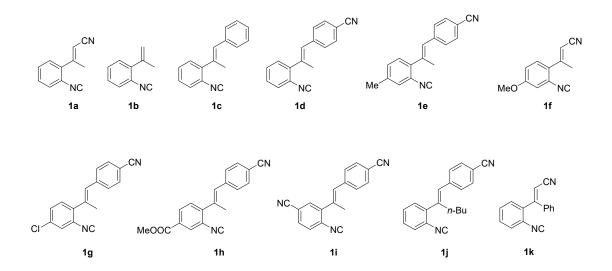
Synthesis of Continuously Substituted Quinolines from *o*-Alkenyl Aromatic Isocyanides by Palladium-Catalyzed Intramolecular Imidoylative 6-*endo* Cyclization


Table of Contents

1.	General Information	S3
2.	Preparation of <i>o</i> -alkenylaryl isocyanides	S3
3.	Reaction conditions optimization	S 8
4.	Preparation of Quinolines	S9
5.	Scale up of 3aa	S18
6.	References	S18
7.	Copies of NMR Spectroscopies	S19

1. General Information

NMR spectra were recorded on a Bruker AM 400 MHz or 600 MHz spectrometer and calibrated using residual undeuterated solvent as an internal reference (CDCl₃ (¹H): $\delta = 7.24$ ppm; CDCl₃ (¹³C): $\delta = 77.23$ ppm. High-resolution mass analysis was performed using a Thermo ScientificTM Q ExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer. Melting points were determined on a Stanford Research Systems OptiMelt apparatus. The infrared (IR) spectra were acquired as thin films using a universal ATR sampling accessory on a Bruker Vertex 80 FT-IR spectrometer and the absorption frequencies are reported in cm⁻¹. Flash chromatography separations were carried out using silica gel columns. Isocyanides **1b**,¹ **1c**² and **1k**¹ were prepared according to literature procedure. All reagents and solvents were obtained from commercial sources and used as is without further purification. All new compounds were characterized by ¹H NMR, ¹³C NMR, HRMS, and IR.

2. Preparation of o-alkenylaryl isocyanides

2.1 Preparation of 1a, 1b and 1f

I can refer to the Ref 3.

To a solution of 2'-nitroacetophenone (8.0 mmol, 1.0 equiv.) and LiOH (9.6 mmol, 1.2 equiv.) in THF (80.0 mL), was added diethyl cyanomethylphosphonate (1.56 g, 8.8 mmol, 1.1 equiv.). The reaction mixture was stirred at room temperature overnight. The completed reaction was diluted with ethyl acetate (30 mL), washed with water (30 mL) and brine (30 mL), dried (anhydrous Na_2SO_4) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (*E*)-3-(2-nitrophenyl)but-2-enenitrile.

II can refer to the Ref 3

To a solution of (E)-3-(2-nitrophenyl)but-2-enenitrile (7.6 mmol, 1.0 equiv.) and Zinc (7.4 g, 114 mmol, 15.0 equiv.) in DCM (80.0 mL, 0.1 M), was added acetic acid (13.1 mL, 30.0 equiv.) dropwise over 10 min. The reaction mixture was stirred at room temperature overnight. The completed reaction was diluted with ethyl acetate (30 mL), washed with water (30 mL) and saturated NaHCO₃ (30 mL), dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (*E*)-3-(2-aminophenyl)but -2enenitrile.

III can refer to the Ref 4.

To a solution of (*E*)-3-(2-aminophenyl)but-2-enenitrile (2.0 mmol, 1.0 equiv.) in THF (4.0 mL, 0.50 M), was added acetic formic anhydride (6.0 mmol, 3.0 equiv.) dropwise at 0 °C. The resulting mixture was stirred at room temperature for 1 h. The completed reaction was quenched with water (15 mL) and extracted with DCM (20 mL x 3), The combined organic phase was washed with saturated NaHCO₃ (30 mL), dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (*E*)-*N*-(2-(1-cyanoprop-1-en-2-yl) phenyl)formamide.

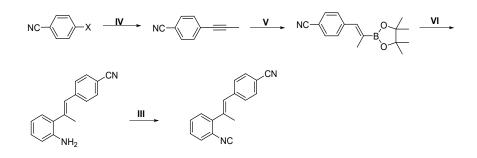
To a solution of (E)-N-(2-(1-cyanoprop-1-en-2-yl)phenyl)formamide (2.0 mmol, 1.0 equiv.) and Et₃N (12 mmol, 6.0 equiv.) in THF (10.0 mL, 0.2 M), was added POCl₃ (3.0 equiv.) dropwise at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 6 hours. The completed reaction was quenched with water (15 mL) and extracted with DCM (30 mL x 3). The combined organic phase was dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford **1**.

(E)-3-(2-isocyanophenyl)but-2-enenitrile (1a):

Flash chromatography (Silica Gel, PE/EtOAc) afforded 1a (0.242 g, 72%) as a light-yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m,

3H), 7.29 – 7.26 (m, 1H), 5.50 (d, J = 1.3 Hz, 1H), 2.49 (d, J = 1.2 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.1, 157.7, 137.3, 130.2, 129.9, 128.4, 128.3, 125.6, 116.1, 101.7, 21.9; IR (neat): 2883, 2218, 2119, 1514, 754 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₉N₂⁺ 169.0760, found 169.0763.

(E)-3-(2-isocyano-4-methoxyphenyl)but-2-enenitrile (1f)


Flash chromatography (Silica Gel, PE/EtOAc) afforded **1f** (0.322 g, 81%) as a colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, J = 8.4 Hz, 1H), 6.96 (m, 2H), 5.49 (s, 1H), 3.84 (s, 3H), 2.46 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.8, 160.4, 157.0, 129.4, 129.1, 124.3, 116.3, 115.9, 113.3, 100.6, 55.7, 21.7; IR (neat): 2881,

2208, 2113, 1508, 736 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{12}H_{11}N_2O^+$ 199.0866, found 199.0872.

(E)-3-(2-isocyanophenyl)-3-phenylacrylonitrile (1k)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **1k** (0.418 g, 91%) as a yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.41 (m, 8H), 7.38 – 7.32 (m, 1H), 5.68 (s, 1H).¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 158.7, 136.7, 135.9, 130.9, 130.7, 130.6, 129.7, 129.0, 128.9, 128.2, 116.9, 99.3 (one carbon missing due to overlap); HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₁N₂⁺ 231.0917, found 231.0908.

2.2 Preparation of 1d-e and 1g-1l

IV can refer to the Ref 5.

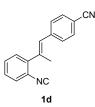
To a solution of 4-Iodobenzonitrile (3.0 mmol, 1.0 equiv.), $PdCl_2(PPh_3)_2$ (0.06 mmol, 0.02 equiv.) and CuI (0.12 mmol, 0.04 equiv.) in Et₃N (9.0 mL, 0.3 M) was added terminal alkyne (4.5 mmol, 1.5 equiv.). The reaction mixture was heated in a 55 °C oil bath under argon for 5 h. After cooling to room temperature, the completed reaction was diluted with ethyl acetate (30 mL), washed with water (30 mL) and brine (30 mL), dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford 4-alkynylbenzonitrile.

V can refer to the Ref. 6.

To an oven dried schlenk tube equipped with a stir bar were added CuCl (0.15 mmol, 0.05 equiv.), NaOt-Bu (0.6 mmol, 0.2 equiv.), tri-*p*-tolylphosphine (0.3 mmol,

0.1 equiv.) and THF (2.4 mL) under nitrogen. After the mixture was stirred at room temperature for 30 min, bis(pinacolato)diboron (3.3 mmol, 1.1 equiv.) dissolved in THF (1.8 mL) was added. The reaction mixture was stirred for 10 min. Then, internal alkyne (3.0 mmol) was added followed by MeOH (6 mmol, 2.0 equiv.). The reaction was washed with THF (1.8 mL), sealed, and stirred until no starting material was detected by TLC. The reaction mixture was filtered through a pad of Celite and concentrated. The product was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (Z)-4-(2-(4,4,5,5- tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en -1-yl)benzonitrile.

VI can refer to the Ref. 7.


To a solution of (*Z*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop- 1en-1-yl)benzonitrile (3.0 mmol, 1.0 equiv.) and 2-bromoaniline (3.0 mmol, 1.0 equiv.) in DMF (5.0 mL, 0.6 M) was added Pd(PPh₃)₄ (0.15 mmol, 5 mol %) and Na₂CO₃ (2.0 M in H₂O, 3.0 equiv.) under argon atmosphere. The reaction mixture was heated in an oil bath at 80 °C under argon atmosphere overnight. After cooling to room temperature, the completed reaction was diluted with ethyl acetate (30 mL), washed with water (30 mL) and brine (30 mL), dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (*E*)-4-(2-(2-aminophenyl)prop-1-en-1-yl)benzonitrile.

III can refer to the Ref 4.

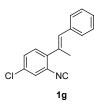
To a solution of (*E*)-3-(2-aminophenyl)but-2-enenitrile (2.0 mmol, 1.0 equiv.) in THF (4.0 mL, 0.50 M), was added acetic formic anhydride (6.0 mmol, 3.0 equiv.) dropwise at 0 °C. The resulting mixture was stirred at room temperature for 1 h. The completed reaction was quenched with water (15 mL) and extracted with DCM (20 mL x 3), The combined organic phase was washed with saturated NaHCO₃ (30 mL), dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford (*E*)-*N*-(2-(1-cyanoprop-1-en-2-yl) phenyl)formamide.

To a solution of (E)-N-(2-(1-cyanoprop-1-en-2-yl)phenyl)formamide (2.0 mmol, 1.0 equiv.) and Et₃N (12 mmol, 6.0 equiv.) in THF (10.0 mL, 0.2 M), was added POCl₃ (3.0 equiv.) dropwise at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 6 hours. The completed reaction was quenched with water (15 mL) and extracted with DCM (30 mL x 3). The combined organic phase was dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford **1**.

(E)-4-(2-(2-isocyanophenyl)prop-1-en-1-yl)benzonitrile (1d)

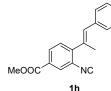
Flash chromatography (Silica Gel, PE/EtOAc) afforded **1d** (0.316 g, 65%) as a light yellow solid; m.p.: 93-94 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.39 – 7.32 (m, 2H), 6.59 (s, 1H), 2.28 (d, *J* = 1.5 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 142.2,

141.8, 137.8, 132.2, 130.3, 129.7, 129.6, 129.0, 128.4, 127.7, 124.3, 119.0, 110.6, 19.1; IR (neat): 2877, 2223, 2119, 1508, 752 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calculated for $C_{17}H_{13}N_2^+$ 245.1073, found 245.1076.


(E)-4-(2-(2-isocyano-4-methylphenyl)prop-1-en-1-yl)benzonitrile (1e)

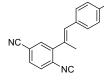
Flash chromatography (Silica Gel, PE/EtOAc) afforded **1e** (0.397 g, 77%) as a light yellow solid; m.p.: 87-88 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.24-7.28 (m, 3H), 6.60 (s, 1H), 2.40 (s, 3H), 2.29 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.8, 148.4, 146.4, 143.3, 139.7, 135.1, 132.2, 131.5, 129.7, 128.3, 126.5, 126.2,

120.3, 111.8, 16.8 (one carbon missing due to overlap); IR (neat): 2879, 2225, 2117, 1508, 729 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{18}H_{15}N_2^+$ 259.1230, found 259.1932.


(E)-4-(2-(4-chloro-2-isocyanophenyl)prop-1-en-1-yl)benzonitrile (1g)

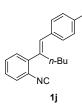
Flash chromatography (Silica Gel, PE/EtOAc) afforded **1g** (0.40 g, 53%) as a light yellow solid. m.p.: 104-105 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.31 (d, J = 8.3 Hz, 1H), 6.59 (s, 1H), 2.26 (d, J = 1.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 141.5, 140.7, 136.7, 133.8, 132.3, 130.9, 130.2, 130.0,

129.4, 127.6, 125.1, 118.9, 110.9, 19.0; IR (neat): 2882, 2223, 2119, 1512, 727 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{17}H_{12}CIN_2^+$ 279.0689, found 279.0685.


Methyl (E)-4-(1-(4-cyanophenyl)prop-1-en-2-yl)-3-isocyanobenzoate (1h)

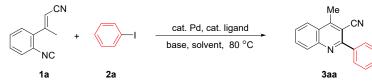
Flash chromatography (Silica Gel, PE/EtOAc) afforded **1h** (0.428 g, 71%) as a light yellow solid; m.p.: 179-180 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 1H), 6.64 (s, 1H), 3.96 (s, 3H), 2.30 (s,

3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 165.2, 146.3, 141.4, 137.0, 132.3, 131.2, 130.6, 129.8, 129.4, 128.9, 124.6, 118.9, 111.0, 52.8, 18.9 (one carbon missing due to overlap); IR (neat): 2884, 2220, 2117, 1514, 748 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₅N₂O₂⁺ 303.1128, found 303.1141.


(E)-3-(1-(4-cyanophenyl)prop-1-en-2-yl)-4-isocyanobenzonitrile (1i)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **1i** (0.242 g, 45%) as a light yellow solid. m.p.: 138-139 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.73 – 7.68 (m, 3H), 7.66 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 2H), 6.63 (s, 1H), 2.28 (d, *J* = 1.5 Hz, 3H); ¹³C NMR (151 MHz,

1i (s, 1H), 2.28 (d, J = 1.5 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 143.4, 140.9, 135.7, 133.1, 132.4, 132.0, 129.8, 128.7, 125.5, 118.8, 117.2, 113.8, 111.4, 18.9 (two carbon missing due to overlap); IR (neat): 2884, 2227, 2119, 1512, 729 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₂N₃⁺ 270.1026; found 270.1041.


(E)-4-(2-(2-isocyanophenyl)hex-1-en-1-yl)benzonitrile (1j)

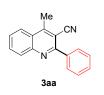
Flash chromatography (Silica Gel, PE/EtOAc) afforded 1j (0.314 g, 55%) as colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 8.1 Hz, 2H), 7.48 – 7.39 (m, 4H), 7.38 – 7.31 (m, 2H), 6.53 (s, 1H), 2.66 (t, J = 7.3 Hz, 2H), 1.24-1.29 (m, 4H), 0.80 (t, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 142.7, 142.0, 140.8, 132.3, 130.2, 129.6, 129.5, 129.4, 128.3, 127.6, 124.9, 119.0,

110.7, 31.4, 30.5, 22.7, 13.9; IR (neat): 2954, 2225, 2119, 1508, 752 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{20}H_{19}N_2^+$ 287.1543, found 287.1542.

