1, 132.9, 132.2, 130.2, 129.9, 129.2, 129.0, 128.4, 127.9, 124.0, 113.0, 52.9, 43.5, 42.4, 41.3, 38.0, 33.4, 21.2, 21.1. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₃₀N₂O₃H⁺ 455.2329; Found 455.2334.

Compound, **3s**: Yellow solid; mp = 88–90 °C; eluent (15% ethyl acetate in hexane). **Yield:** 93% (87 mg); ¹H NMR (**500 MHz, CDCl**₃) δ 7.79 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.04 – 7.01 (m, 3H), 6.98 (d, J = 7.8 Hz, 2H), 5.02 – 4.91 (m, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.50 – 3.44 (m, 1H), 3.26 (d, J = 7.2 Hz, 2H), 2.50 – 2.40 (m, 2H), 2.30 – 2.29 (m, 6H), 2.08 – 1.97 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C **NMR (126 MHz, CDCl**₃) δ 167.3, 159.5, 154.6, 141.7, 139.6, 135.7, 135.1, 132.9, 132.3, 130.2, 129.9, 129.2, 129.0, 128.4, 127.9, 123.9, 113.1, 62.1, 43.7, 42.4, 41.3, 38.0, 33.5, 21.2, 21.1, 14.2. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₃₂N₂O₃H⁺ 469.2486; Found 469.2484.

Compound, **3t**: Yellow solid; mp = 80–82 °C; eluent (15% ethyl acetate in hexane). **Yield:** 95% (94 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (dd, J = 7.9, 1.5 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.30 (td, J = 7.6, 1.2 Hz, 1H), 7.21 – 7.19 (m, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.04 – 6.97 (m, 5H), 4.94 – 4.81 (m, 2H), 3.52 – 3.44 (m, 1H), 3.27 (d, J = 7.3 Hz, 2H), 2.53 – 2.40 (m, 2H), 2.30 – 2.29 (m, 6H), 2.14 – 1.95 (m, 2H), 1.43 (s, 9H). ¹³**C NMR (101 MHz, CDCl**₃) δ 166.3, 159.6, 154.7, 141.8, 139.6, 135.6, 135.0, 132.9, 132.5, 130.2, 129.7, 129.2, 129.0, 128.4, 128.0, 123.7, 113.1, 83.1, 44.4, 42.5, 41.2, 38.1, 33.5, 28.1, 21.12, 21.07. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₂H₃₆N₂O₃H⁺ 497.2799; Found 497.2796.

Compound, **3u**: Yellow solid; mp = 85-87 °C; eluent (15%) ethyl acetate in hexane). Yield: 90% (76 mg); ¹H NMR (400 **MHz, CDCl₃**) δ 7.80 (dd, J = 8.0, 1.6 Hz, 1H, CH), 7.48 – 7.44 (m, 1H, CH), 7.33 – 7.28 (m, 1H, CH), 7.23 – 7.20 (m, 3H, CH), 7.09 (d, J = 7.9 Hz, 2H, CH), 7.05 – 6.99 (m, 4H, CH), 5.96 – 5.84 (m, 1H, CH), 5.27 – 5.18 (m, 1H, CH), 5.07 – 5.02 $(m, 1H, CH), 4.86 - 4.83 (m, 2H, CH_2), 3.54 - 3.48 (m, 1H, 1H)$ CH), 3.36 – 3.23 (m, 2H, CH₂), 2.53 – 2.43 (m, 2H, CH₂), 2.30 (bs, 6H, CH₃), 2.10 – 1.99 (m, 2H, CH₂). ¹³C NMR (126 MHz, **CDCl**₃) δ 159.8(C), 154.6(C), 141.6(C), 139.6(C), 135.6(C), 135.1(C), 133.0(C), 132.3(C), 130.7(CH), 129.9(CH), 129.6(CH), 129.1(CH), 129.0(CH), 128.4(CH), 128.0(CH), 123.5(CH), 117.9(CH₂), 114.2(CH), 44.5(CH₂), 42.6(CH), 41.2(CH₂), 38.1(CH₂), 33.4(CH₂), 21.2(CH₃), 21.1(CH₃). HRMS (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₉H₃₀N₂OH⁺ 423.2431; Found 423.2433.

Compound, **3v**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 92% (79 mg); ¹H NMR (**500** MHz, CDCl₃) δ 7.83 – 7.79(m, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.53 (m, 1H), 7.34 – 7.31 (m, 2H), 7.30 – 7.27 (m, 5H), 7.24 – 7.21 (m, 3H), 7.19 – 7.15 (m, 2H), 7.11 – 7.10 (m, 2H), 6.63 – 6.59 (m, 1H), 3.59 – 3.54 (m, 1H), 3.36 – 3.28 (m, 2H), 2.55 – 2.48 (m, 2H), 2.19 – 2.03 (m, 2H). ¹³C NMR (**126** MHz, CDCl₃) δ 160.2, 154.6, 144.6, 142.5, 135.9, 133.8, 132.5, 130.3, 129.4, 129.33, 129.27, 128.4, 128.34, 128.26, 128.2, 128.0, 126.2, 125.6, 123.7, 115.3, 42.8, 41.1, 37.8, 33.8. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₆N₂OH⁺ 431.2118; Found 431.2135.

Compound, 3w: Yellow liquid; eluent (15% ethyl acetate in hexane). Yield: 93% (83 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.75 (m, 1H), 7.36 – 7.34 (m, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.24 – 7.20 (m, 5H), 7.19 – 7.17 (m, 2H), 7.15 – 7.10 (m, 2H), 7.07 (d, J = 8.1 Hz, 2H), 7.02 – 7.00 (m, 1H), 6.62 – 6.59 (m, 1H), 3.55 – 3.49 (m, 1H), 3.33 – 3.23 (m, 2H), 2.50 – 2.46 (m, 2H), 2.42 (s, 3H), 2.13 - 2.01 (m, 2H). ¹³C NMR (126) **MHz, CDCl**₃) δ 160.3, 154.9, 144.7, 142.6, 139.5, 134.1, 133.3, 132.6, 131.0, 129.4, 129.3, 128.5, 128.4, 128.3, 128.2, 128.0, 126.3, 125.7, 123.7, 115.5, 42.9, 41.2, 37.9, 33.9, 21.4. HRMS $[M+H]^+$ (ESI/TOF-Q) m/z: Calculated for C₃₁H₂₈N₂OH⁺ 445.2274; Found 445.2290.

Compound, **3x**: Yellow liquid; eluent (25% ethyl acetate in hexane). **Yield:** 98% (70 mg); ¹H NMR (**500 MHz, CDCl**₃) δ 12.40 (bs, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.37 – 7.34 (m, 3H), 7.32 – 7.29 (m, 3H), 7.24 – 7.20 (m, 2H), 7.19 – 7.17 (m, 1H), 7.15 – 7.11 (m, 3H), 3.59 – 3.53 (m, 1H), 3.40 – 3.30 (m, 2H), 2.60 – 2.51 (m, 2H), 2.20 – 2.07 (m, 2H). ¹³C NMR (**126 MHz, CDCl**₃) δ 159.9, 156.8, 144.7, 142.4, 132.9, 130.9, 129.8, 128.9, 128.5(2C), 128.3, 128.1, 126.4, 125.7, 124.2, 115.8, 42.9, 40.3, 37.8, 33.8. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₂N₂OH⁺ 355.1805; Found 355.1801.

