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1. Instrumentation and Materials

General information

Commercially available solvents and reagents were used without further purification unless
otherwise noted. Dry THF was obtained by passing through alumina under N, in a solvent
purification system. The spectroscopic grade solvents were used as solvents for all
spectroscopic studies. Silica gel column chromatography was performed on Wako gel C-400
or C-300. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with

silica gel 60 F,., (Merck 5554).
H and 3C NMR spectra were recorded on a JEOL ECA-600 spectrometer (operating as 600 MHz

for 'H and 151 MHz for 3C) or on a JEOL JNM-AL 400 MHz FT-NMR spectrometer (operating as
400 MHz for 'H and 101 MHz for 13C) and chemical shifts were reported as the § scale in ppm
relative to internal standards CHCI, (6 = 7.26 ppm for 'H, 77.16 ppm for *C), DMSO (6 = 2.50
ppm for 1H, 39.52 ppm for 13C), and acetone-ds (0 = 2.05 ppm for 'H). HR-APCI-TOF-MS and HR-
ESI-TOF-MS were recorded on a BRUKER micrOTOF model or ultrafleXtreme model or Thermo
Fisher Scientific LTQ orbitrap XL model using positive mode.

UV-Visible absorption spectra were recorded on a Shimadzu UV-3600. Fluorescence spectra were
recorded on a JASCO FP-8500 spectrometer. Absolute fluorescence quantum yields were
determined on a HAMAMATSU C9920-02S. Fluorescence lifetime was recorded on a Hamamatsu
Photonics Quantaurus-Tau C11367. Thermogravimetric analysis (TGA) was performed in
nitrogen gas using a Shimadzu TGA-50 equipped with an aluminum pan and heated at a rate of
5 °C per minute.

Time-resolved photoluminescence spectroscopy (TR-PL) measurements were performed using a
polychromator and a streak camera system (Hamamatsu C4780) with a time resolution of less
than 30 ps. The light source for optical excitation was a Ti:sapphire regenerative amplifier
(Spectra-Physics, Spitfire Ace, pulse duration: 120 fs, repetition rate: 1 kHz, pulse energy: 3.6
m]J/pulse, and central wavelength: 800 nm) seeded by a Ti:sapphire femtosecond mode-locked
laser (Spectra-Physics, Tsunami). The excitation light (wavelength = 350 nm, fluence at sample
position = 1.3 mJ/cm?) was generated using fourth harmonic generation of the signal light (1400
nm) from an optical parametric amplifier (Light conversion, TOPAS) pumped by the amplifier.
Single-crystal diffraction analysis data were collected at -180 °C with a Rigaku XtaLAB P200 by
using graphite monochromated Cu-Ke radiation (1 = 1.54187 A) or with a Rigaku Saturn724+
CCD diffractometer with a graphite-monochromated Mo Ke radiation (4 = 0.71073 A). The
structures were solved by direct methods (SHELXT-2014/5) and refined with full-matrix least
squares technique (SHELXT-2014/ 7).[51]

Redox potentials were measured on an ALS electrochemical analyzer model 612E by cyclic

voltammetry (CV) and differential pulse voltammetry (DPV).



All calculations were carried out using the Gaussian 16 program.[52 All structures were fully
optimized without any symmetry restriction. The calculations were performed by the DFT
method with restricted B3LYP/6-311G(d,p) levells® for all atoms. NICS values were obtained
with the GIAO method at the B3LYP/6-311G(d,p) level.5l Excitation energies and oscillator
strengths were calculated with the TD-SCF method at the B3LYP/6-311G(d,p) level. The vibronic

coupling constants (VCCs) and fluorescence spectrum were computed using our in-house codes.



