Facile Access to *anti*-1,2-Diol Derivatives via Ir-catalyzed Asymmetric Hydrogenation of α -Alkoxy β -Ketoesters

Yuan-Zheng Wang^{a,‡}, Bin Lu^{a,‡}, Gen-Qiang Chen*,^b, Xumu Zhang*,^{a,c}

^{*a*} Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China;

^b Academy for Advanced Interdisciplinary Studies and Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China

^c Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China.

[‡]Yuan-Zheng Wang and Bin Lu contributed equally to this work.

*Email: chengq@sustech.edu.cn; zhangxm@sustech.edu.cn

Contents

1.	General Remarks	S2
2.	General Procedure for the Preparation of Substrate Compounds	S3
2.	General Procedure for Asymmetric Hydrogenation	S10
3.	Synthetic Applications	S19
4.	NMR Spectra	S21
5.	HPLC chromatograms	S63
6.	References	

1. General Remarks

All reactions and manipulations which are sensitive to moisture or air were performed in an argon-filled glove box or using standard Schlenk techniques. Anhydrous MeOH 'PrOH, MeCN, CH₂Cl₂, THF and EtOAc purchased from J&K were treated with bubbled argon before used. KO'Bu, NaO'Bu, KOMe, NaOMe, KOH, NaOH, Cs₂CO₃, K₂CO₃ and Na₂CO₃ were purchased from Sinopharm Chemical Reagent Co., Ltd. ¹H, ¹³C and ¹⁹F NMR spectra were recorded with a Bruker ADVANCE III (400 MHz) spectrometer with CDCl₃ as the solvent. NMR chemical shifts are listed in ppm relative to CHCl₃ (7.26 ppm for ¹H, and 77.0 ppm for ¹³C) or H₂O (4.79 ppm for ¹H). Data are reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were run with decoupling. HPLC analyses were performed by Agilent 1290 UPLC using Daicel chiral column.

2. General Procedure for the Preparation of Substrate Compounds

Method A: ^[1]

To the solution of iodobenzene diacetate (1.1 equiv) in R²OH (0.2 M) was added BF₃·OEt₂ (1.1 equiv) under a nitrogen atmosphere. After the reaction mixture was stirred for 1 hour, the solution of β -ketoesters S1 (a mixture of keto and enol forms; 1.0 equiv) in R²OH (5 M) was dropwise added. The reaction mixture was stirred for 5 hours, quenched with saturated aqueous NaHCO₃, and evaporated in vacuo. The resulting mixture was extracted with EtOAc (× 3). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography to give the corresponding α -methoxy- β -ketoesters 1. Method B:^[2]

To a solution of **S3** (10 mmol) in anhydrous THF (10 mL) was added a solution of LDA in THF (2.0 M, 12.0 mL, 12 mmol) dropwise under Ar at -78 °C. After 15 min at -78 °C, **S2** (12 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred for 5 hours, quenched with 1 M NH₄Cl, and evaporated in vacuo. The resulting mixture was extracted with EtOAc (\times 3). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography to give the alcohol **S4**.

To a solution of the S4 (5 mmol) in DCM, Dess-Martin periodinane (8 mmol) and NaHCO₃ (15 mmol) were added successively. The solution was allowed to stir at rt for 3 h. Then water was added, and the obtained suspension was stirred for another 1 h. After the reaction was finished, the reaction mixture was extracted with DCM (3×30 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel afforded the desired α -methoxy- β -ketoesters 1.

Method C:

$$R \stackrel{II}{=} CI + Q^{O} O^{CI} R^{1} \xrightarrow{LDA} R^{II} O^{O} O^{CI} R^{1} \xrightarrow{O} O^{O} O^{CI} R^{I} \xrightarrow{O} O^{O} O^{CI} \xrightarrow{O} O^{O} O^{O} O^{CI} \xrightarrow{O} O^{O} O^{$$

To a solution of **S3** (10 mmol) in anhydrous THF (10 mL) was added a solution of LDA in THF (2.0 M, 12.0 mL, 12 mmol) dropwise under Ar at -78 °C. After 15 min at -78 °C, **S5** (12 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred for 5 hours, quenched with 1 M NH₄Cl, and evaporated in vacuo. The resulting mixture was extracted with EtOAc (× 3). The combined organic layers were dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography to give the desired α -methoxy- β -ketoesters **1**.

Methyl 2-methoxy-3-oxo-3-phenylpropanoate (1a)

Prepared according to Method A, pale yellow oil, 3.64 g, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.65 – 7.57 (m, 1H), 7.48 (ddd, *J* = 8.6, 6.7, 1.2 Hz, 2H), 4.96 (s, 1H), 3.78 (s, 3H), 3.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 167.9, 134.0, 134.0, 129.4, 128.7, 85.0, 58.7, 52.7. HRMS (ESI) m/z calcd. for C₁₁H₁₃O₄ [M+H]⁺ : 209.0808, found: 209.0810.

Methyl 2-methoxy-3-(4-methoxyphenyl)-3-oxopropanoate (1b)

Prepared according to Method B, pale yellow oil, 1.45 g, 64% yield over two steps.¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.90 (m, 2H), 7.33 – 7.20 (m, 2H), 4.94 (s, 1H), 3.77 (s, 3H), 3.52 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 168.0, 145.1, 131.5, 129.5, 129.4, 85.0, 58.6, 52.7, 21.7. HRMS (ESI) m/z calcd. for C₁₂H₁₅O₄ [M+H]⁺ : 223.0965, found: 223.0965.

Methyl 2-methoxy-3-oxo-3-(p-tolyl)propanoate (1c)

Prepared according to Method B, white solid, 1.68 g, 71% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 7.97 (m, 2H), 7.04 – 6.87 (m, 2H), 4.91 (s, 1H), 3.88 (s, 3H), 3.77 (s, 3H), 3.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 168.2, 164.2, 131.9, 127.0, 113.9, 85.2, 58.5, 55.5, 52.7. HRMS (ESI) m/z calcd. for C₁₂H₁₅O₅ [M+H]⁺: 239.0914, found: 239.0914.

Methyl 3-(4-(tert-butyl)phenyl)-2-methoxy-3-oxopropanoate (1d)

Prepared according to Method C, white soild, 1.25 g, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.96 (m, 2H), 7.56 – 7.41 (m, 2H), 4.95 (s, 1H), 3.78 (s, 3H), 3.53 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 168.1, 158.0, 131.4, 129.4, 125.7, 85.1, 58.6, 52.7, 35.2, 31.0. HRMS (ESI) m/z calcd. for C₁₅H₂₁O₄ [M+H]⁺ : 265.1434, found: 265.1434.

Methyl 3-(4-fluorophenyl)-2-methoxy-3-oxopropanoate (1e)

Prepared according to Method B, pale yellow oil, 2.07 g, 75% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dt, *J* = 8.1, 0.8 Hz, 2H), 7.78 – 7.71 (m, 2H), 4.92 (s, 1H), 3.79 (s, 3H), 3.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 167.6, 136.5, 135.1 (q, J = 32.8 Hz), 129.8, 125.7 (q, J = 3.7 Hz), 123.4 (q, J = 272.7 Hz), 85.3, 58.9, 52.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.35. HRMS (ESI) m/z calcd. for C₁₂H₁₂F₃O₄ [M+H]⁺: 277.0682, found: 277.0683.