3. **Reaction conditions optimization**^{*a*}

entry	Catalyst (mol%)	Ligand (mol%)	Base (equiv.)	Solvent	Addition of 1a	Yield (%)
1	$Pd(OAc)_2(10)$	$PPh_3(20)$	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	24
2	$Pd(dba)_2(10)$	$PPh_3(20)$	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	24
3	$Pd(dba)_2(10)$	PPh ₃ (40)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	37
4	$Pd_2(dba)_3(5)$	PPh ₃ (40)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	21
5	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	44
6	$Pd(dba)_2(10)$	$P(o-tol)_3$ (40)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
7	$Pd(dba)_2(10)$	RuPhos (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
8	$Pd(dba)_2(10)$	Ad ₂ P <i>n</i> -Bu (0.4)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	29
10	$Pd(dba)_2(10)$	BINAP (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
11	$Pd(dba)_2(10)$	dppm (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	11
12	$Pd(dba)_2(10)$	DPEphos (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	25
13	Pd(dba) ₂ (10)	Xantphos (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
14	$Pd(dba)_2(10)$	dppe (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
15	$Pd(dba)_2(10)$	dppp (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	9
16	$Pd(dba)_2(10)$	dppb (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	trace
17	$Pd(dba)_2(10)$	dppf (20)	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	N.R.
20 ^b	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	35
21 ^c	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 1 h	30
22	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	one portion	trace
23	Pd(PPh ₃) ₄ (10)	-	CsOPiv (1.2)	Toluene	1.0 mL over 2 h	62
24	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	2.0 mL over 2 h	48
25	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 3 h	68
26	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	Toluene	2.0 mL over 4 h	56
27	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 3.5 h	45
29	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	dioxane	1.0 mL over 3 h	31

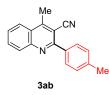
30	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	DMF	1.0 mL over 3 h	22
31	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	DCE	1.0 mL over 3 h	13
32	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	DMSO	1.0 mL over 3 h	36
33	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	MeCN	1.0 mL over 3 h	19
34	$Pd(PPh_{3})_{4}(10)$	-	CsOPiv (1.2)	NMP	1.0 mL over 3 h	13
35	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	Toluene: MeCN 1:1	1.0 mL over 3 h	26
36	$Pd(PPh_3)_4$ (10)	-	CsOPiv (1.2)	Toluene:DMS O1:1	1.0 mL over 3 h	28
37 ^d	Pd(PPh ₃) ₄ (10)	-	CsOPiv (1.2)	Toluene	1.0 mL over 3 h	49
38 ^e	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 3 h	51
39 ^{<i>f</i>}	$Pd(PPh_3)_4(10)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 3 h	43
40	$Pd(PPh_3)_4(5)$	-	CsOPiv (1.2)	Toluene	1.0 mL over 3 h	31
41	$Pd(PPh_{3})_{4}(10)$	-	$Na_2CO_3(1.2)$	Toluene	1.0 mL over 3 h	trace
42	$Pd(PPh_3)_4(10)$	-	$Cs_2CO_3(1.2)$	Toluene	1.0 mL over 3 h	trace
43	$Pd(PPh_3)_4(10)$	-	NaOAc (1.2)	Toluene	1.0 mL over 3 h	trace
44	$Pd(PPh_{3})_{4}(10)$	-	$Et_{3}N(1.2)$	Toluene	1.0 mL over 3 h	trace
45	$Pd(PPh_3)_4(10)$	-	Cs ₂ CO ₃ (0.6) /PivOH (1.2)	Toluene	1.0 mL over 3 h	67
46 ^g	$Pd(PPh_3)_4(10)$	-	Cs ₂ CO ₃ (0.6) /TMCA (1.2)	Toluene	1.0 mL over 3 h	95
			• • • • • • • • •			


^{*a*}Reaction conditions: to a solution of **2a** (1.5 equiv.), Pd catalyst, ligand and base in solvent (1.0 mL) at 80 °C under Ar, was added a solution of **1a** (0.2 mmol) in solvent as indicated by using a syringe pump. ^{*b*}100 °C. ^{*c*}60 °C. ^{*d*}2.0 equiv. of **2a**. ^{*e*}2.0 equiv. of **2a**. ^{*f*}0.83 equiv. of **2a**. ^{*g*}2,2,3,3-tetramethylcyclo propanecarboxylic acid (TMCA).

4. Preparation of Quinolines

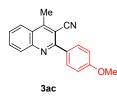
4.1 from aryl iodides

To a 20 mL vial was added Pd(PPh₃)₄ (0.0236 g, 0.02 mmol, 0.1 equiv.), Cs₂CO₃ (0.0391 g, 0.12 mmol, 0.6 equiv.), TMCA (2,2,3,3-tetramethylcyclopropane carboxylic acid) (0.0341 g, 0.24 mmol, 1.2 equiv.) and a solution of aryl iodide (0.3 mmol, 1.5 equiv.) in toluene (1 mL) under argon. The resulting mixture was heated at 80 °C heating block for 30 min. Then a solution of isocyanide (0.2 mmol, 1.0 equiv.) in toluene (1 mL) was added to the reaction mixture dropwise over 3 h using a syringe pump. After further 1 h, the completed reaction was diluted with DCM (20 mL) and washed with satd. NaHCO₃ (20 mL x 2). The combined aqueous phase was back extracted with DCM (15 mL x 2). The combined organic phase was dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford the quinoline product **3**.


4-Methyl-2-phenylquinoline-3-carbonitrile (3aa)

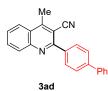
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3aa** (0.046 g, 95%) as a light yellow solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.4 Hz, 1H), 8.11 (dd, J = 8.3, 1.3 Hz, 1H), 7.98 – 7.91 (m,

2H), 7.90 – 7.83 (m, 1H), 7.73 – 7.64 (m, 1H), 7.61 – 7.49 (m, 3H), 3.05 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 158.9, 153.3, 148.4, 132.8, 131.2, 130.4, 129.7, 129.1, 128.3, 125.7, 124.8, 117.9, 18.2 (two carbon missing due to overlap); The spectroscopic data are in accordance with those reported in literature.⁸


4-Methyl-2-(p-tolyl)quinoline-3-carbonitrile (3ab)

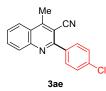
Flash chromatography (Silica Gel, PE/EtOAc) afforded 3ab (0.046 g, 89%) as light yellow solid; m.p.: 136-139 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.83 - 7.76 (m, 3H), 7.65 - 7.56 (m, 1H), 7.30 (d, J = 7.9 Hz, 2H), 2.98 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 153.0, 148.1, 140.3, 135.7, 132.6, 130.7, 129.5, 129.3, 127.8, 125.2, 124.5, 117.8, 106.5, 21.7, 18.0; IR (neat): 2924, 2210, 1584, 1341; HRMS (ESI) m/z:

2-(4-Methoxyphenyl)-4-methylquinoline-3-carbonitrile (3ac)


 $[M+H]^+$ calculated for $C_{18}H_{15}N_2^+$ 259.1230, found 259.1230.

Flash chromatography (Silica Gel, PE/EtOAc) afforded 3ac (0.023 g, 41%) as light yellow solid; m.p.: 182-183 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.10 (d, J = 8.5 Hz, 1H), 8.02 (d, J =8.9 Hz, 1H), 7.88 (d, J = 8.7 Hz, 2H), 7.78 – 7.75 (m, 1H), 7.63 – 7.54 (m, 1H), 7.01 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.97 (s, 3H);

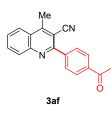
¹³C NMR (101 MHz, CDCl₃) δ 161.2, 158.1, 153.1, 148.1, 132.6, 130.9, 130.6, 127.7, 125.1, 124.5, 118.0, 114.2, 106.3, 55.6, 18.0 (one carbon missing due to overlap); IR (neat) : 3060, 2240, 1551, 1495, 1380 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₅N₂O⁺ 275.1179, found 275.1179.


2-([1,1'-biphenyl]-4-yl)-4-methylquinoline-3-carbonitrile (3ad)

Flash chromatography (Silica Gel, PE/EtOAc) afforded 3ad (0.057 g, 89%) as a white solid; m.p.: 145-146 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 7.9 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.91 - 7.84 (m, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.73 – 7.64 (m 2H), 7.52 – 7.44 (m, 2H), 7.43 – 7.36 (m, 1H),

3.06 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.0, 153.0, 148.0, 142.8, 140.5, 137.2, 132.5, 130.7, 129.7, 128.9, 127.8, 127.8, 127.4, 127.3, 125.2, 124.4, 117.6, 106.3, 17.9; IR (neat): 2922, 2218, 1490, 1272, 846, 740; HRMS (ESI) m/z: [M+H]+ calculated for $C_{23}H_{17}N_2^+$ 321.1386, found 321.1391.

2-(4-chlorophenyl)-4-methylquinoline-3-carbonitrile (3ae)



Flash chromatography (Silica Gel, PE/EtOAc) afforded 3ae (0.041 g, 74%) as a white solid; m.p.: 190-191 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.5 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.94 - 7.83 (m, 3H), 7.72 - 7.66 (m, 1H), 7.53 (d, J = 8.6 Hz, 2H), 3.04 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 156.9, 152.9,

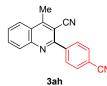
147.6, 136.4, 136.1, 132.4, 130.4, 128.7, 127.9, 125.0, 124.2, 117.1, 105.9, 17.7 (one

carbon missing due to overlap); IR (neat): 2900, 2360, 1514, 1269, 1095, 740; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{17}H_{12}ClN_2^+$ 279.0684, found 279.0680.

2-(4-acetylphenyl)-4-methylquinoline-3-carbonitrile (3af)

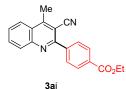
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3af** (0.045 g, 79%) as a white solid; m.p.: 196-197 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.5 Hz, 1H), 8.12-8.16 (m, 3H), 8.05 (d, J = 8.1 Hz, 2H), 7.93 – 7.86 (m, 1H), 7.75 – 7.69 (m, 1H), 3.06 (s, 3H), 2.69 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.8, 157.3, 153.3, 147.9, 142.6, 137.9, 132.8, 130.8, 129.7, 128.7,

128.4, 125.5, 124.5, 117.3, 106.3, 27.0, 18.0; IR (neat): 2910, 2362, 1745, 1513, 1274, 738; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{19}H_{15}N_2O^+$ 287.1179, found 287.1176.


4-methyl-2-(4-(trifluoromethyl)phenyl)quinoline-3-carbonitrile (3ag)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ag** (0.057 g, 91%) as a white solid; m.p.: 151-152 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.1 Hz, 2H), 7.94 – 7.86 (m, J = 7.7 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.76 – 7.69 (m, 1H), 3.07 (s, 3H); ¹³C NMR (101

MHz, Chloroform-*d*) δ 157.0, 153.4, 147.9, 141.7, 132.9, 132.1 (q, *J* = 33 Hz), 130.8, 129.8, 128.5, 125.7 (q, *J* = 4.0 Hz), 125.5, 124.5, 117.3, 106.2, 18.0 (one carbon missing); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.74; IR (neat): 2917, 2221, 1546, 1325, 1114, 846; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₂F₃N₂⁺ 313.0947, found 313.0947.


2-(4-cyanophenyl)-4-methylquinoline-3-carbonitrile (3ah)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ah** (0.033 g, 62%) as a white solid; m.p.: 223-224 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.3 Hz, 2H), 7.96 – 7.89 (m, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.78 – 7.70 (m, 1H), 3.07 (s, 3H); ¹³C NMR (101 MHz,

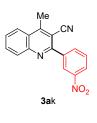
Chloroform-*d*) δ 156.3, 153.6, 147.9, 142.5, 133.1, 132.5, 130.8, 130.1, 128.7, 125.6, 124.6, 118.6, 117.1, 113.7, 106.0, 18.1; IR (neat): 2898, 2358, 1507, 1269, 732; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₂N₃⁺ 270.1026, found 270.1031.

ethyl 4-(3-cyano-4-methylquinolin-2-yl)benzoate (3ai)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ai** (0.039 g, 62%) as a white solid; m.p.: 148-149 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20-8.24 (m, 3H), 8.13 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 2H), 7.92 – 7.85 (m, 1H), 7.74 – 7.67 (m, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.06 (s, 3H), 1.43 (t, *J* = 7.2 Hz,

3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 157.6, 153.4, 148.1, 142.5, 133.0, 131.8, 131.0, 130.1, 129.5, 128.5, 125.6, 124.7, 117.5, 106.5, 61.5, 18.2, 14.6; IR

(neat): 2904, 2210, 1714, 1514, 1272, 744; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{20}H_{17}N_2O_2^+$ 317.1285, found 317.1281.


2-(3-methoxyphenyl)-4-methylquinoline-3-carbonitrile (3aj)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3aj** (0.035 g, 63%) as a white solid; m.p.: 129-130 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.72 – 7.65 (m, 1H), 7.54 – 7.50 (m, 1H), 7.50 – 7.41 (m, 2H), 7.07 (ddd, J = 8.2, 2.6, 1.1 Hz, 1H), 3.91 (s, 3H), 3.05 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 158.0, 152.7,

147.6, 139.3, 132.3, 130.4, 129.5, 127.7, 125.0, 124.1, 121.4, 117.2, 116.0, 114.0, 106.2, 55.3, 17.7; The spectroscopic data is in accordance with those reported in literature.⁹

4-Methyl-2-(3-nitrophenyl)quinoline-3-carbonitrile (3ak)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ak** (0.036 g, 62%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 – 8.83 (m, 1H), 8.46 – 8.35 (m, 1H), 8.32 (d, *J* = 7.7 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.96 – 7.89 (m, 1H), 7.79 – 7.71 (m, 2H), 3.08 (s, 3H); The spectroscopic data is in accordance with those reported in literature.⁹

Methyl 3-(3-cyano-4-methylquinolin-2-yl)benzoate (3al)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3al** (0.040 g, 66%) as a white solid; m.p.: 174-175 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (s, 1H), 8.26 – 8.17 (m, 2H), 8.17 – 8.09 (m, 2H), 7.92 – 7.85 (m, 1H), 7.76 – 7.67 (m, 1H), 7.67 – 7.61 (m, 1H), 3.96 (s, 3H), 3.05 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 157.4, 153.2, 147.9, 138.7, 133.5, 132.7, 131.0, 130.8, 130.7,

130.6, 128.9, 128.2, 125.4, 124.5, 117.3, 106.3, 52.5, 18.0; IR (neat): 2898, 2216, 1718, 1570, 1276, 752; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{19}H_{15}N_2O_2^+$ 303.1128, found 303.1131.