Compound, **3y**: Yellow solid; mp = 122-124 °C; eluent (20% ethyl acetate in hexane). **Yield:** 96% (73 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.33 (bs, 1H), 7.81 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.50 - 7.46 (m, 1H), 7.36 - 7.29 (m, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.04 - 6.99 (m, 4H), 3.54 - 3.47 (m, 1H), 3.37 - 3.24 (m, 2H), 2.55 - 2.42 (m, 2H), 2.28 - 2.27 (s, 6H), 2.15 - 2.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 156.8, 141.7, 139.5, 135.7, 135.1, 132.9, 130.9, 129.8,

129.2, 129.0, 128.9, 128.4, 127.9, 124.2, 115.8, 42.6, 40.5, 38.0, 33.4, 21.13, 21.07. **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₆H₂₆N₂OH⁺ 383.2118; Found 383.2112.

Compound, **3z**: Yellow liquid; eluent (20% ethyl acetate in hexane). **Yield:** 95% (89 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 11.57 (bs, 1H), 7.78 (dd, J = 8.1, 1.4 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.33 – 7.29 (m, 2H), 7.28 – 7.27 (m, 2H), 7.25 – 7.22 (m, 4H), 7.05 – 7.03 (m, 2H), 3.54 – 3.47 (m, 1H), 3.30 (d, J = 7.3 Hz, 2H), 2.55 – 2.44 (m, 2H), 2.15 – 2.00 (m, 2H), 1.28 – 1.27 (m, 18H). ¹³C NMR (**101 MHz, CDCl**₃) δ 160.3, 156.8, 149.0, 148.5, 141.7, 139.6, 133.0, 130.9, 129.8, 128.9, 128.1, 127.6, 125.3, 125.2, 124.2, 115.7, 42.6, 40.4, 37.6, 34.5, 34.4, 33.3, 31.54, 31.51. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₂H₃₈N₂OH⁺ 467.3057; Found 467.3057.

Compound, **3aa**: Yellow solid; mp = 156–158 °C; eluent (20% ethyl acetate in hexane). **Yield:** 91% (77 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.23 (bs, 1H), 7.80 (dd, J = 8.1, 1.4 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.38 – 7.34 (m, 1H), 7.31 – 7.28 (m, 2H), 7.26 (bs, 3H), 7.20 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H), 3.54 – 3.47 (m, 1H), 3.33 – 3.26 (m, 2H), 2.54 – 2.44 (m, 2H), 2.18 – 1.97 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 159.4, 156.6, 142.9, 140.5, 132.9, 132.1, 131.6, 130.8, 130.0, 129.8, 129.4, 128.9, 128.7, 128.5, 124.4, 115.7, 42.1, 40.0, 37.6, 33.0. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₀Cl₂N₂OH⁺ 423.1025; Found 423.1022.

Compound, **3ab**: Yellow liquid; eluent (20% ethyl acetate in hexane). **Yield**: 93% (76 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 10.69 (s, 1H), 7.79 (dd, J = 8.1, 1.4 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.33 – 7.29 (m, 1H), 7.18 (dd, J = 8.2, 1.3 Hz, 1H), 7.09 – 7.04 (m, 3H), 6.95 (d, J = 7.5 Hz, 1H), 6.85 – 6.81 (m, 2H), 3.49 – 3.42 (m, 1H), 3.28 – 3.25 (m, 2H), 2.51 – 2.37 (m, 2H), 2.23 (s, 3H), 2.20 (s, 3H), 2.17 (s, 3H), 2.16 (s, 3H), 2.08 – 1.94 (m, 2H).¹³C NMR (**101 MHz, CDCl**₃) δ 160.2, 156.7, 142.3, 140.0, 136.3, 136.2, 134.3, 133.6, 132.9, 130.9, 129.7, 129.64, 129.61, 129.4, 129.3, 128.8, 125.7, 125.2, 124.0, 115.6, 42.5, 40.5, 37.8, 33.3, 19.9, 19.7, 19.4, 19.2. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₃₀N₂OH⁺ 411.2431; Found 411.2430.

Compound, **3ac**: Yellow liquid; eluent (30% ethyl acetate in hexane). **Yield**: 85% (70 mg); ¹H NMR (400 MHz, CDCl₃) δ 11.48 (s, 1H), 7.54 (s, 1H), 7.22 – 7.20 (m, 2H), 7.08 (d, J = 7.9 Hz, 2H), 7.01 – 6.96 (m, 5H), 3.50 – 3.43 (m, 1H), 3.31 – 3.18 (m, 2H), 2.49 – 2.39 (m, 2H), 2.36 – 2.34 (m, 6H), 2.27 – 2.26 (m, 6H), 2.11 – 1.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 156.5, 141.8, 139.8, 139.6, 135.7, 135.1, 133.2, 131.4, 129.2, 129.0, 128.9(2C), 128.4, 127.9, 115.8, 42.6, 40.5, 37.9, 33.4, 21.14, 21.08, 20.2, 19.6. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₃₀N₂OH⁺ 411.2431; Found 411.2430.

Compound, **3ad**: Yellow liquid; eluent (25% ethyl acetate in hexane). **Yield**: 89% (42 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 11.08 (bs, 1H), 8.07 (d, J = 1.8 Hz, 1H), 7.66 (dd, J = 8.4, 1.8 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 7.05 – 6.98 (m, 4H), 3.49 – 3.40 (m, 1H), 3.33 – 3.21 (m, 2H), 2.54 – 2.42 (m, 2H), 2.29 – 2.28 (m, 6H), 2.10 – 1.96 (m, 2H). ¹³C NMR (**126 MHz, CDCl**₃) δ 162.7, 156.3, 141.2, 139.3, 136.0, 135.3, 134.0, 133.7, 132.3, 129.9, 129.6, 129.3, 129.1, 128.4, 127.9, 116.7, 107.8, 42.2, 40.2, 38.2, 33.3, 21.12, 21.09. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₅N₃OH⁺ 408.2070; Found 408.2077.

Compound, **3ae**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield**: 92% (73 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 7.78 (dd, J = 8.0, 1.5 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.19 (t, J = 7.3 Hz, 1H), 7.11 – 7.07 (m, 2H), 7.06 – 7.02 (m, 5H), 3.93 – 3.86 (m, 1H), 3.66 (s, 3H), 3.42 – 3.37 (m, 1H), 3.23 – 3.18 (m, 1H), 2.55 – 2.46 (m, 2H), 2.43 (s, 3H) 2.13 (s, 3H), 2.06 – 1.91 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 155.1, 143.3, 140.8, 136.6, 136.0, 133.1, 132.8, 130.3, 130.2, 129.8, 129.7, 128.8, 126.3, 126.02, 125.96, 125.9(2C), 123.6, 113.7, 40.9, 37.4, 36.8, 31.2, 29.2, 20.2, 19.2. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₈N₂OH⁺ 397.2274; Found 397.2275.

Compound, **3af**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield**: 97% (77 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (s, 1H), 7.19 – 7.08 (m, 4H), 6.98 (d, J = 7.0 Hz, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.90 – 6.88 (m, 2H), 3.66 (s, 3H), 3.52 – 3.45 (m, 1H), 3.29 – 3.27 (m, 2H), 2.52 – 2.42 (m, 2H), 2.32 (s, 3H), 2.27 (s, 3H), 2.11 – 1.96 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 159.6, 155.1, 145.0, 142.6, 137.9, 137.8, 133.2, 132.9, 129.9, 129.7, 129.3, 128.9, 128.3, 128.2, 127.0,

126.4, 125.5, 125.1, 123.6, 113.6, 42.8, 41.2, 37.9, 33.9, 29.1, 21.6, 21.5. **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₇H₂₈N₂OH⁺ 397.2274; Found 397.2280.

