Supporting Information for

Promotion Effect of Ag on Syngas Transformation to Longchain Alcohols over CuFe Catalysts

Zhiwei Qin,^a Yinwen Li,^{*a} Meng Wang,^b Yanrui Su^c, Wa Gao^{*c}, Ding Ma^b and Lin Yang^a

^a Department of Novel materials institute, Central Research Institute of China Chemical Science and Technology Co. Ltd., Haohua Chemical Science & Technology Corp., Ltd., Beijing 100083, P. R. China

^bBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China

^c Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China

* Corresponding authors: livinwen@sinochem.com (Y. Li); gaowa@bua.edu.cn (W. Gao).

Experimental section

1. Catalysts synthesis

The CuFeM₁-LDH precursors with eight different elements of Mo, In, Ag, Cr, Ga, Mn, Nb and Re were prepared by using nucleation and aging separation method. This method was modified by using KOH and K₂CO₃ as precipitating agents and changing the colloid mill rotating to 4000 rpm. The CuFeM₁-LDHs precursors were directly reduced in syngas atmosphere consisting of 25% CO + 25% H₂ + 50% CO₂ with a two-step-process: 300 °C for 2 h and 350 °C for 1 h at a heating rate of 2 °C min⁻¹ (denoted as Cu₄Fe₁M₁, respectively).

CuFeAg_x samples with other three Ag loadings (x=0.5, 0.1 and 0.05) and three control samples (Cu₄Fe₁, Cu₄Ag_{0.5} and Fe₁Ag_{0.5}) were prepared by the same above method.

2. Catalytic evaluation

The catalytic evaluation was carried out in a fixed-bed stainless steel reactor. 0.5 g of catalyst was loaded in 10 mm inner diameter quartz tube inside. Before reaction, the LDHs precursors was activated *in situ* as mentioned above with a flow rate of 20 mL min⁻¹. After the reactor was cooled to room temperature, syngas with a flow rate of 20 mL min⁻¹ (32% CO + 64% H₂ + 4% Ar) was introduced to reach the required pressure with argon as an internal standard gas. The reaction was conducted at 260 °C. The modulation of reaction conditions was based on above criteria.

The outlet gas components (CO, H₂, CH₄, CO₂ and Ar) after passing through a hot trap (120 °C) and a cold trap (5 °C) were determined using Agilent 7890A gas chromatography with TCD detector (5A molecular sieve column and Plot Q column) and FID detector (Al₂O₃ capillary column) using He as carrier gas. The liquid products were collected from the hot trap and cold trap, followed by determination offline with FID detector (Heavy hydrocarbons were analyzed by HP-5 column and oxygenates were quantified by HP-INNOWAX column). 1,4-dioxane was used as internal standard for the aqueous products; and decalin was used as internal standard for the oily products.

CO conversion was defined as: CO conversion (%) =
$$\frac{F_{CO,in} - F_{CO,out}}{F_{CO,in}} \times 100$$
 (1)

Product selectivity was defined as: Selectivity (mol %) = $\frac{F_{Ci} \times i}{F_{CO,in} - F_{CO,out}} \times 100$ (2) Where *F* is the moles of CO and product *Ci* (CO₂, hydrocarbon or alcohols) containing *i* carbon atoms. The mass balance and carbon balance have been calculated at each product and kept between 90% and 93%.

3. Characterizations of catalysts

Powder XRD measurements were performed on a Rigaku XRD-6000 diffractometer, using Cu K α radiation (λ = 0.15418 nm) at 40 kv and 30 mA, with a scanning rate of 5° min⁻¹ and a 2 θ angle ranging from 3° to 90°. Scanning electron microscope (SEM; Zeiss SUPRA 55) with an accelerating voltage of 20 kV was performed. The phases of components were identified based on JCPDS standard cards. The scanning transmission electron microscopy (STEM) and EDX mapping measurements were performed on a FEI Tecnai G2 F20 microscope with an accelerating voltage of 120 kV. The specific surface area determination and pore volume analysis were performed by Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) methods using a Quantachrome Autosorb-1C-VP Analyzer. Elemental analysis for Cu and Fe was performed using a Shimadzu ICPS-75000 inductively coupled plasma atomic emission spectrometer (ICP-AES).

Figure S1. XRD patterns of (a) CuFeM₁-LDH precursors and (b) CuFeM₁ catalysts with different elements.

Figure S2. SEM images of CuFeM₁-LDH with different promoter elements.