4-Methyl-2-(o-tolyl)quinoline-3-carbonitrile (3am)

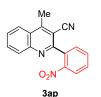
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3am** (0.021 g, 40%) as a white solid; m.p.: 147-148 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.92 – 7.84 (m, 1H), 7.71 (dd, J = 8.5, 7.1 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.32-7.37 (m, 2H), 3.04 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101

MHz, Chloroform-*d*) δ 160.1 , 152.1, 147.7, 138.3, 136.1, 132.5, 130.9, 130.7, 129.6, 129.2, 128.0, 126.1, 125.3, 124.5, 116.8, 108.3, 19.8, 17.8; IR (neat): 2914, 2220, 1589, 1344, 721; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₅N₂⁺ 259.1230, found 259.1230.

2-(2-Methoxyphenyl)-4-methylquinoline-3-carbonitrile (3an)

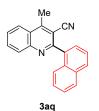
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3an** (0.035 g, 64%) as a white solid; m.p.: 219-220 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 9.2 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.88 – 7.80 (m, 1H), 7.71 – 7.64 (m, 1H), 7.55 – 7.44 (m, 2H), 7.16 – 7.10 (m, 1H), 7.06 (d, J = 8.6 Hz, 1H), 3.88 (s, 3H), 3.01 (s, 3H). ¹³C

NMR (101 MHz, Chloroform-d) δ 157.8, 157.3, 151.3, 148.3, 132.3, 131.6, 131.0, 130.8, 128.2, 128.0, 125.6, 124.6, 121.4, 117.5, 111.6, 109.5, 55.7, 18.0; IR (neat): 2902, 2358, 1558, 1257, 752; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₅N₂O⁺ 275.1179, found 275.1182.


2-(2-Cyanophenyl)-4-methylquinoline-3-carbonitrile (3ao)

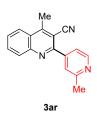
Flash chromatography (Silica Gel, PE/EtOAc) afforded 3ao (0.038 g, 71%) as a white solid; m.p.: 212-213 °C; ¹H NMR (400 MHz, Chloroform-d) & 8.23 (d, J = 7.3 Hz, 1H), 8.15 (d, J = 7.2 Hz, 1H), 7.96 - 7.86 (m, 2H), 7.86 - 7.71 (m, 3H), 7.68 - 7.60 (m, 1H), 3.07 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.6, 153.4, 147.7, 141.7, 134.2, 133.2, 132.9, 131.0, 130.5, 130.2, 129.0, 125.9, 124.7, 117.8, 116.7, 113.0, 107.1, 18.2; IR (neat): 2892, 2225, 1570, 1271, 779; HRMS (ESI) m/z: [M+H]+

calculated for $C_{18}H_{12}N_3^+$ 270.1026, found 270.1030.


4-Methyl-2-(2-nitrophenyl)quinoline-3-carbonitrile (3ap)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ap** (0.036 g, 62%) as a white solid; m.p.: 200-201 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.2 Hz, 1H), 8.17 – 8.07 (m, 2H), 7.91 – 7.85 (m, J = 7.6 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.77 – 7.68 (m, 2H), 7.65 (d, J = 7.6 Hz, 1H), 3.03 (s, 3H); ¹³C NMR (101 MHz,

Chloroform-d) & 156.7, 152.1, 148.0, 147.6, 134.2, 133.9, 132.8, 131.8, 130.7, 130.6, 128.5, 125.6, 125.2, 124.6, 116.4, 107.4, 17.9; IR (neat): 2910, 2216, 1516, 1338, 750; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{17}H_{12}N_3O_2^+$ 290.0924, found 290.0921.


4-Methyl-2-(naphthalen-1-yl)quinoline-3-carbonitrile (3aq)

Flash chromatography (Silica Gel, PE/EtOAc) afforded 3aq (0.031 g, 52%) as a white solid; m.p.: 136-137 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.98 - 7.88 (m, 2H), 7.78 - 7.72 (m, 1H), 7.71 – 7.60 (m, 3H), 7.56 – 7.49 (m, 1H), 7.48 – 7.42 (m, 1H), 3.08 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 152.4, 147.8, 135.9,

134.2, 132.7, 131.5, 130.8, 130.2, 128.7, 128.2, 127.8, 127.0, 126.4, 125.5, 125.2, 124.5, 116.8, 109.0, 17.9 (one carbon missing due to overlap); IR (neat): 2916, 2216, 1514, 1309, 727; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{21}H_{15}N_2^+$ 295.1230, found 295.1231.

4-Methyl-2-(2-methylpyridin-4-yl)quinoline-3-carbonitrile (3ar)

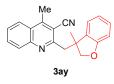
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ar** (0.034 g, 65%) as a white solid; m.p.: 178-179 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (d, J = 5.1 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.94 – 7.87 (m, 1H), 7.78 – 7.68 (m, 2H), 7.65 (d, J = 5.3 Hz, 1H), 3.06 (s, 3H), 2.70 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.2, 156.1, 153.4, 149.6, 147.8, 145.8, 132.9,

130.7, 128.6, 125.6, 124.5, 122.9, 120.5, 116.9, 106.0, 24.7, 17.9; IR (neat): 2912, 2214, 1525, 1446, 1309, 750; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{17}H_{14}N_3^+$ 260.1182, found 260.1182.

4-Methyl-2-(thiophen-2-yl)quinoline-3-carbonitrile (3as)

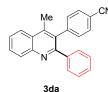
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3as** (0.020 g, 40%) as a white solid; m.p.: 142-143 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (d, J = 3.8 Hz, 1H), 8.09 (d, J = 9.1 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.65 – 7.58 (m, 1H), 7.56 (d, J = 5.1 Hz, 1H), 7.22 – 7.18 (m, 1H), 3.01 (s, 3H); ¹³C NMR

(101 MHz, Chloroform-*d*) δ 153.6, 150.7, 148.0, 142.9, 132.8, 130.6, 130.5, 129.4, 128.8, 127.8, 125.2, 124.6, 118.0, 103.8, 18.0; IR (neat): 2883, 2358, 1525, 1461, 1311, 719; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₅H₁₁N₂S⁺ 251.0638, found 251.0649.


4-Methyl-2-(2-methylprop-1-en-1-yl)quinoline-3-carbonitrile (3at)

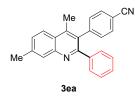
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3at** (0.020 g, 46%) as a light-yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 9.4 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.63 – 7.54 (m, 1H), 7.25 (s, 1H), 6.75 (s, 1H), 2.94 (d, J = 2.6 Hz, 3H), 2.22 (s, 3H), 2.07 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.2, 150.2,

146.6, 146.4, 130.9, 129.1, 126.1, 123.4, 123.2, 120.5, 115.9, 106.5, 26.6, 19.4, 16.5; IR (neat): 2896, 2356, 1774, 1514, 1309, 727; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{15}H_{15}N_2^+$ 223.1230, found 223.1225.


4-Methyl-2-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)quinoline-3carbonitrile (3ay)

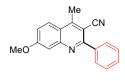
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ay** (0.034 g, 54%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.00 (m, 2H), 7.87 – 7.79 (m, 1H), 7.69 – 7.59 (m, 1H), 7.19 (d, *J* = 7.4 Hz, 1H), 7.14 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.94 – 6.87 (m, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 5.09 (d, *J* = 9.0 Hz, 1H), 4.34 (d, *J* = 9.0

Hz, 1H), 3.64 (d, J = 14.5 Hz, 1H), 3.43 (d, J = 14.5 Hz, 1H), 2.92 (s, 3H), 1.48 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.3, 157.8, 151.3, 147.4, 134.6, 132.1, 130.1, 128.4, 127.4, 124.8, 124.2, 123.2, 120.5, 117.0, 109.7, 108.4, 82.2, 46.4, 46.2, 24.8, 17.5; IR (neat): 2920, 2218, 1548, 1307, 825, 752; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₁H₁₉N₂O⁺ 315.1492, found 315.1490.


4-(4-methyl-2-phenylquinolin-3-yl)benzonitrile (3da)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3da** (0.051 g, 79%) as a white solid; m.p.: 264-265 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (dd, J = 8.5, 1.2 Hz, 1H), 8.10 (dd, J = 8.5, 1.3 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.68 – 7.62 (m, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.26 – 7.20 (m, 7H), 2.53 (s, 3H); ¹³C NMR (101

MHz, Chloroform-*d*) δ 158.1, 147.2, 144.4, 142.2, 140.7, 132.2, 131.8, 131.7, 130.5, 129.7, 129.6, 127.9, 126.9, 126.8, 124.1, 118.6, 111.1, 16.3 (one carbon missing due to overlap); IR (neat): 2914, 2220, 1506, 1309, 729; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₃H₁₇N₂⁺ 321.1386, found 321.1389.


4-(4,7-Dimethyl-2-phenylquinolin-3-yl)benzonitrile (3ea)

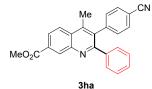
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ea** (0.036 g, 54%) as a colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.9 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.47 (dd, J = 8.6, 1.7 Hz, 1H), 7.26 – 7.18 (m, 7H), 2.60 (s, 3H), 2.50 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 147.4, 144.6, 141.9, 140.8, 140.1, 131.8, 131.8, 131.4, 129.6,

129.4, 129.2, 127.83 , 127.8, 124.8, 123.8, 118.7, 111.0, 21.7, 16.2; IR (neat): 2918, 2223, 1506, 1276, 702; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{24}H_{19}N_2^+$ 335.1543, found 335.1536.


7-methoxy-4-methyl-2-phenylquinoline-3-carbonitrile (3fa)

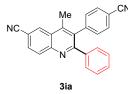
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3fa** (0.029 g, 52%) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 9.2 Hz, 1H), 7.91 (dd, J = 7.9, 1.7 Hz, 2H),, 7.58 – 7.51 (m, 3H), 7.49 (d, J = 2.5 Hz, 1H), 7.30 (dd, J = 9.2, 2.6 Hz,

^{3fa} 1H), 3.98 (s, 3H), 2.99 (s, 3H); ¹³C NMR (101 MHz, Chloroformd) δ 163.0, 159.3, 152.0, 150.2, 138.5, 129.8, 129.1, 128.5, 125.6, 120.9, 120.4, 117.7, 108.5, 104.2, 55.8, 17.6; IR (neat): 2887, 2356, 1514, 1311, 728; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₅N₂O⁺ 275.1179, found 275.1180.


4-(7-Chloro-4-methyl-2-phenylquinolin-3-yl)benzonitrile (3ga)

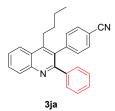
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ga** (0.053 g, 79%) as a colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, J = 2.1 Hz, 1H), 8.06 (d, J = 9.0 Hz, 1H), 7.66 – 7.59 (m, 3H), 7.25-7.31 (m, 7H), 2.55 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.1, 147.5, 143.8, 142.4,

140.1, 135.6, 132.3, 131.8, 131.5, 129.5, 129.1, 128.0, 127.9, 127.7, 125.5, 125.2, 118.5, 111.1, 16.3; IR (neat): 2883, 1512, 1311, 1101, 669; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{23}H_{16}ClN_2^+$ 355.0997, found 335.1000.


Methyl 3-(4-cyanophenyl)-4-methyl-2-phenylquinoline-7-carboxylate (3ha)

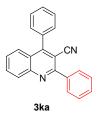
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ha** (0.039 g, 52%) as a white solid; m.p.: 151-152 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.92 (d, J = 1.4 Hz, 1H), 8.21 (dd, J = 8.7, 1.4 Hz, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.26 – 7.20 (m, 7H), 4.00 (s, 3H), 2.54 (s, 3H);

¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 159.2, 146.6, 144.0, 142.4, 140.3, 133.9, 133.0, 132.1, 131.6, 131.3, 129.7, 129.5, 128.3, 128.1, 126.5, 124.7, 118.7, 111.4, 52.6, 16.6; IR (neat): 2908, 1714, 1523, 1309, 678; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{25}H_{19}N_2O_2^+$ 379.1441, found 379.1442.


3-(4-cyanophenyl)-4-methyl-2-phenylquinoline-6-carbonitrile (3ia)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ia** (0.049 g, 71%) as a white solid; m.p.: 149-150 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (d, J = 1.7 Hz, 1H), 8.28 (d, J = 8.7 Hz, 1H), 7.92 (dd, J = 8.7, 1.8 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.28 – 7.22 (m, 7H), 2.56 (s, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 161.2 , 148.3 , 143.5 , 143.2 , 133.9 , 132.2, 131.9, 131.6, 131.0, 130.6, 129.7, 128.7, 128.2, 119.0, 118.6, 111.8, 110.6, 16.6 (two carbon missing due to overlap); IR (neat): 2908, 2223, 1514, 1309, 736; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₁₆N₃⁺ 346.1339, found 346.1340.


4-(4-Butyl-2-phenylquinolin-3-yl)benzonitrile (3ja)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ja** (0.035 g, 49%) as a colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.67 – 7.61 (m, 1H), 7.60 – 7.56 (m, 2H), 7.31 – 7.26 (m, 2H), 7.25 – 7.17 (m, 5H), 2.96 – 2.84 (m, 2H), 1.66 – 1.49 (m, 3H), 1.36 – 1.28 (m, 3H), 0.85 – 0.78 (m, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 158.2, 147.7, 147.0, 144.3, 140.8, 131.8, 131.7, 131.6, 130.6, 129.62, 129.59, 127.83, 127.80, 126.9, 125.9, 124.1, 118.6, 111.4, 33.0, 29.2, 23.0, 13.6; IR (neat): 2866, 2223, 1506, 730; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₂₃N₂⁺ 363.1856, found 363.1865.

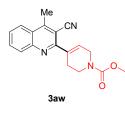
2,4-Diphenylquinoline-3-carbonitrile (3ka)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ka** (0.038 g, 63%) as a white solid; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.26 (d, J = 8.4 Hz, 1H), 8.00 (dd, J = 8.0, 1.3 Hz, 2H), 7.90 – 7.85 (m, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.64 – 7.59 (m, 3H), 7.59 – 7.52 (m, 6H).¹³C NMR (151 MHz, Chloroform-*d*) δ 158.7, 156.6, 148.7, 138.3, 134.8, 132.7, 130.3, 130.1, 129.9, 129.6, 129.5, 129.0, 128.8, 128.0, 127.0,

124.9, 117.4, 105.8; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{22}H_{15}N_2^+$ 307.1230, found 307.1222.

