Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Dinuclear iridium complexes ligated by lithium-ion endohedral fullerene $Li^+@C_{60}$

Chinari Fukushi, Takashi Komuro* and Hisako Hashimoto*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

To whom correspondence should be addressed. <u>hisako.hashimoto.b7@tohoku.ac.jp</u> <u>takashi.komuro.c5@tohoku.ac.jp</u>

1. Exp	erimental procedures and characterisation data	S3
	1-1. Modified procedure for the synthesis of Ir ₂ Br ₂ (cod) ₂	S4
	1-2. Synthesis of $[{\mu-\eta^2:\eta^2-(Li^+@C_{60})} {Ir_2Cl_2(cod)_2}](NTf_2^-) (1)$	S4
	1-3. Synthesis of $[{\mu-\eta^2:\eta^2-(Li^+@C_{60})} {Ir_2Br_2(cod)_2}](NTf_2^-) (2)$	S5
	1-4. Synthesis of $[{\mu-\eta^2:\eta^2-(Li^+@C_{60})} {Ir_2I_2(cod)_2}](NTf_2^-)$ (3)	S5
	1-5. Measurements of VT ${}^{13}C{}^{1}H$ and low temperature 2D NMR spectra of 1	S 6
2. X-ra	ay crystal structure analysis	S7
	2-1. Refinement details on the crystal structure analysis (Table S1)	S 7
	2-2. Crystal structures and selected bond distances and angles (Figs. S1–S3, Table S2)	S10
3. NM	R spectra and high-resolution mass spectrometry (Figs. S4–S19)	S14
4. UV/	Vis spectra of complexes 1–3 (Fig. S20)	S25
5. Elec	trochemistry of complexes 1–3 and Ir ₂ X ₂ (cod) ₂ (Figs. S21 and S22, Table S3)	S26
6. DFT	calculations	S28
	6-1. Optimised structures of the cation parts of complexes 1–3:	S29
	1-opt , 2-opt and 3-opt (Figs. S23–S25, Tables S4–S9)	
	6-2. Frontier orbitals and energy levels of 1-opt, 2-opt and 3-opt (Figs. S26–S28)	S35
	6-3. NBO analysis of 1-opt, 2-opt and 3-opt (Figs. S29–S31)	S38
	6-4. GIAO calculations and assignments of the proton signals of cod ligands	S39
	in 1-opt (Figs. S32–S34)	
	6-5. TD-DFT calculations (Figs. S35–S37, Tables S10–S12)	S40
7. Refe	erences	S47

Contents

1. Experimental procedures and characterisation data

General procedures. All manipulations were performed in a glovebox (Ar atmosphere) or using Schlenk techniques (N₂ atmosphere) unless otherwise indicated.

Materials. All solvents were dried and stored under argon over 4 Å molecular sieves in a glovebox prior to use. Et₂O, THF and MeCN were dried using a Glass Contour alumina column (Nikko Hansen & Co., Ltd.). CD₂Cl₂, CHCl₃, CDCl₃, TCE (1,1,2,2-tetrachloroethane) and *o*-DCB (1,2-dichlorobenzene) were dried over CaH₂ and distilled before use. Ir₂X₂(cod)₂ (X = Cl^{S1} and I^{S2}) were prepared according to the literature procedures. Ir₂Br₂(cod)₂ was synthesised with some modification of the literature procedure^{S2} (see below). [Li⁺@C₆₀](NTf₂⁻) was prepared by the anion exchange of [Li⁺@C₆₀](PF₆⁻), which was supplied from Idea International Corporation, with LiNTf₂.^{S3} LiBr was purchased from Tokyo Chemical Industry Co., Ltd. AgNO₃ was purchased from Kanto Chemical Co., Inc. [^{*n*}Bu₄N](PF₆⁻) was purchased from FUJIFILM Wako Pure Chemical Co., Ltd. and recrystallized from hot EtOH prior to use. [^{*n*}Bu₄N](NTf₂⁻) was prepared by the anion exchange of [^{*n*}Bu₄N](Cl⁻), which was purchased from Kanto Chemical Co., Ltd., with LiNTf₂.

Spectroscopic measurements. The NMR spectra were recorded on a Bruker AVANCE III 400 Fourier transform spectrometer (¹H: 400.1 MHz, ⁷Li: 155.5 MHz, ¹³C: 100.6 MHz). Chemical shifts are reported in parts per million. Line widths at half-height ($\Delta v_{1/2}$) are given in Hz. ¹H NMR chemical shifts were referenced to the residual proton (CHCl₃: 7.26 ppm and CDHCl₂: 5.32 ppm). ⁷Li NMR chemical shifts were referenced to LiCl/D₂O (0.0 ppm) as an external standard. ¹³C{¹H} NMR chemical shifts were referenced to the carbon of deuterated solvents (CDCl₃: 77.2 ppm and CD₂Cl₂: 53.8 ppm). ¹³C{¹H} NMR signals of cod ligands were assigned based on ¹H–¹³C HSQC experiments. All NMR data were collected at room temperature unless otherwise indicated. High-resolution mass spectra (HRMS) were obtained by use of a Bruker Daltonics solariX 9.4T spectrometer operating in the electrospray ionisation (ESI) mode. Elemental analysis was performed using a J-Science Lab JM11 microanalyzer. Measurements of HRMS and elemental analysis were performed at the Research and Analytical Center for Giant Molecules, Tohoku University. UV/Vis spectra were measured on a Shimadzu Multi-Spec-1500 spectrometer. Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) measurements were performed using a BAS ALS-620D electrochemical analyser.

1-1. Modified procedure for the synthesis of Ir₂Br₂(cod)₂

Ir₂Cl₂(cod)₂ (152 mg, 226 mmol) and LiBr (153 mg, 1.77 mmol, 7.8 equiv.) were placed in a 50 mL Schlenk flask, which was moved into a glove box. THF (5 mL) and CHCl₃ (5 mL) were added to the reactants to give a yellow solution. After the solution was stirred at room temperature for 20 h, the colour of the solution turned into orange. The solution was then evapourated under vacuum. The resulting reddish orange solid was extracted with *ca*. 10 mL of CHCl₃ and filtered. The filtrate was evapourated under vacuum to dryness, which afforded a dark red solid of Ir₂Br₂(cod)₂ (171 mg, 225 mmol, 99%). Ir₂Br₂(cod)₂ was identified by comparison of the ¹H NMR data with the literature values, ^{S2} and its purity was confirmed by the elemental analysis. ¹H NMR (CDCl₃): δ 4.30–4.38 (br m, 8H, CH), 2.13–2.29 (br m, 8H, CH₂), 1.37–1.52 (br m, 8H, CH₂); ¹³C{¹H} NMR (CDCl₃): δ 62.4 (s, CH), 32.0 (s, CH₂); Anal. calcd. for C₁₆H₂₄Br₂Ir₂: C, 25.27; H, 3.18; found: C, 25.33; H, 3.29; UV/Vis (CH₂Cl₂, 1.0 × 10⁻³ M, 1 mm quartz cell) λ_{max} / nm (ε /M⁻¹ cm⁻¹): 334 (2.4 × 10³), 405 (2.4 × 10³), 473 (4.2 × 10³), 673 (63).

1-2. Synthesis of [{ μ - η^2 : η^2 -(Li⁺@C₆₀)}{Ir_2Cl_2(cod)_2}](NTf_2⁻) (1)

In the air, $[Li^+@C_{60}](NTf_2^-)$ (1.22 mg, 1.21 µmol) was weighed into a 5 mL vial equipped with a magnetic stirring bar, and Ir₂Cl₂(cod)₂ (0.81 mg, 1.21 µmol, 1.0 equiv.) was weighed into another 5 mL vial. These vials were moved into a glove box. To each of the vials, 1,1,2,2-tetrachloroethane (TCE) (0.2 and 0.4 mL, respectively) was added and mixed. The resulting yellow solution of Ir₂Cl₂(cod)₂ was added to the purple solution of $[Li^+@C_{60}](NTf_2^-)$ with stirring. The colour of the solution instantaneously turned into dark reddish-brown. After stirring at room temperature for 5 min, the reaction mixture was filtered. Recrystallisation from the filtrate by vapour diffusion of Et₂O as poor solvent at -30 °C afforded complex **1** as black crystals (1.80 mg, 1.07 µmol, 89%). ¹H NMR (CD₂Cl₂): δ 5.33–5.45 (br m, 2H, CH), 4.92–5.15 (br m, 4H, CH), 3.62–3.83 (br m, 2H, CH), 2.78–3.00 (br m, 2H, CH₂), 2.61–2.74 (br m, 2H, CH₂), 2.48–2.61 (br m, 2H, CH₂), 2.33–2.48 (br m, 4H, CH₂), 2.01–2.33 (br m, 4H, CH₂), 1.66–1.76 (br m, 2H, CH₂); ⁷Li NMR (CD₂Cl₂): δ –11.0 (br s, $\Delta \nu_{1/2}$ = 14 Hz); HRMS (ESI, positive) *m*/*z* calcd. for [¹²C₇₆⁻¹H₂₄⁷Li³⁵Cl₂¹⁹³Ir₂]⁺ ([M]⁺): 1399.0667, found: 1399.0682; UV/Vis (CH₂Cl₂, 1.0 × 10⁻⁴ M, 1 mm quartz cell) λ_{max} / nm (ε / M⁻¹ cm⁻¹): 327 (4.4 × 10⁴), 416 (9.8 × 10³), 530 (3.5 × 10³).

1-3. Synthesis of $[{\mu-\eta^2:\eta^2-(Li^+@C_{60})}]$ $[Ir_2Br_2(cod)_2]$ (NTf_2^-) (2)

In a procedure similar to that for complex **1**, the title compound was synthesised using $[Li^+@C_{60}](NTf_2^-)$ (1.42 mg, 1.41 µmol) and $Ir_2Br_2(cod)_2$ (1.07 mg, 1.41 µmol, 1.0 equiv.) in TCE. Filtration of the resulting dark reddish-brown reaction mixture, followed by recrystallisation and vapour diffusion of Et₂O at -30 °C afforded complex **2** as black crystals (2.14 mg, 1.21 µmol, 86%). ¹H NMR (CD₂Cl₂): δ 5.16–5.30 (br m, 4H, CH), 5.04–5.16 (br m, 2H, CH), 3.57–3.84 (br m, 2H, CH), 2.86–3.07 (br m, 2H, CH₂), 2.67–2.86 (br m, 2H, CH₂), 2.42–2.67 (br m, 4H, CH₂), 2.26–2.42 (br m, 4H, CH₂), 2.11–2.26 (br m, 2H, CH₂), 1.45–1.65 (br m, 2H, CH₂); ⁷Li NMR (CD₂Cl₂): δ -11.0 (br s, $\Delta v_{1/2} = 26$ Hz); HRMS (ESI, positive) m/z calcd. for $[^{12}C_{76}{}^{1}H_{24}{}^{7}Li{}^{79}Br_{2}{}^{193}Ir_{2}]^{+}$ ([M]⁺): 1488.9642, found: 1488.9639; UV/Vis (CH₂Cl₂, 1.0 × 10⁻⁴ M, 1 mm quartz cell) $\lambda_{max} / nm (\varepsilon / M^{-1} cm^{-1})$: 327 (4.2 × 10⁴), 420 (1.2 × 10⁴), 538 (5.1 × 10³).

1-4. Synthesis of $[{\mu-\eta^2:\eta^2-(Li^+@C_{60})}{Ir_2I_2(cod)_2}](NTf_2^-)$ (3)

In a procedure similar to that for complex **1**, the title compound was synthesised using $[Li^+@C_{60}](NTf_2^-)$ (2.00 mg, 1.98 µmol) and $Ir_2I_2(cod)_2$ (1.71 mg, 2.00 µmol , 1.0 equiv.) in TCE. The dark reddish-brown reaction mixture was worked up similarly to give complex **3** as black crystals (3.34 mg, 1.79 µmol, 90%). ¹H NMR (CD₂Cl₂): δ 5.30–5.60 (br m, 2H, CH), 5.20–5.30 (br m, 2H, CH), 4.96–5.20 (br m, 2H, CH), 3.39–3.80 (br m, 2H, CH), 2.75–3.27 (br m, 4H, CH₂), 2.36–2.75 (br m, 6H, CH₂), 2.15–2.36 (br m, 2H, CH₂), 1.84–2.15 (br m, 2H, CH₂), 1.18–1.63 (br m, 2H, CH₂); ⁷Li NMR (CD₂Cl₂): δ –11.0 (br s, $\Delta v_{1/2} = 32$ Hz); HRMS (ESI, positive) *m/z* calcd. for $[^{12}C_{76}{}^{1}H_{25}{}^{16}O^{7}Li^{127}I^{193}Ir_2]^{+}$ ([M – ¹²⁷I + ¹H + ¹⁶O]⁺): 1473.0377, found: 1473.0373; *m/z* calcd. for $[^{12}C_{76}{}^{1}H_{24}{}^{7}Li^{35}Cl^{127}I^{193}Ir_2]^{+}$ ([M – ¹²⁷I + ³⁵Cl]⁺): 1491.0033, found: 1491.0024;* UV/Vis (CH₂Cl₂, 1.0 × 10⁻⁴ M, 1 mm quartz cell) λ_{max} / nm (ε / M⁻¹ cm⁻¹): 328 (5.1 × 10⁴), 415 (1.5 × 10⁴), 550 (6.9 × 10³).