Methyl 3-(4-fluorophenyl)-2-methoxy-3-oxopropanoate (1f)

Prepared according to Method B, pale yellow oil, 1.77 g, 78% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.07 (m, 2H), 7.21 – 7.07 (m, 2H), 4.89 (s, 1H), 3.78 (s, 3H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 167.9, 166.2 (d, *J* = 256.9 Hz), 132.3 (d, *J* = 9.5 Hz), 130.3 (d, *J* = 3.0 Hz), 115.9 (d, *J* = 22.0 Hz), 85.4, 58.7, 52.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.93. HRMS (ESI) m/z calcd. for C₁₁H₁₂FO₄ [M+H]⁺: 277.0714, found: 227.0715.

Methyl 3-(4-chlorophenyl)-2-methoxy-3-oxopropanoate (1g)

Prepared according to Method B, pale yellow oil, 1.48 g, 61% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 4.88 (s, 1H), 3.78 (s, 3H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 167.8, 140.7, 132.2, 130.9, 129.0, 85.3, 58.7, 52.8. HRMS (ESI) m/z calcd. for C₁₁H₁₂ClO₄ [M+H]⁺: 243.0419, found: 243.0420.

Methyl 3-(4-bromophenyl)-2-methoxy-3-oxopropanoate (1h)

Prepared according to Method B, pale yellow oil, 1.60 g, 56% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.89 (m, 2H), 7.72 – 7.54 (m, 2H), 4.88 (s, 1H), 3.78 (s, 3H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 167.7, 132.6, 132.0, 130.9, 129.5, 85.3, 58.8, 52.9. HRMS (ESI) m/z calcd. for C₁₁H₁₂CBrO₄ [M+H]⁺ : 286.9913, found: 286.9915.

Methyl 3-(4-(benzyloxy)phenyl)-2-methoxy-3-oxopropanoate (1i)

Prepared according to Method C, pale yellow oil, 1.99 g, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.19 – 8.13 (m, 2H), 7.73 – 7.67 (m, 2H), 7.65 – 7.60 (m, 2H), 7.52 – 7.44 (m, 2H), 7.44 – 7.38 (m, 1H), 4.98 (s, 1H), 3.80 (s, 3H), 3.56 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.0, 168.0, 146.7, 139.6, 132.6, 130.0, 129.0, 128.4, 127.3, 127.3, 85.2, 58.7, 52.8. HRMS (ESI) m/z calcd. for C₁₇H₁₇O₄ [M+H]⁺: 285.1121, found: 285.1122.

Methyl 3-([1,1'-biphenyl]-4-yl)-2-methoxy-3-oxopropanoate (1j)

Prepared according to Method B, pale yellow oil, 2.55 g, 81% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.9 Hz, 2H), 7.48 – 7.30 (m, 5H), 7.01 (d, *J* = 8.9 Hz, 2H), 5.13 (s, 2H), 4.90 (s, 1H), 3.76 (s, 3H), 3.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 168.2, 163.4, 136.00, 131.9, 128.7, 128.3, 127.5, 127.1, 114.7, 85.2, 70.2, 58.5, 52.7. HRMS (ESI) m/z calcd. for C₁₈H₁₉O₅ [M+H]⁺: 315.1127, found: 315.1122.

Methyl 2-methoxy-3-oxo-3-(m-tolyl)propanoate (1k)

Prepared according to Method B, pale yellow oil, 1.12 g, 50% yield over two steps. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.33 (m, 1H), 4.97 (s, 1H), 3.77 (s, 3H), 3.53 (s, 3H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.5, 168.0, 138.6, 134.9, 134.0, 129.7, 128.5, 126.6, 84.9, 58.6, 52.7, 21.3. HRMS (ESI) m/z calcd. for C₁₂H₁₅O₄ [M+H]⁺: 223.0965, found: 223.0965.

Methyl 2-methoxy-3-(3-methoxyphenyl)-3-oxopropanoate (11)

Prepared according to Method B, pale yellow oil, 1.48 g, 62% yield over two steps. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (ddd, J = 7.7, 1.6, 0.9 Hz, 1H), 7.58 (dd, J = 2.7, 1.6 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), 4.95 (s, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.54 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.1, 167.9, 159.8, 135.2, 129.7, 122.1, 120.9, 113.1, 84.9, 58.7, 55.4, 52.8. HRMS (ESI) m/z calcd. for C₁₂H₁₅O₅ [M+H]⁺: 239.0914, found: 239.0914.

Methyl 3-(3-bromophenyl)-2-methoxy-3-oxopropanoate (1m)

Prepared according to Method B, pale yellow oil, 2.20 g, 77% yield over two steps. ¹H NMR (600 MHz, CDCl₃) δ 8.17 (t, *J* = 1.8 Hz, 1H), 8.00 (dt, *J* = 7.9, 1.3 Hz, 1H), 7.71 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.34 (t, *J* = 7.9 Hz, 1H), 4.89 (s, 1H), 3.78 (s, 3H), 3.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.23, 167.64, 136.92, 135.65, 132.27, 130.27, 128.08, 123.00, 85.07, 58.85, 52.92. HRMS (ESI) m/z calcd. for C₁₁H₁₁BrO₄ [M+H]⁺: 286.9913, found: 286.9914.

Methyl 2-methoxy-3-(naphthalen-2-yl)-3-oxopropanoate (1n)

Prepared according to Method C, pale yellow oil, 1.60 g, 62% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.69 – 8.66 (m, 1H), 8.07 (dd, J = 8.6, 1.8 Hz, 1H), 8.00 (dd, J = 8.5, 1.3 Hz, 1H), 7.93 – 7.83 (m, 2H), 7.62 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 5.07 (s, 1H), 3.78 (s, 3H), 3.58 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.4, 168.0, 136.0, 132.4, 131.9, 131.3, 130.0, 129.1, 128.6, 127.8, 126.9, 124.3, 85.2, 58.7, 52.8. HRMS (ESI) m/z calcd. for C₁₁₅H₁₅O₄ [M+H]⁺ : 259.0965, found: 259.0965.

Methyl 3-(benzo[d][1,3]dioxol-5-yl)-2-methoxy-3-oxopropanoate (10)

Prepared according to Method B, pale yellow oil, 1.14 g, 45% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.53 (d, *J* = 1.8 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.06 (s, 2H), 4.88 (s, 1H), 3.78 (s, 3H), 3.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 168.1, 152.6, 148.2, 128.6, 126.4, 108.9, 108.1, 102.0, 85.2, 58.6, 52.7. HRMS (ESI) m/z calcd. for C₁₅H₁₅O₄ [M+H]⁺: 253.0707, found: 253.0707.

Ethyl 2-ethoxy-3-oxo-3-phenylpropanoate (1p)

Prepared according to Method A, pale yellow oil, 2.06 g, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 8.4, 1.4 Hz, 2H), 7.70 – 7.54 (m, 1H), 7.47 (dd, J = 8.4, 7.1 Hz, 2H), 5.01 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.83 – 3.71 (m, 1H), 3.71 – 3.59 (m, 1H), 1.27 (t, J = 7.0 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.8, 167.8, 134.2, 133.8, 129.4, 128.6, 83.7, 66.9, 61.8, 15.1, 13.9. HRMS (ESI) m/z calcd. for C₁₅H₁₅O₄ [M+H]⁺: 237.1121, found: 237.1122.