Figure S3. XRD patterns of (a) CuFeAg_x-LDH precursors and (b) CuFeAg_x catalysts with different Ag/(Cu + Fe) ratios.

Catalysts ^{<i>a,b</i>}	Conv.		S	electivity[%	6]		Alcohols distribution[%] ^c						
Catalysts	[%]	CH_4	C ₂₊ H	C ₂₊ =H	ROH	CO ₂	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH		
CuFeMo ₁	21.4	33.2	7.7	7.9	11.8	39.4	45.7(5.4)	36.3(4.3)	10.4(1.2)	4.8(0.6)	2.8(0.3)		
CuFeIn ₁	1.8	58.1	8.3	11.0	_	22.6	_	_	_	_	_		
CuFeAg ₁	40.1	8.1	28.6	18.4	18.9	26.9	9.9(1.9)	28.3(5.3)	10.8(2.0)	8.5(1.6)	42.5(8.1)		
CuFeCr ₁	6.1	5.7	25.3	13.0	10.6	45.4	69.8(7.4)	21.7(2.3)	8.5(0.9)	_	_		
CuFeGa ₁	15.8	10.9	20.4	27.7	12.8	28.2	34.6(4.4)	44.8(5.7)	12.9(1.7)	5.3(0.7)	2.4(0.3)		
CuFeMn ₁	20.1	6.7	19.7	30.3	13.8	29.5	8.9(1.2)	46.4(6.4)	8.1(1.1)	5.5(0.8)	31.1(4.3)		
CuFeNb ₁	15.4	2.8	25.7	29.6	13.3	28.6	26.3(3.5)	46.3(6.2)	14.2(1.9)	8.2(1.1)	5.0(0.6)		
CuFeRe ₁	28.6	9.8	30.7	17.7	11.7	30.1	23.6(2.8)	26.9(3.1)	13.9(1.6)	12.1(1.4)	23.5(2.8)		

Table S1. Catalytic performances of samples with various promoters

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 2 MPa, 260 °C, H₂/CO=2, 3000 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Catalysts ^{a,b}	Conv.		Se	electivity[mol	%]		Alcohols distribution[%] ^c						
	[%]	CH ₄	$C_{2+}H$	C ₂₊ =H	ROH	CO ₂	МеОН	EtOH	PrOH	BuOH	C ₅₊ OH		
CuFeAg ₁	40.1	8.1	28.6	18.4	18.9	26.9	9.9(1.9)	28.3(5.3)	10.8(2.0)	8.5(1.6)	42.5(8.1)		
CuFeAg _{0.5}	70.1	4.7	25.3	12.8	25.4	31.8	12.7(3.2)	25.1(6.4)	12.5(3.2)	5.6(1.4)	44.1(11.2)		
CuFeAg _{0.1}	54.8	6.7	32.9	17.1	11.4	31.9	18.1(2.1)	31.1(3.5)	9.9(1.1)	4.9(0.6)	36.0(4.1)		
CuFeAg _{0.05}	31.7	9.0	28.7	18.2	11.5	32.6	15.0(1.7)	27.3(3.1)	9.6(1.1)	4.7(0.6)	43.4(5.0)		

Table S2. Catalytic performances of samples with various Ag loadings

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 2 MPa, 260 °C, H₂/CO=2, 3000 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Cotalvata ^{a,b}	Conv.		Se	electivity[%]			Alcoho	Total alcohols	LA STY			
	[%]	CH ₄	$C_{2+}H$	C ₂₊ =H	ROH	CO ₂	МеОН	EtOH	PrOH	BuOH	C ₅₊ OH	$ \frac{5}{[g g_{cat}^{-1} h^{-1}]} $	$[g g_{cat}^{-1} h^{-1}]$
Cu ₄ Fe ₁	47.6	8.8	24.2	22.1	19.7	25.2	11.6 (2.3)	30.3 (6.0)	14.1 (2.8)	6.2 (1.2)	37.8 (7.4)	0.14	0.051
CuFeAg _{0.5}	70.1	4.7	25.3	12.8	25.4	31.8	12.7 (3.2)	25.1 (6.4)	12.5 (3.2)	5.6 (1.4)	44.1 (11.2)	0.29	0.139
Cu ₄ Ag _{0.5}	9.9	26.0	6.2	-	61.5	6.3	91.0 (56.0)	4.3 (2.6)	1.3 (0.8)	1.0 (0.6)	2.4 (1.5)	0.09	0.002
$Fe_1Ag_{0.5}$	39.0	10.1	21.3	14.9	-	53.7	-	-	-	-	-	-	-