*Note: In the mass spectrum of complex **3**, the molecular ion peak of the cation part of **3** was not detected. Instead, the peaks of cations, in which one iodido ligand was replaced with OH or Cl, were observed (Figs. S30 and S31), possibly as a result of facile hydrolysis with H_2O or the reaction with CHCl₃ used as a washing solvent during the measurement. These data support the core structure of **3** and thus are indicated here.

1-5. Measurements of VT ¹³C{¹H} and low temperature 2D NMR spectra of 1

In a glove box, complex **1** (5.23 mg, 3.11 μ mol) was placed in a Pyrex NMR tube (5 mm o.d.) fitted with a ground-glass joint, and then CD₂Cl₂ (0.4 mL) was added and mixed to form a dark reddish-brown solution. The NMR tube was equipped with a Teflon valve and connected to a vacuum line. After the solution was degassed by a freeze-pump-thaw cycle, the NMR tube was sealed under reduced pressure using a gas burner. The ¹³C{¹H} NMR spectra of the sample were collected at 300 and 200 K. The ¹H–¹H COSY and ¹H–¹³C HSQC spectra were measured at 200 K.

¹³C{¹H} NMR (CD₂Cl₂, 300 K): δ 140–150 (br m, C₆₀), 120.3 (q, ¹*J*_{CF} = 319.2 Hz, CF₃ of NTf₂⁻), 90.5 (s, CH of cod), 89.3 (s, CH of cod), 80.0 (s, CH of cod), 75.3 (s, CH of cod), 39.9 (s, CH₂ of cod), 37.8 (s, CH₂ of cod), 28.1 (s, CH₂ of cod), 25.4 (s, CH₂ of cod).

¹³C{¹H} NMR (CD₂Cl₂, 200 K): δ 152.0 (s, C₆₀), 149.0 (s, C₆₀), 148.1 (s, C₆₀), 146.4 (s, C₆₀), 145.5 (s, C₆₀), 145.4 (s, C₆₀), 145.1 (s, C₆₀), 145.0 (s, C₆₀), 144.7 (s, C₆₀), 144.5 (s, C₆₀), 144.22 (s, C₆₀), 144.17 (s, C₆₀), 144.0 (s, C₆₀), 143.7 (s, C₆₀), 143.4 (s, C₆₀), 143.3 (s, C₆₀), 143.2 (s, C₆₀), 142.7 (s, C₆₀), 142.6 (s, C₆₀), 142.4 (s, C₆₀), 142.2 (s, C₆₀), 141.3 (s, C₆₀), 141.0 (s, C₆₀), 140.9 (s, C₆₀), 140.4 (s, C₆₀), 139.7 (s, C₆₀), 137.2 (s, C₆₀), 135.5 (s, C₆₀), 118.9 (q, ¹*J*_{CF} = 318.5 Hz, CF₃ of NTf₂⁻), 89.9 (s, CH of cod), 88.7 (s, CH of cod), 83.3 (s, Ir–C of C₆₀), 78.6 (s, CH of cod), 74.3 (s, CH of cod), 57.5 (s, Ir–C of C₆₀), 39.2 (s, CH₂ of cod), 37.1 (s, CH₂ of cod), 26.8 (s, CH₂ of cod), 24.3 (s, CH₂ of cod).

2. X-ray crystal structure analysis

General procedures. Single crystals of $1 \cdot C_2H_2Cl_4$, $2 \cdot C_2H_2Cl_4$ and $3 \cdot C_2H_2Cl_4$ suitable for Xray diffraction were obtained by vapour diffusion of Et₂O into a TCE solution of complexes 1–3 at $-30 \,^{\circ}$ C in a week. X-ray diffraction data were collected on a Rigaku XtaLAB mini II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073 \,^{\circ}$ Å) under cold nitrogen stream (T = 150K). Single crystals suitable for diffraction measurements were coated with liquid paraffin and were mounted on a polyimide loop. Empirical absorption correction using the multiscan method was applied to the data. The structures were solved by dual space methods using SHELXT^{S4} and refined by full-matrix least-squares technique on F^2 with SHELXL^{S5} using Olex2 1.5 software^{S6} (OlexSys Ltd, 2018) or Yadokari-XG 2009 software^{S7,S8} as graphical user interfaces. Except disordered atoms described below, all hydrogen atoms were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters. All nonhydrogen atoms were refined anisotropically. CCDC reference numbers: 2389980 (for $1 \cdot C_2H_2Cl_4$), 2389981 (for $2 \cdot C_2H_2Cl_4$) and 2389982 (for $3 \cdot C_2H_2Cl_4$). Crystallographic data are available as a CIF file.

2-1. Refinement details on the crystal structure analysis

1·**C**₂**H**₂**Cl**₄: The crystal contains three kinds of disordered moieties, i.e., the Li⁺ centre, the counter anion (NTf₂[−]) and the crystal solvent (C₂H₂Cl₄). The lithium atom was disordered in two positions (53% and 47% occupancy) and was refined with anisotropic temperature factors suppressed using SIMU and ISOR commands of the SHELXL program. All atoms of the counter anion (NTf₂[−]) were disordered in three positions (41%, 38% and 21% occupancy).^{*1} The crystal solvent (C₂H₂Cl₄) was also disordered in three positions (44%, 30% and 26% occupancy).^{*1} For the disordered NTf₂[−] and C₂H₂Cl₄, their geometrical positions were suppressed using DFIX and DANG commands and refined anisotropically. The temperature factors of these atoms were treated with the RIGU and SIMU commands or constrained using the EADP command. In some cases, the ISOR command was also used for restraint of the temperature factors. The final *R*-factors were *R*1 = 0.0274 and *wR*2 = 0.0655 for 12686 reflections with *I* ≥ *σ*(*I*).

[Note *1] We also examined the analysis using a two-component model, but the three-component model gave us better results that were reported here.

2•**C**₂**H**₂**Cl**₄: The crystal contains three kinds of disordered moieties, i.e., the Li⁺ centre, the counter anion (NTf₂⁻) and crystal solvent (C₂H₂Cl₄). The lithium atom was disordered in two positions (60% and 40% occupancy) and was refined with anisotropic temperature factors suppressed using SIMU and ISOR commands of the SHELXL program. All atoms of the counter anion (NTf₂⁻) were disordered in three positions (45%, 29% and 26% occupancy).^{*1} The crystal solvent (C₂H₂Cl₄) was also disordered in three positions (53%, 28% and 19% occupancy).^{*1} For the disordered NTf₂⁻ and C₂H₂Cl₄, their geometrical positions were suppressed using DFIX and DANG commands and refined anisotropically. The temperature factors of these atoms were treated with the RIGU and SIMU commands or constrained using the EADP command. In some cases, the ISOR command was also used for restraint of the temperature factors. The final *R*-factors were *R*1 = 0.0323 and *wR*2 = 0.0713 for 12758 reflections with *I* > 2 $\sigma(I)$.

[Note *1] We also examined the analysis using a two-component model, but the three-component model gave us better results that were reported here.

3•C₂H₂Cl₄: The crystal contains three kinds of disordered moieties, i.e., the Li⁺ centre, the counter anion (NTf₂⁻) and crystal solvent (C₂H₂Cl₄). The lithium atom was disordered in two positions (60% and 40% occupancy) and was refined with anisotropic temperature factors suppressed using SIMU and ISOR commands of the SHELXL program. All atoms of the counter anion (NTf₂⁻) were also disordered in two positions (68% and 32% occupancy).^{*2} The crystal solvent (C₂H₂Cl₄) was disordered in two positions (68% and 32% occupancy).^{*2} For the disordered NTf₂⁻ and C₂H₂Cl₄, their geometrical positions were suppressed using DFIX and DANG commands and refined anisotropically. The temperature factors of these atoms were treated with the RIGU and SIMU commands or constrained using the EADP command. In some cases, the ISOR command was also used for restraint of the temperature factors. The final *R*-factors were *R*1 = 0.0432 and *wR*2 = 0.1148 for 10156 reflections with *I* > 2 $\sigma(I)$.^{*3}

[Note *2] For $3 \cdot C_2 H_2 Cl_4$, the analysis of the disordering moieties (the counter anion and crystal solvents) using a three-component model did not give better results than that using the two-component model, which was reported here.

[Note *3] In the checkCIF report, the following level A alerts remain.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.79Ang From I1 -3.85 e A⁻³ PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.76Ang From I1 -3.57 e A⁻³

We tried to improve them using numerical and empirical absorption correction methods and also reanalysis by omitting very weak reflections, but all these efforts resulted in failure. Nevertheless, we believe that the core structure of **3** is confirmed by the present analysis.

Compound	$1 \cdot C_2 H_2 Cl_4$	$2 \cdot C_2 H_2 Cl_4$	$3 \cdot C_2 H_2 Cl_4$
Empirical formula	$C_{80}H_{26}LiNO_4F_6S_2Cl_6Ir_2$	$C_{80}H_{26}LiNO_4F_6S_2Cl_4Br_2Ir_2$	$C_{80}H_{26}LiNO_4F_6S_2Cl_4I_2Ir_2$
Formula weight	1847.18	1936.10	2030.08
Temperature / K	150(2)	150(2)	150(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)
<i>a</i> / Å	13.6564(2)	13.6166(2)	13.6521(3)
b / Å	14.5752(4)	14.6678(3)	14.7289(3)
<i>c</i> / Å	15.8044(4)	15.8666(3)	16.0559(3)
lpha / °	115.334(3)	115.5674(19)	115.704(2)
eta / °	98.0777(16)	97.7068(14)	97.1726(18)
γ/°	92.7062(16)	93.1991(13)	93.7882(18)
V / Å ³	2794.71(13)	2809.83(10)	2860.07(11)
Ζ	2	2	2
$ ho_{ m calcd}$ / g·cm ⁻³	2.195	2.288	2.357
μ / mm ⁻¹	5.205	6.504	6.072
<i>F</i> (000)	1780	1852	1924
Crystal size / mm ³	$0.25 \times 0.13 \times 0.10$	$0.14 \times 0.13 \times 0.05$	$0.15 \times 0.12 \times 0.05$
2θ range / °	4.080 to 54.966	4.060 to 54.968	4.316 to 50.246
Reflections collected	50708	53901	38933
Independent reflections	12686	12758	10156
$R_{ m int}$	0.0245	0.0380	0.0397
Refined parameters	1163	1127	1023
R1, $wR2$ [all data] ^{a,b}	0.0349, 0.0684	0.0484, 0.0761	0.0537, 0.1209
$R1, wR2 [I > 2\sigma(I)]^{a,b}$	0.0274, 0.0655	0.0323, 0.0713	0.0432, 0.1148
GOF	1.031	1.025	1.035
Largest residual peak, hole / $e \cdot Å^{-3}$	3.04 / -1.62	1.39 / -0.76	2.45 / -3.93

 Table S1 Crystallographic data

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR2 = \{\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]\}^{1/2}$

2-2. Crystal structures and selected bond distances and angles

Fig. S1 Molecular structure of **1** with thermal ellipsoids at the 50% probability level. The crystalline solvent $C_2H_2Cl_4$ is omitted. For the disordered counter anion NTf_2^- , only one fragment with the higher occupancy (41%) is shown for clarity. Selected interatomic distances (Å) and angles (°): Ir1–C1 2.170(4), Ir1–C2 2.162(4), Ir2–C3 2.169(4), Ir2–C4 2.170(4), Ir1–C11 2.4025(9), Ir1–C12 2.5395(9), Ir2–C12 2.5471(10), C1–C2 1.488(5), C2–C3 1.531(5), C3–C4 1.499(5), C4–C5 1.497(5), C5–C6 1.385(5), C6–C1 1.499(5), Li_A–C1 2.69(7), Li_B–C1 2.34(4), Li_A–C2 2.46(6), Li_B–C2 2.22(4), Li_A–C3 2.22(3), Li_B–C3 2.33(6), Li_A–C4 2.25(3), Li_B–C4 2.56(7), Li_A–C5 2.34(3), Li_B–C5 2.50(5), Li_A–C6 2.55(5), Li_B–C6 2.40(4), Ir1–C11–Ir2 92.12(3), Ir1–C12–Ir2 85.56(3), C11–Ir1–Cl2 78.30(3), C11–Ir2–Cl2 78.27(3).