Tert-butyl 2-(benzyloxy)-3-oxo-3-phenylpropanoate (1q)

Prepared according to Method B, white solid, 2.54 g, 73% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.44 (dd, *J* = 8.4, 7.2 Hz, 2H), 7.38 – 7.28 (m, 5H), 4.94 (s, 1H), 4.72 (q, *J* = 11.7 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 192.9, 166.6, 136.4, 134.4, 133.6, 129.3, 128.5, 128.5, 128.3, 128.2, 83.2, 82.5, 72.6, 27.8. HRMS (ESI) m/z calcd. for C₂₀H₂₂NaO₄ [M+Na]⁺: 349.1410, found: 349.1410.

Ethyl 3-(4-(benzyloxy)phenyl)-2-ethoxy-3-oxopropanoate (1r)

Prepared according to Method B, pale yellow oil, 2.26 g, 66% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.04 (m, 2H), 7.52 – 7.27 (m, 5H), 7.01 (d, J =9.0 Hz, 2H), 5.13 (s, 2H), 4.95 (s, 1H), 4.22 (qd, J = 7.1, 1.0 Hz, 2H), 3.78 – 3.67 (m, 1H), 3.67 – 3.52 (m, 1H), 1.27 (t, J = 7.0 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.3, 168.0, 163.2, 136.0, 131.9, 128.7, 128.3, 127.5, 127.3, 114.6, 83.9, 70.2, 66.7, 61.8, 15.1, 14.0. HRMS (ESI) m/z calcd. for C₂₀H₂₃O₅ [M+H]⁺: 343.1540, found: 343.1542.

Methyl 3-(2-fluorophenyl)-2-methoxy-3-oxopropanoate (1s)

Prepared according to Method B, pale yellow oil, 1.44 g, 63% yield over two steps. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (td, J = 7.5, 1.9 Hz, 1H), 7.50 (dddd, J = 8.3, 7.2, 5.2, 1.9 Hz, 1H), 7.19 (td, J = 7.6, 1.1 Hz, 1H), 7.12 – 7.04 (m, 1H), 4.96 (s, 1H), 3.74 (s, 3H), 3.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.39 (d, J = 3.7 Hz), 166.54, 160.64 (d, J = 255.1 Hz), 134.39 (d, J = 9.3 Hz), 130.24 (d, J = 2.5 Hz), 123.69 (d, J = 3.4 Hz), 122.48 (d, J = 13.0 Hz), 115.49 (d, J = 23.4 Hz), 84.86 (d, J = 5.8 Hz), 58.44, 51.65. ¹⁹F NMR (377 MHz, CDCl₃) δ -110.12. HRMS (ESI) m/z calcd. for C₁₁H₁₂FO₄ [M+H]⁺: 227.0714, found: 227.0715.

2. General Procedure for Asymmetric Hydrogenation

To a 4.0 mL vial equipped with α -methoxy- β -ketoester 1 (0.2 mmol, 1.0 eq.) was added the Ir/f-phamidol-precatalyst (1.5 mg, 2.0×10⁻³ mmol, 0.01 eq.), Cs₂CO₃ (6.6 mg, 0.02 mmol, 10 mol%.) and anhydrous EtOAc (1.0 mL) in an argon-filled glovebox. The autoclave was quickly purged with hydrogen gas for three times, and then pressurized to 40 bar H₂. The reaction solution was stirred at room temperature for 12 h, and then the pressure was released carefully. After slowly releasing the hydrogen pressure, the reaction mixture was passed through a short column of silica gel to get the pure product. The yield was determined by NMR analysis after the volatiles were removed under vacuum. The ee and dr values were determined by HPLC analysis on a chiral stationary phase.

Methyl (2S,3S)-3-hydroxy-2-methoxy-3-phenylpropanoate (2a)

Colorless liquid, 46.1 mg, 99% yield, 99% ee, 97:3 dr; $[\alpha]^{20}_{D} = 2.2$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/5; flow rate = 0.7 mL/min; UV detection at 210 nm; t_R=16.0 min (*anti*), t_R=18.6 min (*anti*). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 5.02 – 4.94 (m, 1H), 3.99 (d, *J* = 5.8 Hz, 1H), 3.67 (s, 3H), 3.37 (s, 3H), 2.98 (d, *J* = 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 138.3, 127.2, 127.1, 125.5, 83.4, 73.0, 57.9, 50.9. HRMS (ESI) m/z calcd. for C₁₁H₁₄NaO₄ [M+Na]⁺: 233.0784, found: 233.0784.

Methyl (2*S*,3*S*)-3-hydroxy-2-methoxy-3-(p-tolyl)propanoate (2b)

Colorless liquid, 49.2 mg, 99% yield, 98% ee, 95:5 dr; $[\alpha]^{20}_{D} = 3.5$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R=13.2 min (*anti*), t_R=16.9 min (*anti*), t_R=23.0 min (*syn*), t_R=28.3 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 4.87 (t, *J* = 5.3 Hz, 1H), 3.91 (d, *J* = 5.8 Hz, 1H), 3.62 (s, 3H), 3.30 (s, 3H), 2.78 (d, J = 5.1 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 137.8, 136.4, 129.0, 126.4, 84.5, 73.9, 58.9, 51.9, 21.1. HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO₄ [M+Na]⁺: 247.0941, found: 247.0941.

Methyl (2*S*,3*S*)-3-hydroxy-2-methoxy-3-(4-methoxyphenyl)propanoate (2**c**)

Colorless liquid, 56.4 mg, 99% yield, 98% ee, 99:1 dr; $[\alpha]^{20}_{D} = 1.7$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 85/15; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R=13.4 min (*anti*), t_R=17.2 min (*anti*), t_R=21.1 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 8.8, 2.1 Hz, 2H), 6.90 – 6.71 (m, 2H), 4.85 (t, J =5.4 Hz, 1H), 3.90 (d, J = 5.9 Hz, 1H), 3.73 (s, 3H), 3.62 (s, 3H), 3.30 (s, 3H), 2.79 (d, J = 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 159.4, 131.6, 127.8, 113.7, 113.7, 84.5, 73.7, 58.9, 55.2, 51.9. HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO₅ [M+Na]⁺ : 263.0890, found: 263.0890.

Methyl (2S,3S)-3-(4-(tert-butyl)phenyl)-3-hydroxy-2-methoxypropanoate (2d)

Colorless liquid, 56.7 mg, 99% yield, 93% ee, 96:4 dr; $[\alpha]^{20}_{D} = 1.5$ (c = 1.0, CHCl₃); HPLC (Chiralpak IB column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=6.1 min (*anti*), t_R=6.6 min (*anti*), t_R=6.9 min (*syn*), t_R=7.4 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.5 Hz, 2H), 7.31 – 7.23 (m, 2H), 4.95 (t, *J* = 5.3 Hz, 1H), 4.00 (d, *J* = 5.9 Hz, 1H), 3.69 (s, 3H), 3.38 (s, 3H), 2.84 (d, *J* = 5.2 Hz, 1H), 1.31 (s, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 151.0, 136.4, 126.3, 125.2, 125.1, 84.5, 84.5, 73.9, 73.8, 58.9, 51.9, 34.5, 31.3. HRMS (ESI) m/z calcd. for C₁₅H₂₂NaO₄ [M+Na]⁺: 289.1410, found: 289.1410.

