Electronic Supplementary Information

Fe doped Ni-based oxalate framework with Favorable Electronic Structure for Electrocatalytic Water and Urea Oxidation

Chunzi Yang,^{a,c} Ming Zhao,^a Chunmei Zhang,^a Shan Zhang,^{a*} Dongdong Zhu,^{b*} Chunxian Guo^{a*}

^a School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

E-mail: cxguo@usts.edu.cn, zs@usts.edu.cn

^b School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.

E-mail: dd.zhu@nuist.edu.cn

^c School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

1 Experimental Section

1.1 Chemicals and Reagents

Ferric nitrate nonahydrate (Fe(NO₃)₃.9H₂O, AR, 98.5%), nickel nitrate hexahydrate $(Ni(NO₃)₂·6H₂O, AR, 98.5%)$ and oxalic acid $(C₂H₂O₄, AR, 99%)$ were purchased from Greagent corporation. Ethanol (C₂H₅OH, AR, 99%), Hydrochloric acid (HCl, AR, 99%) and acetone (CH3COCH3, AR, 99%) were taken from Enox corporation. Potassium hydroxide (KOH, AR, 95%) were obtained from Aladdin corporation. Urea (CH₄N₂O, AR, 90%) was provided from Macklin corporation. Nickel foam (NF) was purchased from Shenzhen Green and Creative Environmental Science and Technology Co., Ltd and utilized as substrate. All chemicals were utilized as received without further purification and deionized water was obtained via Millipore system.

1.2 Synthesis

Synthesis of Ni_xFe_{2-x}C₂O₄: NF was cleaned successively with ethanol, acetone and 3.0 M HCl ultrasonic for 15 min, respectively, then washed with deionized water five times, and then dried at 60°C for 12 h. The synthesis procedure of $Ni_xFe_{2-x}C_2O_4$ is based on previous literature¹ with some modification, where x represents amount of Ni-based precursor (mmol), and $x=0$, 0.2, 0.6, 1.4, 1.8, 2.0. Taking optimal $Ni_{0.6}Fe_{1.4}C₂O₄$ as an example, 0.6 mmol $Ni(NO₃)₂·6H₂O$ and 1.4 mmol Fe(NO3)2·9H2O were dissolved in 70 ml deionized water and stirred at 60℃ for 2 h to form solution A. 17.5 mmol anhydrous oxalic acid was mixed with 50 ml deionized water to form homogeneously solution B. Afterwards, solution B was slowly added to solution A using pipette to obtain uniform mixture. A piece of clean NF was placed into the mixture and kept at 60°C for 2 h. Then, NF covered with $Ni_{0.6}Fe_{1.4}C₂O₄$ was taken out and washed with ethanol and deionized water several times and dried overnight in an oven. Other samples with various Ni/Fe ratio were prepared through similar procedure except the amount of metal precursors. When single metal source is used, NiC_2O_4 (x=2.0) and $FeC₂O₄$ (x=0) can be obtained.

1.3 Characterization

Scanning electron microscopy (SEM) characterization was carried out on JSM-IT800SHL (JEOL, Japan) at the voltage of 10 kV. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained on JEM-F200 (Netherlands, 200 kV). X-ray photoelectron

spectroscopy (XPS) measurement was carried out on Thermo Fisher/ESCALAB Xi+ with Al K α radiation. X-ray diffraction (XRD) patterns were performed on Bruker D8A A25.

1.4 Electrochemical measurements

All electrochemical tests were conducted on CHI 660D (Chenhua, Shanghai CH Instrument Inc) based on three-electrode system. The as-prepared N_i Fe_{2 \sim}C₂O₄ with a surface area of 0.5 cm × 1 cm was applied as working electrode, while Pt plate and Ag/AgCl electrode are counter and reference electrode, respectively. The catalytic performance of Ni_xFe_{2−x}C₂O₄ was measured in 1 M KOH with or without 0.33 M urea. The linear sweep voltammetry (LSV) curves were measured from 1.0 V to 1.7 V *vs.* RHE at a scan rate of 5 mV·s−1 . All LSV curves was corrected with 90% iR compensation, and all potentials were referred to Reversible Hydrogen Electrode (RHE) using the equation E(RHE)=E(Ag/AgCl) + $0.098 + 0.059 \times$ pH. The Tafel slope is calculated from the Tafel equation (η=b log(j) + a), where b is the Tafel slope (mV dec⁻¹). Electrochemical impedance spectroscopy (EIS) was carried out from 0.1 Hz to 100000 Hz. To calculate double-layer capacitance $(C_{\rm d}$), cyclic voltammetry (CV) curves were recorded with scan rates varied from 50 to 200 mV s⁻¹ in a non-faradaic potential window (1.175 V to 1.325 V vs. RHE). Then ECSA was calculated by dividing C_{d} with the general specific capacitance for planar metal oxides (60 μ F cm⁻²)². Chronoamperometric measurements were performed to evaluate the stability performance of $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$. OER was performed at 1.463 V *vs.* RHE in the electrolyte of 1.0 M KOH, and UOR was measured at 1.368 V *vs.* RHE in 1.0 M KOH + 0.33 M urea. When measuring the stability for UOR, the electrolyte was refreshed for three times.

