Supporting Information

Synthesis of an Ammelide-Based Ultra-microporous Cd-MOF for Sensitive Detection of Dichromate Ions

Linfeng Liang,^{1,2*} Yin-Kang Ding,¹ Yang Yin,¹ Feng-Fan Yang,¹ Jing Yang¹

¹Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, Shanxi, China ²Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province *E-mail: jtcl@sxu.edu.cn*

Contents

Section 1 Materials and Synthetic Procedures

All solvents and materials except ammelide were purchased commercially and used without further purification. 5-Azacytosine was purchased from Adamas-Beta. DMF and Methanol were purchased from Tianjin Damao Chemical Reagent Factory.

Synthesis of Ammelide

2.00g 5-Azacytosine was put into 40mL of acetic acid, and 20.00mL of 30% hydrogen peroxide was added, and heated to 50°C with stirring, and the reaction was carried out for 6h, and then the reaction was allowed to stand at 5°C for 24 hours, and a white precipitate was obtained. Then the white precipitate was filtered out, washed with water and dried to obtain 1.64 g ammelide, with a yield of 71.62%. ¹H NMR (DMSO-d6, 600 MHz, δ) as shown in Figure S1 10.73, 10.43, and 7.00 ppm, with an integrated area ratio of approximately 1:1:2. Characteristic IR stretching vibrations at 3304, 2861, 2810, 1736, 1700, 1460, 1419, 1267, 1180, 1092, 1042, 987, 908, 869, 660, 566, and 540 cm-1 (Figure S2), which are consistent with previously reported spectrum of ammelide. Infrared absorption spectra show that the stretching vibration at $3500~3300$ cm⁻¹ is attributed to R₂N-H and at 1640 cm⁻¹ to R₂C=O. The standard ammelide has stretching vibration peaks at 1180 and 1092 cm⁻¹. This is due to the C-O stretching vibration in the ammelide resonant, while 5-Azacytosine does not have any stretching vibration peaks. This indicates that 5-Azacytosine has been transformed to form ammelide. The UV-Vis absorption peak was observed at 200 nm (Figure S3) for 5-Azacytosine, while the obtained product reveals major absorption peak at 198 nm and 220 nm (Figure S4).

Figure S1. ¹H NMR (600 MHz, DMSO-d₆) spectra of as synthesized ammelide.

Figure S2. Infrared absorption spectra of 5-Azacytosine and ammelide.

Figure S3. UV-Vis absorption spectrum of 5-Azacytosine .

Figure S4. UV-Vis absorption spectrum of ammelide.

Synthesis of SXU-122

A mixture of ammelide (0.1 mmol, 13 mg) and $Cd(NO₃)₂·4H₂O$ (1 mol/L, 100 μ L) were dissolved in N,N-dimethylformamide/anhydrous methanol $(v/v=1:1)$ (3 mL) and sealed in a glass tube, which was heated at 120°C for 72 hours.

Activated procedure of SXU-122

After filtration, the crystalline SXU-122 was immersed in DMF solution for 3 days, exchanging fresh ethanol solution every day to remove the residual solvent, and then fresh acetone solvent to remove the DMF solvent in the same way. Finally, SXU-122 was vacuum dried at 100°C for 24 h to obtain colorless rod-like SXU-122 with 63% yield.

Section 2 Methods

Characterization

1. PXRD. The PXRD patterns of SXU-122 in different solvents (deionized water, ethanol, DMSO, etc.) were obtained by the following method: 10 mg SXU-122 was immersed in different solvents for specified period of time and filter, milled for PXRD testing. Variable temperature PXRD tests were conducted after heating SXU-122 sample to a specified temperature in a muffle furnace at a rate of 10 °C min−1 first and then stabilizing for 30 min. The Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku Ultima IV X-ray diffractometer with a step width of 1[°] min⁻¹ in 2 θ using Cu K α (λ = 0.15406 nm) radiation at 40 kV and 40 mA.

2. Fluorescence experiments. Fluorescence emission and excitation spectra were obtained on a FLS-980 fluorescence spectrometer. We measured solid-state fluorescence emission spectroscopy of activated SXU-122 and ammelide with identical mass under the same conditions. The details of the fluorescence emission spectra test in the liquid state were as follows, 2 mg of activated SXU-122 was milled, and added to 3 mL of deionized water and sonicated for 45 min. and then transferred to a fluorescence cuvette to test the emission spectra and use it as a blank sample. For anion detection and anti-interference experiments, we added other anions to the blank sample to observe the changes in the fluorescence emission spectra.

3. Gas adsorption measurements. The N_2 gas adsorption isotherms at 77K were obtained on a Quantachrome autosord iQ2 analyzer. We soaked 60 mg of SXU-122 in 10 mL of DMF for three days, exchanging it twice a day with fresh DMF, after which it was immersed in acetone for three days in the same way. Finally, SXU-122 was dried under vacuum at 373 K for 12h. Before measurement, SXU-122 samples were degassed under vacuum at 373 K for 8 h.

4. Infrared absorption spectroscopy of ammelide. We milled 2 mg of ammelide and 200 mg of KBr under the heat of an infrared baking lamp, and a portion of the sample was added to a mold to be pressed, after which it was placed in an infrared absorption spectrometer to obtain the infrared absorption spectrum of ammelide. Infrared absorption spectra were collected on a Fourier Transform Infrared Spectrometer model Nicolette iS5. Before the test, the samples and KBr were dried in an oven at 353 K for 1 h to remove surface water.