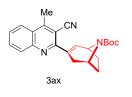
4.2 from vinyl triflates

To a 20 mL vial was added Pd(PPh₃)₄ (0.0236 g, 0.02 mmol, 0.1 equiv.), Cs₂CO₃ (0.0391 g, 0.12 mmol, 0.6 equiv.) TMCA (2,2,3,3-tetramethylcyclopropane carboxylic acid) (0.0341 g, 0.24 mmol, 1.2 equiv.) and a solution of vinyl triflate (0.3 mmol, 1.5 equiv.) in toluene (1 mL) under argon. The resulting mixture was heated at 60 °C heating block for 30 min. Then a solution of isocyanide (0.2 mmol, 1.0 equiv.) in toluene (1 mL) was added to the reaction mixture dropwise over 3 h using a syringe pump. After further 1 h, the completed reaction was diluted with DCM (20 mL) and washed with satd. NaHCO₃ (20 mL x 2). The combined aqueous phase was back extracted with DCM (15 mL x 2). The combined organic phase was dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford the quinoline product **3**.


2-(Cyclohex-1-en-1-yl)-4-methylquinoline-3-carbonitrile (3av)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3av** (0.026 g, 53%) as a light-yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.65 – 7.57 (m, 1H), 6.37 (tt, J = 3.9, 1.7 Hz, 1H), 2.97 (s, 3H), 2.66 – 2.59 (m, 2H), 2.36 – 2.29 (m, 2H), 1.84-1.88 (m, 2H), 1.82 – 1.72 (m, 2H);

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.8, 152.1, 147.3, 136.8, 132.8, 131.9, 130.1, 127.1, 124.9, 124.0, 117.3, 105.9, 27.3, 25.5, 22.4, 21.5, 17.5; IR (neat): 3039, 2931, 2223, 1554, 1444, 754; HRMS (ESI) m/z: $[M+H]^+$ calculated for C₁₇H₁₇N₂⁺ 249.1386, found 249.1394.


tert-butyl 4-(3-cyano-4-methylquinolin-2-yl)-3,6-dihydropyridine-1(2*H*)-carboxy late (3aw)

Flash chromatography (Silica Gel, PE/EtOAc) afforded **3aw** (0.032 g, 46%) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.00 (m, 2H),7.87 – 7.78 (m, 1H), 7.86 – 7.78 (m, 1H), 6.54 – 6.33 (m, 1H), 4.19 (s, 2H), 3.72 (s, 2H), 2.97 (s, 3H), 2.79 (s, 2H), 1.50 (s, 9H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.4, 154.7 (br), 152.6, 147.3, 135.4 (br),

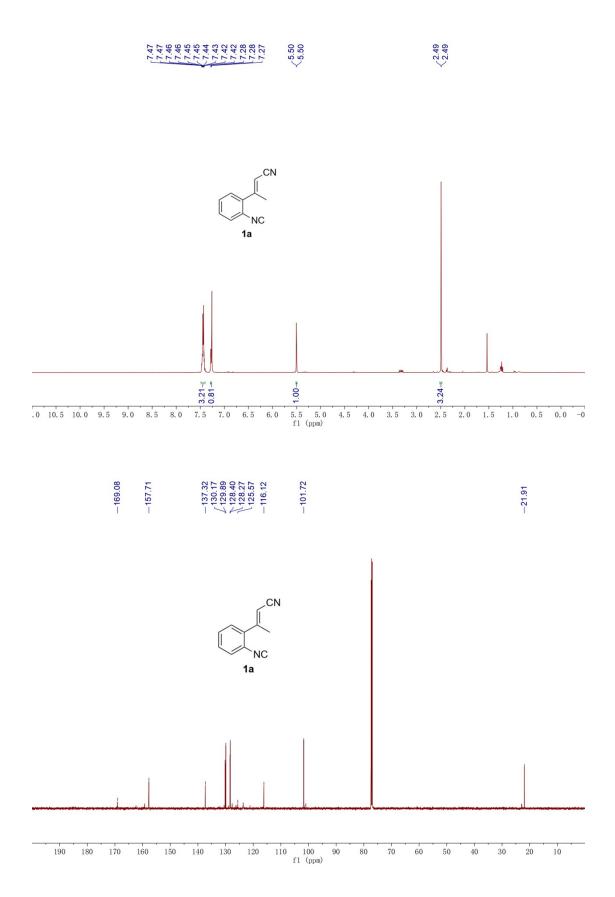
132.3, 130.2, 128.9 (br), 127.6, 125.1, 124.2, 117.2, 105.4, 79.7, 43.2 (br), 40.1 (br), 28.40, 27.4 (br), 17.6; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{21}H_{24}N_3O_2^+$ 350.1863, found 350.1869.

tert-butyl 3-(3-cyano-4-methylquinolin-2-yl)-8-azabicyclo[3.2.1]oct-2-ene-8-carbo xylate (3ax)

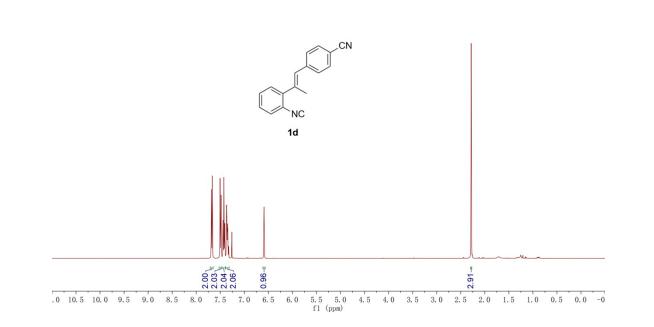
Flash chromatography (Silica Gel, PE/EtOAc) afforded **3ax** (0.033 g, 44% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 – 8.00 (m, 2H), 7.83 – 7.77 (m, 1H), 7.65 – 7.58 (m, 1H), 6.79 (s, 1H), 4.74 – 4.42 (m, 2H), 3.26-3.23 (m, 1H), 2.96 (s, 3H), 2.62 (d, *J* = 17.5 Hz, 1H), 2.26 (d, *J* = 10.6 Hz, 1H),

2.09 (s, 2H), 1.88 – 1.92 (m, 1H), 1.49 (s, 9H); ¹³C NMR (101 MHz, Chloroform-d) δ

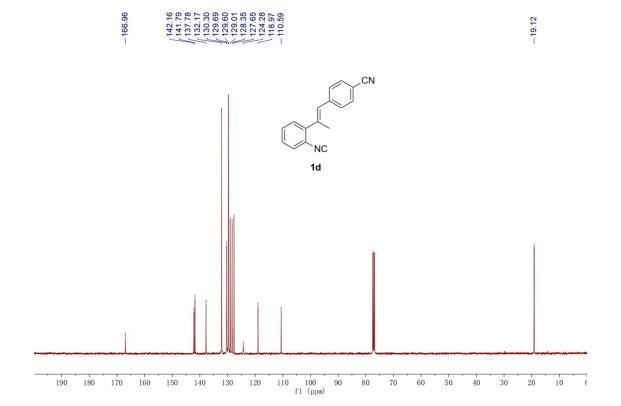
158.1, 154.2, 152.7, 147.6, 136.9, 134.2, 132.3, 130.6, 127.8, 125.3, 124.4, 117.5, 105.8, 79.8, 53.8, 52.1, 35.8, 34.8, 29.6, 28.6, 17.9; IR (neat): 2914, 2356, 2214, 1523, 1315, 746; HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{23}H_{26}N_3O_2^+$ 376.2020, found 376.2024.

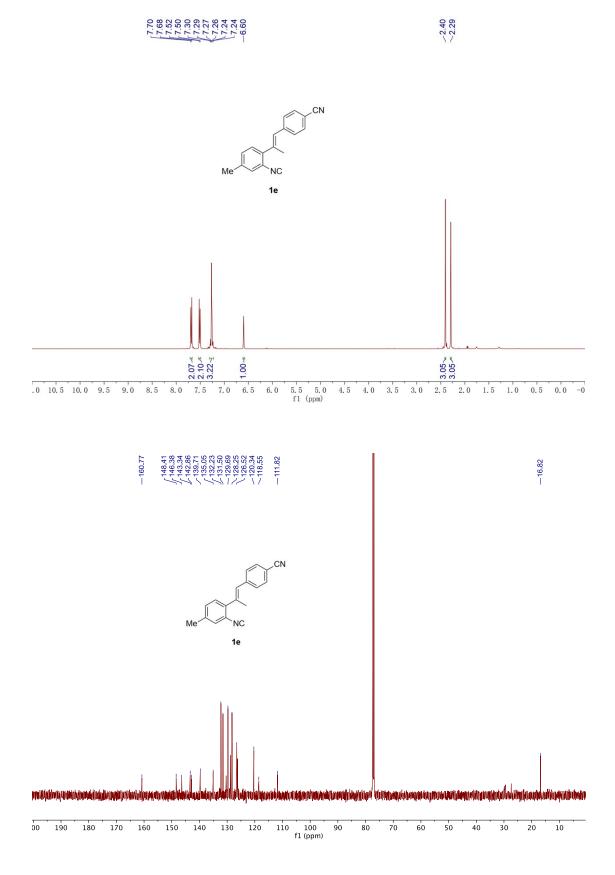

5. Scale up of 3aa

To a 100 mL RBF was added Pd(PPh₃)₄ (0.118 g, 0.1 mmol, 0.1 equiv.), Cs₂CO₃ (0.195 g, 0.6 mmol, 0.6 equiv.) TMCA (2,2,3,3-tetramethylcyclopropane carboxylic acid) (0.171 g, 1.2 mmol, 1.2 equiv.) and a solution of phenyl iodide (1.5 mmol, 1.5 equiv.) in toluene (5.0 mL) under argon. The resulting mixture was heated at 80 °C in an oil bath for 30 min. Then a solution of (*E*)-3-(2-isocyanophenyl)but-2-enenitrile (1.0 mmol, 1.0 equiv.) in toluene (5 mL) was added to the reaction dropwise over 3 h using a syringe pump. After a further 1 h, the completed reaction was diluted with DCM (50 mL) and washed with satd. NaHCO₃ (50 mL x 2). The combined aqueous phase was back extracted with DCM (30 mL x 2). The combined organic phase was dried (anhydrous Na₂SO₄) and concentrated. The residue was purified by column chromatography (Silica Gel, PE/EtOAc) to afford the quinoline **3** (0.22 g, 90%).

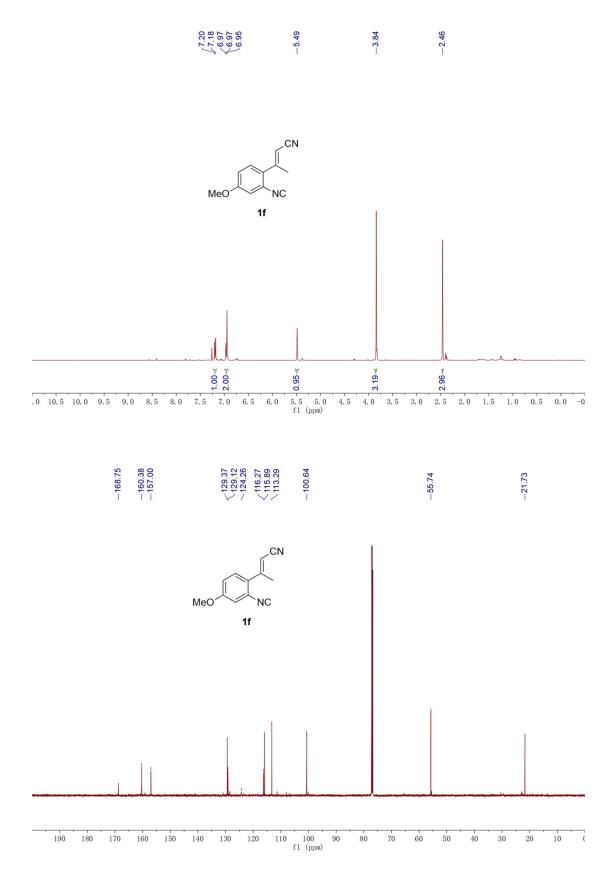

6. References

- 1. Cheng, S.; Luo, Y.; Yu, T.; Li, J.; Gan, C.; Luo, S.; Zhu, Q. ACS Catal. 2022, 12, 837–845.
- 2. Drennhaus, T.; Leifert, D.; Lammert, J.; Drennhaus, J. P.; Bergander, K.; Daniliuc, C. G.; Studer, A. J. Am. Chem. Soc. **2023**, 145, 8665–8676.
- (a) Garanti, L.; Zecchi, G. J. Org. Chem. 1980, 45, 4767–4769, (b) Ames, D. E.; Bull, D. Tetrahedron, 1981, 37, 2489-91.
- Yao, T.; Wang, B.; He, D.; Zhang, X.; Li, X.; Fang, R. Org. Lett. 2020, 22, 17, 6784–6789.
- 5. Wan, H.-L.; Guan, Z.; He, Y.-H. Asian J. Org. Chem. 2021, 10, 3406-3410.
- 6. Kim, H. R.; Yun, J. Chem. Commun., 2011, 47, 2943-2945.
- Kim, J. H.; Lee, S. A.; Jeon, T. S.; Cha, J. K.; Kim, Y. G. Synlett, 2023, 34, 1719-1722.
- Peng, C.; Wang, Y.; Liu, L.; Wang, H.; Zhao, J.; Zhu, Q. Eur. J. Org. Chem. 2010, 818-822.
- 9. Kumar, M.; Goswami, A. Org. Lett. 2023, 25, 3254-3259.