2 Supplementary Figures and Tables

Scheme1. Schematic illustration of the synthetic route for $Ni_xFe_{2-x}C₂O₄$.

Excessive oxalic acid holds the key to produce Fe doped Ni-based oxalate framework. As an organic weak acid, oxalic acid is able to etch NF surface, making the originally smooth surface uneven for favorable oxalate precipitation. On the other hand, oxalic acid can reduce Fe^{3+} to Fe^{2+} , along with some Fe^{2+} reduced by metal nickel, co-precipitating with Ni^{2+} to form Fe doped Ni-based oxalate framework. The deposited Fe doped Ni-based oxalate adheres to the NF surface, and prevents further etching of NF by oxalic acid.

Figure S1. XRD patterns of a series of Ni_xFe_{2−x}C₂O₄ samples.

Figure S2. Optical images of (a) pre-treated NF and (b) $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$ grown on NF.

Figure S3. SEM images of (a) $NiC₂O₄$ and (b) $FeC₂O₄$.

Figure S4. HRTEM image of $Ni_{0.6}Fe_{1.4}C_2O_4$.

Figure S5. (a) η₁₀ and η₁₀₀ of different electrocatalysts for OER, (b) CV curves of Ni_xFe_{2−x}C₂O₄ in 1.0 M KOH.

Figure S6. CV curves of $\text{Ni}_x\text{Fe}_{2-x}\text{C}_2\text{O}_4$ samples with the scan rates from 50 to 200 mV s⁻¹ in 1.0 M KOH: (a) NiC₂O₄, (b) Ni_{1.8}Fe_{0.2}C₂O₄, (c) Ni_{1.4}Fe_{0.6}C₂O₄, (d) Ni_{0.6}Fe_{1.4}C₂O₄, (e) Ni_{0.2}Fe_{1.8}C₂O₄, and (f) the corresponding C_{dl} values.

Figure S7. (a) ECSA-normalized LSV curves of NixFe2−xC2O⁴ in 1.0 M KOH, (b) Nyquist plots of Ni_xFe_{2-x}C₂O₄ in 1.0 M KOH.

Figure S8. Bode plots of (a) NiC_2O_4 , and (b) $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$ in 1.0 M KOH.

Figure S9. (a) SEM, (b) TEM and (c) HRTEM images of $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$ after long-term OER stability test, (d) the corresponding EDX element mapping after OER stability test.

The lattice spacing of 0.23 nm in HRTEM image (Figure S9c) can be attributed to (015) plane of Ni(OH)₂·0.75H₂O (JCPDS No. 38-0715).

Figure S10. (a) XRD pattern of Ni_{0.6}Fe_{1.4}C₂O₄ electrocatalyst after long-term OER stability test, (b) Ni 2p and (c) Fe 2p XPS spectra of $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$ after stability test.

Figure S11. (a) LSV curves of Ni_{0.6}Fe_{1.4}C₂O₄ for OER and UOR; (b) η_{10} and η_{100} of Ni_xFe_{2-x}C₂O₄ samples for UOR.

Figure S12. CV curves of $Ni_xFe_{2-x}C_2O_4$ with the scan rates from 50 to 200 mV s⁻¹ in 1.0 M KOH and 0.33 M urea: (a) NiC_2O_4 , (b) $Ni_{1.8}Fe_{0.2}C_2O_4$, (c) $Ni_{1.4}Fe_{0.6}C_2O_4$, (d) $Ni_{0.6}Fe_{1.4}C_2O_4$, (e) $Ni_{1.8}Fe_{0.2}C_2O_4$, and (f) FeC_2O_4 .

Figure S13. (a) C_{dl} values of Ni_xFe_{2−x}C₂O₄, and (b) ECSA-normalized LSV curves of Ni_xFe_{2−x}C₂O₄ in 1.0 M KOH and 0.33 M urea.