2. Experimental Section

3,6-Dibromocarbazole

§ NBS(2.1 eq.) H
100%

Carbazole (25.6 g, 153 mmol) was dissolved in DMF (100 mL), and a solution of NBS (60.9 g, 0.342
mmol) in DMF (200 mL) was added dropwise and the mixture was stirred at 0 °C for 2 h. Water (1500
mL) was added and the solid of 3,6-dibromocarbazole was obtained by filtration and dried under
vacuum. Yield: 49.9 g (153 mmol), 100%. TLC: Rr = 0.34 (ethyl acetate / n-hexane, 1:4); 'H NMR
(600 MHz, CDCl3): 6 =8.17 (br, 1H), 8.13 (d, J= 1.4 Hz, 2H), 7.52 (dd, /= 8.7, 1.4 Hz, 2H) and 7.32
(d, J = 8.7 Hz, 2H) ppm. The data are in consistent with the reported ones except for the chemical
shifts of NH.[5%!

3,6-Dibromo-/V-(2-phenylethyl)carbazole (7)

Ph™ > Br(5.0 eq.) Ph
NaOH (excess) \
BuyNI (10 mol%)

H

N N

Br Br rt.3h Br 7 Br
69%

3,6-Dibromocarbazole (49.9 g, 153 mmol) was dissolved in DMF (200 mL), and well crushed NaOH
(100 g, 2.5 mol) was added. After 10 min stirring, BusNI (5.5 g, 15 mmol) and 2-bromoethylbenzene

(100 mL, 750 mmol) were added and the mixture was stirred at room temperature for 3 h. After water
(1000 mL) was added, the organic phase was extracted three times with toluene, washed with water
and saturated brine, dried over anhydrous Na;SOs, and concentrated under reduced pressure. White
solid of 7 was recrystallized from methanol. Yield: 45.5 g (106 mmol), 69%. TLC: Rr = 0.34 (ethyl
acetate/n-hexane, 1:4); 'TH NMR (600 MHz, CDCl3): 6 =8.13 (d, J=2.3 Hz, 2H), 7.49 (dd, 8.5,2.1 Hz,
2H), 7.18-7.28 (m,3H), 7.12 (d, J = 8.3 Hz, 2H), 7.05 (dd, J = 7.6, 1.6 Hz, 2H), 4.47 (t, J = 7.3 Hz),
and 3.09 (t, J = 7.3 Hz, 2H) ppm; *C NMR (100 MHz, CDCl5): § = 139.12, 138.16, 129.00, 128.70,
123.46, 122.09, 45.16 and 35.11 ppm. HR-APCI-MS (positive): found m/z = 427.9642 (calcd for
C20H1¢NBr’®; = 427.9644 [M+H]")

3,6-Dimethoxy-/N-(2-phenylethyl)carbazole (8)



Ph
\ Cul (3.8 eq.)
NaOMe (excess)

Ph

N
Br 7 Br Eewﬂwziorr MeO 8 OMe
83%

7 and copper(l) iodide (75 g, 400 mmol) were suspended in DMF (300 mL), to which sodium
methoxide (131 g, 2.42 mol) methanol (500 ml) solution was added. The mixture was stirred at reflux
for 24 h. The reaction was quenched by adding water (4000 mL), and the resulting precipitate was
filtered. The obtained solid was dissolved in acetone and filtered again to remove insoluble solids. The
solvent was removed under reduced pressure, and the crude product was dissolved in dichloromethane
(500 ml). The solution was washed four times with 25% aqueous ammonia solution, water, and
saturated brine, dried over Na>SO4, and concentrated under reduced pressure. White acicular crystals
of 8 was obtained by recrystallization from methanol. Yield: 29.1 g, 83%. TLC: Rf =
0.36(EtOAc/hexane, 1:4); '"H NMR (600 MHz, acetone-ds):d = 3.10 (t, J = 7.6 Hz, 2H), 3.88 (s, 6H),
4.56 (t, J=17.6 Hz, 2H,), 7.02 (dd, J = 8.9, 2.5 Hz, 2H), 7.17 (m,1H), 7.23 (m, 4H), 7.37 (d, J=9.2
Hz, 2H), 7.67- ppm (d, J = 2.3 Hz, 2H); 1*C NMR (400 MHz, CDCl;):5 = 35.36, 45.13, 56.11, 103.11,
109.36, 114.96, 122.86, 126.56, 128.59, 128.74, 135.82, 138.80, 153.24 ppm. HR-APCI-MS
(positive): found m/z = 322.1645 (calcd for C2oH2oN O, = 322.1645 [M+H]")

