Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols and aldehydes: Enabling the diastereoselective synthesis of [6,6,6]-trioxa-fused ketals and hexahydro-2*H*-chromenes

Ramavath Vinodkumar,^{†,§} Ashwini K. Nakate,^{†,§} Gamidi Rama Krishna,^{†,‡} and Ravindar Kontham^{*,†,§}

[†]Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. [§]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

[‡]Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

**Corresponding Author, E-mail:* <u>k.ravindar@ncl.res.in; konthamravindar@gmail.com</u>

Table of Contents

S. No	Contents	Page No	
1)	General Information	S2	
2)	Table S1. Reaction optimization studies	S 3	
3)	Synthesis of 5-hexyn-1-ols (2)	S3-S4	
4)	General Information on aldehydes (3)	S4-S5	
5)	<i>General Procedure A</i> for the Synthesis and characterization of [6,6,6]-	S5-S29	
	bis-pyrano pyrans (6 and 7) from alkynols (2) and aldehydes (3)		
6)	General Procedure B for the Synthesis and characterization of	S29-S34	
	hexahydro-2 <i>H</i> -chromens (8) from alkynols (2) and aldehydes (3)		
7)	X-ray crystallography data	S35-S38	
8)	¹ H and ¹³ C NMR Spectra	S39-S87	

1) General Information:

All reactions were performed under argon atmosphere with oven (80 °C) or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodiumbenzophenone under the argon atmosphere immediately before use. Anhydrous dichloromethane, dichloroethane, methanol and fluorobenzene were purchased from commercial sources and used without any further treatment. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel, and 30 °C corresponds to the room temperature of the laboratory when the experiments were carried out. Analytical thin-layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished with short wave UV light, anisaldehyde or KMnO₄ staining solutions followed by heating. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ¹H and ¹³C NMR spectra were recorded on Bruker AV 200, 400, and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm), the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet doublet; and br, broad. . HRMS data were recorded on Q Exactive HybridTM Quadrupole-OrbitrapTM mass spectrometer (Thermo Scientific, TM Accela 1250 pump). Experimental procedures for all new compounds and known compounds without published experimental procedures are described below. Compounds that are not presented in the main text of the manuscript are numbered starting from S1.

	H0H + 2a	Catalyst (10 mol%) Conditions, 30 °C (Table 1) 3a	Me or or 6a Not of	s bbserved	
entry	catalyst	Solvent, time	Temp.	yield (6a %) ^b	
1.	Sc(OTf) ₃	CH ₂ Cl ₂ , 24 h	rt	_d	
2.	Ni(OTf) ₂	CH ₂ Cl ₂ , 24 h	rt	_d	
3.	Zn(OTf) ₂	CH ₂ Cl ₂ , 24 h	rt	_d	
4.	Bi(OTf) ₃	CH ₂ Cl ₂ , 24 h	rt	_d	
5.	Hg(OTf) ₂	CH ₃ CN:H ₂ O(9:1), 24 h	rt	_d	
6.	Yb(OTf) ₂	CH ₃ CN	rt	_d	
7.	Ln(OTf) ₃	CH ₂ Cl ₂ , 24 h	rt	_d	
8.	In(OTf) ₃	CH ₂ Cl ₂ , 24 h	rt	_d	
9.	<i>p</i> -TSA	CH ₂ Cl ₂ , 24 h	rt	_d	
	Solvent screening				
10.	AgOTf	CH ₃ CN, 24 h	rt	15	
11.	AgOTf	$(CH_2)_2Cl_2, 5 h$	rt	65	
12.	AgOTf	$(CH_2)_2Cl_2, 3 h$	80° C	73	
13.	AgOTf	PhF, 24 h	rt	49	
14.	AgOTf	PhF, 24 h	80° C	70	
	Catalyst load screening				
15.	AgOTf (5 mol%)	CH_2Cl_2 , 24 h	rt	49	
16.	AgOTf (2 mol%)	CH ₂ Cl ₂ , 24 h	rt	30	

2) Table S1. Reaction optimization studies^{*a*}

^{*a*}Unless otherwise noted, all reaction were carried out with **2a** (1.17 mmol), **3a** (0.47 mmol) and catalyst (10 mol %), in the indicated solvent (anhydrous, 2 mL) at 30 °C. ^{*b*}Isolated yields of **6a**. ^{*c*}**2a** (0.47 mmol) and **3a** (0.47 mmol) were used. ^{*d*}No reaction observed. Tf = triflate (CF₃SO₂).

3) Synthesis of 5-hexyn-1-ols (2):

Alkynol **2a** was purchased from commercial sources, and alkynols (**2b-2g**) were synthesised by using known literature reports (see below details of chemical structures with related references.^{1,2,3,4,5,6}

¹ (a)Thorat, S. S.; Kataria, P.; Kontham, R. *Org. Lett.* **2018**, 20, 872–875. (b) Ashwini K. N.; Madhukar S. P.; Ravindar K. *Org. Biomol. Chem.*, **2018**, *16*, 3229-3240.

² Nakate, A. K.; Thorat, S. S.; Jain, S.; Gamidi, R. K.; Kumar, V.; Kontham, R. Org. Chem. Front, **2022**, 9, 802–809.

³ Rizk, T.; Bilodeau, E. J. F.; Beauchemin, A. M. Angew. Chemie - Int. Ed. 2009, 48 (44), 8325-8327.

4) General Information on aldehydes (3)

All aldehydes (3a-3r') were purchased from commercial sources.

(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid (S1):

(*S*)-Naproxen tablets were crushed and partitioned between ethyl acetate and 1.0 M HCl to neutral pH and extracted with 100 mL of EtOAc (10 mL X 3). ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.62 (m, 3H), 7.41 (dd, *J* =

⁴ Harada, T.; Muramatsu, K.; Mizunashi, K.; Kitano, C.; Imaoka, D.; Fujiwara, T.; Kataoka, H. *J. Org. Chem.*, **2008**, *73*, 249–258.

⁵ Hamasaka, G.; Uozumi, Y. Chem comm. **2014**, 50 (93) 14516-14518;

⁶ Singh, U. S.; Court, C. PCT. **2013**, No. 12. (WO 2013/086397 Al).

⁷Bellotti, P.; Huang, H. M.; Faber, T.; Laskar, R.; Glorius, F. Catalytic Defluorinative Ketyl-Olefin Coupling by Halogen-Atom Transfer. *Chem. Sci.* **2022**, *13* (26), 7855–7862.

1.8, 8.4 Hz, 1H), 7.19-7.05 (m, 2H), 3.97-3.80 (m, 4H), 1.59 (d, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 157.7, 134.9, 133.8, 129.3, 128.9, 127.2, 126.2, 126.2, 119.1, 105.6, 55.3, 45.2, 18.2.

(S)-2-(6-Methoxynaphthalen-2-yl)propanal (3z):

In an oven-dried Schlenk tube equipped with a PTFE-coated stirring bar, naproxen (S1) (691 mg, 3.00 mmol, 1.00 equiv.) was dissolved in dry THF (15 mL), then the solution was cooled to 0 $^{\circ}$ C and LiAlH₄ (342

mg, 9.00 mmol, 3.00 equiv.) was added portion wise, then the reaction was warmed at room temperature and stirred overnight. The reaction was diluted with Et₂O (20 mL), cooled to 0 °C and carefully quenched with water (400 μ L), NaOH (2M, 400 μ L), and water (1.2 mL). After warming to room temperature, MgSO₄ was added and the suspension was filtered over a short pad Celite®, rinsing thoroughly with Et₂O and the solvent was removed in vacuo. The intermediate alcohol was dissolved in CH₂Cl₂ (20 mL) and pyridinium chlorochromate (1.29 g, 6.00 mmol, 2.00 equiv.) was added portion wise. The reaction was stirred for 90 minutes, the diluted with Et₂O (40 mL) and filtered over a pad of Celite, thoroughly rinsing with Et₂O. The volatiles were removed in vacuo, then the residue was purified by flash column chromatography (SiO₂, 25% EtOAc /hexanes) to afford (**3z**) (0. 47 g, 74%) as a white solid; ¹H NMR (400MHz, CDCl₃) δ 9.73 (d, *J* = 1.38 Hz, 1H), 7.75-7.70 (m, 2H), 7.59 (s, 1H), 7.32-7.22 (m, 1H), 7.21-7.10 (m, 2H), 3.91 (s, 3H), 3.75 (q, *J* = 7.70, 13.63 Hz, 1H), 1.51 (d, *J* = 7.00 Hz, 3H); ¹³C NMR (101MHz, CDCl₃) δ 201.3, 158.0, 134.0, 132.8, 129.3, 127.8, 127.1, 126.8, 119.4, 105.7, 55.4, 53.0, 14.8. The experimental data are known in the literature report⁷.

5) *General Procedure A* for the Synthesis and characterization of [6,6,6]-bis-pyrano pyrans (6&7) from alkynols (2) and aldehydes (3):

Alkynol 2 (1.17 mmol, 2.5 equiv) and aldehyde 3 (0.47 mmol, 1.0 equiv) was taken into a single neck 10 mL round bottom flask equipped with positive argon flow, then dissolved in 2 mL of anhydrous CH_2Cl_2 . Catalyst (AgOTf, 0.047 mmol, 0.1 equiv) was added under an argon atmosphere at 30 °C. The resulting reaction mixture was stirred at 30 °C. After completion of the reaction (monitored by TLC, visualized using UV, anisaldehyde, and $KMnO_4$ staining solutions), quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2x5 mL), then washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered through a sintered glass funnel. The filtrate was concentrated under reduced pressure and purified using silica-gel column chromatography (SiO₂, 100-200 mesh) to afford the corresponding bis-pyrano pyran **6** and **7**.