Methyl (2S,3S)-3-hydroxy-2-methoxy-3-(4-(trifluoromethyl)phenyl)propanoate (2e)

Colorless liquid, 59.8 mg, 99% yield, 96% ee, 95:5 dr; $[\alpha]^{20}_{D} = -2.4$ (c = 1.0, CHCl₃); HPLC (Chiralpak IB column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R=6.6 min (*anti*), t_R=7.4 min (*anti*), t_R=8.1 min (*syn*), t_R=8.8 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 5.03 (t, *J* = 4.8 Hz, 1H), 3.97 (d, *J* = 5.7 Hz, 1H), 3.68 (s, 3H), 3.38 (s, 3H), 3.25 (d, *J* = 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 143.4, 130.2 (q, *J* = 32.5 Hz), 126.9, 125.1 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.1 Hz), 84.2, 73.4, 59.0, 52.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.58. HRMS (ESI) m/z calcd. for C₁₂H₁₃F₃NaO₄ [M+Na]⁺ : 301.0658, found: 301.0659.

Methyl (2S,3S)-3-(4-fluorophenyl)-3-hydroxy-2-methoxypropanoate (2f)

Colorless liquid, 50.0 mg, 99% yield, 97% ee, 95:5 dr; $[\alpha]^{20}_{D} = -1.8$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/55; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=14.3 min (*anti*), t_R=15.3 min (*anti*), t_R=20.4 min (*syn*), t_R=29.7 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.6, 5.5 Hz, 2H), 7.03 (t, J = 8.7 Hz, 2H), 4.96 (t, J = 5.0 Hz, 1H), 3.95 (d, J = 5.7 Hz, 1H), 3.68 (s, 3H), 3.38 (s, 3H), 3.03 (d, J = 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 161.5 (d, J = 246.3 Hz), 134.1 (d, J = 3.2 Hz), 127.3 (d, J = 8.3 Hz), 114.1 (d, J = 21.4 Hz), 83.3, 72.4, 57.9, 50.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.39 – -114.48 (m). HRMS (ESI) m/z calcd. for C₁₁H₁₃FNaO₄ [M+Na]⁺: 251.0690, found: 251.0690.

Methyl (2S,3S)-3-(4-chlorophenyl)-3-hydroxy-2-methoxypropanoate (2g)

Colorless liquid, 52.7 mg, 99% yield, 96% ee, 94:6 dr; $[\alpha]^{20}_{D} = 3.1$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/5; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R=14.4 min (*anti*), t_R=15.4 min (*anti*), t_R=20.6 min (*syn*), t_R=30.1 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 4.98 – 4.91 (m, 1H), 3.94 (d, *J* = 5.7 Hz, 1H), 3.68 (s, 3H), 3.37 (s, 3H), 3.06 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 136.9, 132.8, 127.4, 126.9, 83.2, 72.4, 58.0, 51.0. HRMS (ESI) m/z calcd. for C₁₁H₁₃ClNaO₄ [M+Na]⁺: 267.0395, found: 267.0395.

Methyl (2*S*,3*S*)-3-(4-bromophenyl)-3-hydroxy-2-methoxypropanoate (**2h**)

Colorless liquid, 61.7 mg, 99% yield, 98% ee, 96:4 dr; $[\alpha]^{20}_{D} = 1.6$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=15.1 min (*anti*), t_R=16.3 min (*anti*), t_R=22.0 min (*syn*), t_R=29.3 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.26 – 7.20 (m, 2H), 4.94 (dd, *J* = 6.0, 2.8 Hz, 1H), 3.94 (d, *J* = 5.7 Hz, 1H), 3.68 (s, 3H), 3.38 (s, 3H), 3.06 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 138.4, 131.3, 128.3, 122.0, 84.2, 73.4, 59.0, 52.0. HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNaO₄ [M+Na]⁺: 310.9889, found: 310.9889.

Methyl (2S,3S)-3-([1,1'-biphenyl]-4-yl)-3-hydroxy-2-methoxypropanoate (2i)

Colorless liquid, 61.4 mg, 99% yield, 99% ee, 95:5 dr; $[\alpha]^{20}_{D} = 7.5$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 85/15; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=10.3 min (*anti*), t_R=12.3 min (*anti*), t_R=14.6 min (*syn*), t_R=19.2 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.45 (m, 4H), 7.42 – 7.31 (m, 4H), 7.31 – 7.23 (m, 1H), 4.95 (t, *J* = 5.3 Hz, 1H), 3.96 (d, *J* = 5.7 Hz, 1H), 3.62 (s, 3H), 3.33 (s, 3H), 2.91 (d, *J* = 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 140.9, 140.7, 138.4, 128.7, 127.3, 127.1, 127.0, 127.0, 84.5, 73.9, 59.0, 52.0. HRMS (ESI) m/z calcd. for C₁₇H₁₈NaO₄ [M+Na]⁺: 309.1097, found: 309.1099.

Methyl (2*S*,3*S*)-3-(4-(benzyloxy)phenyl)-3-hydroxy-2-methoxypropanoate (2j)

Colorless liquid, 67.5 mg, 99% yield, 99% ee, 99:1 dr; $[\alpha]^{20}_{D} = 3.0$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=21.1 min (*anti*), t_R=29.1 min (*anti*), t_R=32.6 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.35 (m, 4H), 7.35 – 7.23 (m, 3H), 6.99 – 6.90 (m, 2H), 5.05 (s, 2H), 4.92 (t, *J* = 5.3 Hz, 1H), 3.96 (d, *J* = 5.8 Hz, 1H), 3.68 (s, 3H), 3.37 (s, 3H), 2.85 (d, *J* = 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 158.6, 136.9, 131.9, 128.6, 127.9, 127.9, 127.8, 127.5, 114.6, 84.5, 73.7, 70.0, 58.9, 51.9. HRMS (ESI) m/z calcd. for C₁₈H₂₀NaO₄ [M+Na]⁺: 339.1203, found: 339.1204.

Methyl (2*S*,3*S*)-3-hydroxy-2-methoxy-3-(m-tolyl)propanoate (2**k**)

Colorless liquid, 49.1 mg, 99% yield, 96% ee, 95:5 dr; $[\alpha]^{20}_{D} = 0.8$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 85/15; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=8.8 min (*anti*), t_R=10.5 min (*anti*), t_R=12.9 min (*syn*), t_R=18.9 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 1H), 7.19 – 7.06 (m, 3H), 4.94 (t, *J* = 5.2 Hz, 1H), 3.99 (d, *J* = 5.8 Hz, 1H), 3.68 (s, 3H), 3.38 (s, 3H), 2.84 (d, *J* = 5.0 Hz, 1H), 2.35 (d, *J* = 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 138.3, 136.9, 127.9, 127.1, 126.2, 122.6, 83.5, 73.1, 57.8, 50.8, 20.4. HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO₄ [M+Na]⁺: 247.0941, found: 247.0942.

Methyl (2S,3S)-3-hydroxy-2-methoxy-3-(3-methoxyphenyl)propanoate (2I)

Colorless liquid, 52.2 mg, 99% yield, 97% ee, 95:5 dr; $[\alpha]^{20}_{D} = -2.7$ (c = 1.0, CHCl₃); HPLC (Chiralpak IB column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=10.3 min (*anti*), t_R=11.2 min (*anti*), t_R=12.0 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 7.5, 1.4 Hz, 2H), 6.88 – 6.80 (m, 1H), 4.95 (t, *J* = 4.9 Hz, 1H), 3.98 (d, *J* = 5.8 Hz, 1H), 3.80 (s, 3H), 3.69 (s, 3H), 3.37 (s, 3H), 2.94 (d, *J* = 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 159.5, 141.1, 129.3, 118.8, 113.7, 112.0, 84.4, 74.0, 58.9, 55.2, 51.9. HRMS (ESI) m/z calcd. for C₁₂H₁₆NaO₅ [M+Na]⁺: 263.0890, found: 263.0890.