 Table S3. Catalytic performances of control samples

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 2 MPa, 260 °C, H₂/CO=2, 3000 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Catalyst	H ₂ /CO ratio	Temperature /°C	Pressur e /MPa	GHSV/WHSV	CO conversion/%	Total alcohol Selectivity/%	Long-chain alcohol selectivity/%	Total alcohols STY ^a	Long-chain alcohols STY ^a	reference
CuFeAg _{0.5}	2	260	2	$3000 \ mL \ g_{cat}{}^{-1} \ h^{-1}$	70.1	25.4	44.1	0.29	0.139	This work
Cu ₄ Fe ₁	2	260	1	$2400 \ mL \ {g_{cat}}^{-1} \ h^{-1}$	53.2	29.8	49.1	0.20	0.101	Nat Commun. 2020, 11, 61 Previous work
CNF-2-0.005	2	270	5	$16000 \ mL \ {g_{cat}}^{-1} \ h^{-1}$	12	50		0.38		ACS Catal. 2018, 8, 9604–9618
CuFeCo	2	350	5.5	6000 h ⁻¹	72	12.5	6	0.25	0.015	Appl. Catal. A 2015, 503, 51-61
CuZnFeMn	2	280	4	$6000 \ h^{-1}$	59.37	31.04	3.65	0.26	0.016	Catal. Commun. 2008, 9, 1869-1873
Fe/K/ Mo ₂ C(Fe/Mo= 1/14)	2	320	7	$4000 \ h^{-1}$	50.25	22.69	0.62	0.14	0.001	Catal. Lett. 2010, 136, 9-13
S2-CuFeMg-Cat	2	300	4	$2000 \ h^{-1}$	56.89	49.07	11.25	0.28	0.032	Catal. Sci. Technol. 2013, 3, 1324- 1332
3DOM Cu ₂ Fe ₁	1	220	4.8	2000 h ⁻¹	12.9	47.6	62.4	0.23	0.144	ChemCatChem 2014, 6, 473-478
CuFeK0.5M	2	320	5	6000 h ⁻¹	53	61	NA	0.32	NA	Fuel Process. Technol. 2017 , 159, 436-441
CF _{0.5}	2	260	4	$5000 \ h^{-1}$	17.99	20.77	2.5	0.05	0.001	J. Colloid Interface Sci. 2016, 470, 162-171
Fe-CuMnZrO ₂ (I)	2	310	8	$8000 \ h^{-1}$	45.5	26.2	3	0.45	0.014	J. Mol. Catal. A: Chem. 2004, 221, 51-58
CuFe NPs	2	220	6	$6000 \ h^{-1}$	17.1	21.9	64	0.14	0.085	J. Mol. Catal. A: Chem. 2013, 378, 319-325
Fe-Cu/Al ₂ O ₃ (Al ₂ O ₃ loading: 89.3%)	2.68	380	4	$10000 \ h^{-1}$	NA	62.3	NA	0.044	NA	J. Nat. Gas Chem. 2008, 17, 327-331
CuFeCrNi/CNTs	2	400	4	5000 h ⁻¹	44	46		0.021		React. Kinet. Mech. Cat. 2019, 128, 695-706
Cu-Fe@ HHSS	2	300	3	$5000 \ h^{-1}$	65.1	46.6		0.118		Appl. Catal. A 2020, 608, 117868
CoBa/AC	2	220	3	$2000 \ h^{-1}$	30.4	23.3	57			Catal. Lett. 2021 , 10.1007/s10562- 021-03602-y
1.1Rh-CoMn	1	220	6	$2000 \ mL \ g_{cat}{}^{-1} \ h^{-1}$	33.1	40.9		0.071		Appl. Catal. B 2021, 285, 119840

Table S4. Catalytic performance data for a variety of modified FT catalysts used in LAS

a				g			gca	1 t		h ⁻¹
Cu@(CuCo-alloy)/Al ₂ O ₃	2	220	2	$2000 \ mL \ {g_{cat}}^{-1} \ h^{-1}$	21.5	50.6	48.9	0.21	0.103	Green Chem. 2015, 17, 1525-1534
CoGa-ZnAl-LDO/ Al ₂ O ₃	2	260	3	$2000 \ h^{-1}$	43.5	59	37.7	0.24	0.091	J. Catal. 2016, 340, 236-247
0.4Na-Co/AC	2	220	3	$2000 \ mL \ {g_{cat}}^{-1} \ h^{-1}$	15.8	29.2	45	0.34	0.153	Appl. Catal. A 2020, 602, 117704
CoCuMn	2	200	6	3600 h ⁻¹	3	52	65	0.12	0.078	J. Am. Chem. Soc. 2013 , 135, 7114- 7117
$Co_4Mn_1K_{0.1}$	5	220	4	3600 h ⁻¹	34	44	22	0.20	0.044	Nat Commun. 2016, 7, 13058-13064