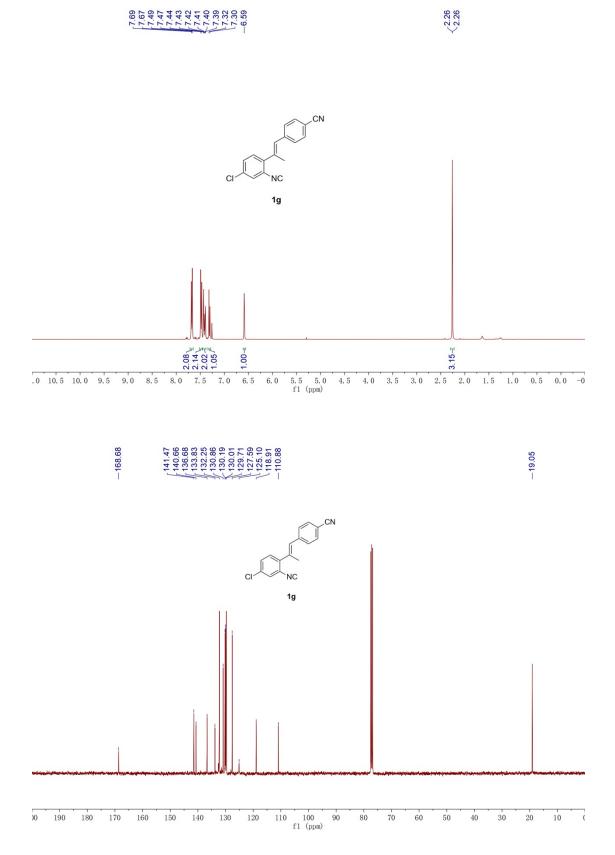

7. Copies of NMR Spectroscopies

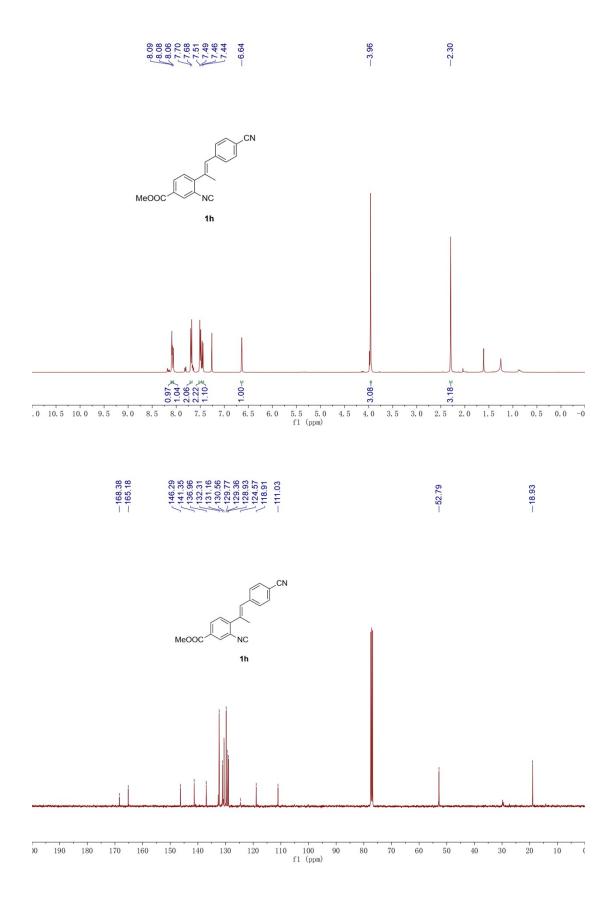


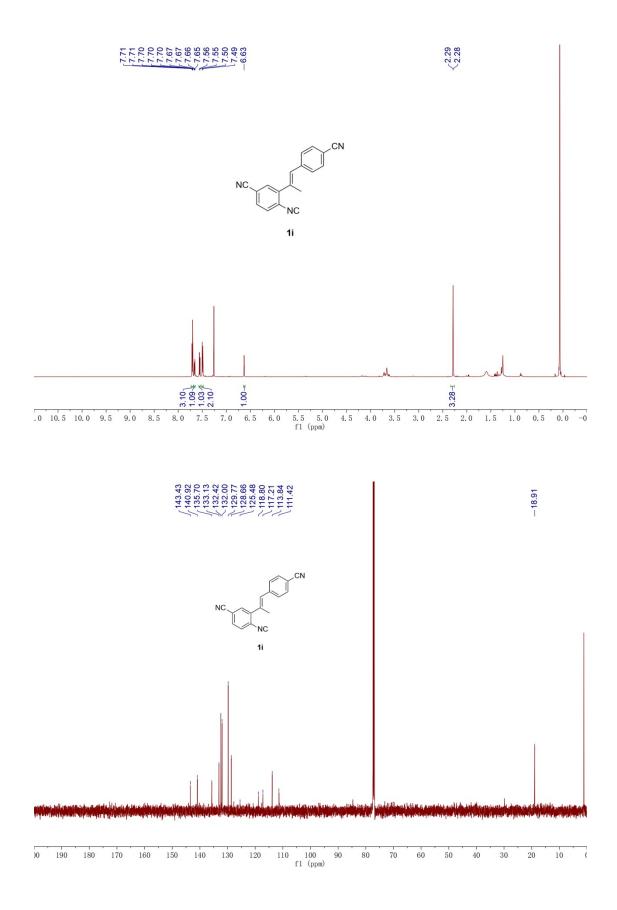
S19



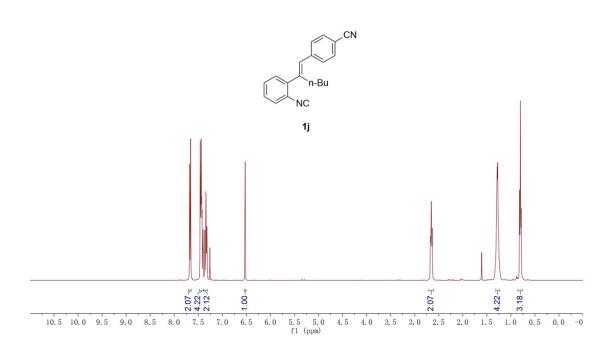
 $<^{2.28}_{2.28}$

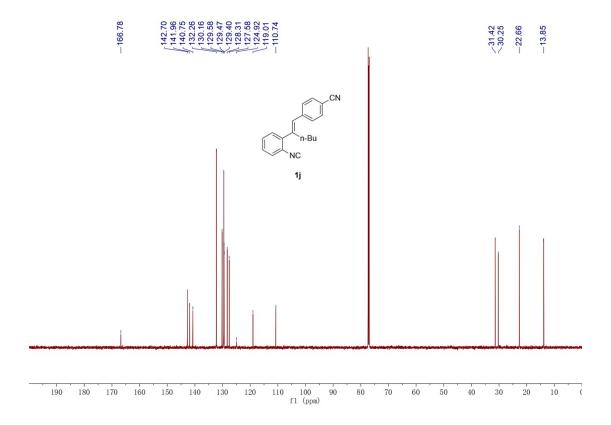


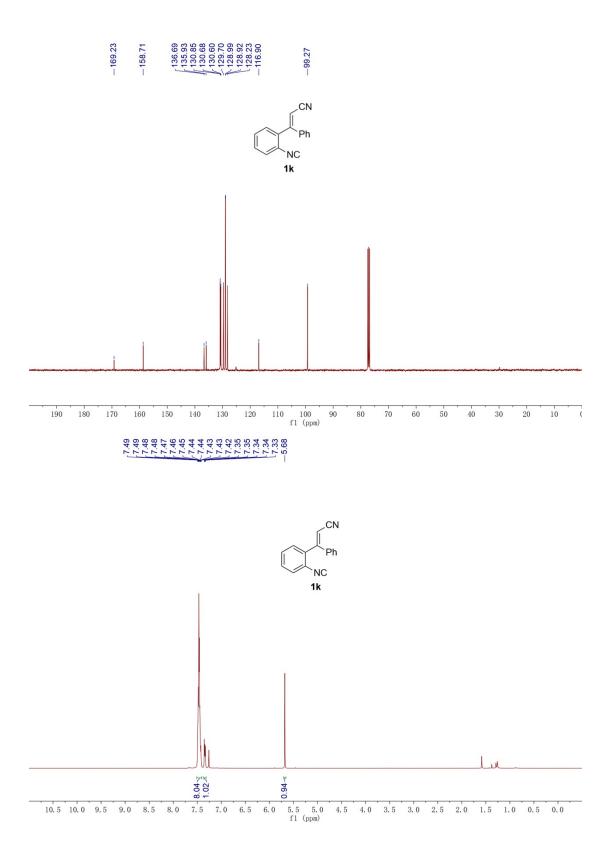

S21



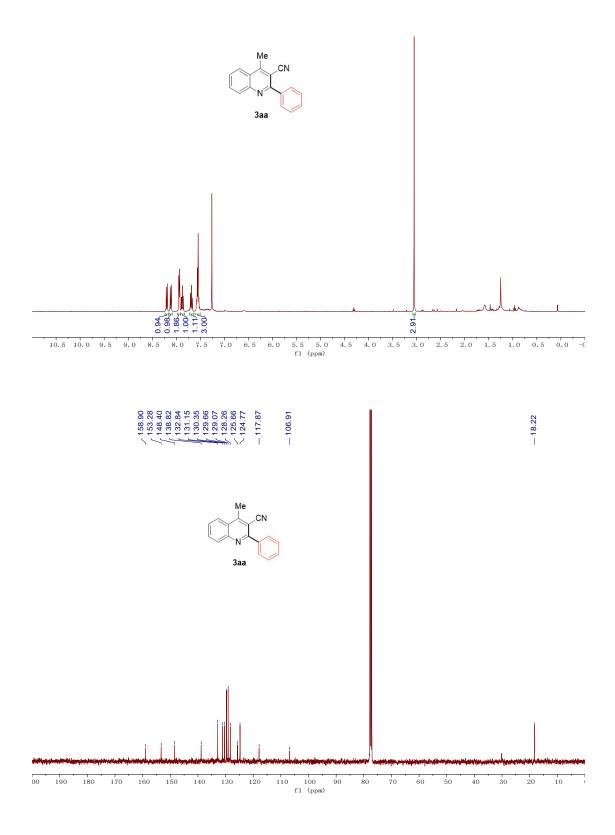
S22

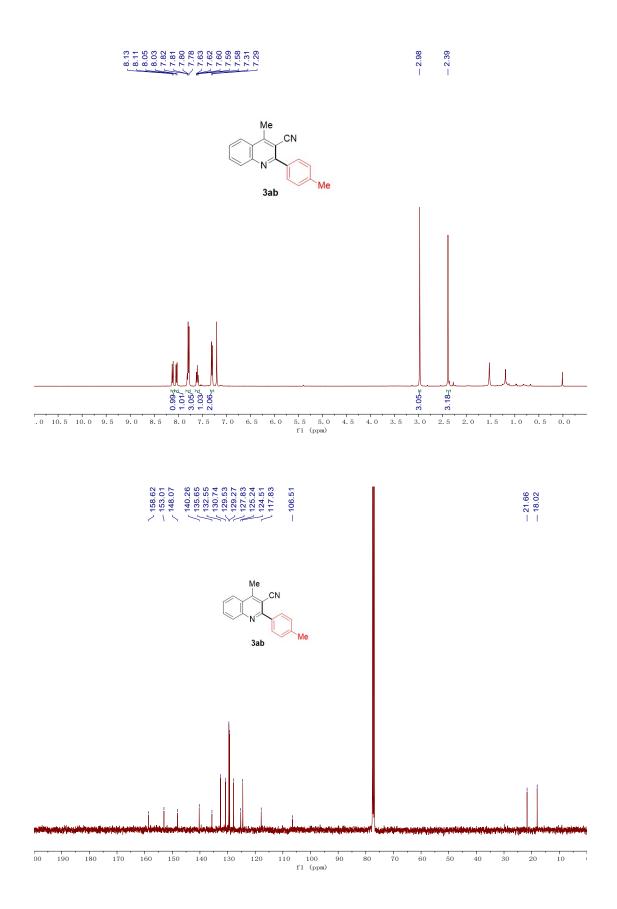


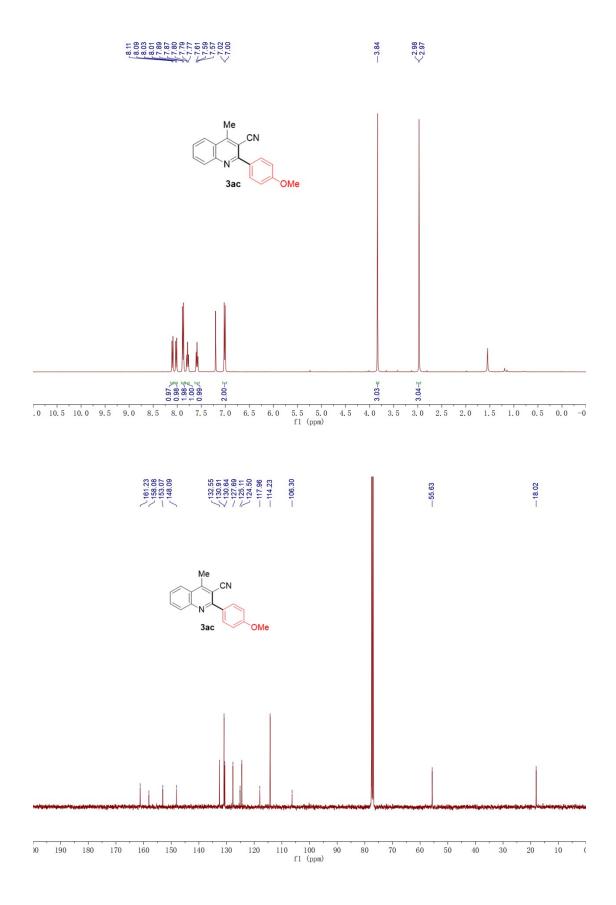