Fig. S2 Molecular structure of **2** with thermal ellipsoids at the 50% probability level. The crystalline solvent $C_2H_2Cl_4$ is omitted. For the disordered counter anion NTf_2^- , only one fragment with the higher occupancy (45%) is shown for clarity. Selected interatomic distances (Å) and angles (°): Ir1–C1 2.177(4), Ir1–C2 2.164(4), Ir2–C3 2.166(4), Ir2–C4 2.169(4), Ir1–Br1 2.5269(5), Ir1–Br2 2.6428(5), Ir2–Br1 2.5255(5), Ir2–Br2 2.6489(5), C1–C2 1.494(6), C2–C3 1.542(6), C3–C4 1.489(6), C4–C5 1.510(6), C5–C6 1.372(7), C6–C1 1.502(7), Li_A–C1 2.38(4), Li_B–C1 2.81(9), Li_A–C2 2.26(3), Li_B–C2 2.52(8), Li_A–C3 2.32(4), Li_B–C3 2.23(5), Li_A–C4 2.51(5), Li_B–C4 2.28(5), Li_A–C5 2.45(4), Li_B–C5 2.45(5), Li_A–C6 2.40(3), Li_B–C6 2.68(8), Ir1–Br1–Ir2 89.012(17), Ir1–Br2–Ir2 84.023(15), Br1–Ir1–Br2 79.330(16), Br1–Ir2–Br2 79.237(17).

Fig. S3 Molecular structure of **3** with thermal ellipsoids at the 50% probability level. The crystalline solvent C₂H₂Cl₄ is omitted for clarity. For the disordered counter anion NTf₂⁻, only one fragment with the higher occupancy (68%) is shown for clarity. Selected interatomic distances (Å) and angles (°): Ir1–C1 2.187(8), Ir1–C2 2.184(8), Ir2–C3 2.175(8), Ir2–C4 2.185(8), Ir1–I1 2.6877(8), Ir1–I2 2.7611(6), Ir2–I1 2.6747(7), Ir2–I2 2.7740(6), C1–C2 1.497(11), C2–C3 1.535(11), C3–C4 1.502(11), C4–C5 1.501(11), C5–C6 1.387(11), C6–C1 1.506(11), Li_A–C1 2.38(5), Li_B–C1 2.81(9), Li_A–C2 2.24(5), Li_B–C2 2.57(8), Li_A–C3 2.29(5), Li_B–C3 2.25(7), Li_A–C4 2.47(6), Li_B–C4 2.20(7), Li_A–C5 2.45(5), Li_B–C5 2.32(8), Li_A–C6 2.40(4), Li_B–C6 2.60(9), Ir1–I1–Ir2 85.68(2), Ir1–I2–Ir2 82.402(17), I1–Ir1–I2 80.27(2), I1–Ir2–I2 80.26(2).

		Br Br Br-Br-Ir	
	Lit		
	1	2	3
Ir1–C1	2.170(4)	2.177(4)	2.187(8)
Ir1–C2	2.162(4)	2.164(4)	2.184(8)
Ir2–C3	2.169(4)	2.166(4)	2.175(8)
Ir2–C4	2.170(4)	2.169(4)	2.185(8)
Ir1–X1	2.4025(9)	2.5269(5)	2.6877(8)
Ir1–X2	2.5395(9)	2.6428(5)	2.7611(6)
Ir2–X1	2.3955(9)	2.5255(5)	2.6747(7)
Ir2–X2	2.5471(10)	2.6489(5)	2.7740(6)
C1–C2	1.488(5)	1.494(6)	1.497(11)
C2–C3	1.531(5)	1.542(6)	1.535(11)
C3–C4	1.499(5)	1.489(6)	1.502(11)
C4–C5	1.497(5)	1.510(6)	1.501(11)
C5–C6	1.385(5)	1.372(7)	1.387(11)
C6C1	1.499(5)	1.502(7)	1.506(11)
Li _A /Li _B -C1	2.69(7)/2.34(4)	2.38(4)/2.81(9)	2.38(5)/2.81(9)
Li _A /Li _B -C2	2.46(6)/2.22(4)	2.26(3)/2.52(8)	2.24(5)/2.57(8)
Li _A /Li _B -C3	2.22(3)/2.33(6)	2.32(4)/2.23(5)	2.29(5)/2.25(7)
Li _A /Li _B -C4	2.25(3)/2.56(7)	2.51(5)/2.28(5)	2.47(6)/2.20(7)
Li _A /Li _B -C5	2.34(3)/2.50(5)	2.45(4)/2.45(5)	2.45(5)/2.32(8)
Li _A /Li _B -C6	2.55(5)/2.40(4)	2.40(3)/2.68(8)	2.40(4)/2.60(9)
Ir1–X1–Ir2	92.12(3)	89.012(17)	85.68(2)
Ir1-X2-Ir2	85.56(3)	84.023(15)	82.402(17)
X1–Ir1–X2	78.30(3)	79.330(16)	80.27(2)
X1–Ir2–X2	78.27(3)	79.237(17)	80.26(2)

Table S2 Selected bond distances (Å) and angles (°) for 1-3

3. NMR spectra and high-resolution mass spectrometry

Fig. S4 ¹H NMR spectrum of Ir₂Br₂(cod)₂ (CDCl₃, 400 MHz, r.t.).

Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of Ir₂Br₂(cod)₂ (CDCl₃, 101 MHz, r.t.).

Fig. S6 ¹H NMR spectrum of $[\{\mu-\eta^2:\eta^2-(Li^+@C_{60})\}\{Ir_2Cl_2(cod)_2\}]$ (1) (CD₂Cl₂, 400 MHz, r.t.).

Fig. S7 ⁷Li NMR spectrum of 1 (CD₂Cl₂, 156 MHz, r.t.).

Fig. S9 ¹³C{¹H} NMR spectrum of **1** (CD₂Cl₂, 101 MHz, 200 K).

150

Fig. S10 $^{1}H-^{1}H$ COSY spectrum of 1 in CD₂Cl₂ (200 K).

Fig. S11 $^{1}H-^{13}C$ HSQC spectrum of 1 in CD₂Cl₂ (200 K).

Fig. S12 HRMS (ESI) spectrum of 1 (upper) and the calculated distribution pattern of the cationic part [C₇₆H₂₄LiCl₂Ir₂]⁺ (lower).

Fig. S13 ¹H NMR spectrum of [$\{\mu-\eta^2:\eta^2-(Li^+@C_{60})\}$ {Ir₂Br₂(cod)₂}] (2) (CD₂Cl₂, 400 MHz, r.t.).

Fig. S15 HRMS (ESI) spectrum of 2 (upper) and the calculated distribution pattern of the cationic part [C₇₆H₂₄LiBr₂Ir₂]⁺ (lower).

 $\label{eq:Fig. S16 } \mbox{{\bf H} NMR spectrum of } [\{\mu - \eta^2 : \eta^2 - (Li^+ @C_{60})\} \{Ir_2 I_2 (cod)_2\}] \mbox{{\bf (3)} (CD_2 Cl_2, 400 \mbox{ MHz}, r.t.).}$

Fig. S18 HRMS (ESI) spectrum obtained from a solution of 3 (upper) and the calculated distribution pattern of the cation $[(Li^+@C_{60}){Ir_2I(OH)(cod)_2}]^+ ([C_{76}H_{25}LiIOIr_2]^+)$ (lower).

Fig. S19 HRMS (ESI) spectrum obtained from a solution of 3 (upper) and the calculated distribution pattern of the cation $[(Li^+@C_{60}){Ir_2ICl(cod)_2}]^+ ([C_{76}H_{24}LiIClIr_2]^+) (lower).$

4. UV/Vis spectra of complexes 1–3

Fig. S20 UV/Vis absorption spectra of complexes 1–3 in CH₂Cl₂ at room temperature $(1.0 \times 10^{-4} \text{ M}, 1 \text{ mm quartz cell})$. The corresponding spectrum of $[\text{Li}^+@\text{C}_{60}](\text{PF}_6^-)^{\text{S9}}$ in *o*-DCB is also shown as a reference.

5. Electrochemistry of complexes 1–3 and Ir₂X₂(cod)₂

Fig. S21 Cyclic and differential pulse voltammograms (CV and DPV) of complexes (a) 1, (b) 2 and (c) 3 in *o*-DCB with 200 mM (for 1) or 100 mM (for 2 and 3) [ⁿBu₄N⁺](NTf₂⁻) as the electrolyte at the scan rate of 50 mV·s⁻¹ (oxidation side, *: waves of free Li⁺@C₆₀ formed from 1–3 in the measurements). Plus signs (+) indicate half-wave potentials. All potentials are referenced against the ferrocene/ferrocenium (Fc/Fc⁺) couple.

Fig. S22 CV and DPV of complexes (a) 1, (b) 2 and (c) 3 in *o*-DCB with 200 mM (for 1) or 100 mM (for 2 and 3) [${}^{n}Bu_{4}N^{+}$](NTf₂⁻) as the electrolyte at the scan rate of 50 mV·s⁻¹ (reduction side, *: waves of free Li⁺@C₆₀ formed from 1–3 in the measurements). Plus signs (+) indicate half-wave potentials. All potentials are referenced against the ferrocene/ferrocenium (Fc/Fc⁺) couple. CV of [Li⁺@C₆₀](PF₆⁻)^{S9} is shown at the bottom for a reference.

(observeu a	is shoulder	peaks).					
	E_{-5}	E_{-4}	E_{-3}	E_{-2}	E_{-1}	$E_{\pm 1}$	E_{+2}	E_{+3}
1	-1.93*	-1.72*	-1.11*	-0.70	-0.55	+1.00	_	_
2	-2.26*	-1.95*	-1.15*	-0.67*	-0.59	+0.84	_	-
3	-1.99	-1.49*	-1.19	-0.77	-0.62*	+0.86	_	_
$Li^{+}@C_{60}^{S9}$	-2.32	-1.79	-1.41	-0.95	-0.38	_	_	-
$Ir_2Cl_2(cod)_2$	_	_	-2.07	-1.60	-1.20	-0.02	+0.26	+0.70
$Ir_2Br_2(cod)_2$	_	-2.48	-2.36	-1.30	-1.08	+0.03	+0.28	+0.74
$Ir_2I_2(cod)_2$	_	-2.28	-1.65	-1.36	-0.93	+0.10	+0.45	+0.64

Table S3 The oxidation and reduction potentials of complexes 1–3, $[Li^+@C_{60}](PF_6^-)^{S9}$ and $Ir_2X_2(cod)_2$ (X = Cl, Br and I). All potentials were determined by the measurement of DPV (*: observed as shoulder peaks)

6. DFT calculations

Theoretical calculations were carried out for the cationic parts of 1-3 using the Gaussian 16 rev C.02 program package.^{S10} All geometries were optimised by the DFT method at the B3PW91^{S11-S13} level. Initial structures for optimisation were taken from the XRD structures. The 6-31G(d)^{S14-S16} basis set was employed for H, Li, C, Cl and Br atoms, and Lanl2DZ^{S17} basis set for Ir and I atoms. Natural bond orbital (NBO) population analysis was carried out to calculate Wiberg bond indices^{S18} (WBI) and Natural population analysis (NPA) charges^{S19} using the NBO 7.0 program^{S20} at the B3PW91 level: The 6-311+G(d,p)^{S14-S16,S21} basis set was used for H, Li, C, Cl and Br atoms, and the SDD^{S21} basis set for Ir and I atoms using Grimme's D3 dispersion force model^{S23} for empirical dispersion force correction in the gas phase. For the calculations of single-point energy and NMR spectra and chemical shift values using the GIAO method,^{S24} the same functional and basis set for the NBO analysis were used. The ¹H and ¹³C chemical shifts are referenced to SiMe₄, where shielding tensors were calculated at the B3PW91-D3/6-311+G(d,p) level of theory. TD-DFT calculations were performed at the B3PW91 level: The 6-31+G(d,p) basis set was used for H, Li, C, Cl and Br atoms, and the def2-TZVP^{\$25,\$26} basis set for Ir and I atoms. For the NMR and TD-DFT calculations, the solvent effect of CH₂Cl₂ was considered using the SMD model.^{S27} Optimised structures, **1-opt**, **2-opt** and 3-opt are illustrated in Figs. S23, S24 and S25, respectively.