2,7-Di-tert-butyl-3,6-dimethoxy-/N-(2-phenylethyl)carbazole (9)

Ph Ph
\ FeCl; (2.3 eq.) N

N BuCl (excess) QO -

MeO 0°C, 24 h
73%

Bu
Me

To the suspension of 8 (10.8 g, 33 mmol) and iron(Ill) chloride (4.08 g, 25 mmol) in dry
dichloromethane (150 mL) cooled to 0 °C under nitrogen atmosphere was added 2-chloro-2-
methylpropane (200 mL, 900 mmol) dropwise over 1 h. After the mixture was stirred overnight at 0 °C,
iron(IT) chloride (4.27 g, 26 mmol) was added and the mixture was stirred for 2.5 h. Another iron(I1I)
chloride (4.10 g, 25 mmol) was added and the mixture was further stirred for 3 h. The reaction mixture
was quenched with HCl (3 M, 300 mL), and the aqueous phase was extracted twice with
dichloromethane. The combined organic phase was washed with water three times and saturated brine
once, dried over anhydrous Na>SO, and concentrated under reduced pressure. A white solid of 9 was
recrystallized from methanol. Yield: 10.6 g (24 mmol), 73%. TLC: Ry=0.71 (ethyl acetate / n-hexane,
1:4); "H NMR (600 MHz, CDCl3): 6 = 7.44 (s, 2H), 7.17-7.22 (m,3H), 7.08 (m, 4H), 4.46 (t, J = 7.1
Hz, 2H), 3.96 (s, 6H), 3.07 (t,J = 7.1 Hz, 2H) and 1.44 (s, 18H) ppm; '*C NMR (100 MHz, CDCl5):



0=152.72, 137.14, 135.22, 128.90, 128.54, 126.45, 120.21, 102.46, 55.80, 44.79, 35.73, 35.42 and
30.09 ppm. HR-APCI-MS (positive): found m/z = 444.2893 (calcd for C3oH3sNiO, = 444.2897
[M+H]")

2,7-Di-tert-butyl-3,6-hydroxy-/N-(2-phenylethyl)carbazole (8)

Ph Ph

N N

BBr3 (2.3 eq.)

N N
B Y [\
O 9 OMe OOC, 24h 10
73%

Bu
Me

To the solution of 9 (4.92 g, 11 mmol) in dichloromethane (20 mL) under nitrogen atmosphere was
added BBr3 (1 M dichloromethane solution, 25 mL) dropwise at 0 °C. Another dichloromethane (20
mL) was added, and the mixture was stirred overnight. After further stirring at room temperature for
3 h, HCI (1 M, 100 mL) was added, and the aqueous phase was extracted with dichloromethane twice.
The combined organic phase was dried over anhydrous Na;SO4 and concentrated under reduced
pressure. The crude product was purified by using column chromatography (ethyl acetate / n-hexane,
1:4) to yield a pure white powder of 10. Yield: 3.36 g (8.1 mmol), 73%. TLC: Rr= 0.25 (ethyl acetate
/ n-hexane, 1:4); 'H NMR (600 MHz, CDCl3): § = 7,15-7.21 (m, 5H), 7.05 (m, 4H), 4.56 (br, 2H),
4.45 (t,J="1.1 Hz, 2H), 3.07 (t,J=7.1 Hz, 2H) and 1.47 (s, 18H) ppm; '*C NMR (100 MHz, CDCl5):6
=147.43, 139.22, 135.80, 128.47, 126.38, 119.87, 106.64, 44.82, 35.52, 35.20 and 29.83 ppm. HR-
APCI-MS (positive): found m/z = 416.2580 (calcd for C2sH3aN10, = 416.2584 [M+H]")

N,N’-(2-phenethyl)-tetra-tert-butyldioxadiaza[8]circulene (6-PE-"Bu)

\ Chloranil (2.1 eq.)

