Electronic Supporting Information (ESI)

for

Tandem Indium Oxide-Boron Nitride Catalysts for Oxidative Dehydrogenation of Propane

Lei Cao,^a Peng Xu,^b Guohui Zhong,^a Yifan Wu,^a Sheng Wen,^c Rongliang Shang,^a Yixiao Liu,^a Pengcheng Dai,^{b,*} Jin Xie^{a,*}

a School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China. E-mail: xiejin@shanghaitech.edu.cn

^bCollege of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China. E-mail: dpcapple@upc.edu.cn

^cCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.

Table of contents

1. Experimental Section

Fabrication of xcIn₂O₃-BN catalyst.

General procedure for oxidation dehydrogenation of propane.

Equations.

Characterization.

2. Supplementary Figures and Tables

Figure S1-S17

Table S1-S2

1. Experimental Procedures

1.1 Fabrication of xcIn2O3-BN catalyst

In a typical deposition process, In_2O_3 atomic clusters were formed at 150 °C, Cyclopentadienyl indium (InCp) used as the indium precursor, was heated to 90 °C. Water vapor and plasma oxygen were introduced into the ALD chamber to remove the ligand. A typical deposition cycle included: InCp injection (0.15 s) - exposure (30 s) - argon purging (90 s) - water injection $(0.15 s) + O_2$ plasma $(20 s)$ - argon purging $(90 s)$. h-BN with different indium oxide loading was obtained by controlling the ALD cycles, resulting in material named *x*cIn2O3-BN (where *x* indicates the number of ALD cycles).

1.2 General procedure for oxidation dehydrogenation of propane

The as-prepared xcIn₂O₃-BN catalyst (100 mg) was placed in the middle of the quartz tube (I.D. = 9 mm) and supported by quartz wools. A K-type thermocouple was inserted into the center of the catalyst bed to monitor the operating temperature. The reactant gas mixture, consisting of nitrogen, propane, and oxygen in a 6:1:1 ratio, had a total flow rate of 24 mL min⁻¹, controlled by three mass flow controllers. The outlet gas was analyzed by an on-line gas chromatograph (FULI INSTRUMENTS, GC9790II) equipped with a HP-PLOT Al₂O₃ column (30 m \times 0.53 mm \times 15 μ m), a Porapak Q packed column (2 m \times 3 mm) and 5A molecular sieve column (2 m \times 4 mm). A flame ionization detector (FID) was used for detecting of CH₄, C₂H₆, C₂H₄, C₃H₈ and C₃H₆, etc., while CO, CO₂ and CH₄ were detected using a thermal conductivity detector (TCD). Every *x*cIn₂O₃-BN catalyst was activated at a propane conversion of \sim 20% for 15 min, after which the reactor was cooled to 460 °C for catalytic evaluation. The reaction temperature was varied in the range of 460 - 560 °C with a ramp of 2 °C min⁻¹ (reactant gas: N_2 -C₃H₈-O₂ = 6-1-1, total flow rate = 24 mL min⁻ ¹, WHSV = 14400 L kg_{cat}⁻¹ h⁻¹). Such a low reaction gas concentration can avoid the formation of excessive oxygenate, while creating a low water vapor concentration environment. The long-term stability test was performed at the reaction temperature where propane conversion was \sim 15%.

1.3 Equations

The propane conversion, product selectivity, yield and carbon balance were calculated as follows:

Propane conversion =
$$
\frac{C \text{ mol of } (C_3H_{8,N} - C_3H_{8,OUT})}{C \text{ mol of } C_3H_{8,N}}
$$
 × 100%
\nProduct selectivity =
$$
\frac{C \text{ mol of specific product}}{C \text{ mol of } (C_3H_{8,N} - C_3H_{8,OUT})}
$$
 × 100%
\nProduct yield = (Propane conversion × Product selectivity) × 100%
\nCarbon Balance =
$$
\frac{C \text{ mol of (products} + C_3H_{8,OUT})}{C \text{ mol of (products} + C_3H_{8,OUT})}
$$
 × 100%

C mol of C₃H₈ IN</sup>

where C mol refers to the number of carbon moles in the products, inlet and outlet of the propane.