Figure S4. Time-on-stream (TOS) evolution of CO conversion, total alcohols selectivity and LA selectivity over the CuFeAg_{0.5} catalyst within 100 h test.

Figure S5. (a) HAADF-STEM images of CuFeAg₁ catalyst. (b, c, d, e and f) EDS mapping of elemental distribution for Cu, Fe, C and Ag, respectively.

Figure S6. (a) HAADF-STEM images of CuFeAg_{0.1} catalyst. (b, c, d, e and f) EDS mapping of elemental distribution for Cu, Fe, C and Ag, respectively.

Figure S7. (a) HAADF-STEM images of $CuFeAg_{0.05}$ catalyst. (b, c, d, e and f) EDS mapping of elemental distribution for Cu, Fe, C and Ag, respectively.

Figure S8. Mössbauer spectrum of CuFeAg_{0.5} sample.

Sample	BET surface area $(m^2 g^{-1})$	Ag/(Cu + Fe) ratio a	Cu Crystallite size ^b (nm)	Mean Cu particle size ^c (nm)
CuFeAg ₁	22.38	0.21	25.7	24.6
CuFeAg _{0.5}	20.07	0.10	46.4	44.8
CuFeAg _{0.1}	21.77	0.02	45.1	44.2
CuFeAg _{0.05}	25.96	0.01	33.6	32.9

Table S5. Physicochemical properties of various catalysts

^{*a*} Cu/Fe ratio was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

^b Crystallite size was determined by XRD with the Scherrer equation.

^c Mean Cu particle size was determined by mapping images.

Temp.	Conv.		Sele	ectivity[n	nol%]			Alcohol	s distrib	2	Total alcohols	LA STV		
[°C]	[%]	CH ₄	$C_{2+}H$	C ₂₊ =H	ROH	CO ₂	МеОН	EtOH	PrOH	BuOH	C ₅₊ OH	$[g g_{cat}^{-1} h^{-1}]$	$[g g_{cat}^{-1} h^{-1}]$	
220	12.2	14.6	21.3	18.6	-	45.5	-	-	-	-	-	-	-	
240	21.6	5.9	9.0	7.7	35.6	41.8	18.7 (6.7)	41.7 (14.8)	14.9 (5.3)	11.3 (4.0)	13.4 (4.8)	0.11	0.016	
260	70.1	4.7	25.3	12.8	25.4	31.8	12.7 (3.2)	25.1 (6.4)	12.5 (3.2)	5.6 (1.4)	44.1 (11.2)	0.29	0.139	
280	82.9	9.5	18.8	14.8	10.7	46.2	7.8 (0.8)	28.7 (3.1)	7.7 (0.8)	4.2 (0.4)	51.6 (5.6)	0.14	0.074	
300	96.6	18.7	22.5	20.5	3.6	34.7	12.2 (0.4)	54.3 (2.0)	14.1 (0.5)	6.5 (0.2)	12.9 (0.5)	0.05	0.008	

Table S6. Catalytic performances of CuFeAg_{0.5} under various reaction temperature^{*a,b*}

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 2 MPa, H₂/CO=2, 3000 mL g_{cat}⁻¹ h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Press.	Conv.		Se	electivity	[%]			Alcohol	s distrib	ution[%]	2	Total alcohols	LA STY
[MPa]	[%]	CH ₄	$C_{2+}H$	H C ₂₊ =H ROH		CO ₂	МеОН	EtOH	PrOH	BuOH	C ₅₊ OH	$[g g_{cat}^{-1} h^{-1}]$	$[g g_{cat}^{-1} h^{-1}]$
3.00	63.8	7.9	27.1	7.8	14.7	42.5	7.5 (1.1)	26.0 (3.8)	7.3 (1.1)	3.8 (0.6)	55.4 (8.1)	0.22	0.111
2.00	70.1	4.7	25.3	12.8	25.4	31.8	12.7 (3.2)	25.1 (6.4)	12.5 (3.2)	5.6 (1.4)	44.1 (11.2)	0.29	0.139
1.00	50.6	10.1	25.4	8.7	14.1	41.7	18.7 (2.6)	35.2 (5.0)	11.8 (1.7)	5.8 (0.8)	28.5 (4.0)	0.13	0.041
0.14	79.4	9.5	18.4	13.6	4.8	59.1	18.0 (0.9)	18.1 (0.9)	11.1 (0.5)	5.2 (0.2)	47.6 (2.3)	0.06	0.028

