Supplementary Information

Electrochemical Synthesis of Nitrosation Compounds Using

CH₃NO₂ as A Nitroso Reagent

Rong Deng,^a Kai Li,^a Zhenggen Zha,^a Qi Sun*^b and Zhiyong Wang*^{a,b}

^{a*}Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
^{a*}E-mail: zwang3@ustc.edu.cn.
^{b*}Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China.
^{b*}E-mail: sunqi924@ustc.edu.cn.

Table of Contents

1、	General InformationS2
2、	Experimenetal ProcedureS2
3、	Optimization of Reaction ConditionsS4
4、	Scope of Amines for <i>N</i> -NitrosationS5
5、	Mechanistic ExperimentsS11
6、	Control Experiments
7、	Proposed possible reaction mechanism
8、	Detail Descriptions for Products
9、	Supporting Reference
10	Copies of Product NMR SpectraS24

1, General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. NMR spectra were recorded on a Bruker AV-500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F NMR: 470 MHz) spectrometer using TMS as internal reference. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. GC-MS was Shimadzu QP-5050 GC-MS system. Commercially available compounds were used without further purification. All substances were known available compounds. High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and the time-of-flight (TOF) mass analyzer. The anode electrode and cathode electrode are carbon electrode and nickel electrode, respectively. These electrodes are commercially available from GaossUnion, China.

2 Experimenetal Procedure

Typical synthesis steps of *N***-nitrosomorpholine (3a):** A mixture of morpholine (0.3 mmol), nitromethane (0.45 mmol), Me₄NI(0.09 mmol) and DABCO (0.2 mmol) and CH₃CN = 6 ml were added to an undivided electrolytic cell. The electrolytic cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 9 mA under 50°C for corresponding time. When the reaction was finished, the solution was extracted with EtOAc (3×10 mL). The combined organic layer was dried with Na₂SO₄, filtered. The solvent was removed with a rotary evaporator. The residue was purified by column chromatography on silica gel (PE/EtOAc = 3:1) to afford the desired product.

Gram-scale synthesis of N-nitrosomorpholine (3a): A mixture of morpholine (10 mmol), nitromethane (15 mmol), Me₄NI(3 mmol) and DABCO (6 mmol) and CH₃CN = 200 ml were added to an undivided electrolytic cell. The electrolytic cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 27 mA under 50°C for 29 h. When the reaction was completed, the solution was extracted with EtOAc (3×100 mL). The combined organic layer was dried with Na₂SO₄, filtered. The

solvent was removed with a rotary evaporator. The residue was purified by column chromatography on silica gel (PE/EtOAc = 3:1) to afford the desired product.

3、 Optimization of Reaction Conditions

	C +	CH ₃ NO ₂	electrode , I = 9ı additive, solv	mA , iodized salt /ent, 50°C, air	
	1a	2a			3a
entry	electrode	electrolyte	solvent	additive	Yield(%) ^b
1	Pt(+) C(-)	KI	CH ₃ CN	\	67
2	Pt(+) C(-)	Me ₄ NI	CH ₃ CN	\	75
3	Pt(+) C(-)	TBAI	CH ₃ CN	\	63
4	C(+) C(-)	Me ₄ NI	CH ₃ CN	\	72
5	C(+) Pt(-)	Me ₄ NI	CH ₃ CN	\	65
6	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	\	81
7	C(+) Ni(-)	Me ₄ NI	DCM	\	38
8	C(+) Ni(-)	Me ₄ NI	THF	\	46
9	C(+) Ni(-)	Me ₄ NI	DMF	\	76
10	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	DABCO	94
11	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	DMAP	75
12	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	КОН	78
13	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	K_2CO_3	86
14	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	TFEA	88
15 ^c	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	DABCO	56
16^d	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	DABCO	54
17	C(+) Ni(-)	\	CH ₃ CN	DABCO	trace
18^{e}	C(+) Ni(-)	Me ₄ NI	CH ₃ CN	DABCO	trace

(1) Table S1. Optimization of reaction conditions for nitrosation of secondary amine.^a

NO

^a Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), iodized salt (0.09 mmol), additive (0.2 mmol), solvent (6 mL), undivided cell, 9 mA, 6 h, 50 °C, air, 6.7F ^b Yield of isolated product. ^{*c/d*} the reaction temperature is 25°C/ 70°C. ^{*e*} Without electricity.

(2) Calculation of Faraday Efficiency in Model Reaction

= (m*n*F) / (I*t) = (0.3*0.94*2*96485) / (9*6*60*60) = 28%

4、 Scope of Amines for N-Nitrosation

(1) Scheme S2: Partial substrate expansion.

In the study of the substrate applicability range of secondary amines, the reactivity of some aromatic secondary amines is poor, such as **3aa** and **3ad**, which did not obtain the target product under standard conditions, but obtained the corresponding raw materials with high recovery rates. At the same time, when we increase the steric hindrance of the substrate, the change in yield is more significant. When the substituents are isopropyl and tert butyl, the reaction is almost impossible to proceed **(3ae-3af)**. When the substituent of the chain like secondary amine is changed to isopropyl, the target product **(3ac)** is obtained with a yield of 56%.