N

Q O CH,Cl,
HO OH t an
60%

6-PE-'Bu

To the mixture of 10 (3.02 g, 7.2 mmol) and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil, 930 mg,
3.8 mmol) in dry dichloromethane (300 mL) under nitrogen atmosphere was added boron trifluoride
diethyl ether complex (BF3*OEt,, 1.0 mL, 8.0 mmol). Chloranil (930 mg, 3.8 mmol) was added for
each time after stirring for 45 min, 1.5 h and 3.5 h and BF3°OEt; (1.0 mL, 8.0 mmol) was added after
1.5 h. The mixture was stirred for 4 h in total. HCI (1 M, 300 mL) was added, and the aqueous phase

was extracted four times with dichloromethane. The combined organic phase was dried over



anhydrous Na>SOs, and the solvent was removed under reduced pressure to give a black solid. The
crude product was stirred at 120 °C overnight with potassium hydroxide (60 g, 720 mmol), toluene
(250 mL) and ethanol (250 mL). HCI1 (2 M, 400 mL) was added, and the aqueous phase was extracted
with dichloromethane four times. The combined organic phase was dried over Na,SOs4 and
concentrated under reduced pressure. The residue was purified by column chromatography (THF / n-
hexane, 3:1) to give a yellow solid of 6-PE-Bu. Yield: 1.73 g (2.2 mmol), 60%. TLC: R¢= 0.70 (ethyl
acetate / n-hexane, 1:4); '"H NMR (600 MHz, CDCl3): § = 7.24 (s, 4H), 7.16 (m, 6H), 7.05 (m, 4H),
4.82 (t,J=6.7 Hz, 4H), 3,27 (t, J = 6.9 Hz, 4H) and 1.73 (s, 36H) ppm; 3C NMR (100 MHz, CDCls):
0 =149.37, 139.32, 136.49, 132.97, 129.01, 128.57, 126.50, 116.67, 112.42, 104.57, 45.64, 36.29,
35.01 and 30.44 ppm. HR-APCI-MS (positive): found m/z = 791.4552 (calcd for CssHsoN2O, =
791.4571 [M+H]")

Tetra-tert-butyldioxadiaza[8]circulene (6-'Bu)

Ph
t
BU kHMDS
1,4-dioxane
Bu 84%
Ph
6-PE-Bu

To the solution of 6-PE-'Bu (598 mg, 0.76 mmol) in 1,4-dioxane (300 mL) under nitrogen
atmosphere was added potassium hexamethyldisilazide toluene solution (0.5 M, 45 mL, 23 mmol)
and the mixture was stirred at 120 °C for 22 h. Then saturated aqueous ammonium chloride solution
(400 mL) was added, and the aqueous phase was extracted three times with ethyl acetate. The
combined organic phase was dried over anhydrous Na>SO4, and the solvent was removed under
reduced pressure to precipitate a solid. The obtained solid was washed with dichloromethane several
times to yield a white powder of 6-'Bu. Yield: 369 mg (0.63 mmol), 84%. TLC: R¢= 0.45 (ethyl
acetate / n-hexane, 1:4); 'TH NMR (600 MHz, CDCl3): 6 = 8.37 (br, 2H), 7.56 (s, 4H) and 1.78 (s,
36H) ppm; *C NMR (100 MHz, CDCls): 6 = 149.58, 135.98, 133.56, 116.66, 113.45, 106.46, 35.05
and 30.47 ppm. HR-APCI-MS (positive): found m/z = 583.3305 (caled for C40H43N20O, = 583.3319
[M+H]")

Dioxadiaza[8]circulene (6)



1]
\ [ )Bu AICl;

toluene/o-DCB
Bu 130 °C, 20 min
75%

6-'Bu

To the solution of 6-Bu (54.3 mg, 0.093 mmol) in toluene (50 mL) and o-dichlorobenzene (50 mL)
under nitrogen atmosphere was added aluminium chloride (259 mg, 1.9 mmol). The mixture was
stirred at 130 °C for 20 min and then cooled to room temperature. Yellow powder of 6 was obtained
by column chromatography (toluene / THF (3:1)) followed by recrystallization from n-hexane.
Yield: 25.1 mg (0.070 mmol), 75%. "H NMR (600 MHz, DMSO-ds): § = 11.93 (br, 2H), 7.92 (d, J =
8.7 Hz, 4H) and 7.82 (d, J = 8.7 Hz, 4H); *C NMR (100 MHz, DMSO-de): § = 150.51, 136.23,
115.10, 113.32, 111.01 and 109.97 ppm. HR-APCI-MS (positive): found m/z = 359.0813 (calcd for
C24H11N20, = 359.0813 [M+H]").