Compound, **3ag**: Yellow liquid; eluent (10% ethyl acetate in hexane). Yield: 91% (100 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.31 – 7.21 (m, 7H), 7.17 (t, J = 8.2 Hz, 1H), 7.07 – 7.03 (m, 3H), 6.99 – 6.97 (m, 3H), 6.91 (d, J = 7.9 Hz, 2H), 6.85 – 6.78 (m, 4H), 3.61 (s, 3H), 3.52 - 3.47 (m, 1H), 3.26 (d, J = 7.4 Hz, 2H), 2.56 - 2.45 (m, 2H), 2.12 - 1.96 (m, 2H). ¹³C NMR (126) **MHz, CDCl**₃) δ 159.1, 157.6, 157.5, 157.2, 157.1, 154.9, 146.8, 144.5, 133.0, 132.7, 129.8, 129.74(2C), 129.71, 129.5, 123.6, 123.5, 123.1, 123.0, 119.1, 119.0, 118.8(2C), 118.6(2C), 117.1, 116.3, 113.6, 42.5, 41.0, 37.5, 33.7, 29.1. (ESI/TOF-Q) HRMS m/z: $[M+H]^+$ Calculated for C₃₇H₃₂N₂O₃H⁺ 553.2486; Found 553.2496.

Compound, **3ah**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 78% (71 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 7.79 – 7.77 (m, 1H), 7.52 – 7.48 (m, 1H), 7.33 – 7.30 (m, 1H), 7.25 – 7.20 (m, 3H), 7.09 (d, J = 7.9 Hz, 2H), 7.03 – 6.97 (m, 4H), 3.65 (s, 3H), 3.51 – 3.45 (m, 1H), 3.31 – 3.20 (m, 2H), 2.50 – 2.40 (m, 2H), 2.07 – 1.94 (m, 2H). ¹³**C NMR (126 MHz, CDCl**₃) δ 161.0, 154.4, 144.5, 142.4, 133.7, 132.5, 131.8, 130.6, 128.7, 128.5(2C), 128.4(2C), 128.0(2C), 127.3, 126.5, 126.2, 125.8, 115.1, 42.5, 41.0, 38.1, 33.8, 29.4. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₂N₄O₅H⁺ 459.1663; Found 459.1660.

Compound, **3ai**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield**: 87% (74 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.34 – 7.30 (m, 1H), 7.25 – 7.24 (1H), 7.11 – 7.05 (m, 3H), 6.98 – 6.96 (m, 1H), 6.85 – 6.81 (m, 2H), 3.66 (s, 3H), 3.49 – 3.42 (m, 1H), 3.29 – 3.22 (m, 2H), 2.54 – 2.34 (m, 2H), 2.24 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H), 2.05 – 1.95 (m, 2H). ¹³C **NMR (126 MHz, CDCl**₃) δ 159.7, 155.1, 142.5, 140.2, 136.4, 136.3, 134.3, 133.7, 133.2, 132.9, 129.9 (2C), 129.7 (2C), 129.6, 129.5, 125.8, 125.4, 123.6, 113.6, 42.4, 41.4, 38.0, 33.5, 29.2, 20.0, 19.8, 19.5, 19.4. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₃₂N₂OH⁺ 425.2587; Found 425.2590.

Compound, **3aj**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 95% (81 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.80 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.34 – 7.30 (m, 1H), 7.253 – 7.249 (m, 1H), 6.95 (bs, 2H), 6.81 (s, 1H), 6.76 (s, 1H), 6.70 (bs, 2H), 3.67 (s, 3H), 3.49 – 3.40 (m, 1H), 3.25 (d, J = 7.3 Hz, 2H), 2.49 – 2.35 (m, 2H), 2.28 (s, 6H), 2.22 (s, 6H), 2.04 – 1.95 (m, 2H).¹³C NMR (126 MHz, **CDCl**₃) δ 159.7, 155.1, 145.0, 142.6, 137.7 (2C), 133.2, 132.8, 129.9, 129.7, 127.9, 127.3, 126.3, 125.9, 123.6, 113.6, 42.7, 41.3, 37.7, 33.8, 29.1, 21.5, 21.3. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₃₂N₂OH⁺ 425.2587; Found 425.2591.

Compound, **3ak**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield**: 92% (78 mg); ¹**H NMR** (**500 MHz, CDCl**₃) δ 7.78 (dd, J = 8.0, 1.5 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.33 – 7.30 (m, 1H), 7.25 – 7.23 (m, 3H), 7.11 (d, J = 7.9 Hz, 2H), 7.05 – 7.00 (m, 4H), 3.65 (s, 3H), 3.51 – 3.45 (m, 1H), 3.26 (t, J = 7.2 Hz, 2H), 2.62 – 2.56 (m, 4H), 2.51 – 2.40 (m, 2H), 2.08 – 1.96 (m, 2H), 1.22 – 1.18 (m, 6H). ¹³C NMR (**126 MHz, CDCl**₃) δ 159.7, 155.1, 142.1, 142.0, 141.5, 139.9, 133.1, 132.8, 129.9, 129.7, 128.4(2C), 128.0, 127.9, 127.8, 123.6, 113.6, 42.5, 41.3, 37.9, 33.5, 29.2, 28.5, 15.8, 15.6. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₃₂N₂OH⁺ 425.2587; Found 425.2587.

Compound, 3al: Yellow liquid; eluent (15% ethyl acetate in hexane). Yield: 90% (87 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.74 (m, 1H), 7.50 - 7.45 (m, 1H), 7.31 - 7.27 (m, 2H), 7.24 - 7.21 (m, 6H), 7.02 (d, J = 7.9 Hz, 2H), 3.63 (s, 3H), 3.50 - 3.46 (m, 1H), 3.26 (d, J = 7.3 Hz, 2H), 2.50 - 2.45 (m, 2H), 2.09 – 1.97 (m, 2H), 1.28 – 1.27 (m, 18H).¹³C NMR (101 **MHz, CDCl**₃) δ 159.8, 155.2, 149.0, 148.5, 141.9, 139.7, 133.2, 132.9, 129.9, 129.6, 128.1, 127.7, 125.3, 125.2, 123.5, 113.6, 42.5, 41.3, 37.7, 34.5, 34.4, 33.4, 31.6(2C), 29.1. HRMS (ESI/TOF-Q) m/z: Calculated $[M+H]^+$ for C₃₃H₄₀N₂OH⁺ 481.3213; Found 481.3224.

Compound, **3am**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield:** 85% (88 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.5 Hz, 1H), 7.80 (dd, J = 8.0, 1.5 Hz, 1H), 7.60 – 7.52 (m, 8H), 7.48 – 7.46 (m, 1H), 7.45 – 7.40 (m, 7H), 7.34 – 7.29 (m, 3H), 7.21 – 7.19 (m, 1H), 3.65 (s, 3H), 3.64 – 3.58 (m, 1H), 3.37 – 3.31 (m, 2H), 2.65 – 2.54 (m, 2H), 2.22 – 2.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 155.0, 143.9, 141.6, 141.2, 140.8, 139.0, 138.6, 133.0, 132.7, 129.75, 129.67, 129.1, 128.9, 128.7, 128.4, 127.13, 127.05, 127.02,

126.97, 123.6, 123.5, 113.6, 113.5, 42.3, 41.0, 35.9, 33.4, 29.1. **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{37}H_{32}N_2OH^+$ 521.2587; Found 521.2586.