(2) NMR data and spectra of 3ac

N,N-diisopropylnitrous amide (3ac)

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 8:1) to give the product as a yellow oil. 56% yield, 21.8mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.04 (hept, *J* = 6.9 Hz, 1H), 4.27 (hept, *J* = 6.8 Hz, 1H), 1.52 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* =

6.9 Hz, 6H). 13 C NMR (125 MHz, Chloroform-*d*) δ 50.4, 44.5, 23.7, 19.0.

(3) DFT calculations (Gaussian 16W) of 3e.

(a) Fig. S3: Stereoscopic configuration diagram of 3e.

(b) Fig. S4: The formation of the hydrogen bong of *N-N=O* group with the adjacen Hydrogens.

	G3:M1 - Bond Semichem SmartSlide (tm) X
[1],7	Bond Type: O None O — O = O = O O O Can be any bond type for fragment matching
	Bond: Atom 1: Translate group • Atom 2: Translate group •
2 6 2 , 16	0.50000 2.55417 3.55417 Ok Cancel Help _{al}
10 12 14 15 1 5	
4	

(c) Scheme S3: All data on distances between atoms.

Distance matrix (angstroms):

		1	2	3	4	5
1	С	0.000000				
2	С	1.532676	0.000000			
3	Ν	2.472299	1.454688	0.000000		

4	S	1.836879	2.800897	3.147151	0.000000	
5	С	2.757362	3.047430	2.471056	1.838590	0.000000
6	С	3.055601	2.525590	1.460338	2.806674	1.531831
7	N	3.446502	2.381320	1.347716	4.374917	3.513576
8	0	4.429463	3.488967	2.181203	5.039068	3.769282
9	н	1.094097	2.168130	3.411641	2.387513	3.725950
10	н	1.095647	2.169947	2.772015	2.434574	2.994813
11	Н	2.176178	1.094516	2.051601	3.774074	4.005325
12	Н	2.166345	1.097513	2.092115	3.023157	3.472848
13	Н	3.724790	4.035018	3.412031	2.387280	1.094077
14	н	2.994497	3.435700	2.772917	2.434165	1.095278
15	Н	3.478781	2.818785	2.089495	3.032393	2.170300
10	ц	4 008520	2 207/01	2 05 2 2 2 1	2 770510	2 178578
16	п	4.008520	5.557451	2.032231	3.779319	2.170570
16	п	6	7	8	9	10
6	С	6 0.000000	7	8	9	10
16 6 7	C	6 0.000000 2.473177	7 0.000000	8	9	10
16 6 7 8	C N O	6 0.000000 2.473177 2.689200	7 0.000000 1.225110	8	9	10
16 6 7 8 9	C N O H	6 0.000000 2.473177 2.689200 4.042953	7 0.000000 1.225110 4.339651	8 0.000000 5.408428	9	10
6 7 8 9 10	с N O H	6 0.000000 2.473177 2.689200 4.042953 3.441522	7 0.000000 1.225110 4.339651 3.416595	8 0.000000 5.408428 4.320962	9 0.000000 1.774779	0.000000
16 6 7 8 9 10 11	п С N О H H	6 0.000000 2.473177 2.689200 4.042953 3.441522 3.402417	7 0.000000 1.225110 4.339651 3.416595 2.366618	8 0.000000 5.408428 4.320962 3.589400	9 9 0.000000 1.774779 2.552128	2.178578 10 0.000000 2.478575
16 6 7 8 9 10 11 12	с N O H H H	6 0.000000 2.473177 2.689200 4.042953 3.441522 3.402417 2.824994	7 0.000000 1.225110 4.339651 3.416595 2.366618 3.111932	8 0.000000 5.408428 4.320962 3.589400 4.142225	9 9 0.000000 1.774779 2.552128 2.469004	2.178578 10 0.000000 2.478575 3.073425
16 7 8 9 10 11 12 13	с N О H H H H	6 0.000000 2.473177 2.689200 4.042953 3.441522 3.402417 2.824994 2.166847	7 0.000000 1.225110 4.339651 3.416595 2.366618 3.111932 4.430671	8 0.000000 5.408428 4.320962 3.589400 4.142225 4.499523	9 9 0.000000 1.774779 2.552128 2.469004 4.599093	2.178578 10 0.000000 2.478575 3.073425 4.012458
16 7 8 9 10 11 12 13 14	с N O H H H H H	6 0.000000 2.473177 2.689200 4.042953 3.441522 3.402417 2.824994 2.166847 2.170135	7 0.000000 1.225110 4.339651 3.416595 2.366618 3.111932 4.430671 3.488358	8 0.000000 5.408428 4.320962 3.589400 4.142225 4.499523 3.628012	9 9 0.0000000 1.774779 2.552128 2.469004 4.599093 4.013241	2.178378 10 0.000000 2.478575 3.073425 4.012458 2.817158
16 7 8 9 10 11 12 13 14 15	- С О Н Н Н Н Н Н	6 0.000000 2.473177 2.689200 4.042953 3.441522 3.402417 2.824994 2.166847 2.170135 1.096750	7 0.0000000 1.225110 4.339651 3.416595 2.366618 3.111932 4.430671 3.488358 3.179706	8 0.000000 5.408428 4.320962 3.589400 4.142225 4.499523 3.628012 3.444993	9 9 0.000000 1.774779 2.552128 2.469004 4.599093 4.013241 4.295059	2.178378 10 0.000000 2.478575 3.073425 4.012458 2.817158 4.124398