Solubility tests for hetero[8]circulenes 6-PE-‘Bu, 6-'Bu
Table S1. Comparison of the solubilities of 1-6 in THF, DMSO and CH:Cl..

115! 1571 s8] 4 515101

2 3 6

THF O O X O X O
DMSO O O O O X O
CH:CL X ~0 X “poor” X ~0

For compound 2, the solubilities in common organic solvents have been examined in our
previous work,"™ where the solubilities were measured by the following procedures.

(1) A small amount of solvents was added to the solids of 2.

(2) The resulting suspension was sonicated for 30 sec and the insoluble residue was removed by
filtration.

(3) The weight of the saturated solution (filtrate) was measured.

Table S2. Reported solubilities of 2 in various organic solvents.

acetone CH2ClL n-hexane toluene methanol diethyl ether THF



(mg/mL) 4.6 0.15 ~0 ~0 42 0.54 21

Using a similar method, we have roughly examined the solubilities of 6-PE-'Bu, 6-‘Bu and 6,
the summary of which is shown in Table S3.

Table S3. Solubilities of 6 in various organic solvents.

acetone CH:Cl2 n-hexane toluene methanol THF DMSO

6-PE-‘Bu

~0 17 ~0 2.3 ~0 18 ~0
(mg/mL)

6-‘Bu

~0 1.2 ~0 1.0 0.5 10 04

(mg/mL)
6

0.4 ~0 ~0 ~0 ~0 22 2.0

(mg/mL)

Hear, “~0” means the solubility is less than 0.25 mg/mL (measurement lower limit).
Compared with 2, the solubility of 6 in organic solvents are rather poor, while 6-PE-‘Bu and
6-‘Bu are relatively soluble in toluene, THF and CH2Cl2.
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Fig. S4-7 APCI mass spectra of 6. (Top: observed. Bottom: calculated for [M+H]".)



5. IR Spectra
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Fig. S5-1 IR spectra of 6-PE-"Bu (top, black), 6-'Bu (middle, red) and 6 (bottom, blue).
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Fig. S5-2 Calculated IR spectra of 6-PE-Bu (top), 6-Bu (middle) and 6 (bottom) at the level of
B3LYP/6-311G(d,p) based on the optimized structures. Half-width-at-half-height was set at 4 cm™".



6. X-Ray Analysis

Fig. S6-1 Single crystal X-ray structure for 6-PE-‘Bu. The thermal ellipsoids are scaled at 50%

probability level. Hydrogen atoms are omitted for clarity.



Fig. S6-2 Single crystal X-ray structure for 6-'Bu. The thermal ellipsoids are scaled at 50% probability

level. Hydrogen atoms are omitted for clarity.



Fig. S6-3 Single crystal X-ray structure for 6. The thermal ellipsoids are scaled at 50% probability

level. Hydrogen atoms are omitted for clarity.



Table S4 Crystal data and structure refinements for 6-PE-"Bu, 6-Bu and 6.

Compound
Empirical Formula
My

Crystal System
Space Group

a[A]

b[A]

c[A]

a[deg]

pldeg]

yldeg]
Volume [A%]

Z

Density [g/cm?]
Completeness
Goodness-of-fit
Ri [I>20(1)]
wR> (all data)
Solvent System

CCDC

6-PE-'Bu
Cs6HssN202
791.04
monoclinic
P2i/c
11.8608(1)
13.4284(1)
27.8740(1)
90
90.771(1)
90
4439.13(5)
4

1.184

0.988

1.067
0.0434
0.1366
CH2Cl; / n-hexane
2346719

6-Bu

CaoH42N20,-4.5(C4H30)-2.250

943.22
triclinic
P-1
10.2049(1)
16.5666(3)
17.5296(2)
109.901(2)
90.100(1)
106.501(2)
2655.85(8)
2