Methyl (2*S*,3*S*)-3-(3-bromophenyl)-3-hydroxy-2-methoxypropanoate (**2m**)

Colorless liquid, 60.7 mg, 99% yield, 95% ee, 95:5 dr; $[\alpha]^{20}_{D} = 1.2$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 85/15; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R=6.5 min (*anti*), t_R=7.9 min (*anti*), t_R=8.2 min (*syn*), t_R=10.0 min (*syn*).¹H NMR (400 MHz, CDCl₃) δ 7.53 (t, *J* = 1.9 Hz, 1H), 7.43 (ddd, *J* = 7.8, 2.0, 1.2 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 4.95 (t, *J* = 5.2 Hz, 1H), 3.95 (d, *J* = 5.7 Hz, 1H), 3.69 (s, 3H), 3.39 (s, 3H), 3.03 (d, *J* = 5.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 141.7, 131.1, 129.8, 129.7, 125.2, 122.4, 84.2, 73.4, 59.0, 52.1, 52.0. HRMS (ESI) m/z calcd. for C₁₁H₁₃BrNaO₄ [M+Na]⁺: 310.9889, found: 310.9890.

Methyl (2*S*,3*S*)-3-hydroxy-2-methoxy-3-(naphthalen-2-yl)propanoate (2n)

Colorless liquid, 56.3 mg, 99% yield, 99% ee, 94:6 dr; $[\alpha]^{20}_{D} = 13.3$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 80/20; flow rate = 1.0 mL/min; UV detection at 260 nm; t_R=8.4 min (*anti*), t_R=9.9 min (*anti*), t_R=11.4 min (*syn*), t_R=15.4 min (*syn*).¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 6.1, 3.3 Hz, 4H), 7.53 – 7.41 (m, 3H), 5.13 (d, *J* = 5.8 Hz, 1H), 4.07 (d, *J* = 5.8 Hz, 1H), 3.65 (s, 3H), 3.37 (s, 3H), 3.12 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 135.8, 132.1, 132.0, 127.0, 126.9, 126.6, 125.0, 125.0, 124.7, 123.3, 83.4, 73.2, 57.9, 50.9. HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₄ [M+Na]⁺: 283.0941, found: 283.0941.

Methyl (2*S*,3*S*)-3-(benzo[d][1,3]dioxol-5-yl)-3-hydroxy-2-methoxypropanoate (**20**) Colorless liquid, 55.2 mg, 99% yield, 98% ee, 99:1 dr; $[\alpha]^{20}_{D} = -5.0$ (c = 1.0, CHCl₃); HPLC (Chiralpak IA column, hexane/isopropanol = 95/5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R =35.2 min (*anti*), t_R =38.6 min (*anti*). ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 1.7 Hz, 1H), 6.83 – 6.72 (m, 2H), 5.95 (d, J = 0.8 Hz, 2H), 4.88 (d, J = 5.0 Hz, 1H), 3.94 (d, J = 5.9 Hz, 1H), 3.71 (s, 3H), 3.38 (s, 3H), 2.91 (d, J = 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 147.6, 147.4, 133.4, 120.2, 108.0, 107.1, 101.0, 84.5, 73.9, 59.0, 52.0. HRMS (ESI) m/z calcd. for C₁₂H₁₄NaO₄ [M+Na]⁺ : 277.0683, found: 277.0683.

Ethyl (2*S*,3*S*)-2-ethoxy-3-hydroxy-3-phenylpropanoate (**2p**)

Colorless liquid, 51.6 mg, 99% yield, 99% ee, 97:3 dr; $[\alpha]^{20}_{D} = -1.1$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=8.5 min (*anti*), t_R=9.1 min (*anti*), t_R=11.5 min (*syn*), t_R=14.7 min (*syn*). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 4.98 (t, *J* = 5.3 Hz, 1H), 4.11 (qd, *J* = 7.2, 1.9 Hz, 2H), 4.03 (d, *J* = 5.9 Hz, 1H), 3.65 (dq, *J* = 9.1, 7.0 Hz, 1H), 3.38 (dq, *J* = 9.3, 7.0 Hz, 1H), 3.03 (d, *J* = 4.8 Hz, 1H), 1.15 (dt, *J* = 14.5, 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.7, 138.5, 127.1, 126.9, 125.6, 81.6, 73.0, 65.8, 59.9, 13.9, 12.9. HRMS (ESI) m/z calcd. for C₁₃H₁₈NaO₄ [M+Na]⁺: 261.1097, found: 261.1097.

Tert-butyl (2*S*,3*S*)-2-(benzyloxy)-3-hydroxy-3-phenylpropanoate (**2q**)

Colorless liquid, 69.6 mg, 99% yield, 96% ee, 99:1 dr; $[\alpha]^{20}_{D} = -11.6$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=13.4 min (*anti*), t_R=15.4 min (*anti*), t_R=20.6 min (*syn*), t_R=23.4 min (*syn*). ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.35 – 7.26 (m, 6H), 7.24 – 7.19 (m, 2H), 4.99 (t, *J* = 5.2 Hz, 1H), 4.69 (d, *J* = 11.5 Hz, 1H), 4.38 (d, *J* = 11.5 Hz, 1H), 4.04 (d, *J* = 5.8 Hz, 1H), 3.10 (d, *J* = 4.8 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.6, 139.6, 137.1, 128.4, 128.1, 128.1, 127.9, 127.8, 126.9, 82.2, 82.0, 74.2, 72.8, 27.9. HRMS (ESI) m/z calcd. for C₂₀H₂₄NaO₄ [M+Na]⁺: 351.1567, found: 351.1568.

Ethyl (2*S*,3*S*)-3-(4-(benzyloxy)phenyl)-2-ethoxy-3-hydroxypropanoate (2**r**)

Colorless liquid, 63.0 mg, 99% yield, 99% ee, 99:1 dr; $[\alpha]^{20}_{D} = -1.3$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 90/10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=15.0 min (*anti*), t_R=16.9 min (*anti*), t_R=21.7 min (*syn*), t_R=22.9 min (*syn*). ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.1 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.30 (dd, *J* = 8.8, 2.4 Hz, 3H), 6.97 – 6.91 (m, 2H), 5.05 (s, 2H), 4.92 (t, *J* = 5.4 Hz, 1H), 4.12 (qd, *J* = 7.1, 1.8 Hz, 2H), 4.00 (d, *J* = 5.9 Hz, 1H), 3.65 (dq, *J* = 9.2, 7.0 Hz, 1H), 3.38 (dq, *J* = 9.2, 7.0 Hz, 1H), 2.95 (d, *J* = 5.0 Hz, 1H), 1.16 (td, *J* = 7.1, 4.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 157.5, 135.9, 131.0, 127.5, 126.9, 126.4, 113.5, 81.7, 72.6, 68.9, 65.8, 59.9, 14.0, 13.0. HRMS (ESI) m/z calcd. for C₂₀H₂₄NaO₅ [M+Na]⁺: 367.1516, found: 367.1517.