11	12	13	14	15

11 H 0.000000

- 12 H 1.783259 0.000000
- 13 H 5.038400 4.289119 0.000000
- 14
 H
 4.207947
 4.120646
 1.772948
 0.000000

 15
 H
 3.761553
 2.676366
 2.476002
 3.076539
 0.000000
- 16 H 4.103370 3.765947 2.558515 2.479559 1.785354

16

16 H 0.000000

Distance matrix (angstroms):					
	1	2 3	4	5	
1 C	0.000000				
2 C	1.532676	0.000000			
3 N	2.472299	1.454688	0.000000		
4 S	1.836879	2.800897	3.147151	0.000000	
5 C	2.757362	3.047430	2.471056	1.838590	0.000000
6 C	3.055601	2.525590	1.460338	2.806674	1.531831
7 N	3.446502	2.381320	1.347716	4.374917	3.513576
8 O	4.429463	3.488967	2.181203	5.039068	3.769282
9 H	1.094097	2.168130	3.411641	2.387513	3.725950
10 H	1.095647	2.169947	2.772015	2.434574	2.994813
11 H	2.176178	1.094516	2.051601	3.774074	4.005325
12 H	2.166345	1.097513	2.092115	3.023157	3.472848
13 H	3.724790	4.035018	3.412031	2.387280	1.094077
14 H	2.994497	3.435700	2.772917	2.434165	1.095278
15 H	3.478781	2.818785	2.089495	3.032393	2.170300
16 H	4.008520	3.397491	2.052231	3.779519	2.178578
	6	7 8	N2 L1	10	
6 C	0.000000			0	
7 N	2.473177	0.000000			
80	2.689200	1.225110	0.000000		
9 H	4.042953	4.339651	5.408428	0.000000	
10 H	3.441522	3. <mark>41</mark> 6595	4.320962	1.774779	0.000000
11 H	3.402417	2.366618	3.589400	2.552128	2.478575
12 H	2.824994	3.111932	4.142225	2.469004	3.073425
13 H	2.166847	4.430671	4.499523	4.599093	4.012458
14 H	2.170135	3.488358	3.628012	4.013241	2.817158
15 H	1.096750	3.179706	3.444993	4.295059	4.124398
16 H	1.092970	2.507965	2.194382	5.041563	4.207651
	11 N	17-H16 ¹³	08 ¹ #16	15	
11 H	0.000000				
12 H	1.783259	0.000000			

5, Mechanistic Experiments

Cyclic Voltammetry Studies

Cyclic voltammetry data were measured with a Shanghai Chenhua potentiostat (CHI760E).

Working electrode: The working electrode is a 3 mm diameter Pt disk working electrode. Polished with 0.3 μ m aluminum oxide and then sonicated in distilled water before drying.

Reference electrode: The reference electrode consisted of a silver wire covered with silver chloride immersed in a saturated solution of potassium chloride.

Counter electrode: The counter electrode is a platinum wire that was polished with sand paper.

Fig 2. Cyclic voltammograms of **1a**, **2a** and Me₄NI in 0.1 M NH₄BF₄/CH₃CN using a Pt disk as the working electrode, and Pt wire and Ag/AgCl as the counter and reference electrodes, respectively, at a scan rate of 100 mV/s: background (curve **a**), Me₄NI (0.002 M) (curve **b**), **1a** (0.005 M) (curve **c**) and **2a** (0.005 M) (curve **d**).

6 Control Experiments

Scheme S4: Control experiments.

Scheme S4a: for BHT-4: A mixture of morpholine (0.3 mmol), nitromethane (0.45 mmol), Me₄NI (0.09 mmol) and DABCO (0.2 mmol), butylated hydroxytoluene (BHT,

0.6 mmol) and $CH_3CN = 6$ mL were added to an undivided cell. The cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 9 mA under 50°C for corresponding time.

HRMS (ESI) m/z calcd for $C_{16}H_{25}NO_2[M+H]^+$ 280.1907, found 280.1901.

Construct (DD 2)			
spectrum - [UK-2] File Edit Display Process Tools Window Heli			
	- ☆ O+ O- O× # ∿2 μΣ μα		
DR-2 8 (0.293) Cm (7:22)			1: TOF MS ES+
100	280.1901		8.58e3
s ^{&} - 280.1590			280.2178
280.1729		280.2057	
280.160 280.170	280.180 280.190	280.200 280.210	280.220

Scheme S4e: for benzaldehyde (8): A mixture of morpholine (0.3 mmol),

(nitromethyl)benzene (0.45 mmol), Me₄NI (0.09 mmol), DABCO (0.2 mmol) and $CH_3CN = 6$ mL were added to an undivided cell. The cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 9 mA under 50°C for corresponding time.

GC-MS: m/z calcd for C_7H_6O 106, found 106.

Scheme S4f: for benzoic nitrous anhydride (9): A mixture of morpholine (0.3

mmol), nitromethane (0.45 mmol), Me_4NI (0.09 mmol) and DABCO (0.2 mmol), sodium benzoate (PhCOONa, 0.3 mmol) and $CH_3CN = 6$ mL were added to an undivided cell. The cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 9 mA under 50°C for corresponding time.

HRMS (ESI) m/z calcd for $C_7H_6NO_3[M+H]^+$ 152.0342, found 152.0346.

0 [] `o^{_NO}

7、 Proposed possible reaction mechanism

Scheme 5-5: iodo-(nitro)-methane (substance 5): A mixture of morpholine

(0.3 mmol), nitromethane (0.45 mmol), Me₄NI (0.09 mmol) and DABCO (0.2 mmol) and CH₃CN = 6 ml were added to an undivided cell. The cell was equipped with a carbon electrode as anode and a nickel electrode as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 9 mA under 50°C for corresponding time.