1.179
0.982
1.028
0.0773
0.2325
THF / H,O
2346718

6
C24H10N202
358.34
monoclinic
P2i/c
10.0418(4)
14.1923(4)
10.9180(3)
90
106.166(3)
90
1494.47(9)
4

1.593

0.990

1.069
0.0401
0.1143
THF / n-hexane
2346717
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Fig. S6-4 PXRD spectra of 6-PE-Bu, 6-'Bu and 6. Red lines are measured and blue ones are

calculated spectra from single crystal structures.
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Fig. S6-5 (a) PXRD spectra of 6 in the powder states prepared by two ways; 1) evaporation from
THF solution (Evap.), and ii) dropping a THF solution into n-hexane (Drop). Calculated PXRD
spectrum (Calc.) is shown in the bottom. (b) Selected region of the IR spectra of 6.
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7. Optical Studies
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Fig. S7-1 Fluorescence decay profiles for (a) 6-PE-Bu, (b) 6-Bu and (c) 6 in THF. Gray lines are

instrument response function (IRF).
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Fig. S7-2 Time-resolved photoluminescence spectroscopy of 6. a) 2D plot and b) spectra in range of

2 ns. ¢) 2D plot and d) spectra in range of 10 ns.
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Fig. S7-3 Absorption and fluorescence spectra of 6 in different concentrations ([6] = 7.4x10™* M for
black line, 7.4x10 M for red line, 7.4x10° M for blue line and 7.4x10” M for green line). Aex = 380

nm.
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Fig. S7-4 Fluorescence spectra of 6 in (a) acetone and (b) DMSO. [6] = 1.1x107 M for acetone and
1.8%10° M. Aex = 380 nm.
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Fig. S7-5 UV/Vis absorption spectra of 6 in a mixture of THF and CH:Cl..
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8. DFT Calculations

C1-C2:1.438A  C1-C1:1.389A
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Fig. S8-2 Selected bond lengths of 6 (optimized structure).
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Fig. S8-4 Energy diagram and Kohn-Sham representations for the frontier molecular orbitals of 6-

PE-Bu.



Table S5 TD-DFT calculated excitation energies and oscillator strengths of 6-'Bu-PE

Wavelength (nm) | Oscillator strength Major contributions
418.10 0.0000 H-1 > LUMO (99 %)
397.97 0.3170 HOMO -> LUMO (97 %)
392.22 0.0000 H-2 > LUMO (98 %)
370.43 0.3508 H-3 -> LUMO (95 %)

H-4 -> LUMO (89 %)
295.46 0.0000
HOMO > L+5 (7 %)
H-3 ->L+5 (6 %)
H-2 ->L+4 (5 %)
285.53 0.0028
HOMO -> L+1 (74 %)
HOMO -> L+6 (12 %)
H-2 ->L+1 (22 %)
282.06 0.1187
HOMO -> L+4 (77 %)
H-2 ->L+3 (14 %)
281.40 0.0000
HOMO -> L+2 (84 %)
H-2 > L+2 (15 %)
281.31 0.0009
HOMO -> L+3 (84 %)
H-3 ->L+4 (5 %)
H-2 ->L+5 (32 %)
276.97 0.0306
H-1 > L+1 (56 %)
H-1->L1L+6 (4 %)
H-3 > L+5 (16 %)
H-2 > L+4 (16 %)
276.83 0.0023 H-1->L+7 (3 %)
HOMO -> L+1 (12 %)
HOMO -> 6 (52 %)
H-3 > L+2 (17 %)
H-3 ->L+6 (9 %)
276.52 0.0000

H-1-> L+4 (14 %)

HOMO -> L+4 (55 %)
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Fig. S8-5 Energy diagram and Kohn-Sham representations for the frontier molecular orbitals of 6-'Bu.