5. Thermogravimetry analyses (TG) were performed in the temperature range of 30 – 900 ° C, with a heating rate of 10 \degree C min⁻¹ under flowing nitrogen atmosphere on a Netzsch STA 449C simultaneous thermal analyzer.

X-ray crystallographic structure determination of SXU-122

The single crystal data were collected with a Rigaku XtaLab P200 diffractometer and a Dectris Pilatus 200K system at 298 K. The system was equipped with A MicroMax007 HF/VariMax rotating anode X-ray generator with confocal monochromatic Mo-Kα radiation. The collected data were solved and refined by full matrix least squares using SHELXL 2016/4.[1] The phases of the synthesized crystals were identified using powder X-ray diffraction (PXRD) method. Based on the single crystal diffraction data, simulated PXRD patterns were generated using Mercury 3.9 software.

Section 3 Supporting Tables

Table S1 Crystallographic parameters of **SXU-122**.

Material	Analytes	Method	Quenching	Ref
			constant, Ksv	
Eu-MOF	$Cr_2O_7^2$	Fluorescence	1.14×10^4 M ⁻¹	$[2]$
Tb-MOF	$Cr_2O_7^2$	Fluorescence	8.23×10^{3} M ⁻¹	$[2]$
Zr-MOFs	$Cr_2O_7^2$	Fluorescence	8.85×10^{3} M ⁻¹	$[3]$
Zn-MOFs	$Cr_2O_7^2$	Fluorescence	1.18×10^{3} M ⁻¹	$[4]$
Cd-MOFs	$Cr_2O_7^2$	Fluorescence	6.73×10^{5} M ⁻¹	$[5]$
BUT-39	$Cr_2O_7^2$	Fluorescence	1.57×10^{4} M ⁻¹	[6]
Zr-MOFs	$Cr_2O_7^2$	Fluorescence	6.49×10^{4} M ⁻¹	$[7]$
Zr-MOFs	$Cr_2O_7^2$	Fluorescence	6.88×10^{3} M ⁻¹	[8]
Zn-MOFs	$Cr_2O_7^2$	Fluorescence	7.59×10^{3} M ⁻¹	$[9]$
Tb-MOFs	$Cr_2O_7^2$	Fluorescence	1.01×10^4 M ⁻¹	$[10]$
Eu-MOFs	$Cr_2O_7^2$	Fluorescence	0.72×10^4 M ⁻¹	$[10]$
Eu-MOFs	$Cr_2O_7^2$	Fluorescence	8.98×10^{3} M ⁻¹	$[11]$
IUST-1	$Cr_2O_7^2$	Fluorescence	3.31×10^{4} M ⁻¹	$[12]$
Pb-MOFs	$Cr_2O_7^2$	Fluorescence	2.56×10^3 M ⁻¹	$[13]$
SXU-122	$Cr_2O_7^2$	Fluorescence	2.93×10^{4} M ⁻¹	this work

Table S2. Comparison with other reported MOF-based fluorescent sensors.

Section 4 Supporting Figures

Figure S5. The TG and heat flow curves of the unactivated **SXU-122**

Figure S6. N₂ adsorption isotherm at 77K of **SXU-122**.

Figure S7. H₂ adsorption isotherm at 77K of **SXU-122**.

Figure S8. Excitation and emission spectra of **SXU-122**.

Figure S9. PXRD patterns simulated **SXU-122**, as-synthesized **SXU-122** and $Cr_2O_7^2$ **@SXU-122**.

Figure S10. UV-Vis absorption spectra of different potassium salts with different anions and **SXU-122** in deionized water.

Section 5 Supporting References

[1] Sheldrick G M, et al. *Acta Crystallographica Section A Foundations and Advances,* 2015, 71, 3-8

[2] Yu H, Fan M, Liu Q, et al. *Inorganic Chemistry,* 2020, 59, 2005-2010

[3] Xin Y, Gu Q, Cheng S, et al. *ACS Applied Optical Materials,* 2024, 2, 697-703

[4] Sun Q, Yang K, Ma W, et al. *Inorganic Chemistry Frontiers,* 2020, 7, 4387-4395

[5] Ru J, Zhang R-F, Wang Y-X, et al. *Journal of Solid State Chemistry,* 2022, 311, 123119

[6] He T, Zhang Y-Z, Kong X-J, et al. *ACS Applied Materials & Interfaces,* 2018, 10, 16650-16659

[7] Wang X, Zhang Y, Shi Z, Lu T, et al. *ACS Applied Materials & Interfaces,* 2021, 13, 54217-54226

[8] Hu X, Zhang Y, Liu H, et al. *Journal of Agricultural and Food Chemistry.,* 2023, 71, 20575-20584

[9] Lv R, Wang J, Zhang Y, et al. et al. *Journal of Materials Chemistry A,* 2016, 4, 15494-15500

[10] Zhou Z-D, Wang C-Y, Zhu G-S, et al. *Joural of Materials Chemistry,* 2022, 1251, 15494

[11] Zhang C, Sun L, Yan Y, Shi H, et al. *Journal of Materials Chemistry C,* 2017, 5, 8999-9004

[12] Karbalaee Hosseini A, Pourshirzad Y, Tadjarodi A, et al. *Journal of Solid State Chemistry,* 2023, 317, 123676

[13] Ran Z, Cao S, Peng Q, Liu X, et al. *Inorganic Chemistry,* 2022, 61, 5957-5964