HRMS (ESI) m/z calcd for CH₃NO₂[M+Na]⁺ 209.9023, found 209.9047.

Spectrum - [wzy-0726-4] File Edit Display Process Tools Window Help - 8 X wzy-0726-4 11 (0.406) Cm (11:15) 1: TOF MS ES+ 5.17e3 209,9047 100-209.906 m/z 209,904 209,905

NO₂ ľ

8、 Detail Descriptions for Products

4-nitrosomorpholine(3a)[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to give the product as a yellow oil. 94% yield, 32.7mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 4.26 (m, 2H), 3.85 (m, 2H), 3.82 – 3.76 (m, 2H), 3.65 – 3.57 (m, 2H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 67.0, 65.5, 49.6, 40.0.

3-methyl-4-nitrosomorpholine(3b)^[S3]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a yellow oil. 92% yield, 35.9mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 4.93 - 4.60 (m, 1H), 4.51 - 4.02 (m,1H), 3.93 - 3.86 (dd, *J* = 11.5, 3.5 Hz, 1H), 3.76 - 3.43 (m, 4H), 6.8, 0.9 Hz, 2H) 1.15 (d, *J* = 6.9 Hz, 1H) ¹³C NMR (125 MHz Acetone-*d*6)

1.50 (dd, J = 6.8, 0.9 Hz, 2H), 1.15 (d, J = 6.9 Hz, 1H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 72.6, 70.9, 67.9, 66.7, 56.2, 46.9, 45.4, 38.6, 16.0, 14.2.

2-methyl-4-nitrosomorpholine(3c)[53]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a yellow oil. 94% yield, 36.7mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 4.83 – 4.72 (m, 1H), 4.68 – 4.55 (m, 1H), 4.10 - 3.94 (ddd, *J* = 11.7, 4.3, 1.2Hz, 1H), 3.85 (2.74) (m,

1H), 3.73 -3.62 (m, 1H), 3.50 (2.42) (ddd, J = 13.3, 10.6, 1.2 Hz, 1H), 3.41 – 3.30 (m, 1H), 1.27 (d, J = 6.1 Hz, 2H), 1.18 (d, J = 6.2 Hz, 1H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 72.7, 71.3, 66.5, 65.0, 55.1, 48.9, 45.2, 39.2, 18.2, 17.8.

¹H NMR (600 MHz, Acetone-*d*6, -80°C) δ 4.87 (dd, *J* = 31.6, 13.6 Hz, 1H), 4.73 (4.63) (d, *J* = 13.0 Hz, 1H), 4.14 (3.99) (dd, *J* = 11.6, 3.8 Hz, 1H), 3.88 (2.77) (td, *J* = 12.6, 3.8 Hz, 1H), 3.78 – 3.66 (3.43 – 3.33) (m, 2H), 3.57 – 3.53 (2.56 – 2.39) (m, 1H), 1.28 (1.20) (d, *J* = 6.2 Hz, 3H).

3,3-dimethyl-4-nitrosomorpholine(3d)[53]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 84% yield, 36.3mg. ¹H NMR (500 MHz, Methanol-d4) δ 3.82 (dd, *J* = 6.0, 5.0 Hz, 2H), 3.74 – 3.69 (dd, *J* = 6.0, 5.0 Hz, 2H), 3.61 (s, 2H), 1.57 (s, 6H). ¹³C NMR

(125 MHz, Methanol-d4) δ 77.3, 67.3, 61.5, 38.3, 23.9.

4-nitrosothiomorpholin(3e)^[51]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 93% yield, 36.8mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.56 – 4.47 (m, 2H), 4.13 – 4.00 (m, 2H), 2.95 – 2.82 (m, 2H), 2.63 – 2.55 (m, 2H). ¹³C NMR (125

MHz, Chloroform-*d*) δ 52.4, 41.3, 28.9, 27.3.

¹H NMR (600 MHz, Chloroform-*d*, -60°C) δ 4.66 – 4.45 (m, 2H), 4.15 (s, 2H), 3.12 – 2.86 (t, *J* = 5.4 Hz, 2H), 2.66 (t, *J* = 5.4 Hz, 2H).

1-nitrosopiperidine(3f)^[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 90% yield, 30.1mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.22 – 4.14 (m, 2H), 3.81 – 3.74 (m, 2H), 1.84 – 1.71 (m, 4H), 1.56 (m, 2H). ¹³C NMR (125 MHz,

Chloroform-*d*) δ 49.9, 38.8, 25.4, 23.7, 23.1.

4-methyl-1-nitrosopiperidine(3g)^[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a yellow oil. 88% yield, 33.8mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.99 (m, 1H), 4.72 (m, 1H), 3.67 (td, *J* = 12.9, 3.6 Hz, 1H), 2.57 (td, *J* = 13.1, 3.9 Hz, 1H), 2.00 – 1.59

(m, 3H), 1.36 (m, 1H), 1.10 –0.97(m, 1H), 1.01 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 50.1, 39.0, 34.4, 32.7, 30.9, 21.3.