9a,10a-Dimethyl-5-phenyloctahydro-2H,5H,6H-dipyrano[2,3-b:3',2'-e]pyran (6a):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.115 g, 0.99 mmol, 2.5 equiv) and benzaldehyde (**3a**) (0.05 g, 1.17 mmol, 1.0 equiv, 0.1 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.012g, 0.047 mmol) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then

extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6a**) (0.261 g, 92%) as a colourless liquid (single diastereomer). The **6a** was confirmed by ¹H, ¹³C, DEPT, HRMS and X-ray analysis; M.P (Melting Point) = 185-188 °C; TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.01 (dd, *J* = 4.8, 11.7 Hz, 2H), 3.70-3.62 (m, 3H), 1.84-1.79 (m, 3H), 1.65-1.57 (m, 3H), 1.52 (s, 6H), 1.25-1.19 (m, 2H), 1.11 (d, *J* = 13.3 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 142.6, 128.9, 128.0, 126.6, 99.6, 64.5, 43.7, 36.9, 24.0, 23.8, 20.0; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₇O₃ 303.1995; Found 303.1951.

Figure 1. ORTEP diagram of compound 6a.

9a,10a-Dimethyl-5-(p-tolyl)octahydro-2H,5H,6H-dipyrano[2,3-b:3',2'-e]pyran (6b):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol(**2a**) (0.204 g, 2.08 mmol, 2.5 equiv) and 4-methylbenzaldehyde (**3b**) (0.1 g, 0.83 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.021 g, 0.083 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10adimethyl-5-(p-tolyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6b**) (0.223 g, 85%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.13 (d, J = 7.88 Hz, 2H), 7.06 (dd, J = 8.0 Hz, 2H), 4.00 (dd, J= 5.6, 11.9 Hz, 2H), 3.70-3.58 (m, 3H), 2.33 (s, 3H), 1.84-1.77 (m, 3H), 1.65-1.60 (m, 3H), 1.51 (s, 6H), 1.25-1.19 (m, 2H), 1.14-1.07 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 139.4, 136.1, 129.6, 127.8, 99.6, 64.5, 43.7, 36.5, 24.0, 23.8, 21.2, 20.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₉O₃ 317.4410; Found 317.4405.

9a,10a-Dimethyl-5-(naphthalen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6c):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.163 g, 1.66 mmol, 2.5 equiv) and 2-naphthaldehyde (**3c**) (0.1 g, 0.66 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0169 g, 0.066 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated

aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(naphthalen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6c**) 0.168 g, 75%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.85-7.79 (m, 3H), 7.66 (s, 1H), 7.49-7.43 (m, 2H), 7.31 (dd, J = 1.6, 8.4 Hz, 1H), 4.04 (dd, J = 5.6, 11.9 Hz, 2H), 3.84 (t, J = 11.8 Hz, 1H), 3.69 (dt, J = 2.8, 12.5 Hz, 2H), 1.96-1.88 (m, 3H), 1.62 (s, 1H), 1.60 (s, 2H), 1.55 (s, 6H), 1.25-1.19 (m,

2H), 1.11 (d, J = 12.13 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 139.9, 133.7, 132.6, 128.8, 127.8, 127.6, 126.2, 125.6, 99.6, 64.6, 43.5, 37.1, 24.0, 23.9, 20.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₉O₃ 353.2111; Found 353.2110.

9a,10a-Dimethyl-5-(phenanthren-9-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6d):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.118 g, 1.20 mmol, 2.5 equiv) and phenanthrene-9-carbaldehyde (**3d**) (0.1 g, 0.48 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0122 g, 0.048 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched

with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(phenanthren-9-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6d**) 0.157 g, 81%) as a light yellow colour liquid (single diastereomer). TLC: R_f = 0.3 (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.75-8.73 (m, 2H), 8.34-8.31 (m, 1H), 8.13-8.11 (m, 1H), 7.66-7.63 (m, 4H), 6.90 (d, *J* = 2.0 Hz, 1H), 4.16-4.07 (dt, *J* = 2.25, 12.38 Hz, 2H), 4.01-3.94 (m, 2H), 2.92-2.90 (m, 2H), 2.70-2.65 (m, 2H), 2.01-1.94 (m, 2H), 1.79-1.72 (m, 2H), 1.70 (s, 6H) 1.26 (s, 1H), 1.21 (m, 1H), 1.00-0.84 (m, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.4, 141.7, 136.6, 131.2, 129.4, 128.1, 127.5, 126.9, 126.5, 126.3, 125.1, 124.9, 124.7, 123.5, 123.4, 118.5, 85.2, 62.3, 29.2, 25.1, 19.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₃₁O₃ 403.5340; Found 403.5339.

5-([1,1'-Biphenyl]-4-yl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6e):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.134 g, 1.37 mmol, 2.5 equiv) and [1,1'-biphenyl]-4-carbaldehyde (**2e**) (0.1 g, 0.54 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0138 g, 0.054 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction,

quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-([1,1'-biphenyl]-4-yl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6e**) (0.155 g, 75%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.62-7.55 (m, 4H), 7.46-7.42 (m, 2H), 7.36-7.31 (m, 1H), 7.26-7.23 (m, 2H), 4.03 (dd, J = 5.4, 11.9 Hz, 2H), 3.73-3.65 (m, 3H), 1.87-1.83 (m, 3H), 1.68-1.62 (m, 3H), 1.54 (s, 6H), 1.33-1.28 (m, 2H), 1.14 (d, J = 14.4 Hz, 2H); ¹³C NMR (CDCl₃, δ 141.7, 140.9, 139.4, 128.9, 128.8, 128.3, 127.5, 127.3, 127.1, 127.0, 99.6, 64.5, 43.7, 36.6, 24.0, 23.9, 20.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₁O₃ 379.2268; Found 379.2263.

5-(4-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6f):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.180 g, 1.83 mmol, 2.5 equiv) and 4-methoxybenzaldehyde (**3f**) (0.1 g, 0.73 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0187 g, 0.073 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(3methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6f**) (0.195 g, 80%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.08 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.00 (dd, *J* = 5.4, 11.9 Hz, 2H), 3.80 (s, 3H), 3.69-3.56 (m, 3H), 1.82-1.74 (m, 3H), 1.64-156 (m, 3H), 1.51 (s, 6H), 1.27-1.23 (m, 2H), 1.13-1.07 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.3, 134.5, 128.7, 114.3, 99.6, 64.5, 55.4, 43.9, 36.1, 24.0, 23.8, 20.0; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₀H₂₉O₄ 333.4123; Found 333.4117.

5-(4-Chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6g):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol(**2a**) (0.174 g, 1.77 mmol, 2.5 equiv) and 4-chlorobenzaldehyde (**3g**) (0.1 g, 0.57 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0146 g, 0.057 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(4chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6g**) (0.179 g, 75%) %) as a light yellow colour liquid (single diastereomer). The **6g** was confirmed by ¹H, ¹³C, DEPT, HRMS and X-ray analysis; TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃,400 MHz): δ 7.32-7.27 (m, 2H), 7.14-7.09 (m, 2H), 4.00 (dd, J = 5.4, 12.0 Hz, 2H), 3.71-3.60 (m, 3H), 1.79-1.75 (m, 3H), 1.63 (tt, J = 4.2, 13.9 Hz, 3H), 1.51 (s, 6H), 1.23-1.17 (m, 2H), 1.12 (dd, J = 3.0, 13.2 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 141.1, 132.2, 129.2, 129.1, 99.5, 64.5, 43.7, 36.5, 29.8, 23.9, 23.7, 19.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₆ClO₃ 337.8447; Found 337.8443.

Figure 2. ORTEP diagram of compound 6g.

5-(4-Fluorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6h):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.193 g, 2.00 mmol, 2.5 equiv) and 4-flourobenzaldehyde (**3h**) (0.1 g, 0.80 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.020 g, 0.080 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(4-fluorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6**h) (0.193 g 75%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.06-7.19 (m, 2H), 6.95-7.05 (m, 2H), 4.00 (dd, J = 11.9, 5.4 Hz, 2H), 3.60-3.71 (m, 3H), 1.74-1.80 (m, 3H), 1.54-1.70 (m, 3H), 1.51 (s, 6H), 1.16-1.23 (m, 2H), 1.07-1.20 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ ,161.57 (d, $J_{CF} = 244.14$ Hz), 138.12 (d, $J_{CF} = 3.05$ Hz), 129.2, 115.71 (d, $J_{CF} = 21.36$ Hz), 99.5, 64.5, 43.8, 36.3, 23.9, 23.7, 19.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –116.4; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₆FO₃ 321.4044; Found 321.4039.

5-(4-Bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6i):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.132 g, 1.35 mmol, 2.5 equiv) and 4-bromobenzaldehyde (**3i**) (0.1 g, 0.50 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0128 g, 0.050 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(4bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6i**) (0.144 g, 72%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.47-7.39 (m, 2H), 7.09-7.02 (m, 2H), 4.00 (dd, J = 5.3, 11.9 Hz, 2H), 3.71-3.60 (m, 3H), 1.80-1.74 (m, 3H), 1.68-1.60 (m, 3H), 1.51 (s, 6H), 1.23-1.16 (m, 2H), 1.12 (dd, J = 2.9, 13.1 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 141.6, 132.1, 129.7, 120.2, 99.5, 64.5, 43.7, 36.6, 23.9, 23.8, 19.9, 14.3;HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₆BrO₃ 382.1060; Found 382.1057.