Compound, **3an**: Yellow liquid; eluent (20% ethyl acetate in hexane). **Yield**: 82% (84 mg); ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.78 (dd, J = 7.9, 1.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.24 (s, 1H), 7.20 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 3.94 – 3.90 (m, 4H), 3.64 (s, 3H), 3.47 – 3.41 (m, 1H), 3.29 – 3.19 (m, 2H), 2.48 – 2.36 (m, 2H), 2.05 – 1.90 (m, 2H), 1.73 (p, J = 7.2 Hz, 4H), 1.47 (h, J = 7.4 Hz, 4H), 0.96 (t, J = 7.3 Hz, 6H). ¹³**C NMR** (**126 MHz**, **CDCl**₃) δ 159.6, 157.5, 157.2, 154.9, 136.6, 134.4, 133.0, 132.7, 129.7, 129.5, 129.2, 128.8, 123.4, 114.3(2C), 113.5, 67.7, 67.6, 41.8, 41.2, 38.2, 32.8, 31.44, 31.42, 29.0, 19.3(2C), 13.9(2C). **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₄₀N₂O₃H⁺ 513.3112; Found 513.3115.

Compound, **3ao**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 91% (88 mg); ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.79 – 7.76 (m, 1H), 7.51 – 7.47 (m, 1H), 7.32 – 7.28 (m, 1H), 7.24 – 7.23 (m, 1H), 7.20 – 7.17 (m, 2H), 6.99 – 6.96 (m, 2H), 6.81 – 6.72 (m, 4H), 4.51 – 4.43 (m, 2H), 3.64 (s, 3H), 3.47 – 3.40 (m, 1H), 3.26 – 3.23 (m, 2H), 2.48 – 2.37 (m, 2H), 2.08 – 1.90 (m, 2H), 1.31 – 1.29 (m, 12H).¹³C NMR (101 MHz, CDCl₃) δ 159.8, 156.4, 156.1, 155.1, 136.9, 134.8, 133.2, 132.8, 129.9, 129.7, 129.4, 129.0, 123.6, 116.02, 115.98, 113.6, 70.2, 70.1, 42.1, 41.4, 38.3, 33.0, 29.1, 22.3(2C). HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₁H₃₆N₂O₃H⁺ 485.2799; Found 485.2808.

Compound, **3ap**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 84% (66 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.76 (dd, J = 7.9, 1.5 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.34 – 7.30 (m, 1H), 7.273 – 7.270 (m, 1H), 7.25 – 7.22 (m, 2H), 7.05 – 7.00 (m, 2H), 6.98 – 6.93 (m, 2H), 6.92 – 6.87 (m, 2H), 3.65 (s, 3H), 3.51 – 3.44 (m, 1H), 3.25 (dd, J = 7.4, 2.2 Hz, 2H), 2.50 – 2.40 (m, 2H), 2.11 – 1.91 (m, 2H). ¹³**C NMR (126 MHz, CDCl**₃) δ 161.5 (d, *J* = 243.8 Hz), 161.3 (d, *J* = 243.0 Hz), 159.1, 155.0, 140.2 (d, J = 3.5 Hz), 137.9 (d, J = 3.4 Hz), 133.1, 132.7, 129.9, 129.81 (d, *J* = 7.5 Hz), 129.77, 129.4 (d, *J* = 7.5 Hz), 123.7, 115.2 (d, *J* = 21.2 Hz), 115.0 (d, *J* = 21.2 Hz), 113.7, 41.9, 41.1, 38.2, 33.0, 29.2. ¹⁹**F NMR (376 MHz, CDCl**₃) δ -117.04, -117.95. **HRMS** (ESI/TOF-Q) m/z:

 $[M+H]^+$ Calculated for $C_{25}H_{22}F_2N_2OH^+$ 405.1773; Found 405.1772.

Compound, **3aq**: Yellow solid; mp = 102-104 °C; eluent (15% ethyl acetate in hexane). **Yield**: 79% (69 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 7.76 (dd, J = 8.0, 1.6 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.34 – 7.30 (m, 1H), 7.28 – 7.27 (m, 1H), 7.25 – 7.24 (m, 1H), 7.23 – 7.22 (m, 3H), 7.20 – 7.16 (m, 2H), 7.01 – 6.99 (m, 2H), 3.65 (s, 3H), 3.51 – 3.44 (m, 1H), 3.29 – 3.21 (m, 2H), 2.51 – 2.41 (m, 2H), 2.12 – 1.91 (m, 2H).¹³C NMR (**101** MHz, CDCl₃) δ 158.9, 155.0, 143.1, 140.6, 133.1, 132.8, 132.1, 131.6, 130.0(2C), 129.9, 129.5, 128.7, 128.5, 123.7, 113.7, 42.0, 40.8, 37.8, 33.1, 29.2. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₂Cl₂N₂OH⁺ 437.1182; Found 437.1182.

Compound, **3ar**: Yellow liquid; eluent (20% ethyl acetate in hexane). **Yield**: 90% (83 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 7.76 (d, J = 8.0 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.35 – 7.29 (m, 2H), 7.24 – 7.22 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 3.64 (s, 3H), 3.49 – 3.43 (m, 1H), 3.30 – 3.19 (m, 2H), 2.48 – 2.40 (m, 8H), 2.08 – 1.90 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 155.0, 141.9, 139.6, 135.8, 135.1, 133.1, 132.8, 129.84, 129.80, 129.1, 128.6, 127.3, 127.0, 123.6, 113.7, 42.1, 41.0, 37.9, 33.3, 29.2, 16.5, 16.2. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₈N₂OS₂H⁺ 461.1716; Found 461.1715.

Compound, **3as**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 82% (62 mg); ¹H NMR (**500** MHz, CDCl₃) δ 7.81 – 7.79 (m, 1H), 7.54 – 7.50 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.28 (s, 1H), 7.13 – 7.11 (m, 1H), 7.08 – 7.07 (m, 1H), 6.91 – 6.88 (m, 3H), 6.753 – 6.746 (m, 1H), 3.94 – 3.88 (m, 1H), 3.67 (s, 3H), 3.37 – 3.29 (m, 2H), 2.87 – 2.76 (m, 2H), 2.23 – 2.07 (m, 2H). ¹³C NMR (**126** MHz, CDCl₃) δ 158.7, 155.0, 148.4, 145.1, 133.2, 132.8, 130.0, 129.9, 126.8, 126.6, 124.4, 124.3, 123.7, 123.3, 123.0, 113.7, 41.9, 39.2, 37.7, 29.2, 27.8. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₀N₂OS₂H⁺ 381.1090; Found 381.1100.