Table S6 TD-DFT calculated excitation energies and oscillator strengths of 6-'‘Bu

Wavelength (nm) | Oscillator strength Major contributions
41291 0.0000 H-1->LUMO (99 %)
H-1->L+1 (2 %)
384.12 0.2235
HOMO -> LUMO (96 %)
374.91 0.0000 H-3 -> LUMO (98 %)
H-2 -> LUMO (95 %)
365.23 0.4022
H-1->L+2 (3 %)
H-4 -> LUMO (90 %)
292.06 0.0000
HOMO -> L+1 (6 %)
H-2 > L+1 (30 %)
276.43 0.0000 H-1->L+3 (6 %)
HOMO -> L+2 (63 %)
H-4 > LUMO (2 %)
270.38 0.0000 H-2 > L+2 (25 %)
HOMO -> L+1 (70 %)
267.11 0.0284 A= 14 (71 %)
H-1->L+2 (26 %)
H-6 > LUMO (3 %)
266.36 0.2209 H-3 ->L+2 (8 %)
H-1->L+1 (84 %)
H-3 > L+1 (25 %)
260.18 0.4119 H-1->L+2 (59 %)
HOMO -> L+3 (13 %)
H-3 -> L+2 (87 %)
260.02 0.0366 H-2 ->1L+3 (3 %)
H-1->L+1 (6 %)
H-5 > LUMO (2 %)
258.20 0.0000 H-2 > L+1 (63 %)
HOMO -> L+2 (30 %)
H-2 -> L+2 (65 %)
251.62 0.0000 H-1->L+4 (13 %)

HOMO > L+1 (17 %)
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Fig. S8-6 Energy diagram and Kohn-Sham representations for the frontier molecular orbitals of 6.



Table S7 TD-DFT calculated excitation energies and oscillator strengths of 6

Wavelength (nm)

Oscillator strength

Major contributions

419.87

0.0000

H-1-> LUMO (100 %)

390.33

0.2441

H-1->L+1 (2 %)

HOMO -> LUMO (96 %)

387.10

0.0000

H-2 -> LUMO (98 %)

360.00

0.2310

H-3 > LUMO (94 %)

H-1->L+2 (3 %)

290.69

0.0000

H-4 > LUMO (87 %)

HOMO -> L+1 (9 %)

272.79

0.0000

H-3 > L+1 (19 %)
H-1->143 (7 %)

HOMO -> L+2 (74 %)

267.94

0.0000

H-4 > LUMO (4 %)
H-3 > L+2 (20 %)

HOMO -> L+1 (73 %)

266.24

0.001

H-2-> L+1 (89 %)
H-1->L1+42 (9 %)

261.84

0.1608

H-5 > LUMO (3 %)
H-2 > L+2 (28 %)
H-1->L+1 (64 %)

259.73

0.1060

H-5 > LUMO (3 %)
H-3 > 143 (3 %)
H-2 > L+2 (68 %)
H-1->1+1 (24 %)

257.23

0.1806

H-7 -> LUMO (2 %)
H-2 > L+1 (8 %)
H-1->L+2 (73 %)

HOMO -> L+3 (14 %)

253.56

0.0000

H-3 > L+1 (73 %)

HOMO > L+2 (19 %)

244.36

0.0000

H-3 > L+2 (66 %)
H-2 > 143 (3 %)
H-1->L+4 (15 %)

HOMO > L+1 (11 %)




Fig. S8-7 Geometry optimized structure of S; state for 6 with THF.



9. Herzberg-Teller Effect
Within the first-order approximation, the fluorescence intensity is proportional to the square of the
transition dipole moment between the initial and final electronic states at the equilibrium nuclear
configuration. However, even if the transition dipole moment between the initial and final electronic states
vanishes (symmetry-forbidden), a molecule can exhibit weak fluorescence because of the symmetry
breaking by molecular vibration. This is called the Herzberg-Teller effect,[sn] and the theory is briefly
described below.
We consider a molecule that consists of M nuclei and N electrons. A set of electronic coordinates is
denoted by r = (1y, -+, I, - Iy), where I; = (x;,¥;,2;) in the Cartesian coordinates, and a set of mass-
weighted normal coordinates is denoted by Q = (Q4,**, Qg *** @3p—5 or 3m—¢)- The vibronic Hamiltonian
is given by
H(r,Q) =Ty(Q) + H(r,Q), (SD

where Ty (Q) is the nuclear kinetic energy operator and H,(r, Q) is the electronic Hamiltonian. The
electronic Schrodinger equation is given by