Methyl (2*S*,3*S*)-3-(2-fluorophenyl)-3-hydroxy-2-methoxypropanoate (2s)

Colorless liquid, 60.1 mg, 82% yield, 28% ee, 85:15 dr; $[\alpha]^{20}_{D} = 3.3$ (c = 1.0, CHCl₃); HPLC (Chiralpak IC column, hexane/isopropanol = 95/5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R=18.0 min (*anti*), t_R=20.5 min (*anti*), t_R=25.7 min (*syn*), t_R=40.5 min (*syn*). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (td, J = 7.6, 1.8 Hz, 1H), 7.20 (m, 1H), 7.07 (td, J = 7.5, 1.2 Hz, 1H), 6.96 (ddd, J = 10.6, 8.2, 1.2 Hz, 1H), 5.27 (d, J = 4.8 Hz, 1H), 4.06 (d, J = 4.7 Hz, 1H), 3.55 (s, 3H), 3.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.19, 158.90 (d, J = 245.7 Hz), 128.50 (d, J = 8.3 Hz), 126.95 (d, J = 4.1 Hz), 125.14 (d, J = 13.0 Hz), 123.10 (d, J = 3.4 Hz), 114.04 (d, J = 21.7 Hz), 82.14 (d, J = 1.7 Hz), 67.46 (d, J = 2.4 Hz), 57.68, 50.80. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.87 – -127.79 (m). HRMS (ESI) m/z calcd. for $C_{20}H_{24}NaO_5$ [M+Na]⁺ : 367.1516, found: 367.1517.

(2S,3S)-2-(Benzyloxy)-3-hydroxy-3-phenyl propanoic acid (3)^[3]

Acid **3** was is obtained by the hydrolysis of ester **2r**. Colorless liquid, 32.1 mg. $[\alpha]^{20}_D$ = -16.8 (c = 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.26 (m, 8H), 7.14 (dd, J = 6.6, 2.9 Hz, 2H), 5.00 (d, J = 6.2 Hz, 1H), 4.62 (d, J = 11.5 Hz, 1H), 4.38 (d, J =11.5 Hz, 1H), 4.14 (d, J = 6.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 138.9, 136.3, 128.5, 128.3, 128.2, 128.2, 126.9, 81.3, 74.2, 73.5.

3. Synthetic Applications

Scale-up synthesis of 2a

To a 2.5 mL vial was added the catalyst precursor $[Ir(COD)Cl]_2$ (3.4 mg, 0.005 mmol), f-phamidol (5.9 mg, 0.0105 mmol) and anhydrous EtOAc (1 mL) under argon atmosphere. The mixture was stirred for 1 h at room temperature to give a clear orange solution. An aliquot of the catalyst solution (200 uL, 0.001 mmol) was transferred into a 10.0 mL hydrogenation vessel, then Cs₂CO₃ (32.5 mg, 0.1 mmol), **1a** (416 mg, 2.0 mmol) and anhydrous EtOAc (5 mL) was added. The vessels were placed in an autoclave which was then charged with 40 atm of H₂ and stirred at 25-30 °C for 48 h. After slowly releasing the hydrogen pressure, the reaction mixture was passed through a short column of silica gel to get the pure product **2a** 413 mg, 98% yield, 98% ee, 96:4 dr.

The yield was determined by NMR analysis after the volatiles were removed under vacuum. The ee values were determined by HPLC analysis on a chiral stationary phase.

Scale-up synthesis of 2r

To a 20.0 mL vial equipped with α -methoxy- β -ketoesters **1r** (1.37 g, 4.0 mmol, 1.0 eq.) was added the Ir/f-phamidol-precatalyst (15.2 mg, 1.0×10^{-3} mmol, 0.005 eq.), Cs₂CO₃ (65.1 mg, 0.2 mmol, 5 mol%.) and anhydrous EtOAc (8.0 mL) in an argon-filled glovebox. The autoclave was quickly purged with hydrogen gas for three times, and then pressurized to 40 bar H₂. The reaction solution was stirred at room temperature for 48 h, and then the pressure was released carefully. After slowly releasing the hydrogen pressure, the reaction mixture was passed through a short column of silica gel to get the pure product **2r** (1.34 g, 99% yield, 99% ee, 99:1 dr).

The yield was determined by NMR analysis after the volatiles were removed under vacuum. The ee and dr values were determined by HPLC analysis on a chiral stationary phase.

4. NMR Spectra

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1b

 ^{13}C NMR spectra (151 MHz, CDCl_3) of 1c

 ^{13}C NMR spectra (101 MHz, CDCl₃) of 1d

 ^{13}C NMR spectra (101 MHz, CDCl₃) of 1e

¹H NMR spectra (400 MHz, CDCl₃) of **1f**

 ^{13}C NMR spectra (101 MHz, CDCl_3) of 1g

¹H NMR spectra (400 MHz, CDCl₃) of $\mathbf{1h}$

^{13}C NMR spectra (101 MHz, CDCl₃) of **1h**

^{13}C NMR spectra (151 MHz, CDCl₃) of 1i

¹³C NMR spectra (151 MHz, CDCl₃) of **1j**

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1I

¹H NMR spectra (600 MHz, CDCl₃) of **1m**

^{13}C NMR spectra (151 MHz, CDCl₃) of 1m

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1n

¹H NMR spectra (600 MHz, CDCl₃) of **10**

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 10

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1p

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1q

 ^{13}C NMR spectra (151 MHz, CDCl₃) of 1r

^{13}C NMR spectra (101 MHz, CDCl_3) of 1s

$^{19}\mathsf{F}\,\mathsf{NMR}$ spectra (377 MHz, CDCl₃) of 1s

¹H NMR spectra (400 MHz, CDCl₃) of **2a**

¹³C NMR spectra (101 MHz, CDCl₃) of **2a**

WYZ-609-1-C.35.fid

¹H NMR spectra (400 MHz, CDCl₃) of $\mathbf{2b}$

^{13}C NMR spectra (101 MHz, CDCl₃) of 2b

¹H NMR spectra (400 MHz, CDCl₃) of 2c

^{13}C NMR spectra (101 MHz, CDCl₃) of 2c

WYZ-610-1-C.13.fid - 171.00 - 159.43 - 131.61 - 127.86 < 113.77
< 113.71
</pre> OH O ₹ ∥

84.55
 77.38 CDCl3
 77.06 CDCl3
 76.74 CDCl3
 73.72

~ 58.98 ~ 55.24 ~ 51.98

320000

. 300000

. 220000

¹H NMR spectra (400 MHz, CDCl₃) of 2d

^{13}C NMR spectra (101 MHz, CDCl₃) of 2d

WYZ-610-2-AH-C.3.fid

¹H NMR spectra (400 MHz, CDCl₃) of **2e**

¹³C NMR spectra (101 MHz, CDCl₃) of **2e**

 $^{19}\mathsf{F}\,\mathsf{NMR}$ spectra (376 MHz, CDCl₃) of 2e

¹³C NMR spectra (101 MHz, CDCl₃) of **2f**

83.36 76.34 CDCl3 76.02 CDCl3 75.71 CDCl3 72.40 WYZ-609-2-C.43.fid 200000 ~ 169.74 _ 162.73 _ 160.28 - 134.19 - 134.16 - 127.34 - 127.26 - 114.25 - 114.03 -- 57.98 -- 50.98 . 190000 . 180000 . 170000 160000 150000 140000 130000 L 120000 OH O . 110000 ОМе 100000 **↓** OMe 90000 F 80000 70000 60000 50000 40000 - 30000 20000 10000 0 -10000 -20000 210 200 110 f1 (ppm) 60 120 90 80 70 50 40 30 20 10 190 180 170 160 150 140 130 100