S23

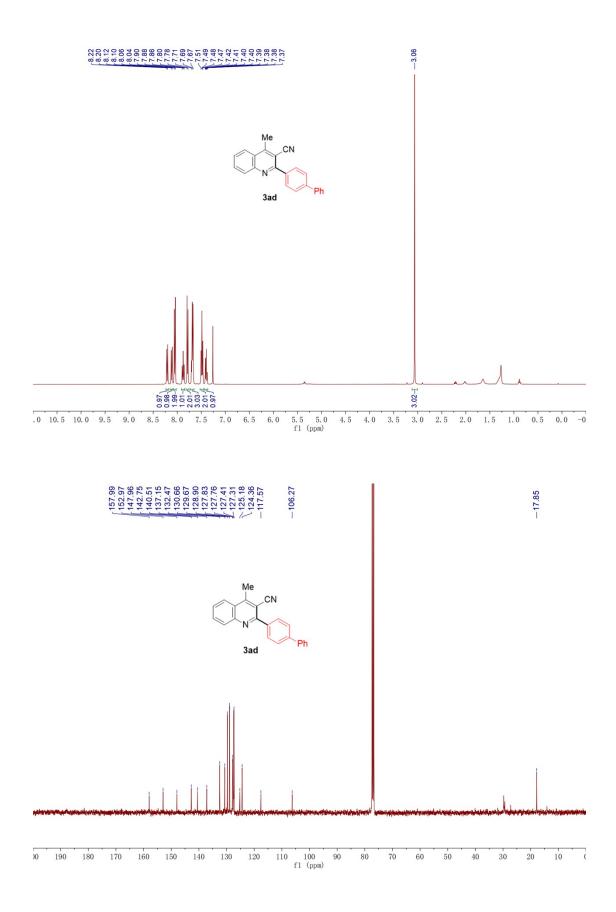


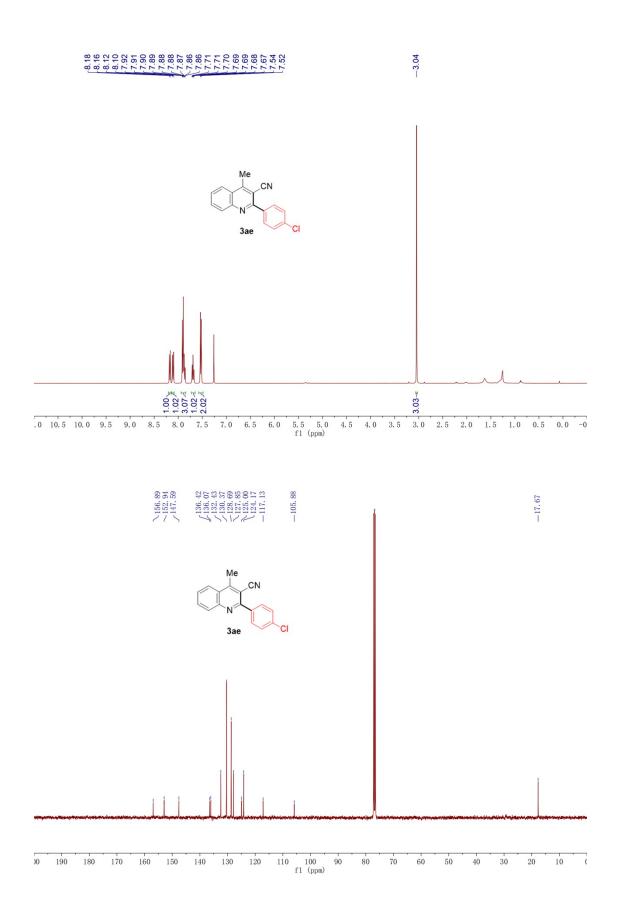
7.35 6.53 6.53

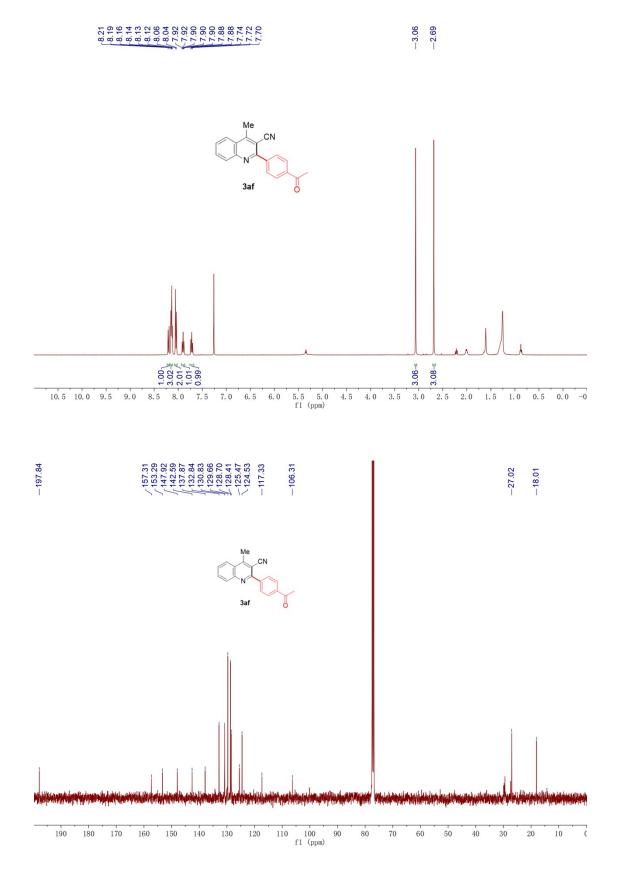


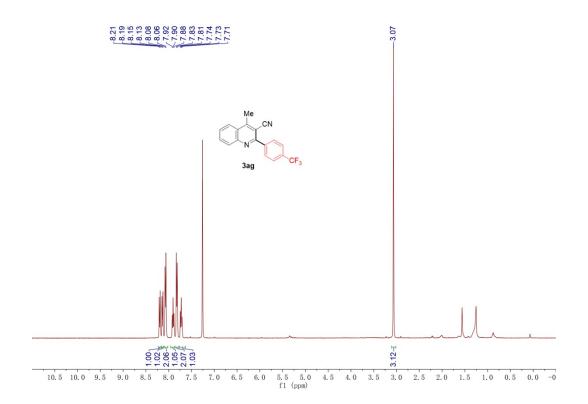


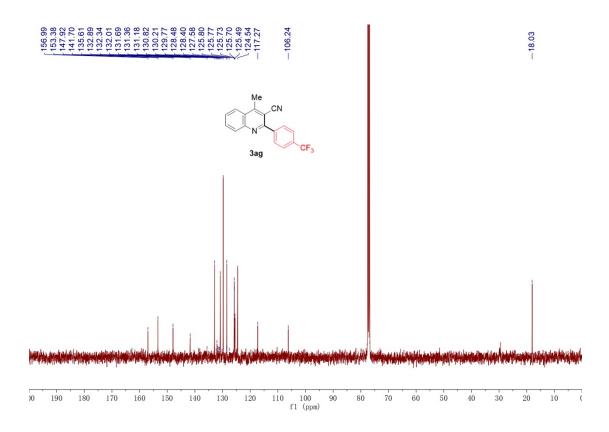


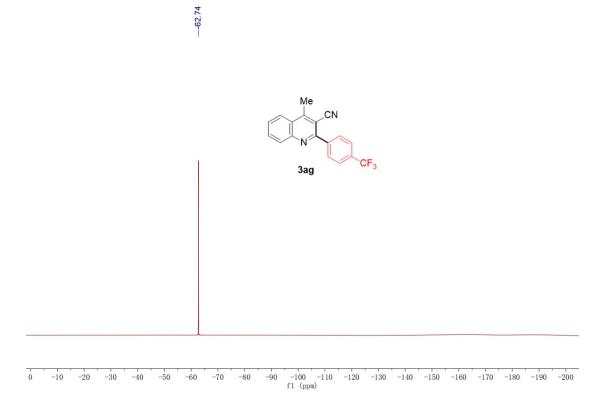

S27

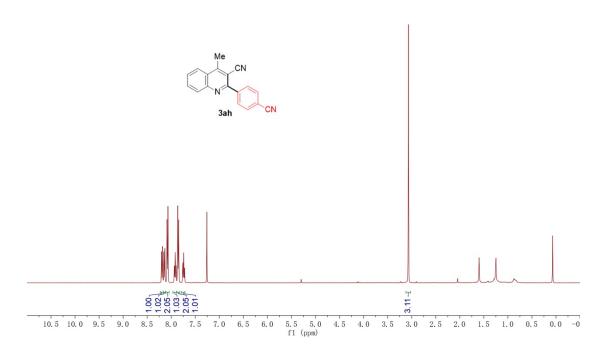

8.8.
8.10
8.8.10
8.8.11
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12
8.8.12</l