[He(r,Q) = £ (Q) ¥ (r,Q) = 0, (52)
where E,,(Q) is the electronic energy and W,,(r,Q) is the electronic wavefunction. Within the Born-

Oppenheimer approximation, the vibronic wave function ®,,,(r,Q) is expressed as a product of the

. o . s12
electronic and vibrational wavefunctions ¥, (Q),[ :

Dy (1, Q) = Wiy (1, Q) Yy (Q), (83)
where v = (Vq,***, Vg ", Vam—s oram—s) 1S a set of vibrational quantum numbers. The vibrational
Schrodinger equation is given by

[Tn(Q) + En(Q) = Eny Xy (Q) = 0, (54)
where E,,, is the vibronic energy.
The Herzberg-Teller expansion of H,(r,Q) around the reference nuclear configuration Q = 0 (in this

study, the reference nuclear configuration was taken at the equilibrium geometry of Si, i.e., the initial

. . . [S11]
electronic state of fluorescence) is given by

Ho(,Q) = ,(r,0) + ) ( (s5)

03, (r,Q)
D) o .

The electronic Schrédinger equation for H,(r,0) is given by
[}[e (r, Q) - Em(o)]lpm (r' 0) =0, (56)

where E,,(0) and ¥,,(r,0) are the electronic energy and wavefunction clamped at Q = 0. Based on the

Rayleigh-Schrodinger perturbation theory, W¥,,(r, Q) can be expressed using W, (r,0) as follows: (512

Za Vkm,a Qa

Bn(0) — E(0) 00T 7

Wi (r,Q) = Wy, (r,0) +

where V,, , is the vibronic coupling constant defined by



WmazﬁurmKM{“Qw‘%ﬂnmy (s8)

We consider the transition from initial electronic state m to final state n. The transition dipole moment
between electronic states m and n is given by
Hnm (Q) = (P (r, Q)| A(r) ¥, (1, Q)), (59)
where fi(r) is the electric dipole moment operator defined by
A == e, ($10)
i
with e being the elementary charge. Substituting Eq. (S7) into Eq (S9), the transition dipole moment is

written as

Unk (O)Vkm,a V{’*n,anufm (0)
L En(0) = E(0)  £1E,(0) = E,(0)

(@) = tn (0) + Qu + . (S11)
a k+

We consider the case where p,,,,(0) = 0 (symmetry-forbidden). Also, we consider the fluorescence from
S1 to So. In this case, the intermediate electronic states k and ¥ are energetically higher enough than Si,
which indicates |E,,(0) — E;(0)| < |E,(0) — E;(0)]. Therefore, only the first term in the square bracket
on the right-hand equation was considered below. The fluorescence occurs by borrowing the non-zero
translon dipole moment between electronic states k and n. Based on the Fermi’s golden rule, the

. . . [S13]
fluorescence spectrum from electronic state m to n is given by

L D e a

where w and c are the frequency and speed of photon, respectively, and ¢, is the vacuum permittivity.

o(w) = |y Qe Xmn) 18 (B — Emy + ), (512)

3rc3e, &

The vibrational part of the fluorescence spectrum was evaluated by approximating the vibrational
wavefunction to the eigenfunction of the displaced harmonic oscillator (see Ref. [S14] for details). The 0-
0 transition does not appear in the Herzberg-Teller spectrum because of @, in the vibrational matrix
element.

In Eq. (S12), the density of the final vibronic states was expressed using the delta function. In this study,
the broadening of the density of final vibronic states, which arises from the interactions with the surrounding

environment, was expressed using the Gaussian function,

L e

Here, o is the linewidth of the Gaussian function, which was determined so as to reproduce the linewidth

(Env/—(Emv—h(u))z

e 207 . (s13)

o(w) =

1
|<Xnv’ |Qa|)(mv)|2 W

3ncie,

of the experimental fluorescence spectrum.
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