Compound, **3at**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 91% (72 mg); ¹**H NMR (500 MHz, CDCl₃)** δ 7.82 (dd, J = 8.0, 1.6 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.53 – 7.46 (m, 2H), 7.38 – 7.33 (m, 5H), 7.30 – 7.27 (m, 5H), 7.23 – 7.20 (m, 2H), 7.18 – 7.15 (m, 5H), 7.11 – 7.07 (m, 3H), 7.05 – 7.03 (m, 2H), 6.95 (d, J = 7.2 Hz, 2H), 3.61 – 3.56 (m, 6H), 3.35 – 3.24 (m, 4H), 3.16 – 3.12 (m, 1H), 2.67 – 2.62 (m, 1H), 2.59 –

2.55 (m, 2H), 2.42 – 2.26 (m, 1H), 2.10 – 2.06 (m, 1H), 1.59 – 1.55 (m, 6H), 1.34 (d, J = 7.0 Hz, 3H), 1.14 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 159.1, 155.4, 155.2, 149.5, 149.4, 147.5, 147.2, 133.2, 132.6, 130.03, 129.96, 129.74, 129.68, 128.5, 128.4, 128.2, 127.9, 127.8, 127.4, 127.3, 127.2, 126.9, 126.2, 125.70, 125.66, 125.6, 125.4, 123.6, 123.4, 113.6, 113.5, 50.5, 50.2, 46.0, 44.0, 43.4, 42.4, 37.5, 37.0, 36.8, 29.3, 25.55, 25.46, 24.3, 21.9. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₈N₂OH⁺ 397.2274; Found 397.2279.

Compound, **4a**: Yellow sticky liquid; eluent (10% ethyl acetate in hexane). **Yield:** 55% (37 mg); ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.82 – 7.79 (m, 1H), 7.51 – 7.47 (m, 2H), 7.25 – 7.22 (m, 10H), 7.21 – 7.20 (m, 1H), 7.15 (s, 1H), 3.57 (s, 3H). ¹³C NMR (**101 MHz, CDCl**₃) δ 155.1, 150.2, 141.5, 133.4, 133.3, 131.1, 130.6, 128.32(2C), 128.26, 128.2(2C), 127.8(2C), 123.8, 114.3(2C), 113.8, 28.8. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₃H₁₈N₂OH⁺ 339.1492; Found 339.1495.

Compound, **4b**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield:** 56% (41 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.57 (s, 1H), 7.28 – 7.26 (m, 10H), 7.04 (s, 1H), 3.60 (s, 3H), 2.37 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 150.2, 149.1, 141.6, 141.1, 132.9, 132.0, 131.3, 130.6, 128.4(2C), 128.29, 128.26(2C), 127.8(2C), 114.45, 114.39, 28.8, 20.7, 19.3. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₂N₂OH⁺ 367.1805; Found 3671801.

Compound, **4c**: Yellow sticky liquid; eluent (10% ethyl acetate in hexane). **Yield:** 51% (38 mg); ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.822 – 7.816 (m, 1H), 7.49 (dd, J = 8.0, 2.4 Hz, 1H), 7.29 – 7.27 (m, 10H), 7.21 (s, 1H), 7.19 (s, 1H), 3.61 (s, 3H).¹³C NMR (**101 MHz, CDCl**₃) δ 154.8, 151.6(2C), 150.2, 141.6, 134.0, 132.1, 131.1, 130.0, 129.3, 128.4(2C), 128.3(2C), 127.8(2C), 115.0, 114.3, 29.0. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₃H₁₇ClN₂ONH₄⁺ 390.1368; Found 390.1363.

Compound, **4d**: Yellow liquid; eluent (10% ethyl acetate in hexane). **Yield:** 22% (11 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.86 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.36 – 7.28 (m, 5H), 7.25 – 7.24 (m, 1H), 7.07 (d, J = 14.0 Hz, 1H), 6.72 (d, J = 13.9 Hz, 1H), 3.65 (s, 3H). ¹³**C**

NMR (**126 MHz**, **CDCl**₃) δ 155.2, 150.3, 137.3, 136.0, 133.5, 132.4, 131.2, 130.6, 128.9, 128.4, 126.2, 123.9, 113.9, 106.6, 28.8. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₇H₁₄N₂OH⁺ 263.1179; Found 263.1183.

Compound, **4e**: Yellow sticky liquid; eluent (10% ethyl acetate in hexane). **Yield:** 69% (38 mg); ¹H NMR (**400 MHz, CDCl₃**) δ 7.63 – 7.61 (m, 1H), 7.51 – 7.52 (m, 1H), 7.28 – 7.26 (m, 6H), 7.21 – 7.17 (m, 1H), 6.46 (s, 1H), 3.62 (s, 3H), 2.62 (s, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 155.0, 150.2, 143.3, 141.2, 133.4, 133.3, 131.1, 130.5, 128.2, 127.4, 125.5, 123.8, 113.8, 112.4, 28.7, 21.8. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₈H₁₆N₂OH⁺ 277.1335; Found 277.1330.

Compound, **4f**: Yellow sticky liquid; eluent (7% ethyl acetate in hexane). **Yield:** 64% (37 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 7.55 – 7.54 (m, 1H), 7.24 – 7.21 (m, 4H), 7.19 – 7.18 (m, 2H), 7.00 (d, J = 7.6 Hz, 1H), 6.69 (s, 1H), 3.58 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H).¹³C NMR (**101 MHz, CDCl**₃) δ 155.4, 149.2, 141.2, 137.4, 136.1, 132.9, 132.1, 131.5, 130.7, 129.0, 128.5, 126.3, 114.5, 106.7, 28.9, 20.8, 19.3.HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₉H₁₈N₂OH⁺ 291.1492; Found 291.1498.

Compound, **4g**: Yellow sticky liquid; eluent (7% ethyl acetate in hexane). **Yield:** 48% (32 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 7.78 – 7.75 (m, 1H), 7.49 – 7.45 (m, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.24 – 7.18 (m, 4H), 7.16 – 7.15 (m, 1H), 6.79 (s, 1H), 3.68 (s, 3H), 3.54 (s, 3H), 2.05 (s, 3H). ¹³C NMR (**101 MHz, CDCl**₃) δ 158.8, 154.7, 151.1, 137.5, 136.7, 134.8, 133.8, 132.6, 132.3, 129.1, 126.1, 116.4, 115.4, 112.6, 50.1, 28.8, 21.1. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₉H₁₈N₂O₂Na⁺ 329.1260; Found 329.1262.

Compound, **4h**: Yellow sticky liquid; eluent (7% ethyl acetate in hexane). **Yield:** 59% (37 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.80 (m, 1H), 7.54 – 7.51 (m, 2H), 7.31 – 7.28 (m, 2H), 7.24 – 7.22 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 6.62 (s, 1H), 3.60 (s, 3H), 2.27 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 155.0, 150.1, 137.6, 136.7, 134.8, 133.3, 133.2, 131.1, 130.5, 129.2, 126.1, 123.7, 113.8, 112.7, 28.7, 21.2. HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₈H₁₅ClN₂OH⁺ 311.0946; Found 311.0940.

Compound, **5a**: Yellow liquid; eluent (20% ethyl acetate in hexane). **Yield**: 94% (123 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.80 – 7.77 (m, 1H), 7.52 – 7.42 (m, 2H), 7.32 – 7.28 (m, 1H), 7.21 – 7.19 (m, 2H), 7.11 – 6.98 (m, 7H), 6.67 – 6.65 (m, 1H), 6.58 (bs, 1H), 4.47 – 4.44 (m, 2H), 4.37 – 4.32 (m, 2H), 3.82 – 3.79 (m, 2H), 3.51 – 3.48 (m, 1H), 3.34 – 3.19 (m, 2H), 2.49 – 2.42 (m, 2H), 2.32 (s, 3H), 2.30 (s, 6H), 2.17 (s, 3H), 2.11 – 1.96 (m, 2H), 1.68 – 1.62 (m, 4H), 1.12 (s, 6H). ¹³**C NMR (101 MHz, CDCl**₃) δ 177.9, 159.5, 157.0, 154.7, 141.6, 139.5, 136.6, 135.7, 135.1, 132.9, 132.6, 130.4, 130.1, 129.8, 129.1, 129.0, 128.4, 127.9, 123.7, 123.6, 120.8, 113.9, 112.1, 67.8, 60.9, 42.5, 42.2, 41.1, 40.7, 38.1, 37.1, 33.4, 25.13, 25.10, 21.5, 21.13, 21.09, 15.9. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₃H₅₀N₂O₄H⁺ 659.3843; Found 659.3841.