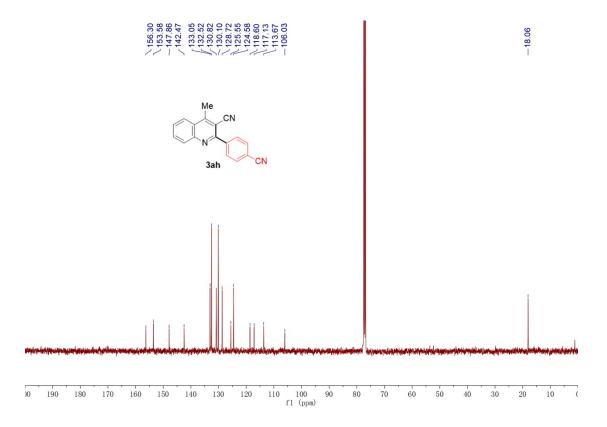


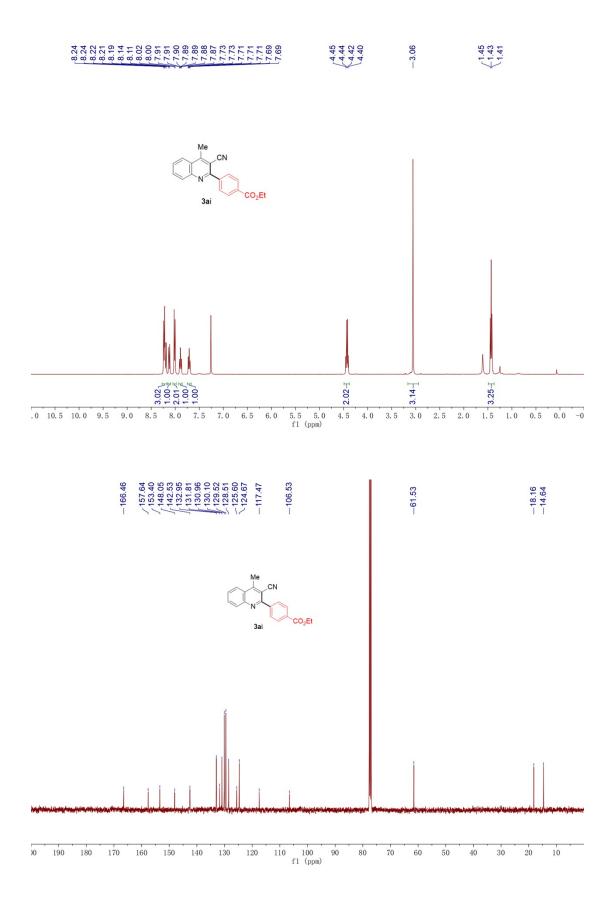


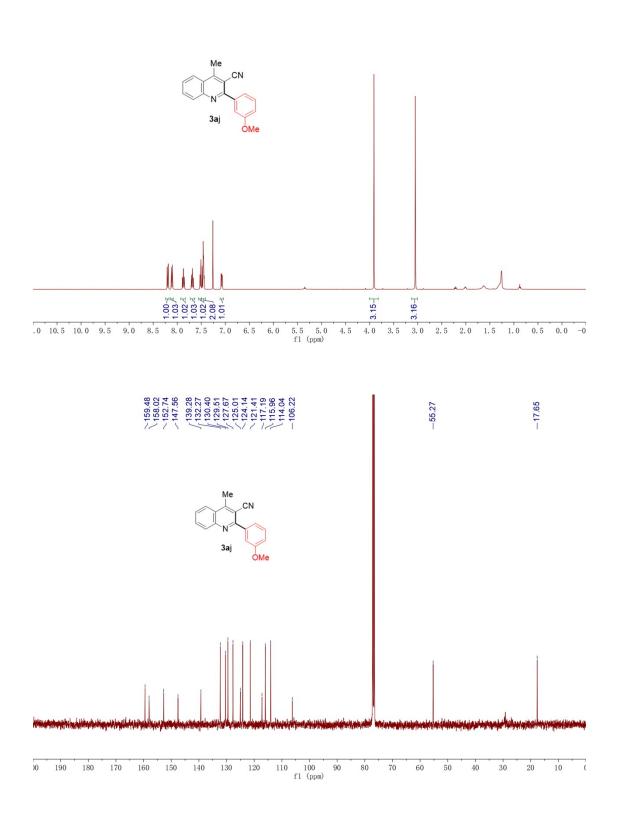

S32



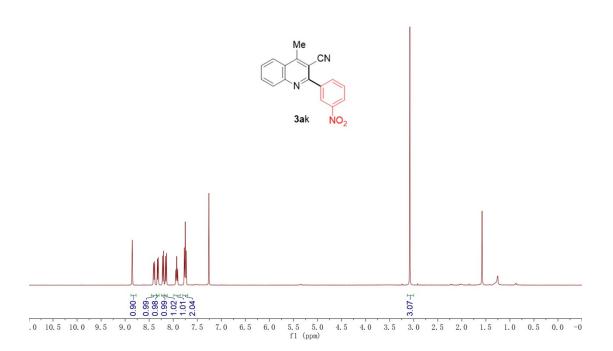
S33

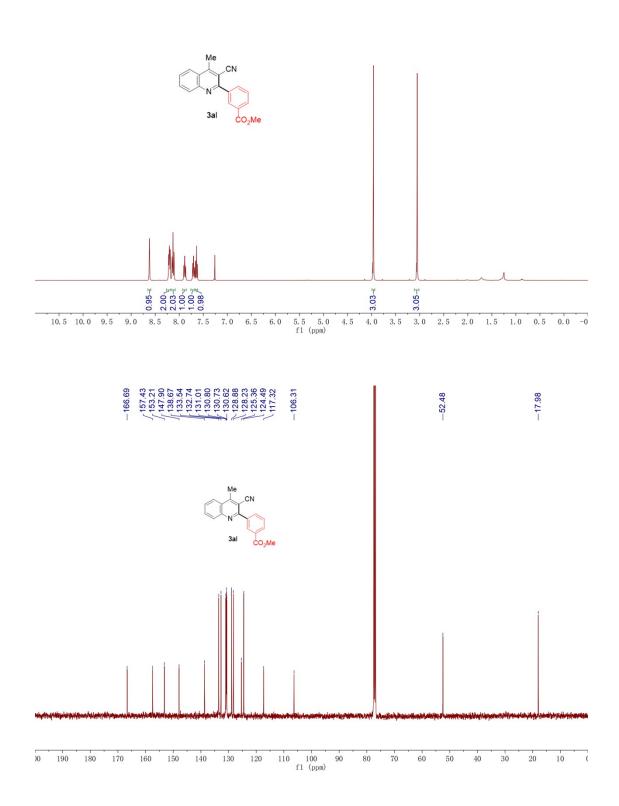


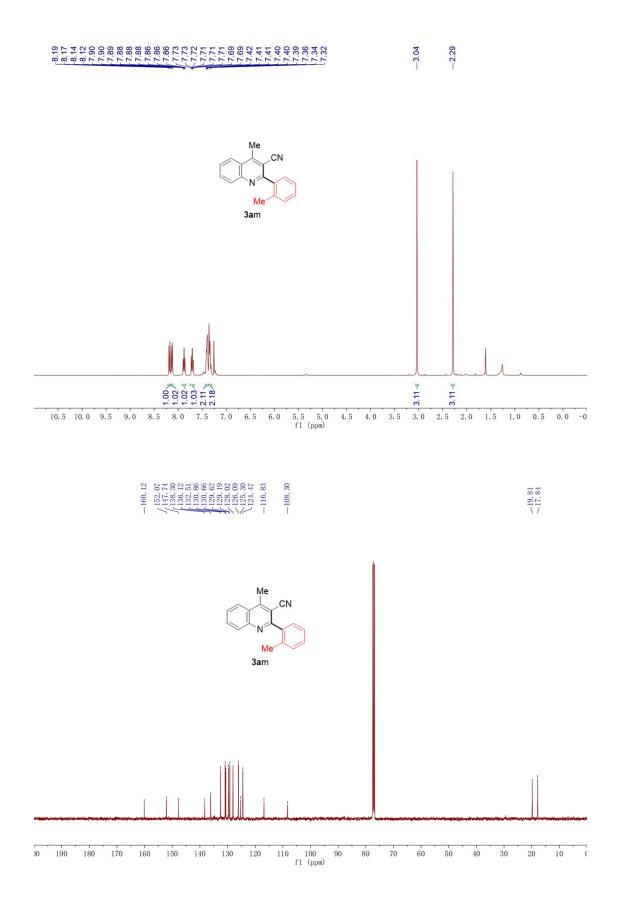


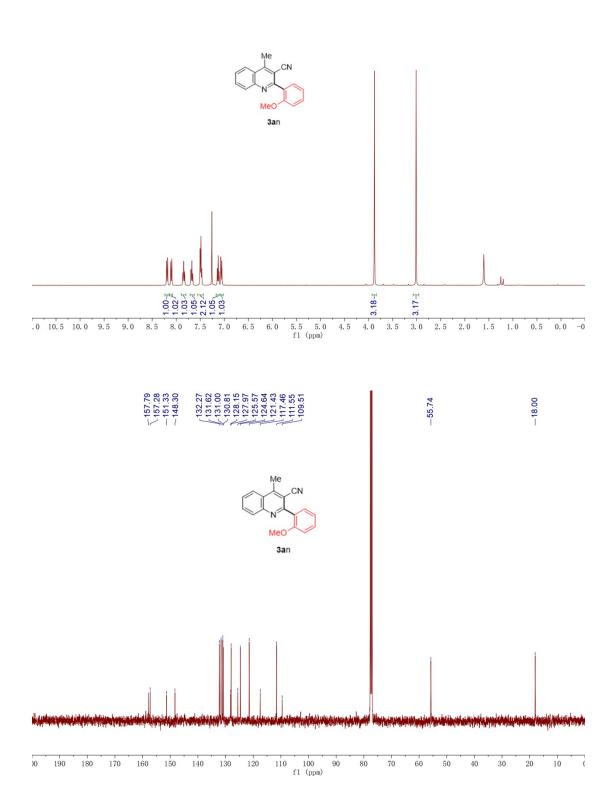


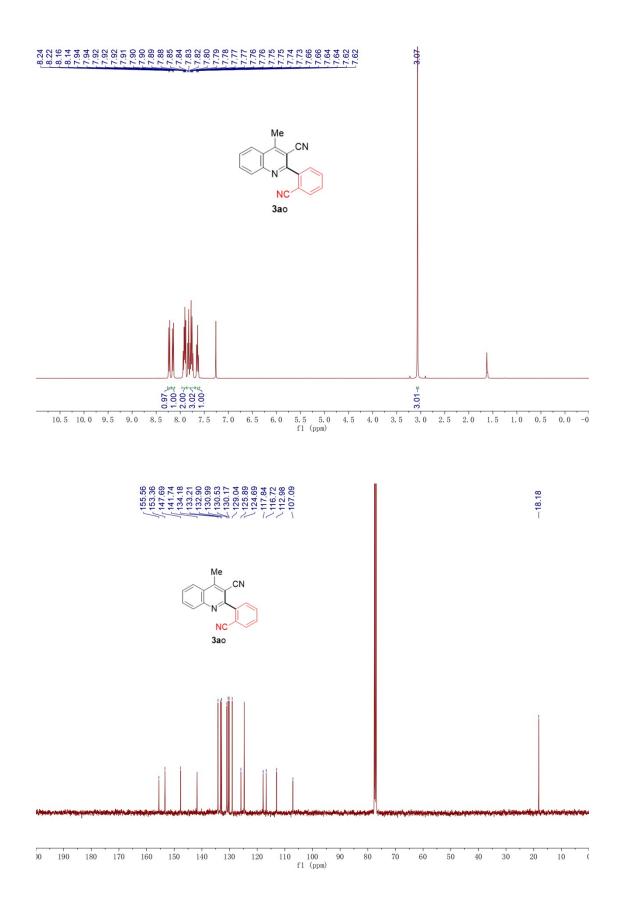
-3.07

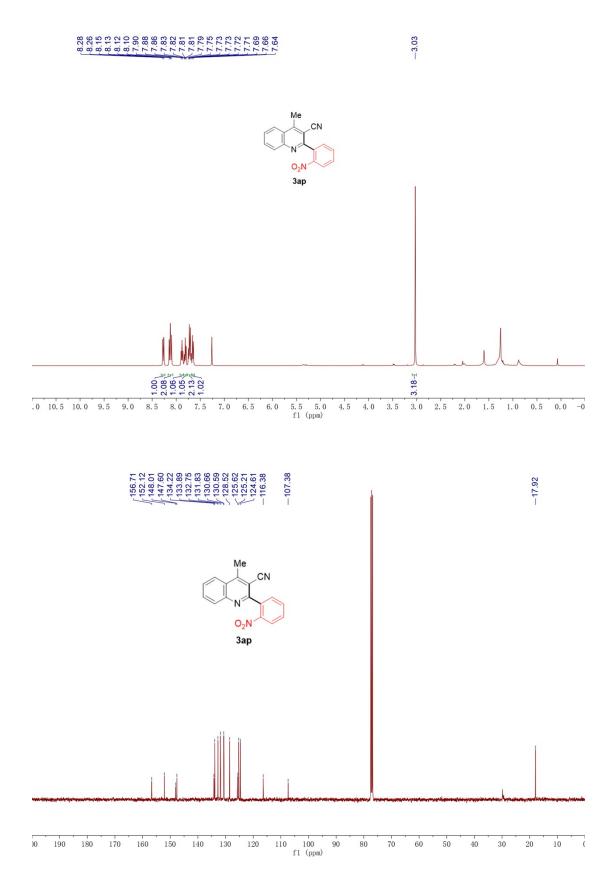




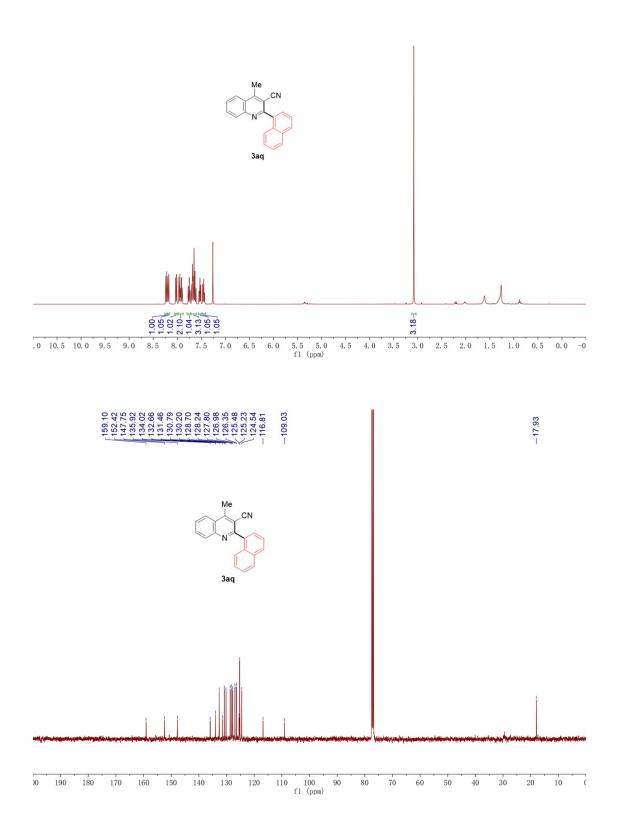


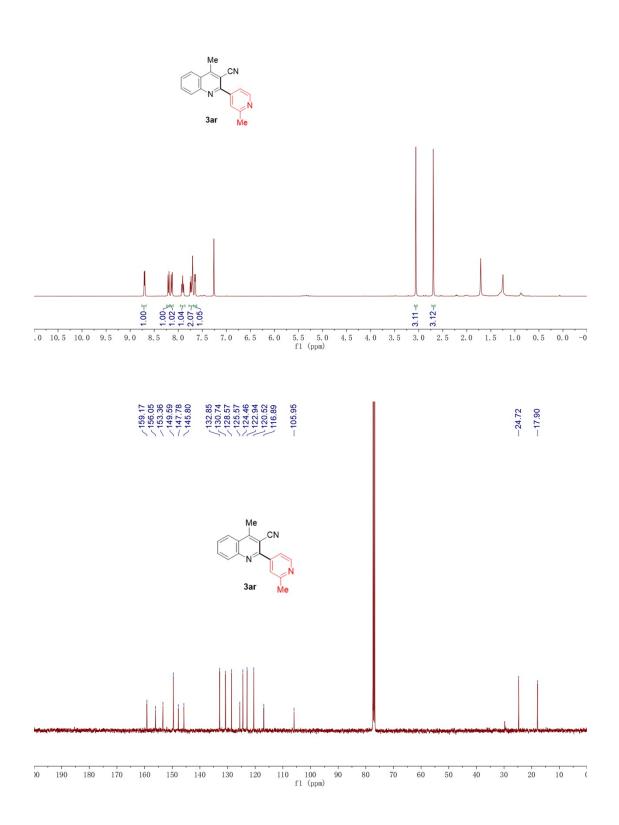


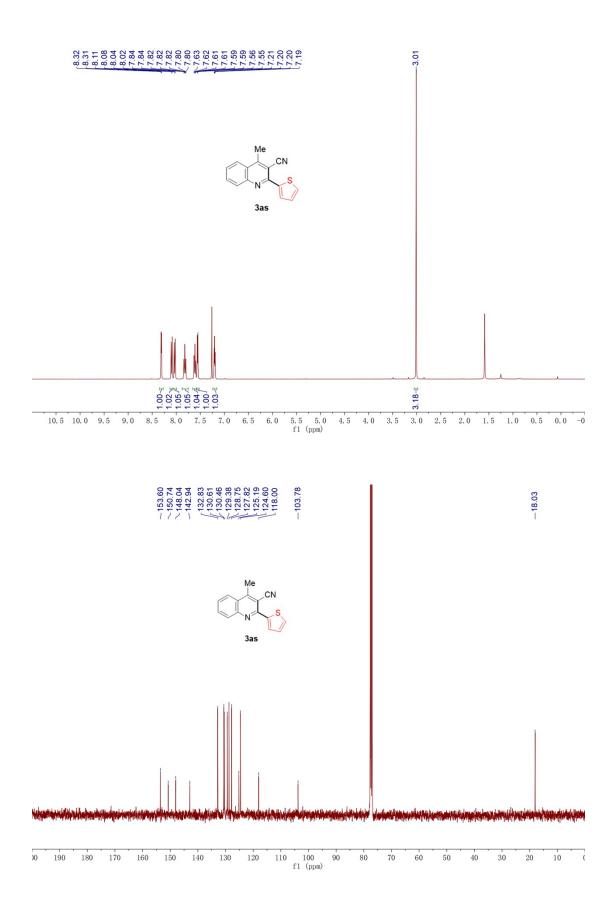


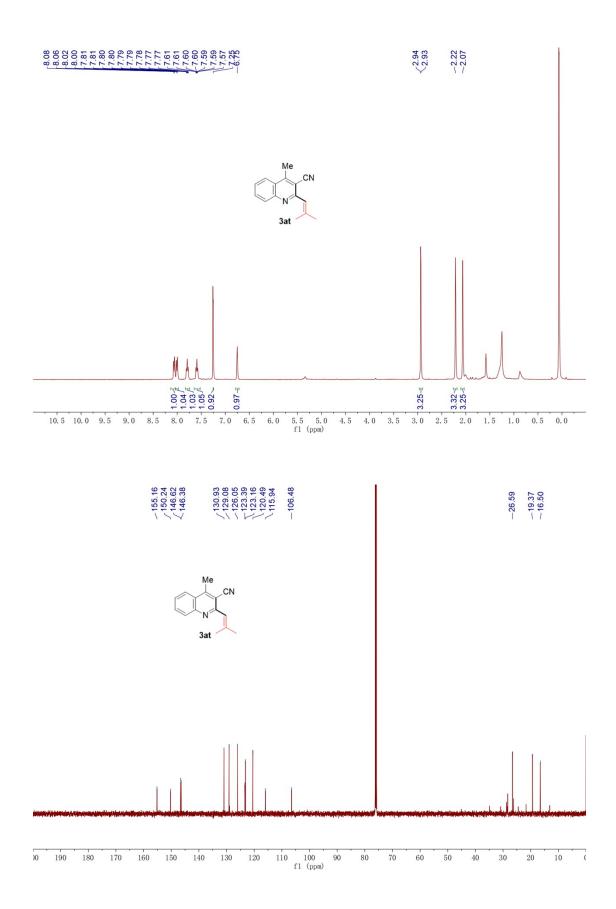


S41

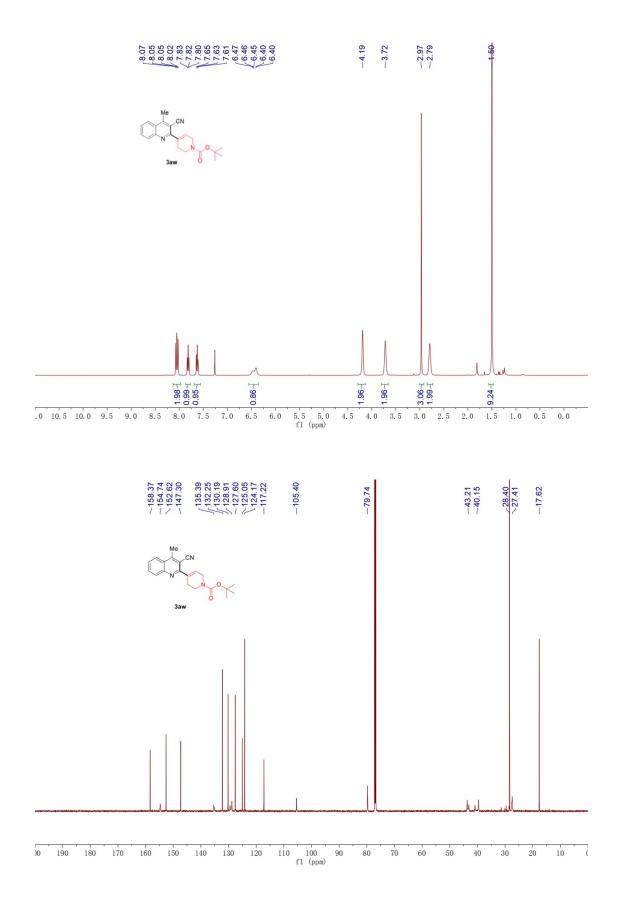


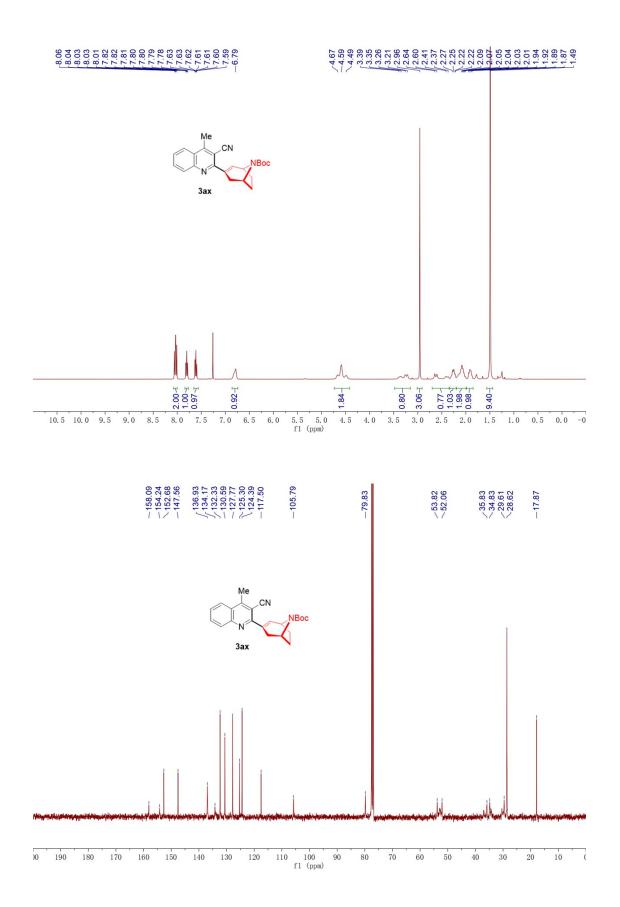


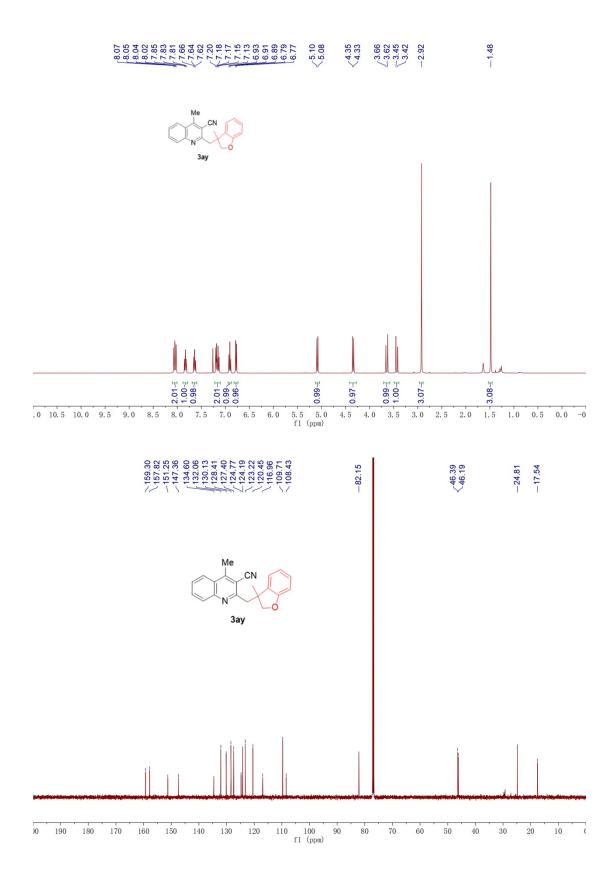




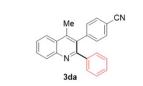


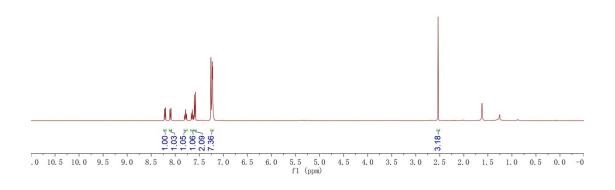