Table S7. Catalytic performances of CuFeAg_{0.5} under various reaction pressure^{*a,b*}

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 260 °C, H₂/CO=2, 3000 mL g_{cat}^{-1} h⁻¹. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

WHSV	Conv.		Se	electivity	[%]			Alcohol	ls distrib		Total alcohols	LA STY	
$[mL g_{cat}^{-1} h^{-1}]$	[%]	CH ₄ C ₂₊ H C ₂₊ =H		C ₂₊ =H	ROH	CO_2	MeOH	EtOH	PrOH	BuOH	C ₅₊ OH	$[g g_{cat}^{-1} h^{-1}]$	$[g g_{cat}^{-1} h^{-1}]$
1500	82.4	6.5	7.6	15.0	25.9	45.0	22.0	48.6	11.1	4.8	13.5	0.13	0.022
1000	0200	0.0	,	1010	_0.0		(5.7)	(12.6)	(2.9)	(1.2)	(3.5)	0110	0.022
3000	70.1	47	253	12.8	25.4	31.8	12.7	25.1	12.5	5.6	44.1	0.29	0 139
5000	/0.1	1.7	20.0	12.0	20.1	51.0	(3.2)	(6.4)	(3.2)	(1.4)	(11.2)	0.29	0.159
4500	12.8	0.1	25.0	18.5	5 2	42.1	17.2	36.1	9.9	4.8	32.0	0.05	0.010
4300	43.0	9.1	23.0	10.5	5.5	42.1	(0.9)	(1.9)	(0.5)	(0.3)	(1.7)	0.05	0.019
6000	26.5	117	20.2	25.2	1 1	11 7	19.6	35.6	9.4	7.8	27.6	0.01	0.004
0000	20.3	11./	20.3	23.2	1.1	41./	(0.2)	(0.4)	(0.1)	(0.1)	(0.3)	0.01	0.004

 Table S8. Catalytic performances of CuFeAg_{0.5} under various WHSV^{a,b}

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h. ^{*b*} Reaction conditions: 2 MPa, 260 °C, H₂/CO=2. ^{*c*} Normalized data to S_{ROH}, mol% in brackets.

Catalysts ^{a,b}	CO Conv.	C ₂ H ₄ Conv.		S	electivity	[%]		Alcohols distribution[%]					
	[%]	[%]	CH ₄	C ₂₊ H	C ₃₊ =H	ROH	CO ₂	МеОН	EtOH	PrOH	BuOH	C ₅₊ OH	
Cu ₄ Fe ₁	16.3	26.7	0.1	7.8	11.1	36.3	44.7	13.5	33.3	46.3	1.9	5.0	
CuFeAg ₁	15.6	25.1	0.1	7.6	13.3	35.0	44.0	15.6	46.9	31.8	1.6	4.1	
CuFeAg _{0.5}	33.9	72.9	0.1	5.7	3.4	45.1	45.7	38.3	6.6	52.1	1.4	1.6	
CuFeAg _{0.1}	18.9	29.5	0.1	10.3	16.5	30.0	43.1	20.4	45.4	28.9	1.5	3.8	
CuFeAg _{0.05}	10.7	19.8	0.1	14.0	15.7	26.6	43.6	22.3	44.4	27.7	1.4	4.2	

Table S9. Catalytic performances of Cu_4Fe_1 and $CuFeAg_x$ with addition of 8% $C_2H_4^{a,b}$

^{*a*} Activation conditions: 0.5 g precursor, H₂: CO: CO₂=1: 1: 2 (40 mL min⁻¹), 2 °C min⁻¹, 300 °C 2 h + 350 °C 1 h ^{*b*} Reaction conditions: 2 MPa, 260 °C, H₂/CO=2, 3000 mL g_{cat}^{-1} h⁻¹

Figure S9. C_1 - C_4 alcohols selectivity over the Cu_4Fe_1 and $CuFeAg_{0.5}$ catalysts before/after the addition of C_2H_4 .