5-(4-Iodophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6j):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.107 g, 1.00 mmol, 2.5 equiv) and 4-iodobenzaldehyde (**3j**) (0.1 g, 0.43 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0110 g, 0.043 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(4-iodophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6j**) (0.152 g, 83%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, *J* = 8.3 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 4.00 (dd, *J* = 5.4, 11.9 Hz, 2H), 3.71-3.60 (m, 3H), 1.79-1.73 (m, 3H), 1.63-1.59 (m, 3H), 1.51 (s, 6H), 1.24-1.17 (m, 2H), 1.12 (dd, *J* = 2.9, 13.1 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 142.3, 138.0, 130.0, 99.5, 91.6, 64.5, 43.6, 36.7, 29.8, 23.9, 23.8, 19.9; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₁₉H₂₆IO₃ 429.0921; Found 429.0924.

9a,10a-Dimethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6k):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.162 g, 1.65 mmol, 2.5 equiv) and 4-nitrobenzaldehyde (**3k**) (0.1 g, 0.66 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0159 g, 0.066 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10adimethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6k**) (0.164 g, 72%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.24-8.18 (m, 2H), 7.41-7.34 (m, 2H), 4.02 (dd, J = 5.2, 11.9 Hz, 2H), 3.85 (t, J = 11.7 Hz, 1H), 3.68 (dt, J = 2.7, 12.4 Hz, 2H), 1.86-1.64 (m, 6H), 1.53 (s, 6H), 1.20-1.04 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 150.9, 146.9, 128.8, 124.3, 99.3, 64.4, 43.6, 37.4, 23.8, 23.8, 19.8; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₆NO₅ 348.1805; Found 348.1802.

9a,10a-Dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-yl)benzonitrile(6l):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.187 g, 1.90 mmol, 2.5 equiv) and 4-formylbenzonitrile (**3l**) (0.1 g, 0.76 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0194 g, 0.076 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with

saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-yl)benzonitrile (**6**I) (0.174 g, 70%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.26 Hz, 2H), 4.01 (dd, *J* = 4.13, 12.38 Hz, 2H), 3.77 (t, *J* = 11.7 Hz, 1H), 3.71-3.63 (m, 2H), 1.83-1.62 (m, 6H), 1.52 (s, 6H), 1.19-1.06 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 148.7, 132.8, 128.8, 118.9, 110.6, 99.3, 64.4, 43.5, 37.5, 23.9, 23.8, 19.8; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₀H₂₆NO₃ 328.1907; Found 328.1901.

5-(2-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6m):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.180 g, 1.83 mmol, 2.5 equiv) and 2-methoxybenzaldehyde (**3m**) (0.1 g, 0.73 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0187g, 0.073 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 $^{\circ}$ C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through

sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(2-methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6m**) (0.185 g, 76%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.18 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 6.6 Hz, 1H), 6.99-6.90 (m, 1H), 6.88 (d, J = 8.1 Hz, 1H), 4.34 (t, J = 11.8 Hz, 1H), 3.99 (dd, J = 5.0, 11.3 Hz, 2H), 3.84 (s, 3H), 3.68-3.60 (m, 2H), 2.03-1.93 (m, 2H), 1.79-1.69 (m, 2H), 1.60-1.57 (m, 2H), 1.51 (s, 6H), 1.22-1.15 (m, 2H), 1.07 (d, J = 12.88 Hz, 2H); ¹³C NMR (CDCl₃,101 MHz): δ 127.0, 126.4, 121.2, 110.4, 99.6, 64.7, 55.5, 44.0, 29.8, 27.6, 24.3, 24.1, 20.3; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₂₀H₂₉O₄ 333.4400; Found 333.4389.

5-(3-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6n):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.180 g, 1.83 mmol, 2.5 equiv) and 3-methoxybenzaldehyde (**3n**) (0.1 g, 0.73 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.173g, 0.073 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(3-methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6n**) (0.195 g, 80%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.25-7.21 (m, 1H), 6.81-6.70 (m, 3H), 4.01 (dd, J = 4.8, 11.3 Hz, 2H), 3.81 (s, 3H), 3.69-3.62 (m, 3H), 1.80-1.75 (m, 3H), 1.64-1.59 (m, 3H), 1.52 (s, 6H), 1.12 (d, J = 12.6 Hz, 2H), 1.00-0.7 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 160.1, 144.3, 129.8, 111.2, 99.6, 64.5, 55.3, 43.6, 37.0, 29.8, 24.0, 23.8, 20.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₉O₄ 333.4213; Found 333.4209.

9a,10a-Dimethyl-5-(3-phenoxyphenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (60):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.123 g, 1.26 mmol, 2.5 equiv) and 3-phenoxybenzaldehyde (**3o**) (0.1 g, 0.73 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0128 g, 0.040 mmol, 0.1 equiv) under argon atmosphere at 30 °C and

reaction mixture was stirred at 30 °C for 8h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(3-phenoxyphenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**60**) (0.153 g, 77%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.28 (m, 3H), 7.13-7.07 (m, 1H), 7.00-6.92 (m, 3H), 6.89-6.85 (m, 2H), 3.99 (dd, *J* = 5.2, 11.8 Hz, 2H), 3.69-3.61 (m, 3H), 1.80-1.75 (m, 3H), 1.72-1.58 (m, 3H), 1.51 (s, 6H), 1.32-1.26 (m, 2H), 1.15-1.09 (m, 2H); ¹³C NMR (CDCl₃, 101 z): δ 157.6, 157.5, 144.8, 130.1, 129.9, 123.3, 118.6, 117.1, 99.5, 64.5, 43.6, 37.0, 23.9, 23.8, 19.9; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₅H₃₁O₄ 395.5110; Found 395.5106.

5-(3-(Benzyloxy)phenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6p)

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.115 g, 1.17 mmol, 2.5 equiv) and 3-(benzyloxy)benzaldehyde (**3p**) (0.1 g, 0.47 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0120 g, 0.047 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched

with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(3-(benzyloxy)phenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'e]pyran (**6p** (0.143 g, 74%) as a light yellow colour liquid (single diastereomer). TLC: $R_f =$ 0.3 (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.47-7.18 (m, 7H), 6.886.82 (m, 1H), 6.81-6.74 (m, 2H), 5.06 (s, 2H), 4.04-3.97 (m, 2H), 3.69-3.59 (m, 3H), 1.80-1.75 (m, 3H), 1.61-1.59 (m, 3H), 1.51 (s, 6H), 1.25-1.19 (m, 2H), 1.14-1.06 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 159.3, 144.3, 137.1, 129.8, 128.7, 128.1, 127.7, 112.5, 99.5, 70.1, 64.5, 43.6, 24.0, 23.8, 20.0; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₃₃O₄ 409.2373; Found 409.2369.

5-(3-Chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6q):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.174 g, 1.77 mmol, 2.5 equiv) and 3-chlorobenzaldehyde (**3q**) (0.1 g, 0.57 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0146 g, 0.057 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(3-chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6q**) (0.162 g, 68%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.34 (m, 1H), 7.33-7.08 (m, 1H), 7.19 (t, *J* = 7.75 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 4.00 (dd, *J* = 4.5, 11.8 Hz, 2H), 3.73-3.59 (m, 3H), 1.82-1.76 (m, 3H), 1.71-1.59 (m, 3H), 1.52 (s, 6H), 1.24-1.18 (m, 2H), 1.14 (d, *J* = 11.0 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 145.2, 130.5, 129.9, 123.2, 99.5, 64.5, 43.6, 37.0, 23.9, 23.8, 19.9; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₁₉H₂₆ClO₃ 337.8560; Found 337.8556.

5-(3-Bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6r):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.132 g, 1.35 mmol, 2.5 equiv) and 3-bromobenzaldehyde (**3r**) (0.1 g, 0.50 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0128 g, 0.050 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 $^{\circ}$ C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10

mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(3-bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6r**) (0.144 g, 70%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (d, *J* = 7.88 Hz, 1H), 7.32 (s, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 4.00 (dd, *J* = 4.7, 11.8 Hz, 2H), 3.73-3.59 (m, 3H), 1.82-1.76 (m, 3H), 1.71-1.59 (m, 3H), 1.52 (s, 6H), 1.24-1.18 (m, 2H), 1.14 (d, *J* = 13.8 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 145.2, 130.5, 129.9, 123.2, 99.5, 64.5, 43.6, 37.0, 23.9, 23.8, 19.9; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₁₉H₂₆BrO₃ 382.1060; Found 382.1057.

9a,10a-Dimethyl-5-(3-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6s):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.162 g, 1.65 mmol, 2.5 equiv) and 3-nitrobenzaldehyde (**3s**) (0.1 g, 0.66 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0169 g, 0.066 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture

was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(3-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6s**) (0.160 g, 70%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (td, J = 1.9, 7.5 Hz, 1H), 8.06-8.02 (m, 1H), 7.57-7.47 (m, 2H), 4.02 (dd, J = 4.38, 12.3 Hz, 2H), 3.84 (t, J = 11.8 Hz, 1H), 3.68 (dt, J = 2.6, 12.3 Hz, 2H), 1.88-1.66 (m, 6H), 1.53 (s, 6H), 1.21-1.07 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 149.0, 145.1, 129.9, 121.9, 99.4, 64.4, 43.6, 37.2, 23.9, 23.8, 19.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₆NO₅ 348.1727; Found 348.1830.