4-methoxy-1-nitrosopiperidine(3h)^[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to give the product as a yellow oil. 96% yield, 41.5mg. ¹H NMR (500 MHz, Methanol-d4) δ 4.31 (ddd, J = 12.9, 8.4, 4.3 Hz, 1H), 4.17 (ddd, J = 13.3, 6.9, 4.5 Hz, 1H), 3.91 – 3.77 (m, 2H), 3.64 (tt,

 $J = 6.6, 3.2 \text{ Hz}, 1\text{H}), 3.39 \text{ (s, 3H)}, 2.06 - 1.98 \text{ (m, 1H)}, 1.86 \text{ (m, 1H)}, 1.76 \text{ (m, 1H)}, 1.62 \text{ (m, 1H)}. ^{13}\text{C NMR} (125 \text{ MHz}, \text{Methanol-}d4) \delta 74.2, 54.9, 46.4, 35.5, 30.4, 28.7.$

4-fluoro-1-nitrosopiperidine(3i)

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a yellow oil. 90% yield, 35.6mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.06 (4.97) (tt, *J* = 5.2, 2.5 Hz, 1H), 4.51 (m, 2H), 4.20 (ddd, *J* = 14.0, 10.8, 3.9 Hz, 1H), 3.32 (ddd, *J* = 14.5,

11.0, 4.2 Hz, 1H), 2.19 (m, 1H), 2.10 – 1.89 (m, 2H), 1.81 – 1.62 (m, 1H). 13 C NMR (125 MHz, Chloroform-d) δ 87.5, 86.1, 45.3, 45.2, 34.3, 34.3, 31.5, 31.4, 29.8, 29.7. 19 F NMR (470 MHz, Chloroform-d) δ -187.1.

HRMS (ESI) m/z calcd for $C_{16}H_{25}NO_2[M+Na]^+$ 155.0591, found 155.0578.

4-chloro-1-nitrosopiperidine(3j)^[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to give the product as a yellow oil. 92% yield, 40.8mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.45 (tt, *J* = 6.1, 3.4 Hz, 1H), 4.39 (d, *J* = 4.7 Hz, 1H), 4.38 (d, *J* = 5.2 Hz, 1H) 4.23 (dt, *J* = 13.9, 5.1 Hz,

1H), 3.66 (ddd, *J* = 13.7, 9.1, 4.4 Hz, 1H), 2.25 (m, 1H), 2.13 (m, 1H), 2.01 – 1.85 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 55.5, 46.2, 35.2, 34.8, 33.3, 33.2.

1-nitroso-4-(trifluoromethyl)piperidine(3k)^[S3]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 95% yield, 51.9mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.15 – 5.05 (m, 1H), 4.90 (d, J = 13.5 Hz, 1H), 3.72 (td, J = 13.1, 3.6 Hz, 1H), 2.59 (td, J = 13.3, 3.9 Hz, 1H), 2.44 (m, 1H), 2.19 (m, 1H), 2.03 – 1.96 (m, 1H), 1.77 (qd, J = 12.6,

4.8 Hz, 1H), 1.45 (qd, J = 12.7, 5.0 Hz, 1H).¹³C NMR (125 MHz, Chloroform-d) δ 125.6 (d, J = 278.5 Hz), 39.3 (q, J = 27.7 Hz), 36.2, 24.1 (q, J = 2.7 Hz), 22.5 (q, J = 2.8 Hz). ¹⁹F NMR (470 MHz, Chloroform-d) δ -73.5.

1-nitroso-4-phenylpiperidine(3l)^[S3]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 8:1) to give the product as a light yellow solid. 68% yield, 38.7mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 7.35 – 7.19 (m, 5H), 5.11 (m, 1H), 4.83 (m, 1H), 3.92 – 3.81 (m, 1H), 3.03 (tt, *J* = 12.3, 3.4 Hz, 1H),

2.71 – 2.61 (m, 1H), 2.14 – 2.02 (m, 1H), 1.96 – 1.79 (m, 2H), 1.50 (m, 1H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 205.4, 145.1, 128.5, 126.8, 126.5, 49.8, 42.0, 38.5, 33.6, 32.0.

8-nitroso-1,4-dioxa-8-azaspiro[4.5]decane(3m)^[S3]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a white solid. 97% yield, 50.1mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 4.33 – 4.27 (m, 2H), 4.01 (t, *J* = 1.4 Hz, 4H), 3.84 – 3.78 (m, 2H), 1.91 (ddd, *J* = 7.1, 5.4, 1.2 Hz, 2H), 1.63 (ddd, *J* = 7.4, 5.6, 1.2 Hz, 2H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 106.6,

64.4, 47.2, 36.0, 35.0, 33.4.

2,2,6,6-tetramethyl-1-nitrosopiperidine(3n)^[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 8:1) to give the product as a yellow oil. 60% yield, 28.9mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 1.84 – 1.79 (m, 2H), 1.71 – 1.65 (m, 2H), 1.61 (s, 8H), 1.41 (s, 6H). ¹³C NMR (125

MHz, Chloroform-d) δ 61.1, 59.7, 40.5, 37.8, 30.8, 25.0, 15.2.

1,4-dinitrosopiperazine(3o) [S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 1:1) to give the product as a white solid. 60% yield, 25.9mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.56 (d, *J* = 1.5 Hz, 2H), 4.42 – 4.39 (m, 2H), 4.05 (td, *J* = 5.8, 1.4 Hz, 2H), 3.82 (d, *J* = 1.5 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 49.6, 47.1, 40.5, 37.8.