6-1. Optimised structures of the cation parts of complexes 1–3: 1-opt, 2-opt and 3-opt

Fig. S23 Optimised structure of 1-opt.

Table S4 Selected bond distances (Å) and angles (°) of 1-opt and the crystal structure of 1

	X-ray	Calcd.		X-ray	Calcd.
Ir1-Cl1	2.4025(9)	2.451	Li _A /Li _B -C1	2.69(7)/2.34(4)	2.398
Ir1-Cl2	2.5395(9)	2.592	Li _A /Li _B -C2	2.46(6)/2.22(4)	2.238
Ir2-Cl1	2.3955(9)	2.451	Li _A /Li _B -C3	2.22(3)/2.33(6)	2.238
Ir2-Cl2	2.5471(10)	2.592	Li _A /Li _B -C4	2.25(3)/2.56(7)	2.398
Ir1–C1	2.170(4)	2.191	Li _A /Li _B -C5	2.34(3)/2.50(5)	2.391
Ir1–C2	2.162(4)	2.176	Li _A /Li _B -C6	2.55(5)/2.40(4)	2.391
Ir2–C3	2.169(4)	2.176	Ir1-Cl1-Ir2	92.12(3)	91.91
Ir2–C4	2.170(4)	2.191	Ir1-Cl2-Ir2	85.56(3)	85.65
C1-C2	1.488(5)	1.499	Cl1-Ir1-Cl2	78.30(3)	78.37
C2–C3	1.531(5)	1.538	Cl1–Ir2–Cl2	78.27(3)	78.37
C3–C4	1.499(5)	1.499			
C4–C5	1.497(5)	1.502			
C5–C6	1.385(5)	1.391			
C6-C1	1.499(5)	1.502			

	1		1		
Symbol	x	у	Z	С	1.6526681
Ir	0.0142761	-0.0376930	-0.0380126	С	1.4276703
Ir	0.0216277	-0.0349871	3.4854998	С	1.6477771
Li	-1.0578226	-3.7108068	1.7287602	С	0.8417710
Cl	1.7218629	-0.0364009	1.7201597	С	-0.2171699
Cl	-1.0519003	1.5347145	1.7247590	С	-1.3456651
C	0.0378220	-2.2141348	0.2096216	Č	-2.6450884
Č	-1 1117638	-1.6105280	0.9584572	Č	-36301947
C	-1.1085637	-1.6093527	2 4961011	C	-4 4690067
C	0.0441261	-2.2118201	3 2410653	C	-4 9263316
C	1 0881580	-2.0126611	2 /101827	C C	-4 9233038
C	1.0852570	-2.9120011	1.0222275	C C	-4 4630042
C	1.0652570	2.9137269	-1.0202373	C C	-2.6104210
C	1.0490903	0.5221707	-1.4120094	C C	-2 6242056
C	1.1201930	1.5095/54	-0.9622585	C C	-2.0343030
C	0.2608515	2.4948355	-1.814/824	C	-1.3330/30
C	-1.2408806	2.2358681	-1.6086698	C	-0.20/59/1
C	-1.5510106	0.7902391	-1.2940620	C	-0.4297293
С	-0.9939272	-0.3156708	-1.9698289	C	0.4040435
С	-0.0725385	-0.2232628	-3.1768656	C	-0.4346071
С	1.4061829	-0.2796232	-2.7766891	С	-1.7863613
С	1.1314970	1.5736731	4.4026062	С	-2.8698646
С	1.6623129	0.3269466	4.8528365	С	-3.9961918
С	1.4251802	-0.2729577	6.2184928	С	-3.9932851
С	-0.0517602	-0.2156887	6.6249827	С	-2.8639542
С	-0.9783037	-0.3100013	5.4220586	С	-1.7833493
С	-1.5382810	0.7948401	4.7469365	Н	2.5728980
С	-1.2268375	2.2409619	5.0579705	Н	1.6833343
Ċ	0.2757571	2.5002778	5.2572957	Н	0.4839579
Č	-0.2593050	-31884889	-0.8715289	Н	0.5389290
C	-15553270	-34642992	-1.2855325	Н	-1.6046218
C	-2 6866154	-29007422	-0 5507956	н	-1.8253149
C	-2 / 599712	-2.0010566	0.5507750	н	-2 4969627
C	-3 2803352	-2.0710300	1 7323131	н	-15797948
C	-2.4551032	-2.0802658	2 8004201	п Ц	-0.3026581
C	2.4331032	-2.0092030	2.0994291		-0.3020381
C	-2.0//1230	-2.6972341	4.0150604	П	0.2974394
C	-1.542/839	-3.4596/20	4./44/0/1	П	2.0390390
C	-0.2484976	-3.1845120	4.3249378	Н	1./335599
C	0.7144369	-4.256/935	4.3029154	H	1.6912474
С	1.5386006	-4.0901569	3.1260586	H	2.5840677
С	2.0070568	-5.2145950	2.4428933	H	1.7520779
С	2.0040530	-5.2156972	1.0042373	Н	2.0620542
С	1.5327555	-4.0923079	0.3213064	Н	-0.2741183
С	0.7037137	-4.2607409	-0.8518631	Н	-0.2790701
С	0.3650427	-5.5421522	-1.2927473	Н	-1.5643302
С	-0.9795826	-5.8121850	-1.7433898	Н	-2.4864380
С	-1.9256751	-4.7862022	-1.7311370	Н	-1.5941267
С	-3.2765499	-5.0494457	-1.2813751	Н	-1.8075226
С	-3.7429260	-3.8861910	-0.5522438	Н	0.4976828
С	-4.5578825	-4.0459834	0.5675879	Н	0.5583178
С	-4.3187130	-3.2327450	1.7351936		
Ċ	-4 5530093	-4 0441946	2,9050256		
č	-3.7333953	-3.8826908	4.0212036		
Č	-3 2639968	-5 0448251	4 7501765		
Č	-1 9112697	-4 7808001	5 1939205		
	-0.0651257	-5 8060221	5.1757205		
	0.3031337	-5 5275077	J.2037904 17171520		
C	0.3770023	5.5515211	4.14/1339		
U	0.8513294	-0.7032120	4.0255143		

Table S5 Optimised atomic coordinates of 1-opt

С	1.6526681	-6.5446585	2.8974329
С	1.4276703	-7.3684043	1.7264112
С	1.6477771	-6.5464463	0.5532098
С	0.8417710	-6.7067309	-0.5712977
С	-0.2171699	-7.6938025	-0.5717803
С	-1.3456651	-7.1386916	-1.2958226
C	-2.6450884	-7.3908210	-0.8583601
C	-3.6301947	-6.3266772	-0.8540160
Č	-4.4690067	-6.4931286	0.3182602
Č	-4.9263316	-5.3743776	1.0132452
Č	-4.9233038	-5.3732645	2.4629389
Č	-4.4630942	-6.4909475	3.1577268
Č	-3.6194219	-6.3227102	4.3262569
Č	-2.6343056	-7 3868515	4 3281271
Č	-1.3330736	-7.1340545	4.7597837
Č	-0.2075971	-7.6902749	4.0319075
Č	-0.4297293	-8.4777364	2.9035965
Č	0.4040435	-8.3149674	1.7292627
Č	-0.4346071	-8 4795240	0 5586568
C	-1.7863613	-87430917	1 0096701
Č	-2.8698646	-8.2091664	0.3146093
Č	-3.9961918	-7.6540158	1.0407332
Č	-3.9932851	-7.6529405	2.4350753
Č	-2.8639542	-8.2069952	3.1573629
Č	-1.7833493	-8.7419906	2.4586163
Ĥ	2.5728980	-0.0087184	-0.9370655
Н	1.6833343	2.0633448	-0.1717560
Н	0.4839579	3.5309940	-1.5426402
Н	0.5389290	2.3979650	-2.8695234
Н	-1.6046218	2.8454444	-0.7759306
Н	-1.8253149	2.5392065	-2.4906892
Н	-2.4969627	0.6233216	-0.7788542
Н	-1.5797948	-1.2250675	-1.9184969
Н	-0.3026581	-1.0522301	-3.8542549
Н	-0.2974394	0.6915360	-3.7339784
Н	2.0396590	0.2174828	-3.5261802
Н	1.7335599	-1.3246216	-2.7451869
Н	1.6912474	2.0661971	3.6089251
Н	2.5840677	-0.0046634	4.3735638
Н	1.7520779	-1.3180992	6.1868647
Н	2.0620542	0.2249137	6.9645871
Н	-0.2741183	0.7000765	7.1815226
Н	-0.2790701	-1.0434895	7.3047443
Н	-1.5643302	-1.2195068	5.3746249
Н	-2.4864380	0.6271143	4.2360653
Н	-1.5941267	2.8492286	4.2258292
Н	-1.8075226	2.5456771	5.9419887
Н	0.4976828	3.5360005	4.9825421
Н	0.5583178	2.4051080	6.3109999

Fig. S24 Optimised structure of 2-opt.

Fable S6 Selected bond distances ((Å) and angles (°)	of 2-opt and the cryst	al structure of 2
---	--------------------	-------------------------------	-------------------

	X-ray	Calcd.		X-ray	Calcd.
Ir1–Br1	2.5269(5)	2.545	Li _A /Li _B -C1	2.38(4)/2.81(9)	2.395
Ir1–Br2	2.6428(5)	2.674	Li _A /Li _B -C2	2.26(3)/2.52(8)	2.244
Ir2–Br1	2.5255(5)	2.545	Li_A/Li_B-C3	2.32(4)/2.23(5)	2.244
Ir2–Br2	2.6489(5)	2.674	Li _A /Li _B -C4	2.51(5)/2.28(5)	2.395
Ir1–C1	2.177(4)	2.200	Li _A /Li _B -C5	2.45(4)/2.45(5)	2.387
Ir1–C2	2.164(4)	2.178	Li _A /Li _B -C6	2.40(3)/2.68(8)	2.388
Ir2–C3	2.166(4)	2.178	Ir1-Br1-Ir2	89.012(17)	89.89
Ir2–C4	2.169(4)	2.200	Ir1-Br2-Ir2	84.023(15)	84.49
C1-C2	1.494(6)	1.500	Br1-Ir1-Br2	79.330(16)	79.37
C2–C3	1.542(6)	1.543	Br1-Ir2-Br2	79.237(17)	79.37
C3–C4	1.489(6)	1.500			
C4–C5	1.510(6)	1.503			
C5–C6	1.372(7)	1.391			
C6-C1	1.502(7)	1.503			