5-(2,5-Dimethoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6t):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.147 g, 1.50 mmol, 2.5 equiv) and 2,5-dimethoxybenzaldehyde (**3t**) (0.1 g, 0.60 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0153

g, 0.060 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO2, 20% EtOAc /hexanes) to afford 5-(2,5dimethoxyphenyl)-9a,10a-dimethyloctahydro-2H,5H,6H-dipyrano[2,3-b:3',2'-e]pyran (6t) (0.152 g, 70%) as a colourless liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40%) EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 6.81 (d, J = 8.8 Hz, 1H), 6.70 (dd, J = 2.9, 8.8 Hz, 1H), 6.65 (d, J = 2.8 Hz, 1H), 4.30 (t, J = 11.9 Hz, 1H), 3.98 (dd, J = 5.4, 11.5 Hz, 2H), 3.80 (s, 3H), 3.76 (s, 3H), 3.67-3.62 (m, 2H), 2.00-1.94 (m, 2H), 1.72 (d, J = 12.1 Hz, 2H), 1.59 (s, 2H), 1.51 (s, 6H), 1.21 (d, J = 13.6 Hz, 2H), 1.08 (d, J = 13.0 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.2, 153.4, 133.1, 112.9, 111.2, 110.8, 99.6, 64.7, 56.0, 55.8, 44.1, 28.0, 24.3, 24.1, 20.3; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₃₁O₅ 363.2088; Found 363.2238.

9a,10a-Dimethyl-5-(thiophen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6u):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol(**2a**) (0.218 g, 2.20 mmol, 2.5 equiv) and thiophene-2-carbaldehyde (**3u**) (0.1 g, 0.89 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.022 g, 0.089 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8h. After completion of reaction,

quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(thiophen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran

(**6u**) 0.178 g, 65%) as a light yellow colour liquid with dr 1:1. TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.16 (dd, J = 1.0, 5.0 Hz, 1H), 6.98-6.95 (m, 3H), 6.00-6.67 (m, 1H), 6.24 (d, J = 3.5 Hz, 1H), 4.01 (d, J = 9.0 Hz, 2H), 3.98-3.95 (m, 1H), 3.81-3.70 (m, 3H), 3.42 (dd, J = 3.6, 11.8 Hz, 1H), 2.60-2.54 (m, 1H), 2.47-2.40 (m, 2H), 2.36 2.24 (m, 2H), 2.17-2.10 (m, 1H), 2.10-2.01 (m, 2H), 1.97-1.85 (m, 3H), 1.84-1.72 (m, 6H), 1.71-1.61 (m, 4H), 1.59-1.56 (br. s., 4H), 1.42-1.32 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 145.2, 142.9, 127.6, 127.0, 126.4, 126.1, 124.6, 103.9, 97.6, 63.2, 62.8, 44.6, 43.4, 43.0, 40.6, 38.8, 27.5, 27.0, 24.6, 22.4, 21.3; HRMS (ESI) m/z[M+H]⁺ Calcd for C₁₇H₂₅O₃S 309.1519; Found 309.1918.

9a,10a-Dimethyl-5-(thiophen-3-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6v):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.218 g, 2.20 mmol, 2.5 equiv) and thiophene-3-carbaldehyde (**3v**) (0.1 g, 0.89 mmol, 1.0 equiv, 0.1 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.022 g, 0.089 mmol) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction,

quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-5-(thiophen-3-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-*e*]pyran (**6v**) 0.192 g, 70%) as a light yellow colour liquid with *dr* 1:1. TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.36 (dd, *J* = 3.0, 5.0 Hz, 1H), 7.24-7.23 (m, 1H), 7.21-7.19 (m, 2H), 7.01-7.00 (m, 1H), 6.74 (dd, *J* = 1.3, 5.0 Hz, 1H), 4.11-4.02 (m, 1H), 3.93 (dd, *J* = 6.0, 12.0 Hz, 1H), 3.84-3.79 (m, 2H), 3.78-3.74 (m, 1H), 3.59 (dt, *J* = 3.0, 12.6 Hz, 1H), 2.57-2.51 (m, 1H), 2.26-2.20 (m, 1H), 2.10-2.04 (m, 1H), 1.94-1.86 (m, 1H), 1.80-1.75 (m, 2H), 1.58-1.53 (m, 3H), 1.51 (s, 3H), 1.34 (d, *J* = 5.3 Hz, 1H), 1.30-127 (m, 2H), 1.27-1.25 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 141.7, 140.8, 130.0, 128.6, 125.6, 124.5, 123.0, 122.5, 103.1, 97.3, 63.1, 62.5, 44.1, 43.7, 43.0, 38.9, 34.5, 29.8, 26.6, 26.1, 24.8, 24.5, 21.3; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₁₇H₂₅O₃S 309.4360; Found 309.4357.

2,8,9a,10a-Tetramethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6w):

Following the *General Procedure A*, to the mixture of hept-6-yn-2-ol (**2b**) (0.263 g, 2.35 mmol, 2.5 equiv) and benzaldehyde (**3a**) (0.1 g, 0.94 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.024 g, 0.094 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction

mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 2,8,9a,10a-tetramethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6w**) 0.202 g, 65%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes);¹H NMR (CDCl₃, 400 MHz): 7.33 - 7.39 (m, 3H) 7.16 - 7.21 (m, 2H) 3.56 - 3.69 (m, 1H) 3.17 - 3.24 (m, 1H) 2.88 - 3.03 (m, 1H) 2.29 - 2.41 (m, 1H) 2.05 - 2.14 (m, 3H) 1.71 - 1.83 (m, 2H) 1.57 (s, 6H) 1.22 - 1.30 (m, 6H) 0.80 - 0.83 (m, 2H) 0.71 - 0.80 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 149.7, 131.8, 126.1, 124.7, 123.7, 101.5, 101.2, 70.2, 68.4, 49.3, 44.7, 42.8, 34.0, 27.9, 25.1, 24.2, 23.6, 22.6, 22.4, 19.0; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₃₁O₃ 331.4242; Found 331.4240.

2,8,9a,10a-Tetramethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6x):

Following the *General Procedure A*, to the mixture of hept-6-yn-2-ol (**2b**) (0.199 g, 1.77 mmol, 2.5 equiv) and 4-chlorobenzaldehyde (**3g**) (0.1 g, 0.71 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0181 g, 0.071 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 2,8,9a,10a-tetramethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6x**) 0.176 g, 68%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂,

40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (dd, J = 1.7, 8.1 Hz, 1H), 7.58 (dd, J = 1.6, 7.8 Hz, 1H), 7.28 (d, J = 1.4 Hz, 1H), 7.21 (dd, J = 1.6, 7.8 Hz, 1H), 3.92-3.83 (m, 1H), 3.79-3.69 (m, 1H), 2.90 (t, J = 11.7 Hz, 1H), 1.96-191 (m, 1H), 1.85-1.75 (m, 1H), 1.69 (m, 3H), 1.59 (s, 3H), 1.58-1.49 (m, 2H), 1.33-1.08 (m, 12H); ¹³C NMR (CDCl₃, 101 MHz): δ 147.5, 133.2, 132.3, 131.8, 126.1, 118.9, 110.8, 101.5, 101.2, 70.2, 68.3, 49.2, 44.6, 43.0, 34.0, 29.8, 27.9, 25.1, 24.2, 23.6, 22.6, 22.4, 19.0; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₂₁H₃₀O₃Cl 365.1800; Found 365.1905.

2,8,9a,10a-Tetramethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6y):

Following the *General Procedure A*, to the mixture of hept-6-yn-2-ol (**2b**) (0.226 g, 1.98 mmol, 2.5 equiv) and 4-nitrobenzaldehyde (**3k**) (0.1 g, 0.79 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.020 g, 0.079 mmol, 0.1 equiv) under argon atmosphere at 30 $^{\circ}C$ and reaction mixture was stirred at 30 $^{\circ}C$ for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 2,8,9a,10a-tetramethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6y**) 0.161 g, 65%) as a light yellow colour liquid (single diastereomer). TLC: R_f = 0.3 (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.31-8.09 (m, 2H), 7.42-7.26 (m, 2H), 3.98-3.63 (m, 2H), 2.98 (t, *J* = 11.7 Hz, 1H), 2.05-1.74 (m, 3H), 1.70 (s, 3H), 1.60 (s, 3H), 1.33-1.07 (m, 13H); ¹³C NMR (CDCl₃, 101 MHz): δ 149.7, 147.0, 131.8, 126.1, 124.7, 123.7, 101.5, 101.2, 70.2, 68.4, 49.3, 44.7, 42.8, 34.0, 27.9, 25.1, 24.2, 23.6, 22.6, 22.4, 19.0; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₃₀NO₅ 376.4165; Found 376.4160.