4-nitrosopiperazine-1-carbaldehyde(3p)^[S3]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 2:1) to give the product as a yellow oil. 84% yield, 36.0mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 18.5 Hz, 1H), 4.30 – 4.27 (m, 1H), 4.24 (dd, *J* = 6.3, 4.6 Hz, 1H), 3.82 (dd, *J* = 6.4, 4.7 Hz, 1H), 3.76 (ddd, *J* = 15.9, 6.2, 4.7 Hz, 2H), 3.64 – 3.57 (m, 1H), 3.49 (dd, *J* = 6.5,

4.7 Hz, 1H), 3.36 (dd, J = 6.4, 4.6 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 161.0, 160.9, 50.0, 48.8, 45.7, 44.0, 40.2, 39.9, 38.8, 38.6.

tert-butyl 4-nitrosopiperazine-1-carboxylate(3q)[54]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a white solid. 77% yield, 49.7mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.29 – 4.24 (m, 2H), 3.81 (t, *J* = 5.5 Hz, 2H), 3.68 (dd, *J* = 6.3, 4.5 Hz, 2H), 3.45 (t, *J* = 5.5 Hz, 2H), 1.49 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 154.3, 80.9, 49.3, 48.8, 46.1,

39.7, 28.3.

1-nitroso-4-phenylpiperazine(3r)^[54]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a white solid. 73% yield, 41.8mg. ¹H NMR (500 MHz, Acetone-*d*6) δ 7.31 – 7.22 (m, 2H), 7.03 (d, *J* =

8.0 Hz, 2H), 6.87 (t, J = 7.3 Hz, 1H), 4.43 – 4.37 (m, 2H), 3.97 – 3.86 (m, 2H), 3.49 – 3.43 (m, 2H), 3.25 – 3.18 (m, 2H). ¹³C NMR (125 MHz, Acetone-*d*6) δ 151.7, 120.0, 121.0, 117.6, 50.8, 49.8, 49.0, 40.0.

1-nitrosopyrrolidine(3s)[54]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 4:1) to give the product as a yellow oil. 82% yield, 24.6mg. ¹H NMR (500 MHz, Chloroform-d) δ 4.27 (t, *J* = 6.7 Hz, 2H), 3.59 (t, *J* = 7.1 Hz, 2H), 2.12 – 1.96 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*)

δ 48.8, 44.2, 23.0, 21.6.

2-nitroso-1,2,3,4-tetrahydroisoquinoline(3t)^[S4]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 84% yield, 40.8mg. ¹H NMR (500 MHz, Chloroform-*d*)

δ 7.29 – 7.14 (m, 4H), 4.83(5.39) (s, 2H), 4.54(3.88) (t, *J* = 5.9 Hz, 2H), 3.10 (2.96) (t, *J* = 5.9 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 135.0(133.9), 132.4, 130.0, 128.7, 128.1, 128.0, 127.3, 127.3, 127.2, 126.2, 51.3, 47.8, 44.5, 40.8, 29.8, 27.4.

2-nitrosoisoindoline(3u)^[52]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to give the product as a white grey solid. 45% yield, 20.0mg. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.36 (m, 4H), 5.63 (s, 2H), 4.90 (s, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 134.0, 133.2, 128.4, 128.1, 123.7, 123.1, 54.7, 51.4.

N,N-dibutyInitrous amide(3v) [54]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 8:1) to give the product as a

yellow oil. 71% yield, 33.7mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.07 (t, *J* = 7.3 Hz, 2H), 3.57 – 3.50 (m, 2H), 1.73 (tt, *J* = 7.6, 6.6 Hz, 2H), 1.51 – 1.43 (m, 2H), 1.39 (m, 2H), 1.30 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 52.1, 43.5, 30.4, 28.2, 20.5, 19.8, 13.7, 13.6.

N-butyl-N-methylnitrous amide (3w)[54]

The title compound was prepared according to the general working procedure and purified by column chromatography

(petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 79% yield, 27.5mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.15(3.59) (t, *J* = 7.2 Hz, 2H), 3.05(3.75) (s, 3H), 1.73(1.28) (p, *J* = 7.4 Hz, 2H), 1.37(1.48) (h, *J* = 7.4 Hz, 2H), 0.97 (0.92) (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 53.2, 44.5, 38.9, 31.1, 29.9, 27.6, 20.1, 19.5, 13.5, 13.4.

N,N-dicyclohexylnitrous amide(3x)[54]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a white solid. 73% yield, 46.0mg. ¹H NMR (500 MHz, Chloroform-d) δ 4.87 (tt, J = 12.0, 3.8 Hz, 1H), 3.72 (tt, J = 11.3, 4.4 Hz, 1H),

1.99 – 1.85 (m, 6H), 1.80 (d, J = 13.1 Hz, 2H), 1.75 – 1.65 (m, 2H), 1.59 (dd, J = 12.0, 3.6 Hz, 2H), 1.39 (m, 6H), 1.26 (m, 1H), 1.15 (m, 1H). ¹³C NMR (125 MHz, Chloroform-d) δ 58.6, 52.2, 34.4, 29.4, 26.1, 25.5, 25.4, 25.2.