Compound, **5b**: Yellow liquid; eluent (25% ethyl acetate in hexane). **Yield**: 96% (42 mg); ¹**H NMR (400 MHz, CDCl3)** δ 8.09 – 8.00 (m, 3H), 7.85 – 7.79 (m, 2H), 7.80 – 7.72 (m, 1H), 7.62 – 7.52 (m, 2H), 7.26 – 7.19 (m, 3H), 7.15 – 6.69 (m, 5H), 4.86 – 4.52 (m, 4H), 4.43 – 4.20 (m, 2H), 3.12 – 3.08 (m, 4H), 2.43 – 2.40 (m, 1H), 2.36 – 2.30 (m, 2H), 2.19 (bs, 6H), 1.58 – 1.52 (m, 6H), 0.89 – 0.85 (m, 6H). ¹³C NMR (126 MHz, CDCl3) δ 165.1, 155.2, 151.9, 144.5, 139.2, 139.0, 138.9, 135.9, 133.2, 130.34, 130.31, 129.1, 128.93, 128.87, 128.8, 128.7, 128.4, 126.98, 126.95, 126.6, 126.5, 63.8, 63.6, 50.0, 48.8, 27.2, 22.0, 21.03, 21.00 12.6, 11.2(2C). HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₁H₄₇N₃O₅SH⁺ 694.3309; Found 694.3310.

Compound, **5c**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 88% (108 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.32 – 7.29 (m, 2H), 7.19 – 7.16 (m, 2H), 7.09 – 6.97 (m, 10H), 4.52 – 4.23 (m, 4H), 3.60 – 3.55 (m, 1H), 3.48 – 3.40 (m, 1H), 3.31 – 3.17 (m, 2H), 2.53 – 2.45 (m, 2H), 2.43 (d, J = 7.1 Hz, 2H), 2.28 (bs, 6H), 2.08 – 1.97 (m, 2H), 1.88 – 1.81 (m, 1H), 1.40 (d, J = 7.1 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 159.6, 154.8, 141.72, 141.69(C*), 140.8, 139.6, 137.4, 135.7, 135.1, 133.0, 132.7, 130.1, 129.7, 129.5, 129.1, 129.0, 128.4, 128.0, 127.2, 123.6, 113.8, 61.2, 45.21, 45.17(C*), 42.61, 42.57(C*), 41.1, 40.9, 38.1, 33.5, 30.3, 22.5, 21.12, 21.08, 18.5(2C). **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₁H₄₆N₂O₃H⁺ 615.3581; Found 615.3585. C* is another diastereomer.

Compound, **5d**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield**: 77% (96 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.25 – 8.09 (m, 1H), 8.04 – 7.84 (m, 1H), 7.82 – 7.70 (m, 2H), 7.68 – 7.50 (m, 5H), 7.40 – 7.28 (m, 5H), 7.24 – 7.00 (m, 2H), 4.69 – 4.49 (m, 4H), 4.40 – 4.35 (m, 1H), 2.81 – 2.73 (m, 1H), 2.35 – 2.26 (m, 2H), 1.58 (bs, 6H), 1.45 – 1.39 (m, 2H), 1.17 – 1.11 (m, 2H), 0.91 – 0.88 (m, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 168.9, 167.8, 165.3, 155.3, 139.4, 136.9, 134.3, 133.9, 131.7, 130.3, 129.1, 128.5, 127.4, 126.9, 126.4, 125.9, 124.8, 123.6, 123.4, 116.2, 107.3, 63.9, 63.5, 60.3, 57.7, 29.8, 28.8, 21.0, 19.5, 15.6, 14.6. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₉H₃₇N₃O₅H⁺ 628.2806; Found 628.2801.

Compound, 5e: Yellow liquid; eluent (25% ethyl acetate in hexane). Yield: 69% (114 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.1, 1.3 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.34 – 7.28 (m, 2H), 7.22 – 7.15 (m, 3H), 7.11 – 7.05 (m, 2H), 7.03 – 6.96 (m, 3H), 3.51 – 3.41 (m, 1H), 3.30 – 3.19 (m, 2H), 2.94 – 2.86 (m, 4H), 2.48 – 2.41 (m, 2H), 2.38 – 2.32 (m, 6H), 2.31 – 2.30 (m, 2H), 2.284 – 2.278 (m, 3H), 2.25 – 2.24 (m, 2H), 2.21 -2.19 (m, 2H), 2.17 - 2.16 (m, 2H), 2.14 - 2.12 (m, 2H), 2.06 -2.01 (m, 6H), 1.96 - 1.94 (m, 1H), 1.89 - 1.84 (m, 4H), 1.66-1.59 (m, 2H), 1.40 (s, 3H), 1.08 (s, 3H), 0.87 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.1, 209.2, 208.8, 178.7, 160.1, 156.4, 141.6, 139.5, 135.8, 135.1, 133.0, 130.5, 129.9, 129.2, 129.1, 129.0, 128.4, 127.9, 124.3, 115.4, 57.1, 51.9, 49.1, 47.0, 45.8, 45.7, 45.1, 42.9, 42.5, 40.4, 38.8(2C), 38.1, 36.6, 36.2, 35.7, 35.4, 33.4, 31.3, 30.4, 29.8, 27.8, 25.3, 22.1, 21.2, 21.1, 18.8, 12.0. HRMS (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{52}H_{62}N_2O_6H^+$ 811.4681; Found 811.4683.

Compound, **5f**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 87% (135 mg); ¹H NMR (**500 MHz, CDCl**₃) δ 7.85 – 7.74 (m, 1H), 7.53 – 7.47 (m, 1H), 7.32 – 7.28 (m, 6H), 7.25 – 7.21 (m, 2H), 7.18 – 7.13 (m, 6H), 6.99 – 6.91 (m, 2H), 6.85 – 6.75 (m, 2H), 3.95 – 3.88 (m, 2H), 3.63 (s, 3H), 3.52 – 3.46 (m, 1H), 3.27 – 3.24 (m, 2H), 2.49 – 2.46 (m, 6H), 2.11 – 1.92 (m, 2H), 1.91 – 1.84 (m, 2H), 1.62 – 1.58 (m, 6H), 0.93 – 0.91 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 173.2, 159.8(C*), 159.0, 155.0, 151.1, 151.0(C*), 144.0,

143.8(C*), 140.8, 137.5(C*), 137.4, 133.1(C*), 132.7, 129.9, 129.8, 129.61, 129.59, 129.3(C*), 129.2, 129.1, 127.4(2C), 126.1, 125.9, 125.3, 123.7, 123.6, 121.7, 121.3, 121.1, 119.4(C*), 119.3, 119.1, 118.8, 113.7, 113.6, 45.4, 45.2, 42.5, 42.4, 40.8, 40.7(C*), 37.4, 35.7, 33.5, 32.3, 30.3, 29.1, 22.5(2C), 18.74, 18.71. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for $C_{51}H_{56}N_2O_5H^+$ 777.4262; Found 777.4273. C* is another diastereomer.