5-(4-Bromophenyl)-9a,10a-dimethyl-2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3b:3',2'-e]pyran (6z):

Following the *General Procedure A*, to the mixture of 1-phenylhex-5-yn-1-ol (**2c**) (0.234 g, 1.35 mmol, 2.5 equiv) and 4-bromobenzaldehyde (**3i**) (0.1 g, 0.54 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0138 g, 0.054 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5-(4-bromophenyl)-9a,10a-dimethyl-

2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (**6z**) 0.181 g, 63%) as a light yellow colour liquid in *dr* 2:1. TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.53 (dd, J = 2.3, 8.4 Hz, 1H), 7.43-7.28 (m, 11H), 7.11 (dd, J = 2.13, 8.4 Hz, 2H), 6.98 (dd, J = 2.25, 8.00 Hz, 1H), 4.84 (dd, J = 2.8, 11.9 Hz, 1H), 4.76 (dd, J = 3.1, 10.9 Hz, 1H), 2.96 (t, J = 11.8 Hz, 1H), 2.10-1.97 (m, 2H), 1.94 (s, 3H), 1.89-1.82 (m, 2H), 1.74 (s, 3H), 1.71-1.68 (m, 1H), 1.60-1.56 (m, 1H), 1.55-1.40 (m, 2H), 1.35-1.27 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 143.2, 143.0, 142.3, 140.2, 132.8, 132.6, 131.5, 128.7, 128.6, 128.4, 128.3, 128.1, 127.4, 127.3, 127.2, 126.8, 126.4, 126.4, 126.1, 125.7, 125.5, 120.6, 102.1, 102.1, 100.5, 76.2, 76.1, 74.4, 49.4, 45.0, 43.0, 42.3, 36.7, 34.1, 28.6, 27.9, 25.1, 24.6, 24.4, 24.2, 23.9, 19.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₃₄BrO₃ 534.2686; Found 534.2696.

9a,10a-Dimethyl-2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-yl)benzonitrile (6a'):

Following the *General Procedure A*, to the mixture of 1-phenylhex-5-yn-1-ol (**2c**) (0.331 g, 1.90 mmol, 2.5 equiv) and 4-formylbenzonitrile (**3l**) (0.1 g, 0.76 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.015g, 0.076 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 9a,10a-dimethyl-2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-yl)benzonitrile (**6a'**) 0.219 g, 60%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.56 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.27- 7.10 (m, 12H), 4.70 (d, J = 11.6 Hz, 1H), 4.63 (d, J = 11.0 Hz, 1H), 2.94 (t, J = 11.6 Hz, 1H), 2.00-1.84 (m, 3H), 1.81 (br. s., 3H), 1.73 (d, J = 13.9

Hz, 2H), 1.61 (br. s., 3H), 1.46 (br. s., 2H), 1.24-0.99 (m., 2H), 1.01 (d, J = 13.0 Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 147.1, 143.0, 142.1, 133.3, 132.4, 131.9, 128.5, 128.3, 127.5, 127.4, 126.4, 126.1, 125.5, 118.8, 111.0, 102.0, 76.1, 74.4, 49.3, 44.8, 43.1, 34.0, 28.5, 25.0, 24.4, 24.0, 19.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₃₄NO₃ 480.2531; Found 480.2524.

(S)-1-(6-methoxynaphthalen-2-yl)ethyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6b'):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.916 g, 0.933 mmol, 2.5 equiv) and 2-(6-methoxynaphthalen-2-yl)propanal (**3x**) (0.1 g, 0.466 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.022 g, 0.046 mmol, 0.1 equiv) under argon

atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO3 solution, then extracted with CH2Cl2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) afford (S)-1-(6-methoxynaphthalen-2-yl)ethyl)-9a,10a-dimethyloctahydro-2H,5H,6Hto dipyrano[2,3-b:3',2'-e]pyran (6b') 0.124 g, 65%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (400MHz, CDCl₃) δ 7.77-7.70 (m, 2H), 7.63 (s, 1H), 7.37 (dd, J = 1.63, 8.38 Hz, 1H), 7.18- 7.13 (m, 2H), 3.93 (s, 3H), 3.87-3.63 (m, 4H), 3.37 (t, J = 5.63 Hz, 2H), 2.81 (d, J = 2.25 Hz, 1H), 2.58 (s, 1H), 2.25 (s, 3H), 1.69 (m, 2H), 1.65 (m, 2H), 1.54 (m, 4H), 1.30 (s, 3H), 1.25 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 157.7, 147.0, 146.3, 133.3, 130.1, 129.4, 129.1, 128.3, 127.7, 126.9, 120.7, 119.1, 105.8, 77.5, 77.4, 76.8, 74.3, 61.9, 61.3, 55.5, 38.2, 35.3, 31.9, 29.8, 26.0, 22.3, 20.0, 19.6, 12.4, 0.1; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{26}H_{35}O_4$ $[M+H]^+$ 411.5755; Found 411.5759.

4a,5a-Dimethyl-10-(naphthalen-2-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7a):

Following the *General Procedure A*, to the mixture of 2-(prop-2-yn-1-yloxy)ethan-1-ol (**2d**) (0.160 g, 1.60 mmol, 2.5 equiv) and 2-naphthaldehyde (**3c**) (0.1 g, 0.64 mmol, 1.0 equiv) in

anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.015g, 0.064 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous

Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 4a,5a-dimethyl-10-(naphthalen-2-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (**7a**) 0.171 g, 75%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.85-7.84 (m, 1H), 7.83 (s, 2H), 7.71 (dd, J = 3.3, 5.8 Hz, 1H), 7.55-7.52 (m, 1H), 7.48-7.44 (m, 2H), 4.54 (d, J = 12.0 Hz, 1H), 4.24 - 4.17 (m, 2H), 4.10 (dt, J = 2.1, 17.7 Hz, 2H), 4.02 (dd, J = 3.6, 12.3 Hz, 1H), 3.83 (dd, J = 3.4, 12.2 Hz, 1H), 3.73-3.69 (m, 2H), 3.51-3.45 (m, 2H), 3.21 (dd, J = 3.5, 12.1 Hz, 1H), 1.78 (s, 3H), 1.70 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 135.6, 133.6, 132.9, 131.0, 129.0, 128.3, 128.0, 127.9, 127.8, 127.3, 126.1, 125.8, 97.7, 96.1, 80.3, 71.5, 68.3, 66.1, 64.1, 60.4, 57.8, 39.7, 38.9, 30.5, 29.1, 25.9, 23.9, 23.1, 22.7, 14.2, 11.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₅O₅ 357.4214; Found 357.4208.

4a,5a-Dimethyl-10-(phenanthren-9-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7b) :

Following the *General Procedure A*, to the mixture of 2-(prop-2-yn-1-yloxy)ethan-1-ol (**2d**) (0.120 g, 1.20 mmol, 2.5 equiv) and phenanthrene-9-carbaldehyde (**3d**) (0.1 g, 0.48 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.012 g, 0.048 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 4a,5a-dimethyl-10-(phenanthren-9-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (**7b**) 0.157 g, 80%) as a light yellow colour liquid (single diastereomer). The **7b** was confirmed by ¹H, ¹³C, DEPT, HRMS and X-ray analysis; M.P (Melting Point) = 202-204 °C; TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ

8.85-8.82 (m, 1H), 8.69 (d, J = 8.0 Hz, 1H), 8.15-8.12 (m, 1H), 7.93-7.91 (m, 1H), 7.80 (s, 1H), 7.70-7.86 (m, 1H), 7.64-7.59 (m, 2H), 7.53-7.52 (m, 1H), 4.94 (d, J = 11.6 Hz, 1H), 4.77 (d, J = 11.5 Hz, 1H), 4.22-4.20 (m, 1H), 4.19-4.17 (m, 1H), 4.09-4.03 (m, 1H), 3.86-3.80 (m, 2H), 3.67 (dd, J = 2.6, 11.7 Hz, 1H), 3.52-3.46 (m, 1H), 3.43-3.38 (m, 1H), 3.19 (dd, J = 3.5, 12.3 Hz, 1H), 1.88 (s, 3H), 1.86 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 167.9, 132.6, 131.5, 131.4, 131.0, 129.8, 129.1, 129.0, 128.5, 127.1, 126.9, 126.7, 126.1, 124.1, 122.5, 122.2, 98.0, 96.3, 78.0, 70.7, 68.3, 66.2, 64.2, 60.4, 58.2, 38.9, 33.4, 30.5, 29.9, 29.1, 26.0, 23.9, 23.1, 22.8, 14.3, 14.2, 11.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₇O₅ 407.4780; Found 407.4775.

Figure 3. ORTEP diagram of compound 7b.

10-([1,1'-Biphenyl]-4-yl)-4a,5a-dimethyloctahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7c):

Following the *General Procedure A*, to the mixture of 2-(prop-2-yn-1-yloxy)ethan-1-ol (**2d**) (0.137 g, 1.37 mmol, 2.5 equiv) and [1,1'-biphenyl]-4-carbaldehyde (**3e**) (0.1 g, 0.54 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0138 g, 0.054 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of

reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 10-([1,1'-biphenyl]-4-yl)-4a,5a-dimethyloctahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (**7c**) 0.167 g, 80%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (dd, J = 3.3, 5.8 Hz, 1H), 7.61-7.57 (m, 3H), 7.54-7.52 (m, 1H), 7.46-7.41 (m, 3H), 7.36-7.32 (m, 1H), 4.43 (d, J = 12.0 Hz, 1H), 4.23-4.18 (m, 2H), 4.04-3.93 (m, 2H), 3.85-3.73 (m, 2H), 3.68 -

3.66 (m, 1H), 3.58-3.51 (m, 1H), 3.47 (dd, J = 2.4, 11.3 Hz, 1H), 3.27 (dd, J = 3.4, 12.1 Hz, 1H), 1.76 (s, 3H), 1.67 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 167.9, 141.1, 140.1, 137.1, 132.6, 131.0, 129.7, 129.0, 128.9, 127.2, 97.6, 96.1, 80.1, 77.4, 71.6, 68.3, 66.1, 64.0, 60.4, 57.8, 39.3, 38.9, 30.5, 29.9, 29.1, 25.9, 23.9, 23.1, 22.7, 14.2, 11.1;HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₇O₅ 383.1853; Found 383.1857.