¹H NMR spectra (400 MHz, CDCl₃) of 2g

¹H NMR spectra (400 MHz, CDCl₃) of 2h

^{13}C NMR spectra (101 MHz, CDCl₃) of 2h

¹H NMR spectra (400 MHz, CDCl₃) of **2i**

¹³C NMR spectra (101 MHz, CDCl₃) of **2i**

¹H NMR spectra (400 MHz, CDCl₃) of **2j**

¹³C NMR spectra (101 MHz, CDCl₃) of **2j**

WYZ-612-4-C.6.fid

¹H NMR spectra (400 MHz, CDCl₃) of 2k

^{13}C NMR spectra (101 MHz, CDCl₃) of 2k

WYZ-610-4-RE-C.18.fid

100000

¹H NMR spectra (400 MHz, CDCl₃) of **2I**

¹³C NMR spectra (101 MHz, CDCl₃) of **2I**

WYZ-610-5-RE-C.18.fid

¹H NMR spectra (400 MHz, CDCl₃) of **2m**

^{13}C NMR spectra (101 MHz, CDCl₃) of 2m

 84.22
 77.36 CDCl3
 77.05 CDCl3
 76.73 CDCl3
 73.41 WYZ-610-6-RE3-C.3.fid 600000 $= 141.71 \\ 131.19 \\ 129.80 \\ 129.71 \\ 125.27 \\ 122.40$ - 170.58 59.01 52.15 52.03 550000 . 500000 450000 0 ŌН 400000 Br 350000 ОМе ŌМе . 300000 250000 200000 150000 100000 50000 -50000 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR spectra (400 MHz, CDCl₃) of **2n**

^{13}C NMR spectra (101 MHz, CDCl₃) of 2n

¹H NMR spectra (400 MHz, CDCl₃) of **20**

¹³C NMR spectra (101 MHz, CDCl₃) of **20**

WYZ-612-2-C.3.fid

¹H NMR spectra (400 MHz, CDCl₃) of **2p**

^{13}C NMR spectra (101 MHz, CDCl₃) of 2p

WYZ-612-3-RE-C.12.fid

¹H NMR spectra (400 MHz, CDCl₃) of **2q**

^{13}C NMR spectra (101 MHz, CDCl₃) of 2q

¹H NMR spectra (400 MHz, CDCl₃) of **2r**

¹³C NMR spectra (101 MHz, CDCl₃) of **2r**

WYZ-612-5-RE-H.23.fid

¹H NMR spectra (400 MHz, CDCl₃) of 2s

zxd-117-rac.12.fid

- 6000000 -- 5500000

¹³C NMR spectra (151 MHz, CDCl₃) of **3**

5. HPLC chromatograms

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.031	BB	0.2862	8889.41211	479.74789	99.2935
2	18.639	BB	0.2583	63.25026	2.99597	0.7065
Total	ls :			8952.66236	482.74387	

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.652	BB	0.3150	5805.73535	283.41510	50.2096
2	20.662	BB	0.3858	5757.26904	230.16724	49.7904
Tota]	ls :			1.15630e4	513.58234	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.266	BB	0.3015	5953.34033	300.03384	36.1030
2	16.922	BB	0.3975	5953.59424	230.40375	36.1046
3	23.015	BB	0.5308	2316.46240	65.47560	14.0478
4	28.335	BB	0.5754	2266.46338	55.38942	13.7446
Tota	ls :			1.64899e4	651.30261	

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.459	BB	0.2959	1.75105e4	912.41620	98.9782
2	17.428	BB	0.3716	180.77164	7.08639	1.0218
Tota:	ls :			1.76912e4	919.50259	

DAD1 C, Sig=220,4 Ref=360,100 (D:/CHEM32\...10-1-AH-IC-1.0 2024-07-03 09-46-35)002-P1-A1-WYZ-610-1-RAC.D)

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.412	BB	0.3008	3349.14258	170.77104	44.5706
2	17.221	BB	0.3904	3333.26465	130.31335	44.3593
3	21.182	BB	0.4625	831.83936	27.22568	11.0702
Total	s :			7514.24658	328.31008	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.147	'MM '	0.1398	4270.54736	509.06567	92.3581
2	6.795	MM	0.2395	170.69121	11.87840	3.6915
3	7.448	VB	0.1686	182.66125	16.07520	3.9504

Totals :

4623.89983 537.01928

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.159	BB	0.1299	8750.66113	1021.74054	38.3219
2	6.677	BV	0.1349	8321.75781	943.38965	36.4436
3	6.952	vv	0.1564	2985.99048	284.60895	13.0766
4	7.437	VB	0.1626	2776.23169	255.78339	12.1580
Total	s :			2.28346e4	2505.52252	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.583	VB R	0.1350	3021.57715	335.60306	92.6395
2	7.536	BB	0.2239	73.47603	5.23036	2.2527
3	7.982	BB	0.2267	30.48144	1.86451	0.9345
4	8.856	BB	0.2472	136.11501	7.81410	4.1732

3261.64962 350.51203

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak F	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.621	BB	0.1367	881.05060	96.30665	37.1964
2	7.474	VV R	0.1511	876.71069	86.25386	37.0132
3	8.118	VB	0.1874	294.57959	23.31674	12.4366
4	8.815	BB	0.2059	316.30362	22.79578	13.3538
Tota	ls :			2368.64450	228.67303	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.398	BV R	0.2884	8584.82227	458.58093	93.6617
2	15.448	VB E	0.2658	125.48026	6.10574	1.3690
3	30.091	BB	0.5930	455.47186	9.64349	4.9693

9165.77438 474.33016

Totals :

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		·				
1	14.355	BV	0.2831	4274.63428	231.86563	39.0378
2	15.335	VB	0.3080	4261.93408	212.50787	38.9218
3	20.474	BB	0.4047	1223.21338	46.53404	11.1709
4	29.777	BB	0.5577	1190.21167	31.29240	10.8695
Tota	ls :			1.09500e4	522.19994	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Тур	0e	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.218	ΒV	R	0.3112	1.51705e4	746.14099	91.2174
2	15.269	VB	Е	0.3405	338.26062	14.81012	2.0339
3	20.693	BB		0.3563	80.31788	2.87205	0.4829
4	27.913	BB		0.6511	1042.07617	23.60020	6.2658
Total	s :				1.66312e4	787.42336	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.459	BV	0.2882	4926.91113	263.40848	38.2729
2	15.457	VB	0.3109	4924.94287	242.57971	38.2576
3	20.679	BB	0.4097	1525.49646	56.38049	11.8503
4	30.120	BB	0.5973	1495.76233	38.49614	11.6193
Tota	ls :			1.28731e4	600.86482	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.128	BB	0.3122	6720.53711	331.93326	94.8785
2	16.420	BB	0.2616	56.62384	2.73409	0.7994
3	29.293	BB	0.5478	306.14413	6.81873	4.3221

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	15.133	BB	0.3119	8747.77930	432.59357	37.4580
2	16.396	BB	0.3473	8752.95410	387.85748	37.4801
3	22.096	BB	0.4525	2856.55884	96.17087	12.2318
4	29.372	BB	0.6168	2996.28613	73.93647	12.8301
Total	ls :			2.33536e4	990.55839	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.401	BB	0.2491	1.91682e4	1195.47449	94.5686
2	12.423	BB	0.2908	125.95611	6.36633	0.6214
3	19.320	BB	0.4486	974.94946	33.01235	4.8100
Tota]	s :			2.02692e4	1234.85317	