Figure S14. Nyquist plots of Ni_xFe_{2−x}C₂O₄ in 1.0 M KOH and 0.33 M urea.

Figure S15. Bode plots of (a) NiC_2O_4 , (b) $Ni_{0.6}Fe_{1.4}C_2O_4$ and (c) FeC_2O_4 in 1.0 M KOH and 0.33 M urea.

Figure S16. (a) SEM, (b) TEM and (c) HRTEM images of Ni_{0.6}Fe_{1.4}C₂O₄ after long-term UOR stability test, (d) the corresponding EDX element mapping after UOR stability test.

The lattice fringe of 0.27 nm in Figure S16c belongs to (101) plane of $Ni(OH)_2 \cdot 0.75H_2O$ (JCPDS No. 38-0715).

Figure S17. (a) XRD pattern of Ni_{0.6}Fe_{1.4}C₂O₄ electrocatalyst after long-term UOR stability test, (b) Ni 2p and (c) Fe 2p XPS spectra of $Ni_{0.6}Fe_{1.4}C_2O_4$ after UOR stability test.

Catalysts	η_{100}/mV	Tafel Slope/mV dec^{-1}	Reference
$Ni_{0.6}Fe_{1.4}C_2O_4$	267	22.63	This work
Ni/NMO	374	79.3	\mathfrak{Z}
Fe-CoP/Ni $(OH)_2$	283	32	$\overline{4}$
NiOOH/(LDH/α-FeOOH)	250	35	5
CoFeOF/NF	280	62.48	6
evo-FeOOH	>370	40.6	7
$NiCo1.75Fe0.25O4(a)NiO(a)NF$	272	54	8
O-NFF	245	37.6	2
$Fe(ox)(H2O)2/NF-(-1.4)-15$	340	137	9
FeOOH/NiCo ₂ S ₄ /NF	256	62	10
Ni(Fe)OOH/Ni(Fe)Sx	274	32.4	11
$NFF-AS_3$	261	43.2	12
FMCO/NF	>289	52.1	13
B-MnFe ₂ O ₄ $@$ MFOC	298	87	14
C@CoP-FeP/FF	297	58.48	15

Table S1. Comparison of OER performance of $\text{Ni}_{0.6}\text{Fe}_{1.4}\text{C}_2\text{O}_4$ with some recently reported electrocatalysts.

Catalysts	Urea concentration/M	Potential (V vs. RHE) for 100mA cm^{-2}	Tafel Slope/mV dec^{-1}	Reference
$Ni_{0.6}Fe_{1.4}C_2O_4$	0.33	1.375	14.7	This work
$Ni/NMO-10$	0.5	1.43	51.2	3
O-NFF	0.33	1.42	12.1	$\sqrt{2}$
NiOOH/(LDH/α-	0.33	1.40	30.1	$\sqrt{5}$
FeOOH)				
Mo-NT@NF	0.33	1.46	31	16
W-NT@NF	0.33	1.43	94.8	17
FeCoNiF ₂ (<i>a</i>)NF	0.33	1.409	17	18
$FexCo2-xP/NF$	0.5	1.39	33	19
$NiF3/Ni2P@CC-2$	0.33	~1.53	33	20
$[Fe2P/Co2P]@Mo2S3/NF$	0.5	1.36	41.5	21
$Ni/W_5N_4/NF$	0.5	~1.4	35.8	$\boldsymbol{7}$
LSFN-63	0.5	1.37	35	22
$Ce-Ni_2P/NF$	0.3	1.437	53.7	23
A-NiFeV/NF	0.33	1.39	34.8	24
$Ni3N/Ni0.2Mo0.8N/NF$	0.5	1.366	17	25
ANH	0.33	1.34		26

Table S2. Comparison of UOR performance of $Ni_{0.6}Fe_{1.4}C_2O_4$ with some recently reported electrocatalysts.