3,4a,5a,7-Tetramethyl-10-(p-tolyl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7d):

Following the *General Procedure A*, to the mixture of 1-(prop-2-yn-1-yloxy)propan-2-ol (**2e**) (0.238 g, 2.00 mmol, 2.5 equiv) and 4-methylbenzaldehyde (**3b**) (0.1 g, 0.83 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.021 g, 0.083 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8

h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 3,4a,5a,7-tetramethyl-10-(p-tolyl)octahydro-10H-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (**7d**) 0.179 g, 62%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.27 (m, 1H), 7.22-7.11 (m, 3H), 4.34-4.30 (m, 1H), 4.20-4.15 (m, 1H), 4.05-.98 (m, 1H), 3.84-3.79 (m, 1H), 3.69 (dd, J = 2.6, 11.4 Hz, 1H), 3.64-3.56 (m, 1H), 3.65-3.60 (m, 1H), 3.23-3.17 (m, 1H), 3.03 (t, J = 11.0 Hz, 1H), 2.34 (s, 3 H), 2.33 (s, 1H), 1.70 (s, 3H), 1.64 (s, 2H), 1.47 (d, J = 6.88 Hz, 3H), 1.28-1.24 (m, 3H), 1.14-1.08 (m, 4H), 1.07-1.00 (m, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 142.4, 129.7, 125.4, 125.4, 97.7, 96.4, 79.1, 71.6, 70.4, 68.7, 64.6, 63.7, 39.4, 29.9, 25.9, 23.3, 17.5, 16.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₉O₅ 349.4391; Found 349.4385.

3,4a,5a,7-Tetramethyl-10-(4-(trifluoromethyl)phenyl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7e):

Following the *General Procedure A*, to the mixture of 1-(prop-2-yn-1-yloxy)propan-2-ol (**2e**) (0.163 g, 1.43 mmol, 2.5 equiv) and 4-(trifluoromethyl)benzaldehyde (**3w**) (0.1 g, 0.57 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0146 g, 0.057 mmol, 0.1 equiv)

under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The

filtrate was concentrated under reduced pressure and purified by column chromatography 3,4a,5a,7-tetramethyl-10-(4- $(SiO_2,$ 20% EtOAc /hexanes) to afford (trifluoromethyl)phenyl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine) (7e) 0.154 g, 67%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40%) EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): 7.60 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 4.35 (d, J = 11.88 Hz, 2H), 4.24-4.19 (m, 1H), 4.08-4.01 (m, 1H), 3.91 (dd, J = 2.0, 11.8) Hz, 1H), 3.69 (dd, J = 2.7, 11.4 Hz, 1H), 3.50 (d, J = 2.0 Hz, 1H), 3.27-3.21 (m, 1H), 3.17-3.10 (m, 1H), 3.07-3.00 (m, 1H), 1.71 (s, 3H), 1.65 (s, 3H), 1.15-1.10 (m, 4H) 1.07-1.05 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 142.4, 129.7, 125.4 (d, J_{CF} = 3.81 Hz), 97.7, 96.4, 79.1, 77.4, 71.6, 70.4, 68.7, 64.6, 63.7, 39.4, 29.9, 25.9, 23.3, 17.5, 16.5: ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.44; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₀H₂₆F₃O₅ 403.4102; Found 403.4100.

(E)-3-(2-Bromobenzylidene)-6-hydroxyhexan-2-one (10a):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.132 g, 1.35 mmol, 2.5 equiv) and 2-bromobenzaldehyde (**3y**) (0.1 g, 0.50 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0128 g, 0.050 mmol, 0.1 equiv) under argon atmosphere at 30 °C and

reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford (*E*)-3-(2-bromobenzylidene)-6-hydroxyhexan-2-one (**10a**) 0.130 g, 85%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, *J* = 7.5 Hz, 1H), 7.57 (s, 1H), 7.37-7.32 (m, 2H), 7.25-7.20 (m, 1H), 3.52 (t, *J* = 6.2 Hz, 2H), 2.51 (s, 3H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.63-1.60 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 200.8, 143.1, 140.4, 136.2, 133.0, 130.1, 130.0, 127.6, 123.9, 62.0,

32.1, 26.3, 22.1; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{16}BrO_2$ 284.0328; Found 284.0275.

(E)-6-Hydroxy-3-(2-nitrobenzylidene)hexan-2-one (10b):

Following the *General Procedure A*, to the mixture of hex-5-yn-1-ol (**2a**) (0.162 g, 1.65 mmol, 2.5 equiv) and 2-nitrobenzaldehyde (**3z**) (0.1 g, 0.66 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0169 g, 0.066 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction

mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 6-hydroxy-3-(2-nitrobenzylidene)hexan-2-one (**10b**) 0.145 g, 89%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.19 (dd, J = 1.1, 8.3 Hz, 1H), 7.83 (s, 1H), 7.73-7.66 (m, 1H), 7.58-7.52 (m, 1H), 7.39 (d, J = 7.6 Hz, 1H), 3.47 (t, J = 6.1 Hz, 2H), 2.52 (s, 3H), 2.36 (t, J = 7.4 Hz, 2H), 1.62 (br. s., 1H), 1.54-1.51 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 200.4, 142.6, 138.0, 133.9, 132.0, 130.9, 129.5, 125.2, 61.8, 32.1, 26.3, 22.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₆NO₄ 250.2621; Found 250.2618.

6-Hydroxy-1-(2-methyltetrahydro-2H-pyran-2-yl)hexan-2-one (11):

Following the *General Procedure*, to the mixture of hex-5-yn-1-ol (**2a**) (0.284 g, 0.99 mmol, 2.5 equiv) and hexanal (or) propanal (or) cyclohexanecarbaldehydee (**6**) (1.16 mmol, 1 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.029 g, 0.116 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over

anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) 6-hydroxy-1-(2-methyltetrahydro-2H-pyran-2-yl)hexan-2-one (**11**) 0.152 g, 61%, with hexanal). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 3.70 - 3.66 (m, 2H), 3.62 (t, J = 6.3 Hz, 2H), 2.68 - 2.60 (m, 1H), 2.60 - 2.50 (m, 3H), 1.66 - 1.60 (m, 6H), 1.56 - 1.49 (m, 5H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 210.4, 77.4, 73.0, 62.5, 61.8, 52.9, 44.6, 35.3, 32.2, 29.8, 25.9, 23.1, 19.5, 19.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₂₃O₃ 215.3050; found 215.2687.

6) General Procedure B for the Synthesis and characterization of hexahydro-2Hchromens (8) from alkynols (2) and aldehydes (3):

Alkynol 2 (1.17 mmol, 2.5 equiv) and aldehyde 3 (0.47 mmol, 1.0 equiv) was taken into a single neck 10 mL round bottom flask equipped with positive argon flow, then dissolved in 2 mL of anhydrous DCM. Catalyst (AgOTf, 0.047 mmol, 0.1 equiv) was added under an argon atmosphere at 30 °C. The resulting reaction mixture was stirred at 30 °C for 8 h. After completion of the reaction (monitored by TLC, visualized using UV, anisaldehyde, and KMnO₄ staining solutions), quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2x5 mL), then washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered through a sintered glass funnel. The filtrate was concentrated under reduced pressure and purified using silica-gel column chromatography (SiO₂, 100-200 mesh) to afford the corresponding hexahydro-2*H*-chromens **8.**

6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-diphenyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (8a):

Following the *General Procedure B*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.294 g, 2.33 mmol, 2.5 equiv) and benzaldehyde (**3a**) (0.1 g, 0.93 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.023g, 0.093 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction,

quenched with saturated aqueous $NaHCO_3$ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na_2SO_4 , and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc

/hexanes) to afford 6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-diphenyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (**8a**) 0.285 g, 68%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.40-7.30 (m, 7H), 7.22-7.13 (m, 3H), 3.63 (s, 1 H), 3.21 (dd, J = 5.5, 12.3 Hz, 1H), 2.98-2.86 (m, 1H), 2.40-2.29 (m, 1H), 2.14 (s, 3H), 1.87-1.77 (m, 1H), 1.66-1.49 (m, 5H), 1.25 (s, 3H), 1.19 (s, 3H), 1.17-1.05 (m, 1H), 0.96-0.90 (m, 1H), 0.84 (s, 3H), 0.79 (s, 3H), 0.27-0.14 (m, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 209.9, 147.7, 141.6, 140.4, 131.2, 130.7, 128.2, 127.8, 127.3, 126.8, 104.4, 73.4, 70.4, 57.7, 53.7, 43.4, 38.2, 33.4, 33.2, 30.2, 29.2, 28.6, 27.9, 27.6, 25.3, 22.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₃₉O₃ 447.2894; Found 447.2889.