Compound, 5g: Yellow liquid; eluent (30%) ethyl acetate in hexane). Yield: 88% (145 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.84 (m, 1H), 7.83 – 7.67 (m, 6H), 7.55 – 7.46 (m, 4H), 7.36 – 7.28 (m, 4H), 7.24 – 7.10 (m, 8H), 6.83 – 6.79 (m, 1H), 4.58 – 4.54 (m, 1H), 4.40 – 4.31 (m, 1H), 4.10 – 4.05 (m, 1H), 3.92 (s, 6H), 3.61 (s, 3H), 2.35 - 2.23 (m, 2H), 2.08 - 2.01 (m, 2H), 1.72 -1.62 (m, 2H), 0.91 – 0.87 (m, 6H). ¹³C NMR (**126 MHz, CDCl**₃) δ 173.2(2C), 161.0, 158.5, 157.8, 154.7, 150.9, 143.4, 142.70, 142.67, 135.4, 135.3, 133.92, 133.86, 133.1, 133.0, 132.9, 130.3, 129.9, 129.8, 129.6, 129.5(2C), 129.13, 129.08, 127.5, 126.41, 126.38, 126.35, 126.33, 126.27, 126.26, 123.8, 123.6, 121.5, 119.8, 119.7, 119.2, 113.8, 113.6, 105.8(2C), 55.5(2C), 48.9, 45.7, 29.8, 29.3, 27.3, 21.8, 18.7, 14.3, 12.5. HRMS (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{53}H_{48}N_2O_7H^+$ 825.3534; Found 825.3539.

Compound, **5h**: Yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 93% (174 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.73 (m, 1H), 7.51 – 7.47 (m, 1H), 7.31 – 7.27 (m, 6H), 7.24 – 7.20 (m, 2H), 7.16 – 7.12 (m, 6H), 6.96 – 6.90 (m, 2H), 6.82 – 6.73 (m, 2H), 3.93 – 3.87 (m, 2H), 3.63 (s, 3H), 3.50 – 3.47 (m, 1H), 3.25 – 3.23 (m, 2H), 2.49 – 2.46 (m, 6H), 2.10 – 1.92 (m, 2H), 1.91 – 1.82 (m, 2H), 1.61 – 1.56 (m, 8H), 0.93 – 0.91 (m, 12H). ¹³C NMR (126

MHz, CDCl₃) δ 173.3, 173.2, 159.0, 155.0, 151.0, 150.9, 146.3, 144.0, 140.9, 137.5, 137.4, 133.1, 132.7, 129.9, 129.8, 129.63, 129.61, 129.3, 129.1, 127.4(2C), 126.0, 125.4, 123.6, 121.4, 121.1, 119.39, 119.36, 118.8, 113.7, 45.4, 45.2, 42.5, 42.4(2C*), 40.81, 40.76(2C*), 37.4, 33.6, 30.3, 29.2, 22.6, 18.8, 18.7. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₅₁H₅₈N₄O₉S₂H⁺ 935.3718; Found 935.3711.

Crystallographic experimental data

Crystallization: Crystals of compound **3a** were obtained through a slow evaporation technique at room temperature from the solution in a hexane/DCM mixture.

Crystal structure of compound **3a** (CCDC number: 2385075, Ellipsoid Probability 50%):

Table 1. Crystal data and structure refinement for 3a

Identification code	3a
Empirical formula	$C_{25}H_{24}N_2O$
Formula weight	368.1889
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P b c a
Unit cell dimensions	$a = 13.0274(8) \text{ Å}$ $\alpha = 90^{\circ}.$

	$b = 8.8918(5) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 19.8864(12) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2303.6(2) Å3
Z	8
Density (calculated)	1.218 Mg/m3
Absorption coefficient	0.077 mm-1
F(000)	896
Crystal size	0.319 x 0.234 x 0.083 mm3
Theta range for data collection	3.449 to 26.990°.
Index ranges	-16<=h<=16, -11<=k<=11, -25<=l<=25
Reflections collected	70602
Independent reflections	2508 [R(int) = 0.0461]
Completeness to theta $= 25.242^{\circ}$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.986 and 0.953
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	2508 / 0 / 149
Goodness-of-fit on F2	1.099
Final R indices [I>2sigma(I)]	R1 = 0.0495, $wR2 = 0.1287$
R indices (all data)	R1 = 0.0636, wR2 = 0.1373
Extinction coefficient	n/a
Largest diff. peak and hole	0.354 and -0.287 e.Å-3

Gram scale synthesis of compound 3a and 3x Procedure for compound 3a

A 100 mL oven-dried round bottom flask equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1a** (6.2 mmol, 1.0 equiv, 1.0 g), and alkene **2a** (18.7 mmol, 3.0 equiv, 1.95 g) under nitrogen atmosphere. The reaction flask was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (30 mL) were added via a syringe. After that, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 24 h. After completion of the reaction (TLC monitored), brine solution was added and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel to get product **3a** (1.85 g, 81% yield).

Procedure for compound 3x

A 100 mL oven-dried round bottom flask equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1x** (6.8 mmol, 1.0 equiv, 1.0 g), and alkene **2a** (20.5 mmol, 3.0 equiv, 2.12 g) under nitrogen atmosphere. The reaction flask was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (30 mL) were added via a syringe. After that, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 24 h. After completion of the reaction (TLC monitored), brine solution was added and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel to get product **3x** (2.13 g, 88% yield).

Post-synthetic manipulations

a) Synthesis of compound 6

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with C3-alkyl quinoxalin-2(1*H*)-one **3a** (0.1 mmol, 1.0 equiv), and LiAlH₄ (0.25 mmol, 2.5 equiv) under a nitrogen atmosphere. The reaction tube was capped with a septum, and dry THF (1.0 mL) was added via a syringe. After that, the reaction mixture was allowed to stir at room temperature under N₂ atmosphere for 4 h. After completion of the reaction (TLC monitored), the reaction mixture was neutralized with a saturated solution of sodium bicarbonate and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash chromatography column over silica gel to get compound **6**.

Compound, **6**: Yellow liquid; eluent (7% ethyl acetate in hexane). **Yield:** 89% (32 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.32 (m, 4H), 7.29 – 7.27 (m, 3H), 7.24 – 7.16 (m, 10H), 7.13 – 7.09 (m, 4H), 6.68 – 6.55 (m, 4H), 6.52 – 6.49 (m, 3H), 6.47 – 6.45 (m, 1H), 6.16 – 6.14 (m, 1H), 3.35 – 3.29 (m, 1H), 3.25 – 3.21 (m, 1H), 3.18 – 3.14 (m, 1H), 2.97 – 2.92 (m, 2H), 2.86 – 2.84 (m, 1H), 2.82 (s, 3H), 2.76 (s, 3H), 2.73 – 2.60 (m, 2H), 2.50 – 2.46 (m, 4H), 2.02 – 1.94 (m, 4H), 1.88 – 1.76 (m, 4H).¹³C NMR (101 MHz, CDCl₃) δ 144.7, 144.4, 142.3, 142.2, 136.1, 135.9, 133.9, 133.9, 129.0, 128.9, 128.53(2C), 128.50, 128.47, 127.8(2C), 126.8, 126.7, 126.0, 125.9, 118.78, 118.75, 118.3, 118.2, 113.7, 113.6, 111.6, 111.5, 55.6, 55.5, 49.0, 48.1, 43.2, 42.1, 41.9, 41.7, 39.3, 39.3, 39.1, 38.9, 33.8, 33.6.HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₈N₂H⁺ 356.2252; Found 356.2250. b) Synthesis of compound 7

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with compound **3x** (0.1 mmol, 1.0 equiv), and LiAlH₄ (0.25 mmol, 2.5 equiv) under a nitrogen atmosphere. The reaction tube was capped with a septum, and dry THF (1.0 mL) was added via a syringe. After that, the reaction mixture was allowed to stir at room temperature under N₂ atmosphere for 4 h. After completion of the reaction (TLC monitored), the reaction mixture was neutralized with a saturated solution of sodium bicarbonate and then extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting organic residue was purified by flash chromatography column over silica gel to get compound **7**.