1.4 Catalysts Characterization

Transmission electron microscopy (TEM), including high-resolution transmission electron microscopy (HRTEM) was obtained using a JEM F200 Electron Microscope operated at 200 kV. Thermal gravimetric (TG) analysis was performed on a thermal analyzer (Netzsch TG/209F3). Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 X-ray diffractometer with Cu Kα radiation at room temperature. The Fourier transform infrared (FT-IR) spectra of the samples were recorded on a Bruker 4700 FT-IR spectrometer (Bruker Optics Inc., Ettlingen, Germany). X-ray photoelectron spectroscopy (XPS) spectra were collected on an ESCALAB 250Xi X-ray photoelectron spectrometer. Inductively coupled plasma optical emission spectrometer was performed on an Agilent ICPOES 720. Nitrogen physisorption isotherms were recorded at 77 K using a Quantachrome Autosorb-iQ nitrogen volumetric adsorption instrument. Before measurement, the catalysts were degassed at 120 °C for 8 h. The scanning transmission electron microscopy (STEM), energydispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) elemental mapping and spectra were collected on a JEOL Grand ARM-300F, operate at 300 kV with a Gatan Oneview camera and a K2 summit direct electron counting detector. Non-local density functional theory (NLDFT) calculations were performed to obtain the pore size distribution based on the measured N_2 adsorption isotherms.

2. Supplementary Figures and Tables

Fig. S1 Indium loadings in xcIn₂O₃-BN with different ALD deposited cycles determined by ICP-OES.

Fig. S2 TEM images of fresh BN (A) and 8cIn₂O₃-BN (B) catalysts. Scale bars: 20 nm. (C) STEM image and corresponding EELS elemental mapping of fresh 4cIn₂O₃-BN catalyst, high-lighting the distribution of key elements. Scale bars: 10 nm.

Fig. S3 XRD patterns of fresh *x*cIn2O3*-*BN composite catalysts.

Fig. S4 Olefins selectivity and ethylene selectivity as a function of propane conversion over BN and xcIn₂O₃-BN catalysts.

Fig. S5 Olefins, propylene, and ethylene yield as a function of reaction temperature over pristine BN and xcln₂O₃-BN catalysts.

Fig. S6 Reaction rate as a function of reaction temperature over pristine BN and *x*cIn₂O₃-BN catalysts.

Fig. S7 Carbon balance during the long-term stability test.

Fig. S8 XRD patterns of spent BN and *x*cIn2O3*-*BN composite catalysts.

Fig. S9 FT-IR spectra of fresh xcIn₂O₃-BN (xcIn₂O₃-BN-F) and BN (BN-F) catalysts.

Fig. S10 XPS spectra of B 1s (a), N 1s (b), and In 3d (c) from fresh xcIn₂O₃-BN catalysts.

Fig. S11 XPS spectra of B 1s (a), N 1s (b), and In 3d (c) from spent *x*cIn₂O₃-

BN catalysts.

Fig. S12 Nitrogen adsorption-desorption isotherm and corresponding pore distribution of fresh (a-b) and spent (c-d) xcIn₂O₃-BN catalysts.

Fig. S13 TGA curves of fresh xcIn₂O₃-BN catalysts.

Fig. S14 TEM images of spent BN catalysts, scale bars: 10 nm.

Fig. S15 STEM images of spent 6cln₂O₃-BN (a), 8cln₂O₃-BN (b), and 10cln₂O₃-BN (c) catalysts. scale bars: 100 nm. STEM images of 10cln₂O₃-BN and corresponding EELS elemental mappings (d).

Fig. S16 Water vapor concentration as a function of reaction

temperature.

Fig. S17 (a) Comparison of catalytic performance of BN, 8cln₂O₃-BN, and 8 cIn₂O₃-SiO₂. (b) Product selectivity and propane conversion over 8 cIn₂O₃-SiO₂ catalyst as a function of reaction temperature.

Table S1. Comparison of apparent activation energy (*E*a) between pristine

BN and

various xcln₂O3-BN catalysts.

Table S2. The amount of BO_x species of fresh and spent BN and 8cln₂O₃-BN catalysts.

Catalysts	BN	8 cln ₂ O ₃ -BN
Fresh	7.9%	2.9%
Spent	3.9%	3.1%

Catalysts	BET surface area	Pore volume
	$(m^2 g^{-1})$	$\rm \left(cm^{3} \, g^{-1} \right)$
Fresh BN	35.7	0.12
Spent BN	52.8	0.18
Fresh $6cln2O3$ -BN	38.0	0.12
Spent 6cln2O ₃ -BN	23.5	0.09
Fresh 8cln ₂ O ₃ -BN	42.2	0.14
Spent 8cln ₂ O ₃ -BN	34.9	0.11
Fresh $10 \text{cln}_2\text{O}_3$ -BN	45.7	0.12
Spent 10cln ₂ O ₃ -BN	27.3	0.07

Table S3. Brunauer-Emmett-Teller (BET) surface area and pore volumes of fresh and spent BN and xcIn₂O₃-BN catalysts.