Symbol	x	У	Z.	С	5.0960391	0.5323946	5.2604126
Ir	0.0001386	0.0002182	0.0000809	С	5.8215628	-0.6600726	5.2718273
Ir	0.0000482	0.0001674	3.5955295	С	5.1918547	-1.8771250	4.8177735
Li	3.8240755	-0.0000586	1.7980954	С	6.1808355	-2.6553634	4.0963814
Br	-1.2542046	1.5315145	1.7977984	С	5.8058474	-3.3837172	2.9699778
Br	-0.5270304	-1.7222817	1.7977685	С	6.6582806	-3.3964298	1.7979261
С	2.0851506	-0.6414326	0.2813309	С	5.8059055	-3.3836898	0.6258325
С	1.8141807	0.6321846	1.0262551	С	6.1809482	-2.6553074	-0.5005341
С	1.8141323	0.6321698	2.5694569	С	7.4214968	-1.9092238	-0.5037993
С	2.0850643	-0.6414732	3.3143673	С	7.1980348	-0.6726916	-1.2298838
С	2.4702662	-1.8395451	2.4932812	С	7.7991966	0.5077751	-0.7953307
С	2.4703072	-1.8395230	1.1024038	С	7.0478202	1.7480038	-0.7920923
С	0.5715929	0.8915885	-1.9374453	С	7.4402624	2.5105607	0.3784735
С	-0.3311203	1.7460587	-1.2731625	С	6.4917675	3.2599565	1.0732407
С	-1.8009428	1.8645525	-1.6052017	С	6.4917322	3.2599393	2.5227629
C	-2.4808811	0.5001142	-1.8080129	С	7.4401925	2.5105268	3.2175595
Ċ	-1.8490133	-0.5889540	-0.9491938	С	7.0476920	1.7479420	4.3880873
Č	-0.8058115	-1.4585868	-1.3915714	С	7.7990680	0.5077128	4.3913329
Č	-0 1416451	-14000754	-2.7462244	C	7,1978858	-0.6727645	4.8258290
Č	0 2303132	0.0322486	-31449194	Č	7.4213835	-1.9092795	4.0997261
Č	-0.3312908	1 7459693	4 8688090	Č	8 2381031	-1.9145990	2,9703971
C	0.5312900	0 8914948	5 5331076	Č	7 8502980	-2 6732889	1 7979647
C C	0.2300842	0.0321152	6 7405411	C	8 2381611	-1.9145708	0.6255695
C C	-0.1/18380	-1.4002026	6 3/17803	C	8 8645735	-0.6869576	1.0735611
C C	-0.8050425	-1.4586852	4 0871043	C	8 6/91002	0.500/773	0.3765056
C C	-1.8401370	-0.5800548	4.9871043	C	8 4260700	1 7375081	1 1008051
C C	-2 4910552	0.3890348	4.3447038 5.4025222	C	8 4260364	1 7375818	2 4052586
C	2.4610332	1 8614222	5 2007970	C	8 6400308	0.5004435	2.4752580
C	1.0011293	-0.6260521	-0.7085473	C C	8 8645276	-0.6860748	2 5224650
C	2.7047290	-0.0209331	-0.7963473		0.0043370	1 1 204600	-1.9761624
C	3.7247260	0.3413030	-1.2109438	п	0.1002042	1.1694000	-0.7684570
C	3.4933831	1.7046473	-0.4829001	п	-1.012043	2.0104370	-0.7084379 -2.4022757
C	2.0544217	1.7925085	0.6292237	п	-1.9129372 -2.2909222	2.3049308	-2.4932737
C	3.0702012	2.5295755	1.7979079	п	-2.2696555	2.3904397	-0.7650506
C	2.6543570	1.7925455	2.9665573	H	-2.4033/0/	0.2019806	-2.8010050
C	3.4952/11	1./84/94/	4.0/8/204	H	-3.5389150	0.5864163	-1.5419179
C	3.7245793	0.5414915	4.812/460	H	-2.4950831	-0.9909377	-0.169/951
C	3.1031872	-0.62/01/3	4.3942915	H	-0.7703107	-2.4428/33	-0.9231670
C	3.8676304	-1.8485193	4.3/43139	H	0.7670280	-2.0104/04	-2.699/520
C	3.4774154	-2.5972048	3.1997924	H	-0./8/4664	-1.8691150	-3.5034489
C	4.4289899	-3.3586745	2.5169219	H	1.09/2039	0.0146/48	-3.813/394
C	4.4290256	-3.3586566	1.0788212	H	-0.5764419	0.50/8/41	-3.7114120
C	3.4774870	-2.5971683	0.3959224	H	0.1000432	2.6103866	4.3641440
C	3.8677577	-1.8484558	-0.7785628	H	1.6105240	1.1893840	5.4718777
C	5.1920034	-1.8770523	-1.2219577	H	1.0969454	0.0145330	7.4093990
С	5.8217347	-0.6599895	-1.6759514	H	-0.5767023	0.5077147	7.3070113
С	5.0962098	0.5324769	-1.6645430	Н	0.7668430	-2.0105863	6.2953424
С	5.7220189	1.7592664	-1.2174624	Н	-0.7876901	-1.8692696	7.0989713
С	4.7332980	2.5290883	-0.4880494	Н	-0.7704068	-2.4429584	4.5186743
С	5.1125400	3.2709082	0.6296112	Н	-2.4951706	-0.9910251	3.7652696
С	4.2660599	3.2669985	1.7979468	Η	-2.4635795	0.2018148	6.4571172
С	5.1124828	3.2708800	2.9663248	Н	-3.5390804	0.5862734	5.1373998
С	4.7331853	2.5290355	4.0839498	Η	-1.9131908	2.5048049	6.0888742
С	5.7218700	1.7591955	4.8133932	 Н	-2.2899917	2.3963359	4.3786155

Table S7 Optimised atomic coordinates of 2-opt

Fig. S25 Optimised structure of 3-opt.

Fable S8 Selected bond distances	(Å)) and angles	(°) of 3-0	pt and the cr	ystal structure of 3
---	-----	--------------	----	-----------------	---------------	-----------------------------

	X-ray	Calcd.		X-ray	Calcd.
Ir1–I1	2.6877(8)	2.772	Li _A /Li _B -C1	2.38(5)/2.81(9)	2.397
Ir1–I2	2.7611(6)	2.878	Li _A /Li _B -C2	2.24(5)/2.57(8)	2.252
Ir2–I1	2.6747(7)	2.772	Li_A/Li_B-C3	2.29(5)/2.25(7)	2.252
Ir2–I2	2.7740(6)	2.878	Li _A /Li _B -C4	2.47(6)/2.20(7)	2.398
Ir1–C1	2.187(8)	2.209	Li _A /Li _B -C5	2.45(5)/2.32(8)	2.389
Ir1–C2	2.184(8)	2.198	Li _A /Li _B -C6	2.40(4)/2.60(9)	2.389
Ir2–C3	2.175(8)	2.198	Ir1–I1–Ir2	85.68(2)	85.56
Ir2–C4	2.185(8)	2.209	Ir1–I2–Ir2	82.402(17)	81.72
C1-C2	1.497(11)	1.500	I1-Ir1-I2	80.27(2)	79.70
C2–C3	1.535(11)	1.550	I1-Ir2-I2	80.26(2)	79.70
C3–C4	1.502(11)	1.500			
C4–C5	1.501(11)	1.503			
C5–C6	1.387(11)	1.391			
C6-C1	1.506(11)	1.503			

Symbol	x	у	z	 С	5.0715283	0.5053678	5.2866005
Ir	-0.0086768	-0.0259692	-0.0695440	С	5.7998002	-0.6852488	5.3021694
Ir	-0.0180502	-0.0245811	3.6964512	С	5.1735238	-1.9033648	4.8464841
Li	3.8019774	-0.0215974	1.8223557	С	6.1662513	-2.6798038	4.1283598
Ι	-1.4299642	1.6277113	1.8092708	С	5.7956438	-3.4092989	3.0012637
Ι	-0.7368110	-1.9270302	1.8123726	С	6.6511156	-3.4203985	1.8313896
С	2.0690744	-0.6761117	0.3012712	С	5.8014765	-3.4102595	0.6572619
С	1.7821072	0.5963070	1.0427682	С	6.1776997	-2.6816977	-0.4685760
С	1.7782870	0.5969345	2.5924632	С	7.4164752	-1.9324685	-0.4690906
С	2.0615751	-0.6748374	3.3363792	С	7.1920366	-0.6968143	-1.1964518
С	2.4573472	-1.8706372	2.5155782	С	7.7889175	0.4857537	-0.7608504
С	2.4607847	-1.8712333	1.1250399	С	7.0343136	1.7241269	-0.7596698
С	0.6562941	0.9045208	-1.9644939	С	7.4215177	2.4884659	0.4116094
С	-0.2886183	1.7469240	-1.3470190	С	6.4692247	3.2359282	1.1036778
С	-1.7262457	1.8659002	-1.7945327	С	6.4656142	3.2365132	2.5527334
С	-2.3922051	0.5002007	-2.0280442	С	7.4144453	2.4896327	3.2501526
С	-1.8040902	-0.5947885	-1.1452276	С	7.0214125	1.7262499	4.4201172
С	-0.7355642	-1.4569557	-1.5387354	С	7.7759849	0.4878776	4.4260548
С	0.0067373	-1.3739177	-2.8500279	С	7.1769554	-0.6943315	4.8596648
С	0.3921004	0.0656861	-3.2034153	С	7.4050107	-1.9305788	4.1344376
С	-0.3044905	1.7493442	4.9711139	С	8.2244284	-1.9340449	3.0070807
С	0.6375159	0.9075930	5.5938788	С	7.8413746	-2.6942065	1.8340574
C	0.3674918	0.0696719	6.8321644	С	8.2302668	-1.9350081	0.6623347
C	-0.0160282	-1.3702639	6.4780615	С	8.8521276	-0.7054093	1.1113077
С	-0.7518538	-1.4544447	5.1631804	С	8.6355244	0.4812322	0.4132677
Ċ	-1.8186007	-0.5927627	4.7638006	C	8.4083455	1.7182745	1.1364324
Ċ	-2.4111505	0.5028435	5.6428750	C	8.4048777	1.7188509	2.5308868
Č	-1.7443525	1.8684522	5.4113163	С	8.6284507	0.4824012	3.2561900
Č	3.0962077	-0.6601271	-0.7713441	C	8.8485257	-0.7048145	2.5602097
Č	3.7180202	0.5076975	-1.1885805	Ĥ	1.6853413	1.2118283	-1.8417092
Č	3.4821411	1.7490088	-0.4545539	H	0.1063604	2.6053586	-0.8048962
Ē	2.6320353	1.7559487	0.6515768	Н	-1.7577287	2.4855291	-2.7039091
Č	3.0450930	2.4940313	1.8199985	Н	-2.2816261	2.4215874	-1.0327054
č	2.6262312	1.7568932	2,9869450	H	-2.3249674	0.2034284	-3.0802911
č	3.4708127	1.7508698	4.0973037	H	-3.4617943	0.5838045	-1.8123874
Č	3.7030202	0.5101735	4.8335222	H	-2.5053787	-1.0143749	-0.4259705
Č	3.0833012	-0.6579885	4.4141287	H	-0.7338400	-2.4555078	-1.1011199
Č	3.8504276	-1.8774894	4.3986964	H	0.9147291	-1.9803916	-2.7613473
Č	3.4657482	-2.6260083	3,2233600	Н	-0.5923315	-1.8340051	-3.6501767
Č	4,4197989	-3.3880003	2.5445453	H	1.2967902	0.0639860	-3.8203182
Č	4 4233761	-3 3885916	1 1071093	Н	-0.3842095	0.5454175	-3.8080627
Č	3 4727102	-2 6271816	0 4229159	Н	0.0930314	2.6073771	4.4302169
C	3 8632426	-1 8796243	-0.7511114	Н	1 6670890	1 2150166	5 4758618
C	5 1885595	-1 9058537	-1 1922720	Н	1 2692287	0.0685451	7 4533766
C	5 8171026	-0 6881004	-1 6458170	H	-0.4117304	0 5497902	7 4327481
C C	5 0887660	0.0001004	-1 63/201/9	H	0.807/318	-1 9767550	6 3943797
C	5 700/578	1 7313129	-1 1871788	н	-0.6190128	-1 8297255	7 2756233
C	1 7166383	2 4976281	-0 4503803	Н		-2 4533498	4 7263800
C	5 000/502	2.49/0201	0.4575865	Н	-2 5163285	-1 0130354	4 0414870
C	J.0704372	3.2420071	1 8776711	Н	-2.3103203	0.2060088	6 6956856
C	4.2401220 5 0816511	3.2332308	1.0220/11	H	-3 4707184	0.2009900	5 4220604
C	J.0040J11 1 7052602	J.2429J40 7 /00/050	2.771737/ 11076716	и Ц	-1 7805670	2 1800470	6 3108550
C	4.7032093	2.4774739 1 7227054	4.10/0/40	п U	-2 2060176	2.40704/0 21221504	1 6460720
U	5.0744451	1./33/834	4.0410341	п	2.29001/0	2.4231300	4.0400729

Table S9 Optimised atomic coordinates of 3-opt

6-2. Frontier orbitals and energy levels of 1-opt, 2-opt and 3-opt

Fig. S26 Kohn-Sham orbitals and energy levels of **1-opt** (from LUMO+2 to HOMO-4, isovalue = 0.02).

Fig. S27 Kohn-Sham orbitals and energy levels of **2-opt** (from LUMO+2 to HOMO-4, isovalue = 0.02).

Fig. S28 Kohn-Sham orbitals and energy levels of **3-opt** (from LUMO+2 to HOMO-4, isovalue = 0.02).