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2 3 4	10.397 12.371 14.662 19.298	VB VB R BB BB	0.2438 0.3006 0.3454 0.4634	1.30365e4 1.31218e4 4037.01221 4081.45190	818.50549 666.50177 178.83653 135.51137	38.0331 38.2819 11.7777 11.9073
Totals	:			3.42768e4	1799.35516	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.004	BB	0.5125	1.85438e4	548.33148	99.3074
2	29.082	BB	0.4577	129.33559	3.40099	0.6926

Totals : 1.86731e4 551.73247

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.175	BB	0.5245	8123.31201	236.61098	44.1318
2	29.116	BB	0.7275	8100.80811	168.33057	44.0095
3	32.659	BB	0.6834	2182.81909	42.62933	11.8587
Totals	:		1.	84069e4 4	47.57087	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.881	BB	0.1866	5666.74756	463.49976	93.3299
2	10.580	BB	0.2327	115.52114	7.37732	1.9026
3	19.018	BB	0.3292	289.46915	10.92203	4.7675

Peak #	RetTime [min]	Тур	e -	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.880	VB	R	0.1899	6002.58887	471.12833	39.5051
2	10.557	BV	R	0.2332	6020.23535	389.74423	39.6212
3	12.962	BB		0.2899	1607.50122	86.06207	10.5795
4	18.993	BB		0.4170	1564.14722	57.19684	10.2942
Total	ls :				1.51945e4	1004.13146	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Тур)e	Width [min]	Area [mAU*s]	Height [mAU]	Area %
			·-				
1	10.310	BV	R	0.2398	1.18753e4	729.98511	93.8196
2	11.383	VB	Е	0.2905	159.22072	7.72479	1.2579
3	12.414	BB		0.3161	623.06519	29.30134	4.9225

Totals : 1.26576e4 767.01124

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.358	BB	0.2370	1721.51697	108.56081	36.2032
2	11.265	BV	0.2534	1714.04370	101.32056	36.0460
3	12.079	vv	0.1984	438.87424	33.59826	9.2294
4	12.310	VB	0.3142	880.71875	40.41536	18.5214
Totals	:			4755.15366	283.89499	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.541	BB	0.1320	3824.29590	437.23657	91.6606
2	7.935	BV	0.1622	89.11009	8.50681	2.1358
3	8.307	VB	0.1754	43.32380	3.79023	1.0384
4	11.114	BB	0.2395	215.50446	13.85028	5.1652

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.535	VB R	0.1386	2229.97168	233.26588	38.6872
2	7.902	VV R	0.1700	2025.17786	182.51039	35.1343
3	8.289	VV R	0.1963	866.29425	61.77230	15.0291
4	11.096	VB	0.2367	642.65875	41.95615	11.1493
Total	s:			5764.10254	519,50473	

Signal 1: DAD1 F, Sig=260,4 Ref=off

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.459	BB	0.1885	5265.93359	425.24387	92.9839
2	9.945	BB	0.2224	41.22725	2.89021	0.7280
3	15.435	BB	0.3836	356.11420	13.95924	6.2881

5663.27504 442.09332

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.470	VB R	0.1902	9431.28223	755.77661	36.4263
2	9.913	VB R	0.2325	9375.48145	618.08258	36.2107
3	11.424	BB	0.2615	3559.81396	208.20245	13.7490
4	15.436	BB	0.3613	3524.85669	150.47789	13.6140
Total	ls :			2.58914e4	1732.53954	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	35.950	BB	0.7297	3.06216e4	642.94012	99.1065
2	39.945	BB	0.6250	276.08640	5.27128	0.8935

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	35.260	BB	0.6828	9140.53418	194.32420	48.5405
2	38.673	BB	0.7762	9690.20605	182.27994	51.4595
Total	ls :			1.88307e4	376.60414	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.415	VV R	0.1751	9513.89941	824.71613	96.5541
2	9.016	VV E	0.1782	53.07420	4.17760	0.5386
3	10.262	BB	0.1819	37.23717	3.24401	0.3779
4	14.543	BB	0.3021	249.22514	12.74842	2.5293

Totals :	9853.43592	844.88616

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.517	VV R	0.1743	7376.78271	647.78552	41.1009
2	9.129	VB	0.1880	7455.40771	603.84821	41.5390
3	11.583	VB R	0.2398	1599.76001	101.93784	8.9133
4	14.783	BB	0.3019	1516.01208	77.59644	8.4467
Totals				1.79480e4	1431.16801	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.134	BB	0.2713	77.11781	3.52350	1.8833
2	16.071	BB	0.3512	4017.67896	176.71280	98.1167

4094.79676 180.23629

Totals :

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	13.473	BB	0.2915	4314.28857	227.26022	42.9113
2	15.453	BB	0.3484	4361.80469	193.94235	43.3840
3	20.606	BB	0.4378	675.46204	22.78617	6.7184
4	23.457	BB	0.4815	702.40369	19.72126	6.9863
Total	ls :			1.00540e4	463.71001	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.249	VB	0.3676	1.93983e4	815.23517	98.5667
2	17.285	BB	0.2959	50.03681	2.08570	0.2542
3	23.238	BB	0.4349	232.04288	6.37111	1.1791
Tota	ls :			1.96803e4	823.69199	

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak f	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	15.060	BB	0.3611	5216.35840	221.22687	40.5664
	16.975	BB	0.4020	5073.81934	193.43369	39.4580
3	21.744	BV	0.5252	1223.09570	34.70211	9.5117
4	22.955	VB	0.5087	1345.52673	39.17538	10.4639
Totals	:			1.28588e4	488.53804	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.815	BB	0.6154	3.66661e4	874.11792	59.0912
2	21.847	BB	0.5089	1.58811e4	474.00757	25.5940
3	27.539	BB	0.6183	4047.38672	97.89571	6.5228
4	43.648	BB	0.8192	5455.47949	82.31331	8.7921
Tota	als :			6.20500e4	1528.33450	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.027	BB	0.7247	3.06419e4	668.61499	42.8527
2	20.521	BB	0.4984	2.93290e4	909.10474	41.0167
3	25.713	BB	0.5852	5771.36865	149.21532	8.0713
4	40.538	BB	0.8717	5762.84277	92.14124	8.0593
Т	otals :			7.15051e4	1819.07628	

6. References

 Miyata, R.; Shigeta, T.; Kumazawa, S.; Egi, M., Selective Syntheses of Coumarin and Benzofuran Derivatives Using Phenols and α-Methoxy-β-ketoesters. SynOpen 2023, 07, 8-16.

[2] Monnereau, L.; Cartigny, D.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal, V., Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation–Dynamic Kinetic Resolution of α -Alkoxy-Substituted β -Ketoesters. *Chem. - Eur. J.* **2015**, *21*, 11799-11806.

[3] Gangar, M.; Ittuveetil, A.; Goyal, S.; Pal, A.; Harikrishnan, M.; Nair, V. A., Anti selective glycolate aldol reactions of (S)-4-isopropyl-1-[(R)-1-phenylethyl]imidazolidin-2-one: application towards the asymmetric synthesis of 8-4'-oxyneolignans. *RSC Adv.* **2016**, *6*, 102116-102126.