5,7-Bis(4-bromophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8hexahydro-2*H*-chromen-6-yl)ethan-1-one (8b):

Following the *General Procedure B*, to the mixture of 2-methylhept-6yn-2-ol (**2f**) (0.222 g, 1.77 mmol, 2.5 equiv) and 4-bromobenzaldehyde (**3i**) (0.1 g, 0.71 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.018 g, 0.071 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃

solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 5,7-Bis(4-bromophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (**8b**) 0.205 g, 63%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.27 (d, J = 8.63, 2H), 8.06 (d, J = 8.76, 2H), 7.60-7.50 (m, 4H), 3.81 (s, 1H), 3.15 (dd, J = 5.6, 12.13 Hz, 1H), 2.97-2.90(m, 1H), 2.40-2.33 (m, 1H), 2.21 (s, 3 H), 1.88-1.75 (m, 1H), 1.66-1.48 (m, 5H), 1.27-1.25 (m, 1H), 2.40-2.33 (m, 200 methylic methyl

3H), 1.20 (s, 3H), 1.06-1.01 (m, 1H), 0.95-0.89 (m, 1H), 0.88 (s, 3H), 0.80 (s, 3H), 0.22 (dt, J = 3.8, 13.4 Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 208.9, 148.8, 148.2, 147.7, 147.4, 146.8, 131.8, 131.3, 123.3, 122.8, 103.2, 73.8, 70.0, 57.6, 53.4, 43.7, 37.9, 33.0, 32.8, 30.3, 29.9, 29.6, 28.5, 27.7, 27.3, 25.1, 22.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₃₇Br₂O₃ 605.4215; found 605.4209.

6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-bis(4-nitrophenyl)-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (8c):

Following the *General Procedure B*, to the mixture of 2-methylhept-6yn-2-ol (**2f**) (0.250 g, 1.98 mmol, 2.5 equiv) and 4-nitrobenzaldehyde (**3k**) (0.12 g, 0.79 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.020 g, 0.079 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After

completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-bis(4-nitrophenyl)-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (**8c**) 0.213 g, 60%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.27 (d, *J* = 8.6 Hz, 2H), 8.06 (d, *J* = 8.8 Hz, 2H), 7.62-7.49 (m, 4H), 3.81 (s, 1H), 3.15 (dd, *J* = 5.8, 12.0 Hz, 1H), 2.94 (t, *J* = 14.5 Hz, 1H), 2.41-2.32 (m, 1H), 2.21 (s, 3H), 1.90-1.75 (m, 1H), 1.68-1.55 (m, 5H), 1.25 (br. s., 3H), 1.20 (s, 3H), 1.05-1.01 (m, 1H), 0.97-0.91 (m, 1H), 0.88 (s, 3H), 0.80 (s, 3H), 0.27-0.18 (m, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 209.1, 149.0, 148.4, 147.9, 147.6, 147.0, 132.0, 131.5, 123.5, 123.0, 103.4, 74.0, 70.2, 57.8, 53.6, 43.9, 38.2, 33.2, 33.0, 30.5, 30.1, 29.9, 28.7, 27.9, 27.6, 25.3, 23.0; HRMS (ESI) *m/z:* [M+H]⁺ Calcd for C₃₀H₃₇N₂O₇ 537.6250; found 537.6248.

7-bis(4-chlorophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (8d):

Following the *General Procedure B*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.222 g, 1.77 mmol, 2.5 equiv) and 4-chlorobenzaldehyde (**3g**) (0.1 g, 0.71 mmol, 1.0 equiv) in

anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.018 g, 0.071 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution, then extracted with CH_2Cl_2 (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel.

The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) 7-bis(4-chlorophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (**8d**) 0.237 g, 65%) as a light yellow colour liquid (single diastereomer). The **8d** was confirmed by ¹H, ¹³C, DEPT, HRMS and X-ray analysis; TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.27 (m, 6H), 7.17 (d, J = 8.8 Hz, 2H), 3.61 (s, 1H), 3.06 (dd, J = 5.8, 12.3 Hz, 1H), 2.90-2.79 (m, 1H), 2.32-2.24 (m, 1H), 2.14 (s, 3 H), 1.88-1.75 (m, 1H), 1.66-1.48 (m, 5H), 1.24 (s, 3H), 1.18 (s, 3H), 1.06 (dt, J = 3.88, 13.5 Hz, 1H), 0.95-0.89 (m, 1H), 0.88 (s, 3H), 0.83 (s, 3H), 0.26 (dt, J = 3.8, 13.4 Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 209.7, 147.8, 139.9, 138.8, 133.3, 132.7, 132.5, 131.9, 128.4, 127.9, 104.1, 73.6, 70.4, 57.6, 53.1, 43.0, 38.2, 33.3, 33.2, 30.4, 29.3, 28.9, 27.9, 27.6, 25.3, 22.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₃₇Cl₂O₃ 516.5150; Found 516.5144.

Figure 4. ORTEP diagram of compound 8d.

7-bis(4-bromophenyl)-6-(2-hydroxy-2-methylpropoxy)-2,2-dimethyl-2,3,5,6,7,8hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (8e):

Following the *General Procedure B*, to the mixture of 2-methyl-1-(prop-2-yn-1-yloxy)propan-2-ol (**2g**) (0.173 g, 1.35 mmol, 2.5 equiv) and 4-bromobenzaldehyde (**3i**) (0.1 g, 0.54 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0138 g, 0.054 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8 h. After completion of reaction, quenched with saturated aqueous NaHCO₃ solution,

then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 7-bis(4-bromophenyl)-6-(2-hydroxy-2-methylpropoxy)-2,2-dimethyl-

2,3,5,6,7,8-hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (**8e**) 0.229 g, 70%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, J = 8.5 Hz, 2H), 7.36-7.32 (m, 2H), 7.26-7.24 (m, 2H), 7.16 (d, J = 8.5 Hz, 2H), 4.11 (d, J = 8.4 Hz, 1H), 3.99 (s, 1H), 3.73-3.63 (m, 2H), 3.56-3.48 (m, 2H), 2.67-2.58 (m, 1H), 2.46-2.40 (m, 1H), 1.57 (s, 1H), 1.35 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 209.8, 139.6, 137.3, 132.2, 131.7, 131.2, 131.0, 130.9, 125.2, 122.1, 121.3, 87.8, 74.0, 72.8, 72.5, 70.8, 47.6, 42.6, 33.1, 29.9, 29.4, 27.0, 26.6, 24.0, 22.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₃₃Br₂O₅ 609.3670; Found 609.3666.

6-(2-hydroxy-2-methylpropoxy)-2,2-dimethyl-5,7-di(naphthalen-2-yl)-2,3,5,6,7,8hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (8f):

Following the *General Procedure B*, to the mixture of 2-methyl-1-(prop-2-yn-1-yloxy)propan-2-ol (**2g**) (0.205 g, 1.60 mmol, 2.5 equiv) and 2-naphthaldehyde (**3c**) (0.1 g, 0.64 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (5 mL) was added AgOTf (0.0163 g, 0.064 mmol, 0.1 equiv) under argon atmosphere at 30 °C and reaction mixture was stirred at 30 °C for 8h. After completion of reaction, quenched with saturated aqueous NaHCO₃

solution, then extracted with CH₂Cl₂ (2 x 5 mL) and washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and filtered through sintered glass funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography (SiO₂, 20% EtOAc /hexanes) to afford 6-(2-hydroxy-2-methylpropoxy)-2,2-dimethyl-5,7-di(naphthalen-2-yl)-2,3,5,6,7,8-hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (**8f**) 0.228 g, 65%) as a light yellow colour liquid (single diastereomer). TLC: $R_f = 0.3$ (SiO₂, 40% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.92-7.82 (m, 5H), 7.76-7.69 (m, 3H), 7.56-7.48 (m, 4H), 7.42-7.39 (m, 2H), 4.37-4.29 (m, 1H), 3.93 (dd, J = 5.8, 11.5 Hz, 1H), 3.86 (d, J = 8.4 Hz, 1H), 3.71 (d, J = 10.8 Hz, 1H), 3.61 (d, J = 10.8 Hz, 1H), 3.03 (br. s.,

1H), 2.88-2.76 (m, 1H), 2.63 (dd, J = 5.8, 16.2 Hz, 1H), 1.61 (br. s., 1H), 1.46 (s, 3H), 1.43 (s, 3H), 1.33 (d, J = 1.8 Hz, 6H), 0.99 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 210.6, 138.4, 135.7, 133.7, 133.5, 133.1, 132.5, 131.0, 128.9, 128.8, 128.2, 128.1, 128.1, 128.0, 127.9, 127.6, 127.4, 127.3, 126.6, 126.4, 126.1, 125.9, 125.7, 88.3, 74.1, 72.8, 72.5, 70.9, 48.5, 43.3, 33.6, 29.9, 29.4, 27.1, 26.7, 24.1, 22.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₆H₃₉O₅ 551.2792; Found 551.2801.

Supporting Information

7) X-ray crystallography data:

SC-XRD: The single crystal X-ray diffraction measurements were performed to determine the crystal structure of compounds **6a**, **6g**, **7b** and **8d** at 100 K using APEX3 (Bruker, 2016; Bruker D8 VENTURE Kappa Duo PHOTON II CPAD) diffractometer having graphitemonochromatized (MoKa (0.71073)). The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5^{0} steps φ/ω . The data were collected with a time frame of 10 sec by setting the sample to detector distance fixed at 40 cm. All the data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS-97 (Sheldrick, 2008) was used for structure solution, and full-matrix leastsquares refinement on $F^{2,1,2}$ the molecular graphics of ORTEP diagrams were performed by Mercury software. The crystal symmetry of the components was cross-checked by running the cif files through PLATON (Spek, 2020) software and notified that no additional symmetry was observed. The Encifer software was used to correct the cif files. Four compounds 6a, 6g, and 7b and 8d were crystallized by the slow evaporation method using a solvent system of 20% EtOAc/Hexane.