6-3. NBO analysis of 1-opt, 2-opt and 3-opt

Fig. S29 Selected bond distances (Å), WBI values and NPA charges of 1-opt.

Fig. S30 Selected bond distances (Å), WBI values and NPA charges of 2-opt.

Fig. S31 Selected bond distances (Å), WBI values and NPA charges of 3-opt.

6-4. GIAO calculations and assignments of the proton signals of cod ligands in 1-opt

Fig. S32 Simulated ¹H NMR spectrum of **1-opt** (degeneracy tolerance: 0.25; peak half-width at half height: 0.03 ppm).

Fig. S33 Simulated ¹³C NMR spectrum of **1-opt** (degeneracy tolerance: 0.25; peak half-width at half height: 0.03 ppm).

Fig. S34 Assignments of the ¹H and ¹³C NMR signals of the cod ligands of **1** based on 2D NMR spectra (¹H–¹H COSY and ¹H–¹³C HSQC) and theoretical calculations.

6-5. TD-DFT calculations

Table S10 Excitation energies and oscillator strengths (f) of 1 with major optical transitions (threshold: $f \ge 0.01$ except excited state 1).

(5 =	1 /	
	Excited State 13: Singlet-?Sym 2.3719	267 -> 277 -0.39114
Aricher R. WAN	eV 522.72 nm f=0.0103 <s**2>=0.000</s**2>	269 -> 277 0.10810
	271 -> 277 0.34422	274 -> 279 0.44179
	272 -> 278 0.57618	275 -> 281 0.10065
	273 -> 277 -0.12533	275 -> 282 0.23360
	274 -> 278 0.11848	
		Excited State 34: Singlet-?Sym 3.1866
	Excited State 21: Singlet-?Sym 2.7778	eV 389.08 nm f=0.0381 <s**2>=0.000</s**2>
1 (Cationic Part)	eV 446.34 nm f=0.0626 <s**2>=0.000</s**2>	262 -> 276 -0.15833
	268 -> 278 0.25725	265 -> 278 0.18818
Excitation energies and oscillator strengths:	269 -> 277 -0.42209	266 -> 277 0.38948
	270 -> 278 0.46926	267 -> 277 0.16634
Excited State 1: Singlet-?Sym 1.7985		269 -> 280 -0.10797
eV 689.36 nm f=0.0015 <s**2>=0.000</s**2>	Excited State 22: Singlet-?Sym 2.7969	273 -> 280 0.13294
275 -> 276 0.70123 (98%) H→L	eV 443.29 nm f=0.0119 <s**2>=0.000</s**2>	273 -> 282 -0.13409
This state for optimization and/or second-	268 -> 276 0.67764	274 -> 279 0.17855
order correction.	269 -> 277 -0.11271	275 -> 281 0.23049
Total Energy, E(TD-HF/TD-DFT) = -		275 -> 282 -0.24832
4046.12527435	Excited State 24: Singlet-?Sym 2.9241	
Copying the excited state density for this state	eV 424.01 nm f=0.0821 <s**2>=0.000</s**2>	Excited State 39: Singlet-?Sym 3.2287
as the 1-particle RhoCI density.	265 -> 278 -0.10439	eV 384.00 nm f=0.0194 <s**2>=0.000</s**2>
	267 -> 277 0.15316	265 -> 278 -0.10500
Excited State 3: Singlet-?Sym 2.0103	268 -> 278 0.57458 (66%) H − 7→L + 2	266 -> 277 0.38912
eV 616.73 nm f=0.0145 <s**2>=0.000</s**2>	268 -> 279 0.10546	271 -> 280 0.12413
274 -> 276 -0.27569	270 -> 278 -0.23428 (11%) H−5→L+2	273 -> 280 0.15107
274 -> 278 -0.11353		273 -> 281 0.21432
275 -> 277 0.62789	Excited State 29: Singlet-?Sym 3.0810	274 -> 279 -0.10427
	eV 402.42 nm f=0.0153 <s**2>=0.000</s**2>	275 -> 282 0.44157
Excited State 10: Singlet-?Sym 2.2920	267 -> 277 -0.18953	
eV 540.95 nm f=0.0319 <s**2>=0.000</s**2>	274 -> 279 -0.35861	Excited State 40: Singlet-?Sym 3.2558
271 -> 277 -0.15114	275 -> 280 0.14595	eV 380.81 nm f=0.0119 <s**2>=0.000</s**2>
272 -> 276 -0.12133	275 -> 281 0.51210	264 -> 276 0.11491
272 -> 278 -0.10090		265 -> 276 0.19512
273 -> 277 -0.35567 (25%) H−2→L+1	Excited State 33: Singlet-?Sym 3.1418	265 -> 278 0.39662
274 -> 278 0.55578 (62%) H−1→L+2	eV 394.63 nm f=0.0604 <s**2>=0.000</s**2>	265 -> 279 0.11516

267 -> 277	0.20526	Excited State 61: Singlet-?Sym 3.5595	Excited State 71: Singlet-?Sym 3.6651
273 -> 280	-0.22455	eV 348.31 nm f=0.0577 <s**2>=0.000</s**2>	eV 338.29 nm f=0.0161 <s**2>=0.000</s**2>
275 -> 282	0.33214	258 -> 276 -0.15004	257 -> 277 0.10906
		258 -> 278 0.15304	258 -> 276 0.47961
Excited State 44	4: Singlet-?Sym 3.3037	259 -> 276 -0.22756	261 -> 277 0.12520
eV 375.29 nm f	f=0.0117 <\$**2>=0.000	260 -> 277 0.25636	264 -> 278 -0.18487
261 -> 277	0.13609	261 -> 277 0.24565	265 -> 278 0.11498
263 -> 276	0.23342	262 -> 278 -0.10260	269 -> 280 0.26628
265 -> 278	0.12041	263 -> 278 0.22907	270 -> 279 0.17179
272 -> 279	0.34821	264 -> 276 0.10092	271 -> 280 -0.14016
273 -> 280	0.31699	266 -> 280 -0.10453	
273 -> 281	-0.30870	268 -> 279 -0.13382	Excited State 74: Singlet-?Sym 3.6812
275 -> 282	0.11590	270 -> 279 -0.10727	eV 336.81 nm f=0.0161 <s**2>=0.000</s**2>
		271 -> 280 -0.10478	258 -> 276 0.11384
Excited State 46	5: Singlet-?Sym 3.3559	273 -> 281 0.20715	259 -> 278 0.42374
eV 369.45 nm 1	f=0.0756 <s**2>=0.000</s**2>		260 -> 277 -0.21038
259 -> 276	0.22524	Excited State 62: Singlet-?Sym 3.5680	261 -> 277 0.15582
262 -> 276	0.15573	eV 347.49 nm f=0.0150 <s**2>=0.000</s**2>	262 -> 278 -0.15579
264 -> 276	-0.24787	257 -> 276 0.19882	$264 \rightarrow 278 \qquad 0.12483$
$264 \rightarrow 278$	-0.12373	259 -> 277 0.38389	270 -> 279 -0.13089
$265 \rightarrow 276$	0.14494	263 -> 277 0.11857	271 -> 282 0.31863
265 -> 278	0.19954	$268 -> 280 \qquad 0.14733$	274 -> 283 0 12248
263 > 278 268 -> 278	0 10651	269 -> 279 -0 10117	2/1 / 203 0.12210
200 > 270 271 -> 280	0 12239	200 > 210 = 0.10117	Excited State 75: Singlet-2Sym 3 7009
271 > 200 $272 \rightarrow 279$	0.21311	270 > 280 = 0.27280	eV 335.01 nm f=0.1018 $<$ S**2 $>$ =0.000
272 -> 277 273 -> 281	0.30776	$272 \sim 280$ 0.1758)	257 \ 277 0 24296
273 -> 281	0.15548	$274 \rightarrow 281 -0.12440$ $274 \rightarrow 282 -0.15176$	257 -> 277 $0.24290259 -> 276$ -0.12341
273 -> 282 274 > 279	0.15/18	274 - 282 = 0.13170 275 > 283 = 0.21140	259 > 270 = 0.12341
274 -> 279	0.10200	275 -> 285 -0.21149	259 -> 278 -0.17508
213 -> 282	-0.10299	Excited State 66: Singlet 2Sum 2 5088	200 -> 277 -0.23824
Engited State 49	Cinclet 25vm 2 2862	Excluding the observed singlet -? Sym 5.3988	204 -> 278 0.31043
Excited State 48	S: Singlet-?Sym 3.3802	$eV = 344.52 \text{ hm} = 0.0174 < S^{**}2 >= 0.000$	267 -> 280 -0.14337
ev 366.14 nm 1	$(=0.0159 < S^* 2 > = 0.000$	$260 \rightarrow 277 -0.10503$	269 -> 280 0.20101
259 -> 276	-0.22274	262 -> 278 -0.18870	2/1 -> 282 -0.19081
260 -> 277	-0.11489	263 -> 278 0.34909	2/2 -> 2/9 -0.13/82
262 -> 276	-0.17209	264 -> 278 -0.29094	2/4 -> 283 0.1/053
263 -> 276	-0.18088	265 -> 278 -0.13429	
263 -> 278	0.20592	267 -> 280 -0.11781	Excited State /6: Singlet-?Sym 3./088
270 -> 279	0.10240	2/1 -> 281 -0.25627	$eV 334.30 \text{ nm} = 0.0816 < S^{**2} = 0.000$
271 -> 280	0.35822	271 -> 282 -0.17382	257 -> 277 -0.24138
271 -> 281	0.17514	272 -> 279 -0.13601	258 -> 278 -0.23081
272 -> 279	0.22606	273 -> 281 -0.12710	259 -> 278 -0.20375
273 -> 280	-0.10555		261 -> 277 0.27746
273 -> 282	-0.12290	Excited State 68: Singlet-?Sym 3.6307	262 -> 278 0.25439
		eV 341.49 nm f=0.0116 <s**2>=0.000</s**2>	$263 \rightarrow 278$ 0.16198
Excited State 49	9: Singlet-?Sym 3.4089	258 -> 276 0.36791	268 -> 279 0.11900
eV 363.70 nm 1	t=0.0128 <s**2>=0.000</s**2>	260 -> 277 0.32657	270 -> 279 -0.23918
262 -> 276	0.22735	261 -> 277 -0.11223	
263 -> 276	0.25237	262 -> 276 -0.12566	Excited State 80: Singlet-?Sym 3.7498
271 -> 280	0.37678	263 -> 276 0.17823	eV 330.64 nm f=0.1094 <s**2>=0.000</s**2>
272 -> 279	-0.29688	264 -> 278 0.22915	256 -> 276 -0.25954 (13%) H−19→L
273 -> 281	-0.11732	268 -> 279 -0.13445	257 -> 277 0.17506
273 -> 282	0.17583	270 -> 279 -0.18561	262 -> 278 0.10952
		271 -> 280 0.19078	263 -> 278 -0.12129
Excited State 55	5: Singlet-?Sym 3.4938		264 -> 278 -0.12797
eV 354.87 nm f	f=0.0165 <s**2>=0.000</s**2>	Excited State 69: Singlet-?Sym 3.6437	265 -> 278 -0.10225
260 -> 277	-0.15057	eV 340.27 nm f=0.0369 <s**2>=0.000</s**2>	267 -> 280 -0.13995
263 -> 278	-0.12467	256 -> 276 0.10199	268 -> 279 -0.22461 (10%) H−7→L+3
264 -> 276	0.44614	259 -> 276 -0.10751	269 -> 280 0.15357
271 -> 280	0.18715	261 -> 277 -0.34332	270 -> 279 -0.10607
271 -> 281	-0.32577	262 -> 278 0.37399	271 -> 282 0.28639 (16%) H−4→L+6
272 -> 279	0.12282	263 -> 276 0.15066	274 -> 283 -0.24728 (12%) H − 1→L + 7
273 -> 281	0.19812	263 -> 278 0.21716	. /
273 -> 282	-0.11024	271 -> 282 0.24752	

Fig. S35 Kohn-Sham orbitals involved in the main transitions of 1 (isovalue = 0.02).