N-benzyl-N-methylnitrous amide(3y)[S1]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 76% yield, 34.2mg. ¹H NMR (500 MHz, Chloroform-*d*)

δ 7.42 – 7.23 (7.18 – 7.10) (m, 5H), 5.30 (4.80) (s, 2H), 3.69 (2.94) (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 134.5, 133.8, 129.1, 128.9, 128.6, 128.4, 128.1, 128.0, 57.6, 47.8, 38.4, 30.9.

N-methyl-N-phenethylnitrous amide(3z)^[S5]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 6:1) to give the product as a yellow oil. 72% yield, 35.4mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 – 7.10 (m, 5H), 4.37 (3.78)(t, *J* = 7.2 Hz, 2H), 3.04 (2.80) (t,

J = 7.2 Hz 2H), 2.98 (3.56) (s, 3H). 13 C NMR (125 MHz, Chloroform-d) δ 138.0, 137.3, 128.8, 128.7, 128.7, 127.0, 126.8, 55.1, 47.1, 39.8, 35.1, 32.0, 31.8.

8-chloro-11-(1-nitrosopiperidin-4-ylidene)-6,11-dihydro-5H-

benzo[5,6]cyclohepta[1,2-b]pyridine(3ab)^[52]

The title compound was prepared according to the general working procedure and purified by column chromatography (petroleum ether/ethyl acetate = 2:1) to give the product as a orange solid. 78% yield, 79.3mg. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.41 (ddd, *J* = 9.8, 4.9, 1.7 Hz, 1H), 7.47 (td, *J* =

7.6, 1.7 Hz, 1H), 7.22 – 7.07 (m, 4H), 4.53 – 4.38 (m, 1H), 4.21 – 4.02 (m, 2H), 3.59 – 3.47 (m, 1H), 3.44 – 3.27 (m, 2H), 2.93 – 2.76 (m, 2H), 2.71 – 2.33 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 156.4, 156.1, 146.7 (d, *J* = 3.5 Hz), 139.6, 138.0 (d, *J* = 6.8 Hz), 137.5, 137.3, 136.2, 136.1, 135.1, 135.0, 133.4 (d, *J* = 2.8 Hz), 133.3, 130.1 (d, *J* = 12.8 Hz), 129.1 (d, *J* = 5.3 Hz), 126.4 (d, *J* = 4.6 Hz), 122.6, 49.9 (d, *J* = 18.6 Hz), 40.3 (d, *J* = 11.7 Hz), 31.6 – 31.4 (m), 31.0, 30.7, 28.8, 28.6.

HRMS (ESI) m/z calcd for $C_{19}H_{18}N_3OCI[M+Na]^+$ 340.1211, found 340.1216.

9、Supporting Reference

- [S1] R. Ali, R. Babaahmadi, M. Didsbury, R. Stephens, R. L. Melen and T. Wirth, *Chem. Eur. J.* 2023, **29**, e202300957.
- [S2] Y. Wang, S. You, M. Ruan, F. Wang, C. Ma, C. Lu, G. Yang, Z. Chen, M. Gao, Eur. J. Org. Chem. 2021, 22, 3289–3293.
- [S3] J. P. Zhao, L. J. Ding, P. C. Wang, Y. Liu, M. J. Huang, X. L. Zhou and M. Lu, Adv. Synth. Catal. 2020, 362, 5036–5043.
- [S4] J. Zhang, J. W. Jiang, Y. L. Li and X. B. Wan, J. Org. Chem. 2013, 78, 11366–11372.
- [S5] Y. P. Yu, J. M. Ostresh and R. A. Houghten, J. Org. Chem. 2003, 68, 183-186.

10、Copies of Product NMR Spectra

4-nitrosomorpholine(3a)

3-methyl-4-nitrosomorpholine(3b)

110 100 f1 (ppm) 10 200 190 160 150 140 130 120 -11

2-methyl-4-nitrosomorpholine(3c)

3,3-dimethyl-4-nitrosomorpholine(3d)

	C C C C C C C C C C C C C C C C C C C	p/ ta/
	2 T tle DR-S4-3ad. 2. 1. 1r	
	3 Comment	
	4 Origin Bruker BioSpin GmbH	
	5 Omer nmrsu	
	6 S te	
	7 Istrument AvanceNEO	
	8 Author	
	9 Solvent MeOD	
	10 Temperature 298.1	
NO	11 Pulse Sequence zgpg30	
	12 Eperiment ID	
$\langle \rangle$	13 Probe 2119470_0359 (PA BBO 50 BBF-H-D-05 Z SP)	JS1
	14 Number of Scans 256	
	15 Receiver Gain 101.0	
	16 Relaxation Delay 2.0000	
	17 Pilse Width 10.0000	
0	18 Presaturation	
	Frequency	
	19 Arquisition Time 1.0879	
	20 Arquisition Date 2024-04-12T22:47:29	
	21 M dification Date 2024-04-12122:46:08	
	22 u ass 23 Siectrometer 125.77 Feouency	
	24 Sectral Width 30120.5	
	25L west Frequency -2310.0	
	26 N cleus .3C	
	27 A quired Size \$2768	
	28 S ectral Size 32768	

4-nitrosothiomorpholin (3e)

IO 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

1-nitrosopiperidine(3f)

4-methyl-1-nitrosopiperidine(3g)

4-methoxy-1-nitrosopiperidine(3h)

4-fluoro-1-nitrosopiperidine(3i)