Figure 1. ORTEP diagram of compound **6a**, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 2. ORTEP diagram of compound **6g**, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 3. ORTEP diagram of compound **7b**, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 4. ORTEP diagram of compound **8d**, the asymmetric unit, contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.
Crystal data	Compound 6a	Compound 6g	Compound 7b	Compound 8d	
Chemical formula	$C_{19}H_{26}O_3$	$C_{19}H_{25}ClO_3$	C ₂₅ H ₂₆ O ₅	$C_{30}H_{36}Cl_2O_3$	
Formula weight	302.40	336.84	406.46	515.49	
(M _r)					
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Triclinic	
Space group	$Pna2_1$	Pnma	$Pna2_1$	P-1	
Temperature T (K)	100	100	100	100	
a (Å)	8.7312 (11)	14.719 (3)	8.7057 (10)	10.1704 (10)	
b (Å)	16.422 (2)	12.729 (2)	18.724 (2)	12.2125 (13)	
c (Å)	11.2564 (15)	8.8925 (17)	12.0239 (12)	12.2391 (13)	
α (°)	90	90	90	66.671 (4)	
β (°)	90	90	90	78.351 (4)	
γ (°)	90	90	90	87.561 (4)	
Z	4	4	4	2	
Volume (Å ³)	1614.0 (4)	1666.1 (5)	1959.9 (4)	1366.0 (2)	
Source of radiation	ΜοΚα (0.71073)	ΜοΚα (0.71073)	ΜοΚα	ΜοΚα	
			(0.71073)	(0.71073)	
$D_{calc} (g \text{ cm}^{-3})$	1.244	1.343	1.377	1.253	
Crystal size (mm)	0.19 ×0.1×0.09	0.19×0.1×0.08	0.23×0.12×0.1	0.19x0.12x0.1	
$\mu (mm^{-1})$	0.08	0.24	0.10	0.27	
Data collection					
Diffractometer	Bruker D8 VENTURE	Bruker D8 VENTURE	Bruker D8 VENTURE	Bruker D8 VENTURE	
	Kappa Duo PHOTON II	Kappa Duo PHOTON II	Kappa Duo PHOTON II	Kappa Duo PHOTON II	
	CPAD	CPAD	CPAD	CPAD	
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan	
correction	(SADABS;	(SADABS;	(SADABS;	(SADABS;	
_	Bruker, 2016)	Bruker, 2016)	Bruker, 2016)	Bruker, 2016)	
No. of measured,	65854, 3515,	54108, 1885,	100962, 4255,	67475, 5946,	
independent and	3313	1612	4164	4719	
observed $[1 > 2\sigma(1)]$					
reflections	2 10 25 20	2 50 26 55	0.50 05 00	2.47.26.04	
Theta range (°)	2.19-27.28	2.79-26.77	2.58-27.38	2.47-26.84	
R _{int}	0.069	0.161	0.063	0.098	
Refinement	0.045.0406	0.000.0.014	0.001.0.007	0.045.0440	
$R[F^2 > 2\sigma (F^2)],$ wR(F ²)	0.045, 0.126	0.090, 0.214	0.031, 0.085	0.045, 0.118	
GOF on F^2	1.11	1.15	1.12	1.08	
No. of independent	3515	1885	4255	5946	
reflections					
No. of parameters	201	119	274	325	
F_000	656	720	864	548	
No. of restraints	1	0	1	0	
H-atom treatment	Constr	Constr	Constr	Constr	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e A ^{o-}	0.36, -0.19	1.95, -0.51	0.30, -0.22	0.32, -0.27	

 Table 2. Crystallographic information details of compounds 6a, 6g, 7b and 8d.

CCDC number2243298224329922433002243301	
---	--

Name of the compound	<i>D</i> –H···A	D-H	H···A	DA	<i>D</i> –Н··· <i>A</i>
Compound 6g	С2-Н2…О1	0.9500	2.5100	3.342(6)	146
	С2-Н2…О1	0.9500	2.5100	3.342(6)	146
Compound 7b	С3-Н3…О5	0.9800	2.4200	2.8124(3)	103
	C4–H4…O1	0.9800	2.5500	2.9412(3)	104
	C15-H15B…O1	0.9600	2.4700	3.0721(4)	121
	C24–H24…O4	0.9300	2.5200	3.3447(4)	148
Compound 8d	O1-H1…O2	0.8500	2.0300	2.8686(3)	167
	С6-Н18…ОЗ	0.9700	2.4400	2.9259(3)	111
	C28-H2···O3	0.9300	2.3800	3.0125(3)	126

Table 3. Hydrogen-bond geometry $(A^{\circ}, {}^{\circ})$ of compounds **6g**, **7b** and **8d** are given as below.

References

- 1. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Cryst.* (2015). C71, 3–8.
- 2. G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Cryst.* (2015). A71, 3–8.

8) ¹H, ¹³C NMR Spectra

(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid (S1):

(S)-2-(6-Methoxynaphthalen-2-yl)propanal (3z):

9a,10a-Dimethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6a):

9a,10a-Dimethyl-5-(p-tolyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6b):

9a,10a-Dimethyl-5-(naphthalen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6c):

9a,10a-Dimethyl-5-(phenanthren-9-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6d):

5-([1,1'-Biphenyl]-4-yl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6e):

5-(4-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6f):

5-(4-Chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6g):

5-(4-Fluorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6h):

5-(4-Fluorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6h):

5-(4-Bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-

5-(4-Iodophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6j):

9a,10a-Dimethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6k):

9a,10a-Dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-

5-(2-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6m):

5-(3-Methoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6n):

9a,10a-Dimethyl-5-(3-phenoxyphenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(60):

5-(3-(Benzyloxy)phenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6p)

5-(3-Chlorophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6q):

5-(3-Bromophenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6r):

9a,10a-Dimethyl-5-(3-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6s):

5-(2,5-Dimethoxyphenyl)-9a,10a-dimethyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6t):

9a,10a-Dimethyl-5-(thiophen-2-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6u):

9a,10a-Dimethyl-5-(thiophen-3-yl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6v):

2,8,9a,10a-Tetramethyl-5-phenyloctahydro-2H,5H,6H-dipyrano [2,3-b:3',2'-e] pyrano [2,3-b;

2,8,9a,10a-Tetramethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6x):

2,8,9a,10a-Tetramethyl-5-(4-nitrophenyl)octahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (6y):

5-(4-Bromophenyl)-9a,10a-dimethyl-2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran(6z):

 9a,10a-Dimethyl-2,8-diphenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran-5-yl)benzonitrile(6a'):

(S)-1-(6-Methoxynaphthalen-2-yl)ethyl)-9a,10a-dimethyloctahydro-2H,5H,6Hdipyrano[2,3-b:3',2'-e]pyran (6b'):

4a,5a-Dimethyl-10-(naphthalen-2-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine)(7a):

4a,5a-Dimethyl-10-(phenanthren-9-yl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine)(7b) :

10-([1,1'-Biphenyl]-4-yl)-4a,5a-dimethyloctahydro-10*H*-pyrano[2,3-b:5,6-

3,4a,5a,7-Tetramethyl-10-(p-tolyl)octahydro-10H-pyrano[2,3-b:5,6-

b']bis([1,4]dioxine)(7d):

3,4a,5a,7-Tetramethyl-10-(4-(trifluoromethyl)phenyl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine)(7e):

Chemical Shift (ppm)

3,4a,5a,7-Tetramethyl-10-(4-(trifluoromethyl)phenyl)octahydro-10*H*-pyrano[2,3-b:5,6-b']bis([1,4]dioxine)(7e):

(E)-6-Hydroxy-3-(2-nitrobenzylidene)hexan-2-one (10b):

6-Hydroxy-1-(2-methyltetrahydro-2*H*-pyran-2-yl)hexan-2-one (11)

6-(3-Hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-diphenyl-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (8a):

5,7-Bis(4-bromophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8hexahydro-2*H*-chromen-6-yl)ethan-1-one (8b):

6-(3-Hydroxy-3-methylbutyl)-2,2-dimethyl-5,7-bis(4-nitrophenyl)-3,4,5,6,7,8-hexahydro-2*H*-chromen-6-yl)ethan-1-one (8c):

5,7-Bis(4-chlorophenyl)-6-(3-hydroxy-3-methylbutyl)-2,2-dimethyl-3,4,5,6,7,8hexahydro-2*H*-chromen-6-yl)ethan-1-one (8d):

5,7-Bis(4-bromophenyl)-6-(2-hydroxy-2-methylpropoxy)-2,2-dimethyl-2,3,5,6,7,8hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (8e):

6-(2-Hydroxy-2-methylpropoxy)-2,2-dimethyl-5,7-di(naphthalen-2-yl)-2,3,5,6,7,8hexahydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one (8f):

9a,10a-Dimethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (Crude-6a)

9a,10a-Dimethyl-5-phenyloctahydro-2*H*,5*H*,6*H*-dipyrano[2,3-b:3',2'-e]pyran (Crude-6a)

THE END