Compound, 7: Yellow liquid; eluent (10% ethyl acetate in hexane). Yield: 95% (33 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.28 - 7.24 (m, 4H), 7.20 - 7.17 (m, 8H), 7.15 - 7.11 (m, 6H), 7.10 - 7.07 (m, 2H), 7.03 - 7.00 (m, 4H), 6.51 - 6.46 (m, 2H), 6.45 - 6.42 (m, 2H), 6.403 - 6.398 (m, 1H), 6.39 - 6.37 (m, 1H), 6.36 - 6.34 (m, 1H), 6.10 - 6.09 (m, 1H), 3.25 - 3.22 (m, 1H), 3.14 - 3.09 (m, 1H), 3.05 - 3.01 (m, 2H), 2.98 - 2.95 (m, 1H), 2.89 - 2.86 (m, 1H), 2.70 - 2.64 (m, 1H), 2.62 - 2.56 (m, 1H), 2.41 - 2.38 (m, 4H), 1.94 - 1.87 (m, 4H), 1.81 - 1.75 (m, 2H), 1.73 – 1.67 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 144.6, 144.4, 142.3, 142.2, 133.4, 133.3, 133.3, 133.2, 128.94, 128.88, 128.5(2C), 128.48, 128.45, 127.8, 127.8, 126.8, 126.7, 125.93, 125.89, 118.9, 118.73(2C), 118.70, 114.8, 114.7, 114.6, 114.4, 48.9, 48.1, 47.0, 46.7, 43.1, 42.1, 41.6, 41.3, 39.3, 39.0, 33.8, 33.6.**HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for C₂₄H₂₆N₂H⁺ 342.2096; Found 342.2098.

Mechanistic studies

a) Radical quenching experiments

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1a** (0.2 mmol, 1.0 equiv), alkene **2a** (0.6 mmol, 3.0 equiv), and TEMPO or BHT (2.0 equiv, as a radical scavenger) under a nitrogen atmosphere. The reaction tube was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (1.5 mL) were added via a syringe. After that, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 24 h. After the reaction, product **3a** was isolated following the steps described in the general procedure. For TEMPO as a radical scavenger, **3a** was obtained in 46% yield and with BHT as a radical scavenger, **3a** was obtained in 79% yield.

b) Detection of reductive products

A 16×100 mm oven-dried reaction tube equipped with a magnetic stir was charged with CoBr₂ (10 mol %), DPPP (0.1 equiv), 4CzIPN (2.0 mol %), Hantzsch ester (HE) (1.5 equiv), quinoxalinone **1a** (0.2 mmol, 1.0 equiv), and styrene **2a** (0.6 mmol, 3.0 equiv) under nitrogen atmosphere. The reaction tube was capped with a septum, and DIPEA (0.12 equiv) and dry DMSO (1.5 mL) were added via a syringe. After that, the reaction mixture was allowed to stir with irradiation of 440 nm Kessil LED light at room temperature for 16 h. The imine and styrene reduced products **1a'** and **2a'** respectively were detected by HRMS.

c) Stern-Volmer fluorescence quenching experiments

Stern-Vollmer fluorescence quenching studies were carried out using a 1*10⁻⁴ M solution of 4C₇IPN in DMSO and variable concentrations of **1a** (0.01M), **2a** (0.01M), CoBr₂ (0.005 M), DPPP (0.005 M), HE (0.01M) and DIPEA (0.01M). (1) To a quartz cuvette containing 4CzIPN (1*10⁻⁴ M) in DMSO and variable concentration of HE was added as a quencher and the emission spectra were recorded. (2) To a quartz cuvette containing 4CzIPN (1*10⁻⁴ M) in DMSO and variable concentration of DIPEA was added as a guencher and the emission spectra were recorded. (3) To a quartz cuvette containing 4CzIPN (1*10⁻⁴ M) in DMSO and variable concentration of Sub 1a was added as a quencher and the emission spectra were recorded. (4) To a quartz cuvette containing 4CzIPN (1*10⁻⁴ M) in DMSO and variable concentration of Sub 2a was added as a quencher and the emission spectra were recorded. (5) To a quartz cuvette containing 4CzIPN ($1*10^{-4}$ M) in DMSO and variable concentration of (CoBr₂ + DPPP) was added as a quencher and the emission spectra were recorded. (6) To a quartz cuvette containing 4CzIPN (1*10⁻⁴ M) in DMSO and variable concentration of (HE + DIPEA) was added as a quencher and the emission spectra were recorded. (7) To a quartz cuvette containing HE (0.01 M) in DMSO and variable concentration of DIPEA was added as a quencher and the emission spectra were recorded. Conclusion: HE quenches 4CzIPN more than the other three cases, while other components such as quinoxalinone **1a** and alkene **2a** may not react with 4CzIPN.

1) Stern-Volmer quenching experiment with 4CzIPN and HE as quencher

2) Stern-Volmer quenching experiment with 4CzIPN and DIPEA as quencher

3) Stern-Volmer quenching experiment with 4CzIPN and Sub 1a as quencher

4) Stern-Volmer quenching experiment with 4CzIPN and Sub 2a as quencher

5) Stern-Volmer quenching experiment with 4CzIPN and CoBr₂+DPPP as quencher

¹H, ¹³C and ¹⁹F NMR spectra of synthesized compounds

1861.2 1861.2 1891.5 1892.5 1892.5 1893.6 1893.6 1893.7 1893.6 1893.7 1893.6 1893.7 1893.6 1893.7 1893.6 1893.7 1893.7 1893.7 1893.7 1893.7 1893.8 1893.7 1893.8 1893.7 1893.7 1893.7 1893.7 1893.7 1893.8 1893.7 1893.8 1893.7 1893.7 1893.7 1893.7 1893.7 1893.8 1893.7 1893.8 1893.7

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21 f1 (ppm)

$\begin{array}{c} - 166.3 \\ - 154.7 \\ - 154.7 \\ - 159.6 \\ - 159.6 \\ - 159.6 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 123.7 \\ - 23.1$

-156.8 -156.8 -156.8 -156.8 -158.3 -132.3 -132.3 -132.8 -132.8 -115.8 -115.8 -115.8 -217.4 -77.4

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fi (ppm)

1575 1575 1575 1575 1575 1575 1575 1575 1515 </tr

₹77.4 77.2 76.9 42.5
 41.0
 38.1
 33.8
 29.4

161.0 154.4 154.4 131.2 131.2 131.2 131.2 131.2 131.2 131.2 131.2 132.5 132.5 132.5 132.5 132.5 132.5 125.5 125.5 115.11

 NO_2

S77

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S79

^{3as} CDCI₃, 500 MHz

S87

---- 3.60

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

100 90 f1 (ppm) -10

					·															1	· · · ·
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																					

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.85
7.85
7.85
7.85
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.75
7.7

100 9 f1 (ppm) -1

7.7.23 7.7.23 7.7.25 7.7.12

7, (1:1 dr) CDCI₃, 500 MHz