References

- 1. S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao, J. Hu, H.-B. Shu, M. Jaroniec, P. Chen, Q.-H. Liu and S.-Z. Qiao, *Nat. Energy*, 2021, **6**, 904-912.
- 2. J. Kim, M. C. Kim, S. S. Han and K. Cho, *Adv. Funct. Mater.*, 2024, **34**, 2315625.
- 3. V. Maheskumar, A. Min, C. J. Moon, R. A. Senthil and M. Y. Choi, *Small Struct.*, 2023, **4**, 2300212
- 4. X. Yu, J. Zhao and M. Johnsson, *Adv. Funct. Mater.*, 2021, **31**, 2101578.
- 5. M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao, H. Zeng, X. Wu, J. Chen, K. Huang and S. Feng, *Adv. Mater.*, 2022, **35**, 2209338
- 6. S. A. Patil, A. C. Khot, V. D. Chavan, I. Rabani, D.-k. Kim, J. Jung, H. Im and N. K. Shrestha, *Chem. Eng. J.*, 2024, **480**, 146545.
- 7. Y. Zhou, B. Chu, Z. Sun, L. Dong, F. Wang, B. Li, M. Fan and Z. Chen, *Appl. Catal. B-environ.*, 2023, **323**, 122168.
- 8. P. Upale, S. Verma and S. B. Ogale, *J. Mater. Chem. A*, 2023, **11**, 8972-8987.
- 9. Y. Hai, L. Liu and Y. Gong, *Inorg. Chem.*, 2021, **60**, 5140-5152.
- 10. M.-L. Guo, Z.-Y. Wu, M.-M. Zhang, Z.-J. Huang, K.-X. Zhang, B.-R. Wang and J.-C. Tu, *Rare Met.*, 2023, **42**, 1847-1857.
- 11. M. Chen, W. Li, Y. Lu, P. Qi, H. Wu, G. Liu, Y. Zhao and Y. Tang, *J. Mater. Chem. A*, 2023, **11**, 4608-4618.
- 12. S. Wu, Y. Zhu, G. Yang, H. Zhou, R. Li, S. Chen, H. Li, L. Li, O. Fontaine and J. Deng, *Chem. Eng. J.*, 2022, **446**, 136833.
- 13. W. Liu, W. Que, R. Yin, J. Dai, D. Zheng, J. Feng, X. Xu, F. Wu, W. Shi, X. Liu and X. Cao, *Appl. Catal. B-environ.*, 2023, **328**, 122488.
- 14. M. Chen, N. Kitiphatpiboon, C. Feng, Q. Zhao, A. Abudula, Y. Ma, K. Yan and G. Guan, *Appl. Catal. B-environ.*, 2023, **330**, 122577.
- 15. J. Li, Y. Hu, X. Huang, Y. Zhu and D. Wang, *Small*, 2023, **19**, 2206533
- 16. M. Liu, W. Zou, J. Cong, N. Su, S. Qiu and L. Hou, *Small*, 2023, **19**, 2302698.
- 17. M. Liu, W. Zou, S. Qiu, N. Su, J. Cong and L. Hou, *Adv. Funct. Mater.*, 2023, **34**, 2310155
- 18. N. T. Nguyen, T. T. N. Tran, T.-K. Truong, J. Yu, T. N.-M. Le, T. B. Phan, T. L. H. Doan, L. H. T. Nguyen, T. D. Luong, T.-H. Nguyen and N. Q. Tran, *Inorg. Chem.*, 2023, **62**, 10298-10306.
- 19. T. I. Singh, G. Rajeshkhanna, S. B. Singh, T. Kshetri, N. H. Kim and J. H. Lee, *ChemSusChem*, 2019, **12**, 4810-4823.
- 20. K. Wang, W. Huang, Q. Cao, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu and P. Gao, *Chem. Eng. J.*, 2022, **427**, 130865.
- 21. L. Wang, W. He, D. Yin, Y. Xie, H. Zhang, Q. Ma, W. Yu, Y. Yang and X. Dong, *Chem. Eng. J.*, 2023, **462**, 142254.
- 22. Y. Gan, Y. Ye, X. Dai, X. Yin, Y. Cao, R. Cai, B. Feng, Q. Wang and X. Zhang, *Small*, 2023, **19**, 2303250.
- 23. K. Xiong, L. Yu, Y. Xiang, H. Zhang, J. Chen and Y. Gao, *J. Alloys Compd.*, 2022, **912**, 165234.
- 24. H. Yang, L. Ge, J. Guan, B. Ouyang, H. Li and Y. Deng, *J. Colloid Interface Sci.*, 2024, **653**, 721- 729.
- 25. R.-Q. Li, X.-Y. Wan, B.-L. Chen, R.-Y. Cao, Q.-H. Ji, J. Deng, K.-G. Qu, X.-B. Wang and Y.-C. Zhu, *Chem. Eng. J.*, 2021, **409**, 128240.
- 26. Y. Zhu, C. Liu, S. Cui, Z. Lu, J. Ye, Y. Wen, W. Shi, X. Huang, L. Xue, J. Bian, Y. Li, Y. Xu and B. Zhang, *Adv. Mater.*, 2023, **35**, 2301549.