Parameter	Value
1 Data File Name	C:/ Users/ ASUS/ Desktop/ 谱图/ DR-
2 Title	59-5a1/ 5/ pdata/ 1/ 1r
3 Comment	DR 55 541.5.1.11
4 Onigin	Durlean DisCoin Cobl
4 Origin	Bruker Brospin Gubn
6 Site	Time So
7 Instrument	AveneeNEO
8 Author	Avanceneo
0 G have	00010
9 Solvent	CDC13
10 Temperature	296.2
12 Exportment	2g1g
13 Probe	Z119470_0359 (PA BB0 500S1 BBF-H-D-05 SP)
14 Number of Scans	16
15 Receiver Gain	101.0
16 Relaxation Delay	1. 0000
17 Pulse Width	15.0000
18 Presaturation Frequency	y
19 Acquisition Time	0. 5767
20 Acquisition Date	2024-04-24T22:02:03
21 Modification Date	2024-04-24T22:01:00
22 Class	
23 Spectrometer Frequency	470.62
24 Spectral Width	113636. 4
25 Lowest Frequency	-103880.2
26 Nucleus	19F
27 Acquired Size	65536
28 Spectral Size	65536

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

4-chloro-1-nitrosopiperidine(3j)

NO

1-nitroso-4-(trifluoromethyl)piperidine(3k)

110 100 f1 (ppm)

1-nitroso-4-phenylpiperidine(3l)

8-nitroso-1,4-dioxa-8-azaspiro[4.5]decane(3m)

2,2,6,6-tetramethyl-1-nitrosopiperidine (3n)

	₹76.3 CI 76.1 CI 75.8 CI	「900000000000000000000000000000000000
		4 Origin Bruker BioSpin GmbH 5 Owner mm/su 6 Site 7 Instrument Avance/PD
		8 Author 9 9 Solvent CDC13 10 Temperature 298,3 11 Pulse Sequence zzbg30 12 Experiment 1D 13 Probe Z1 9470_0359 (PA BB0 50051 BBF-H-D-05
		Z 8P) 14 Number of Scans Z55 15 Receiver Gain 101.0 16 Relaxation Delay 2. D000 17 Pulse Width 10 18 Presaturation Frequency
	1	19 Acquisition Time 1, B879 20 Acquisition Date 2024-06-26706:51:44 21 Modification Date 2024-06-26706:51:14 22 Class 23 Spectrometer Frequency 23 Spectrometer Frequency 12, 77 24 Spectrome With 2019
		24 Spectral Width 30 20.5 25 Lprest Frequency -2511.7 26 Nucleus 13: 27 Aquired Size 32768 28 Spectral Size 32768
	/	
IO 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)	80 70	60 50 40 30 20 10 0 -10

1,4-dinitrosopiperazine(30)

4-nitrosopiperazine-1-carbaldehyde(3p)

tert-butyl 4-nitrosopiperazine-1-carboxylate(3q)

1-nitroso-4-phenylpiperazine(3r)

-0.00

1-nitrosopyrrolidine(3s)

2-nitroso-1,2,3,4-tetrahydroisoquinoline(3t)

2-nitrosoisoindoline(3u)

N,*N*-dibutylnitrous amide(3v)

N-butyl-N-methylnitrous amide (3w)

NO N N	₹77.5 CDCI3 77.5 CDCI3	C C C C C I Parameter I 1 Data File Name I I 2 Title I Soment I 4 Origin Omer I Instrument 5 Owner I Solvent I 10 Temperature II Pulse Sequence I 12 Experiment I3 Probe 14 Number of Scans I I 16 Relatation Delay I I Progenetic 17 Pulse Width B Restruction Frequent 19 Acquisition Date 22 Class 22 Scans I 21 Modification Date 22 Class 22 Class 22 Scans I I 22 Class Spectrometer Frequency 24 Nucleus I I I I I I I I I I I I I I I I I I <	S S
		27 Acquired Size 28 Speciral Size	82768 82768

																	· · ·					
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f	1 (ppm)										

N,N-dicyclohexylnitrous amide(3x)

	DCI3 DCI3		
	77.3 CI 77.1 CI 76.8 CI	9. C. 5. Parameter 1 Data File Name	4 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
		2 Title 3 Comment	DR-s30-3az/ 2/ pdata/ 1/ 1r DR-s30-3az.2.1.1r
		4 Origin 5 Owner	Brøker BicSpin GmbH nmrsu
		6 Site 7 Instrument 8 Author	AvanceNEO
	I	9 Solvent 10 Temperature 11 Pulse Sequence 12 Experiment	CDC13 298.3 zgpg30
\bigvee \bigvee		13 Probe	Z1 9470_0259 (PA BB0 500S1 BBF-H- D-05 Z SP)
		14 Number of Scans 15 Receiver Gain 16 Relaxation Delay 17 Pulse Width	256 10.0 2.0000 10.0000
		19 Acquisition Time 20 Acquisition Date 21 Modification Date 22 Class	y 1. 0879 2024-06-0100:26:19 2024-06-0100:25:00
		23 Spectrometer Frequency 24 Spectral With 25 Lowest Frequency 26 Nucleus	125.77 30.20.5 2.83.7 13¢
		27 Acquired Size 28 Spectral Size	32 68 32 68
200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)	80 7	0 60 50 40	0 30 20 10 0

N-benzyl-*N*-methylnitrous amide(3y)

N-methyl-*N*-phenethylnitrous amide(3z)

8-chloro-11-(1-nitrosopiperidin-4-ylidene)-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-b]pyridine(3ab)

S53