Table	S11	Excitation	energies	and	oscillator	strengths	(f)	of 2	with	major	optical	transitions
		(threshold:	$f \ge 0.01$ e	excep	ot excited s	tate 1).						
		1				• • • • • • • • • • • • • • • • • • • •						

-les -les	This state for optimization and/or second-	291 -> 295 0.25840 (13%) H−2→L+1		
~ Br ~ W ~ W	order correction.	292 -> 296 0.39656 (31%) H−1→L+2		
	Total Energy, $E(TD-HF/TD-DFT) = -$			
	8269.31064236	Excited State 10: Singlet-?Svm 2.2860		
	Copying the excited state density for this state	eV 542.36 nm f=0.0279 <s**2>=0.000</s**2>		
	as the 1-particle RhoCI density.	289 -> 295 -0.14422		
		291 -> 295 0.50406 (51%) H−2→L+1		
	Excited State 3: Singlet-?Sym 1.9999	292 -> 296 -0.44094 (39%) H− 3→ L		
2 (Cationia Dard)	eV 619.96 nm f=0.0146 <s**2>=0.000</s**2>	293 -> 295 0.11198		
	292 -> 294 -0.21631			
	292 -> 296 0.13161	Excited State 20: Singlet-?Svm 2.6885		
Excitation energies and oscillator strengths:	293 -> 295 0.64846	$eV 461.16 \text{ nm } f=0.0236 < S^{**2} >= 0.000$		
		286 -> 294 0 64230		
Excited State 1: Singlet-?Sym 1.7872	Excited State 8: Singlet-?Sym 2.2671	$286 \rightarrow 296 \qquad 0.11358$		
eV 693.75 nm f=0.0015 <s**2>=0.000</s**2>	eV 546.89 nm f=0.0224 <s**2>=0.000</s**2>	288 -> 296 -0 21279		
293 -> 294 0.70091 (98%) H -> L	290 -> 294 0.50731 (51%) H−3→L	200 > 200 0.2127)		

Excited State 21: Singlet-?Sym 2.7140	Excited State 45: Singlet-?Sym 3.3210	291 -> 299 0.14826
$eV 456.83 \text{ nm} \text{I}=0.0404 < \text{S}^{**2} >= 0.000$	eV $3/3.34 \text{ nm f}=0.0113 < S^{**}2 >= 0.000$	E 1 1 0 4 50 0 1 4 00 2 5012
$286 \rightarrow 294 -0.13210$	$2/6 \rightarrow 295 -0.10663$	Excited State 58: Singlet-?Sym 3.5013
280 -> 290 0.22974	278 -> 294 -0.12985	276 > 204 = 0.11402
287 -> 295 0.40801	$280 -> 295 \qquad 0.11922$	$270 \rightarrow 294$ 0.11492 277 > 204 0.20017
288 -> 296 -0.42491	281 -> 295 0.12352	2/7 = 294 0.20917 280 > 204 0.18582
Evolted State 24. Singlet 25um 2.9610	283 -> 290 0.33045 286 > 207 0.17250	$280 \rightarrow 294 -0.18582$
Exclude State 24: Singlet-7Syll 2.8010 aV 423 26 mm $f=0.0943$ $cS**2 = 0.000$	$280 -> 297 \qquad 0.17339$	281 -> 290 0.10294 282 > 204 0.11058
295 > 205 = 0.10179	200 > 297 -0.13452	282 > 294 - 0.11938
203 -> 293 0.10178	269 -> 298 0.12770 200 -> 207 0.11072	282 > 290 = 0.50051
280 -> 290 $0.00912 (74%) H - 7 - L + 2$	290 > 297 = 0.11972	263 -> 295 -0.10588
287 -> 295 -0.13701	290 -> 299 0.32938	284 - 290 - 0.12343 285 - 297 - 0.10245
288 -> 290 0.20382	290 > 300 0.14238	283 - 297 = 0.10243
293 -> 297 -0.11396	292 -> 299 0.19120	287 - 297 - 0.10704 288 - 298 - 0.11242
Excited State 25. Singlet 25. 20105	Excited State 46: Singlet-2Sym 3 3297	289 -> 297 -0.17559
Excited State 25: Singlet-7Sym 2.9195 $aV_{424} = 68 \text{ nm} f = 0.0170 \text{ sc} \text{sc} \text{sc}$	eV 372 36 nm f=0.0319 < S**2>-0.000	289 > 299 = 0.17539
203 > 207 = 0.65027	277 -> 294 -0 28874	$291 \rightarrow 299 \rightarrow 0.17520$
293 - 297 = 0.03927 203 - 200 = 0.12804	277 > 294 = 0.2366	291 > 300 - 0.16307
293 -> 299 0.12804	281 > 294 = 0.13672	2/1 / 500 0.10507
Excited State 22: Singlet 2Sym 2 0905	282 > 294 = 0.13672	Excited State 63: Singlet-?Sym 3 5494
$eV 402.48 \text{ pm} = f = 0.0113 - S^{**2} - 0.000$	$290 \rightarrow 298 \qquad 0.40290$	eV 349 31 nm f=0.0415 < S**2>=0.000
284 > 204 = 0.36827	291 -> 300 -0 21837	277 -> 294 0 22759
284 - 294 - 0.30827 285 > 295 - 0.19681	$292 \rightarrow 298 = 0.13284$	$278 \rightarrow 295$ 0.24349
203 > 203 = 203 = 0.10001	2,2,7,2,0 0,10201	$279 \rightarrow 295 \qquad 0.14911$
292 -> 298 = 0.35009 293 -> 299 = 0.39137	Excited State 49: Singlet-?Sym 3 3889	$280 \rightarrow 296 -0.14205$
293-299 0.39131	$eV_{365,85}$ nm f=0.0138 <s**2>=0.000</s**2>	$281 \rightarrow 296 -0.18537$
Excited State 34: Singlet 2Sum 3 1360	277 -> 294 = 0.23582	$282 \rightarrow 296 -0.18999$
eV 395 36 nm f=0.0721 $<$ S**2>=0.000	$278 \rightarrow 295 = -0.10253$	$286 \rightarrow 298 \qquad 0.20635$
285 > 205 = 0.42867	$281 \rightarrow 296 = -0.18569$	$288 \rightarrow 298 -0.17548$
203 - 293 = 0.42007 202 - 208 = 0.41803	$282 \rightarrow 294 = -0.12414$	$289 \rightarrow 299 \qquad 0.13740$
292 - 298 - 0.41895 203 > 200 0.10255	$288 \rightarrow 298 \qquad 0.12248$	$291 \rightarrow 299 \qquad 0.17821$
293 -> 300 -0.24747	$289 \rightarrow 297$ 0.42121	$291 \rightarrow 300 -0.20370$
273 - 2500 -0.24747	$289 \rightarrow 299 -0.15270$	2,1 , 200 0.202,0
Excited State 36: Singlet-?Sym 3 1725	290 -> 298 0.20491	Excited State 66: Singlet-?Svm 3.5821
eV 390.81 nm f $=0.0228 < S^{**2} > =0.000$	$291 \rightarrow 297 \qquad 0.11627$	eV 346.12 nm f= $0.0383 < S^{**2} >= 0.000$
277 -> 294 -0 12020		276 -> 294 -0.14728
$282 \rightarrow 294 = 0.10492$	Excited State 53: Singlet-?Svm 3.4337	279 -> 295 0.27313
$283 -> 295 \qquad 0.11514$	eV 361.09 nm f=0.0168 <s**2>=0.000</s**2>	280 -> 294 -0.18539
$284 \rightarrow 296 \qquad 0.40084$	276 -> 294 -0.11333	281 -> 296 0.11272
284 -> 298 -0.10526	281 -> 294 0.21561	288 -> 298 0.33320
285 -> 295 -0.24985	281 -> 296 0.18582	289 -> 297 -0.15628
$291 \rightarrow 300 -0.12389$	282 -> 294 -0.29609	289 -> 299 -0.21557
$292 \rightarrow 298 -0.24436$	282 -> 296 -0.12478	291 -> 299 0.22654
293 -> 299 0.18238	285 -> 297 0.11504	
293 -> 300 0.22825	287 -> 297 -0.13324	Excited State 70: Singlet-?Sym 3.6165
	288 -> 298 0.15318	eV 342.82 nm f=0.0102 <s**2>=0.000</s**2>
Excited State 38: Singlet-?Sym 3.2037	289 -> 299 0.31981	275 -> 295 -0.11317
eV 387.01 nm f=0.0425 <s**2>=0.000</s**2>	289 -> 300 0.10139	276 -> 294 -0.24505
282 -> 294 -0.11352	290 -> 298 -0.13333	277 -> 294 0.11901
283 -> 295 0.17849	291 -> 297 0.10964	279 -> 295 -0.16598
284 -> 296 -0.33715	291 -> 299 -0.16276	280 -> 294 -0.15898
285 -> 295 0.19212		280 -> 296 0.11338
290 -> 298 -0.11336	Excited State 55: Singlet-?Sym 3.4622	281 -> 296 0.33241
291 -> 299 0.18104	eV 358.11 nm f=0.0116 <s**2>=0.000</s**2>	282 -> 296 -0.18633
293 -> 300 0.45418	279 -> 294 -0.14247	287 -> 297 0.18846
	281 -> 295 0.20779	288 -> 298 -0.23741
Excited State 42: Singlet-?Sym 3.2656	282 -> 295 -0.20937	289 -> 297 0.18456
eV 379.66 nm f=0.0110 <s**2>=0.000</s**2>	283 -> 296 -0.12610	289 -> 300 0.12662
282 -> 294 0.19917	288 -> 297 -0.26343	292 -> 301 -0.10761
283 -> 295 -0.35088	289 -> 298 0.39813	
290 -> 298 0.11109	290 -> 297 -0.21014	Excited State 71: Singlet-?Sym 3.6352
291 -> 297 0.42007	290 -> 299 -0.11946	eV 341.07 nm f=0.0747 <s**2>=0.000</s**2>
291 -> 299 -0.16260	293 -> 301 -0.10567	275 -> 295 0.12227
293 -> 300 0.25198		276 -> 294 0.12824
	Excited State 56: Singlet-?Sym 3.4731	277 -> 296 0.15779
Excited State 44: Singlet-?Sym 3.2912	eV 356.98 nm f=0.0272 <s**2>=0.000</s**2>	279 -> 295 -0.27845
eV 376.71 nm f=0.0232 <s**2>=0.000</s**2>	276 -> 294 -0.10163	280 -> 296 0.35044
279 -> 295 -0.11813	278 -> 295 -0.14257	281 -> 296 -0.12490
281 -> 294 -0.20977	281 -> 294 -0.27464	282 -> 296 -0.16878
282 -> 294 -0.29370	281 -> 296 0.19120	287 -> 297 -0.23038
290 -> 298 -0.12855	282 -> 294 0.20862	289 -> 300 0.17493
291 -> 297 0.32770	284 -> 296 -0.10978	291 -> 299 0.10014
291 -> 299 0.35350	285 -> 297 0.12548	
292 -> 298 0.13033	287 -> 297 -0.16922	Excited State 75: Singlet-?Sym 3.6733
293 -> 300 -0.16993	289 -> 299 0.29531	eV 337.53 nm f=0.0171 <s**2>=0.000</s**2>
	290 -> 298 0.22355	274 -> 294 -0.20189

276 -> 296 -0.22139	285 -> 297 -0.16638	290 -> 300 -0.14387
278 -> 295 0.31198	286 -> 298 0.21051	293 -> 301 -0.13851
279 -> 295 -0.24375	288 -> 298 0.10073	
280 -> 296 0.11981		Excited State 80: Singlet-?Sym 3.7207
286 -> 298 0.17338	Excited State 79: Singlet-?Sym 3.7186	eV 333.23 nm f=0.1083 <s**2>=0.000</s**2>
288 -> 298 0.16292	eV 333.42 nm f=0.0191 <s**2>=0.000</s**2>	276 -> 294 -0.16989
289 -> 300 -0.24993	274 -> 295 -0.13612	276 -> 296 0.37217 (28%) H−17→L+2
292 -> 301 0.17377	275 -> 296 0.31643	277 -> 296 0.13035
	279 -> 296 -0.19364	278 -> 295 0.15265
Excited State 76: Singlet-?Sym 3.6923	280 -> 295 -0.11156	280 -> 296 0.15365
eV 335.79 nm f=0.0436 <s**2>=0.000</s**2>	281 -> 295 0.12114	282 -> 296 0.18536
275 -> 295 0.31089	284 -> 297 -0.17268	286 -> 298 0.14235
276 -> 296 0.14839	285 -> 298 0.12072	287 -> 297 -0.15686
278 -> 295 -0.21001	286 -> 297 0.10610	289 -> 300 0.25193 (13%) H − 4 → L + 6
280 -> 296 -0.26682	287 -> 298 0.36882	$292 \rightarrow 301 = 0.24837 (12\%) H - 1 \rightarrow L + 7$
281 -> 296 0.26888	288 -> 300 0.15733	2)2 > 501 0.2+057 (12/0) 11 1 7 12+7

L+2

номо

H-2

H-1

Fig. S36 Kohn-Sham orbitals involved in the main transitions of 2 (isovalue = 0.02).