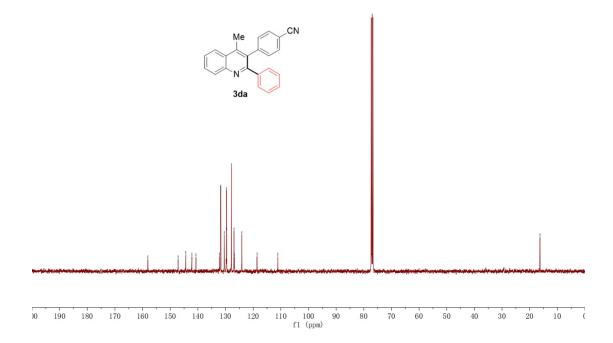


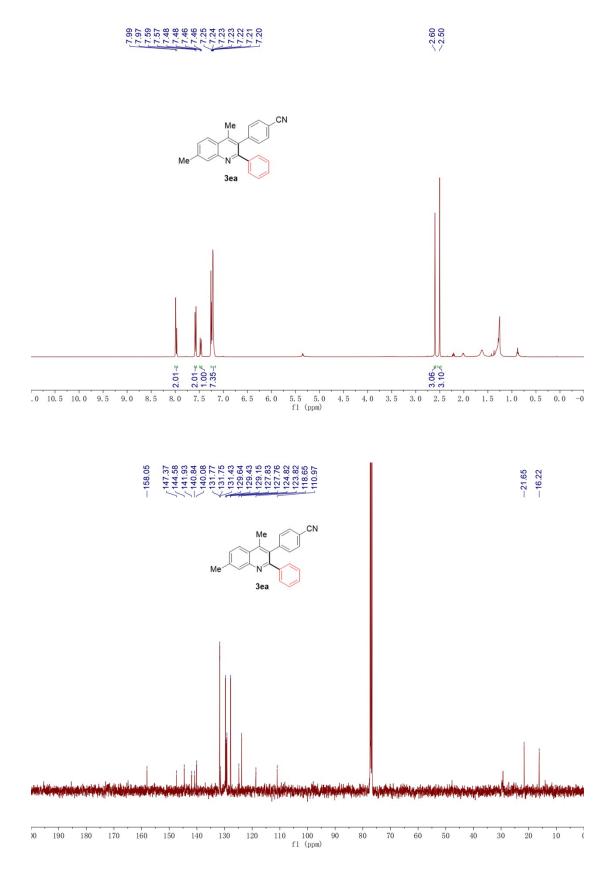


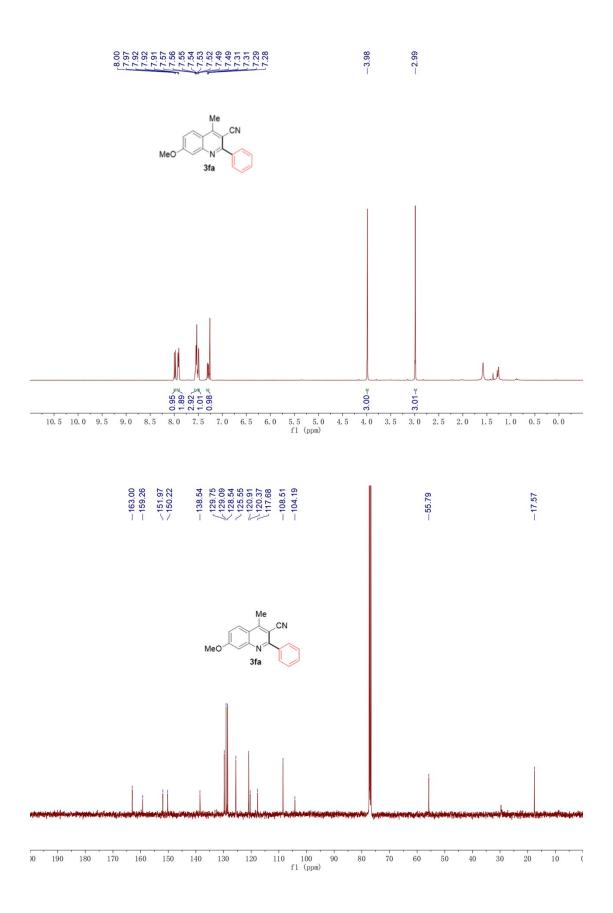
S50

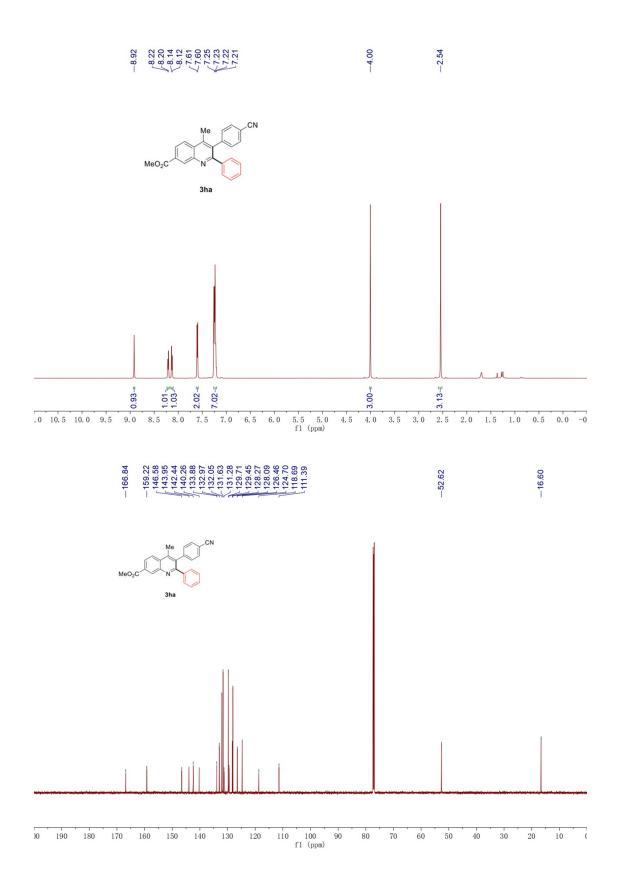


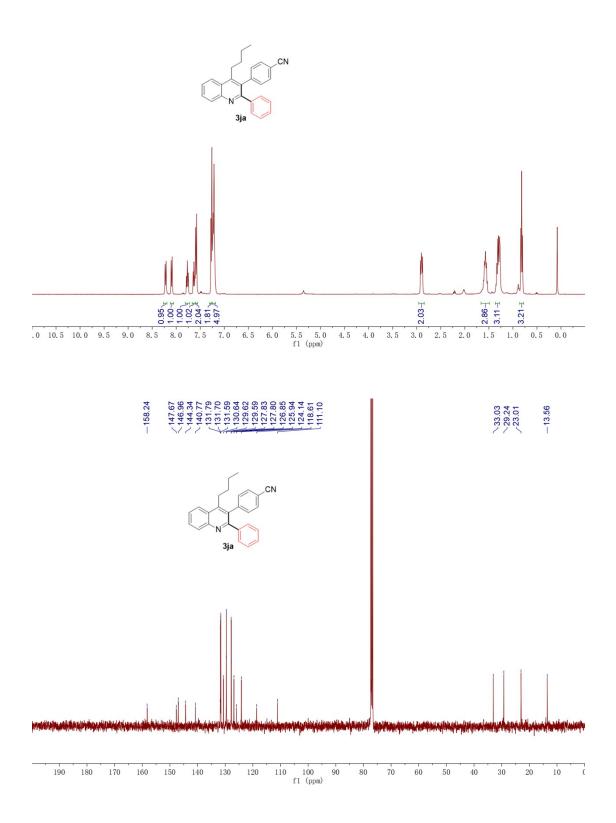


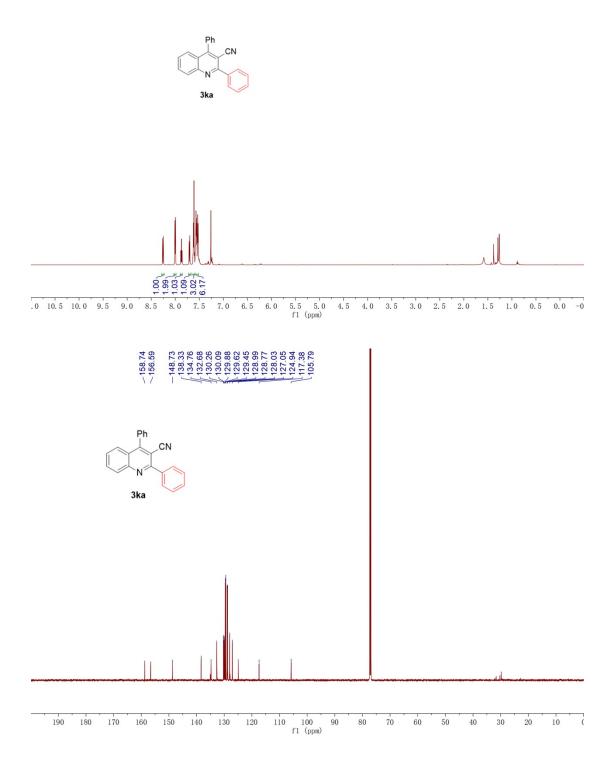



-2.53






S55



CN Мe NC 3ia 1.00-≠ 1.00-<u>∓</u> 1.05-<u>∓</u> 2.16-<u>∓</u> 3.17-1 7.38-= .0 10.5 10.0 9.5 9.0 8.5 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 8.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 161.23 148.27 148.27 143.18 143.18 133.94 133.94 133.95 133.55 135.55 155.55 15 CN NC 3ia 140 110 100 f1 (ppm) 190 180 170 160 150 130 120 90 80 70 60 50 40 30 20 10 (

8.25 8.26 8.00 8.00 8.00 8.00 8.00 7.73 8.00 7.73 7.74 7.74 7.74 7.75 7.75 7.75 7.75 7.75 7.75 7.64 7.75 7.65 7.75