(threshold: $f \ge 0.01$ except excited state 1).					
- le - les al	274 -> 285 0.24604 (12%) H−9→L -	+1 282 -> 291 -0.10270			
	275 -> 286 0.58844 (69%) H−3→L-	+2			
	279 -> 288 -0.11578	Excited State 55: Singlet-?Sym 3.3695			
		eV 367.96 nm f=0.0140 <s**2>=0.000</s**2>			
	Excited State 33: Singlet-?Sym 3.0235	268 -> 285 0.10589			
	eV 410.07 nm f=0.0297 <s**2>=0.000</s**2>	269 -> 284 -0.14774			
	274 -> 285 0.46601	271 -> 285 -0.11550			
	274 -> 287 0.10542	272 -> 285 -0.25563			
3 (Cationic Part)	275 -> 286 -0.27627	274 -> 286 0.15317			
	282 -> 288 -0.35558	276 -> 287 -0.15071			
Excitation energies and oscillator strengths:	283 -> 289 0.15560	277 -> 288 0.22099			
6		278 -> 288 0.29628			
Excited State 1: Singlet-?Svm 1.7585	Excited State 35: Singlet-?Sym 3.0313	280 -> 289 -0.16248			
eV 705.05 nm f=0.0015 <s**2>=0.000</s**2>	eV 409.01 nm f=0.0582 <s**2>=0.000</s**2>	280 -> 290 0.13155			
$283 \rightarrow 284 = 0.69940 (98\%) H \rightarrow I_{2}$	274 -> 285 0.29718	282 -> 290 -0.13350			
This state for optimization and/or second-	274 -> 287 0.12220	283 -> 291 0.26714			
order correction	275 -> 286 -0.13981				
Total Energy $E(TD-HE/TD-DET) = -$	277 -> 287 -0.12358	Excited State 56: Singlet-?Sym 3.3737			
3721 52770114	282 -> 288 0.42712	eV 367.51 nm f=0.0276 <s**2>=0.000</s**2>			
Conving the excited state density for this state	283 -> 289 -0.36446	271 -> 284 0.23446			
as the 1-particle RhoCI density		272 -> 284 0.27623			
as the 1-particle Knoer density.	Excited State 36: Singlet-?Sym 3.0586	272 -> 286 0.10505			
Excited State 3: Singlet 2Sym 1 0550	$eV 405.37 \text{ nm} f=0.0548 < S^{**2} >=0.000$	276 -> 288 0.17476			
eV 633.90 nm f=0.0157 < S**2 > = 0.000	273 -> 285 -0.16526	278 -> 289 -0.12481			
282 > 284 = 0.21141	274 -> 285 0 11526	279 -> 288 0.29732			
282 - 284 = 0.21141	282 -> 288 0 33592	281 -> 289 0.28483			
282 -> 280 -0.14499	$283 \rightarrow 289 \qquad 0.48896$	282 -> 291 -0.11084			
285 -> 285 0.04808	$283 \rightarrow 290 \qquad 0.21667$				
Excited State 7: Singlet 2Sym 2 1380	203 / 200 0.21007	Excited State 61: Singlet-?Sym 3.4488			
eV 570.67 nm f=0.0168 < S**2 > -0.000	Excited State 40: Singlet-2Sym 3 1265	eV 359.50 nm f=0.0131 <s**2>=0.000</s**2>			
280 > 284 = 0.46710	eV 396 56 nm f=0.0540 <s**2>=0.000</s**2>	266 -> 284 0.15024			
280 - 284 = 0.40719 281 > 285 = 0.35241	271 -> 284 0 13160	268 -> 284 -0.23906			
281 -> 285 -0.35241 282 -> 286 -0.34008	$272 \rightarrow 284 = 0.11806$	270 -> 284 0.20732			
282 - 280 = 0.34998	273 -> 285 -0.16683	271 -> 286 -0.25841			
283 -> 285 0.10051	$274 \rightarrow 285$ 0.110003	272 -> 286 -0.13129			
Excited State 8: Singlet 2Sum 2 2212	277 -> 287 0 26929	278 -> 289 0.42558			
2.2313	$281 \rightarrow 289 = -0.11592$	281 -> 289 0.14401			
$290 > 294 = 0.45666 (420/) H 3 \rightarrow H$	$282 \rightarrow 288 = -0.12442$	281 -> 290 -0.14969			
280 -> 284 -0.43000 (42%) H - 5 - L	$283 \rightarrow 289 -0.21605$				
282 -> 286 0.30355 (51%) H−1→L+2	283 -> 290 0.46648	Excited State 64: Singlet-?Sym 3.4778			
		eV 356.50 nm f=0.0854 <s**2>=0.000</s**2>			
Excited State 10: Singlet-/Sym 2.2620	Excited State 45: Singlet-?Sym 3.2197	266 -> 284 -0.27543			
$eV 548.11 \text{ nm } f=0.0190 < S^{**}2 >= 0.000$	eV 385.08 nm f=0.0306 <s**2>=0.000</s**2>	269 -> 285 -0.12702			
278 -> 285 -0.10283	272 -> 284 0.20706	271 -> 286 -0.16394			
$2/9 \rightarrow 284$ 0.15444	273 -> 285 0.28950	272 -> 284 -0.14176			
280 -> 284 0.20085	274 -> 285 -0.21691	272 -> 286 0.18491			
281 -> 285 0.300/4	274 -> 287 0.15891	276 -> 288 -0.14199			
282 -> 286 0.29043	277 -> 287 -0.26773	277 -> 287 0.13089			
283 -> 285 0.10044	278 -> 287 -0.15346	279 -> 288 0.37920			
Excited State 22: Singlet 2Sym 2,6022	281 -> 289 -0.17184	281 -> 289 -0.26389			
Excited State 22: Singlet-?Sym 2.0052	283 -> 290 0.30499				
776 > 286 = 0.10007		Excited State 69: Singlet-?Sym 3.5213			
270 - 280 - 0.19807	Excited State 49: Singlet-?Sym 3.2823	eV 352.09 nm f=0.0157 <s**2>=0.000</s**2>			
277 - 285 = 0.32740	eV 377.74 nm f=0.0118 <s**2>=0.000</s**2>	266 -> 284 -0.30684			
278 - 285 = 0.10511	267 -> 284 0.15053	$268 \rightarrow 284 -0.24275$			
219 -> 280 -0.37229	273 -> 286 0.49022	$269 \rightarrow 285$ 0.11014			
Excited State 25: Singlet 2Sum 2,6027	278 -> 288 0.19588	$276 \rightarrow 288 \qquad 0.14182$			
$aV_{460} 44 \text{ nm} = f_{-0} 0101_{-5} \text{ sm}^{-1} 2.0927$	280 -> 287 -0.14908	278 -> 289 0.13143			
277 > 286 = 0.23740	280 -> 289 0.12392	281 -> 289 0.11677			
277 > 280 -0.23749 270 > 285 -0.17235	281 -> 288 -0.21731	281 -> 290 0.49517			
$279 \sim 285$ 0.17255 279 ~ 287 _0 11353	282 -> 289 -0.18562				
279 - 287 = -0.11333	283 -> 291 0.14306	Excited State 72: Singlet-?Sym 3.5632			
280 - 287 = 0.11110 282 - 287 = 0.58948		$eV 347.96 \text{ nm } f=0.0368 < S^{**}2 >= 0.000$			
202 -> 201 0.307+0	Excited State 50: Singlet-?Sym 3.3132	266 -> 284 0.19168			
Excited State 26: Singlet-95vm 2.6082	eV 374.21 nm f=0.0645 <s**2>=0.000</s**2>	267 -> 285 -0.10389			
eV 459 50 nm f=0.0524 <\$**2\=0.000	271 -> 286 -0.14567	268 -> 284 -0.21477			
276 -> 286 0 55383	272 -> 284 0.10241	269 -> 285 -0.21/44			
279 -> 286 -0 21803	272 -> 286 0.26056	2/0 -> 286 -0.10625			
283 - 287 = 0.21003	273 -> 285 -0.32001	272 -> 286 0.30288			
203 / 201 0.27120	275 -> 288 0.10282	2/4 -> 28/ -0.18977			
Excited State 30: Singlet-?Svm 2 9024	277 -> 287 -0.20756	2/6 -> 288 0.21666			
eV 427.17 nm f=0.0151 <\$**2\=0.000	278 -> 287 0.34749	2/8 -> 290 0.10927			
······································	- 280 -> 288 -0.11762	281 -> 289 -0.22347			

Table S12 Excitation energies and oscillator strengths (f) of **3** with major optical transitions (threshold: f > 0.01 except excited state 1).

282 -> 291 0.17219	264 -> 285 -0.13275	265 -> 285 0	.26701 (14%) H−18→L+1
	265 -> 284 -0.19333	267 -> 285 0	.10136
Excited State 78: Singlet-?Sym 3.6132	265 -> 286 -0.19013	268 -> 284 -0	.12069
eV 343.14 nm f=0.0124 <s**2>=0.000</s**2>	266 -> 285 -0.25223	268 -> 286 0	.24564 (12%) H−15→L+2
267 -> 285 -0.16213	267 -> 286 0.35378	269 -> 285 0	.11535
268 -> 286 -0.21803	268 -> 285 0.10305	$270 \rightarrow 286 0$.33148 (22%) H−13→L+2
270 -> 286 0.35445	269 -> 284 0.14349	$271 \rightarrow 286 = 0$	21941
278 -> 290 -0.17844	277 -> 288 -0.11076	$274 \rightarrow 287 = 0$	12216
279 -> 288 0.14178	279 -> 289 -0.27451	$275 \rightarrow 288 = 0$.16768
282 -> 291 0.40461	279 -> 290 0.15526	$276 \rightarrow 288 = 0$.11704
		277 -> 290 -0	.11886
Excited State 79: Singlet-?Sym 3.6319	Excited State 80: Singlet-?Sym 3.6348	$278 \rightarrow 290 0$.10298
eV 341.38 nm f=0.0308 <s**2>=0.000</s**2>	eV 341.11 nm f=0.0813 <s**2>=0.000</s**2>	- 281 -> 289 -0	.11030

Fig. S37 Kohn-Sham orbitals involved in the main transitions of 3 (isovalue = 0.02).

7. References

- [S1] L. Jürgensen, M. Frank, M. Pyeon, L. Czympiel and S. Mathur, Organometallics, 2017, 36, 2331–2337.
- [S2] T. Yamagata, H. Tadaoka, M. Nagata, T. Hirao, Y. Kataoka, V. Ratovelomanana-Vidal, J. P. Genet and K. Mashima, *Organometallics*, 2006, 25, 2505–2513.
- [S3] H. Okada and Y. Matsuo, Fuller. Nanotub. Car. N., 2014, 22, 262–268.
- [S4] G. M. Sheldrick, *Acta Cryst.*, 2015, A71, 3–8.
- [S5] G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3–8.
- [S6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- [S7] K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, 2001.
- [S8] C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218–224.
- [S9] H. Okada, T. Komuro, T. Sakai, Y. Matsuo, Y. Ono, K. Omote, K. Yokoo, K. Kawachi, Y. Kasama, S. Ono, R. Hatakeyama, T. Kaneko and H. Tobita, *RSC Adv.* 2012, 2, 10624–10631.
- [S10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. W.-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, (Revision C.02)*, Gaussian, Inc., Wallingford CT, 2019.
- [S11] A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- [S12] J. P. Perdew, *Electronic Structure of Solids '91*, ed. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, 1991, p. 11.
- [S13] J. P. Perdew, K. Burke and Y. Wang, *Phys. Rev. B*, 1996, **54**, 16533–16539.
- [S14] W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- [S15] P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213–222.

- [S16] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654–3665.
- [S17] P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- [S18] K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083–1096.
- [S19] A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735–746.
- [S20] E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, NBO 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.
- [S21] T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. von R. Schleyer, J. Comp. Chem., 1983, 4, 294–301.
- [S22] W. T. Chan and R. Fournier, *Chem. Phys. Lett.*, 1999, **315**, 257–265.
- [S23] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [S24] K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260.
- [S25] F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.
- [S26] F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- [S27] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.