Supporting information

Practical Synthesis of C-aryl Glycosides via Redox-Neutral Borono-Catellani Reaction

Dekang Xu¹, Xia Li¹, Ziyang Cui¹, Liming Cao¹, Hong-Gang Cheng¹ and Qianghui Zhou^{*1}

¹Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

Email: <u>qhzhou@whu.edu.cn</u>

Table of Contents

1. General information	3
2. Representatives of C-aryl glycosides	4
3. Preparation of glycosyl chlorides	4
4. Preparation of arylboronic ester 1r	8
5. Optimization of reaction conditions	10
6. Reaction Scope of three-component Borono-Catellani reaction	14
7. General procedure for redox-neutral synthesis of C-aryl glycosides 3	15
8. Characterization data for C-aryl glycosides 3	15
9. General procedure for the synthesis of C-aryl glycosides 5	44
10. Characterization data for C-aryl glycosides 5	44
11. Synthetic applications	57
12. Proposed stereochemical model	61
13. References	63
14. Copies of NMR spectra	64

1. General information

All reactions dealing with moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under Air atmosphere. Unless otherwise noted, all solvents were dried by JC Meyer Solvent Drying System. Most reagents were purchased from commercial sources and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm commercial silica gel plates, using UV light as the visualizing agent. All NMR spectra were recorded on a Bruker spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 376 MHz (¹⁹F NMR) and were calibrated using residual (un)deuterated solvent as an internal reference (CDCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR; CD₃OD @ 3.31 ppm ¹H NMR, 49.00 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet. High resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer.

2. Representatives of C-aryl glycosides

Figure S1. Representatives of C-aryl glycoside natural products and medicines.

3. Preparation of glycosyl chlorides

Figure S2. The glycosyl chlorides prepared in this study.

Glycosyl chlorides **2a**, **2b**, **2f**, **2h**, **2i** were prepared following the method described by Chen G. et al¹.

Glycosyl chlorides **2c**, **2d**, **2g**, **2k**, **2l**, **2m** were prepared following the method described by Liang Y.-M. et al².

Glycosyl chlorides 2e and 2j were prepared from the corresponding hemiacetal following a procedure described by Chen G. et al¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 15H), 5.95 (d, J = 1.9 Hz, 1H), 4.83 (d, J = 11.5 Hz, 1H), 4.75 (dd, J = 12.0, 5.1 Hz, 2H), 4.65 (d, J = 12.2 Hz, 3H), 4.10 (dd, J = 9.4, 3.0 Hz, 1H), 4.08 – 4.00 (m, 1H), 3.91 (dd, J = 11.4, 5.0 Hz, 1H), 3.86 (t, J = 2.4 Hz, 1H), 3.73 (dd, J = 11.4, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 138.47, 138.40, 137.69, 128.66, 128.57, 128.17, 128.15, 127.94, 127.90, 92.12, 78.44, 77.80, 74.19, 73.92, 73.56, 73.08, 63.69.

HRMS (ESI-TOF): calc'd for $C_{26}H_{31}CINO_4^+$ [M+NH₄⁺] 456.1936, found 456.1932.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 – 8.03 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.49 – 7.42 (m, 2H), 6.19 (s, 1H), 5.08 (d, *J* = 5.7 Hz, 1H), 4.95 (dd, *J* = 5.9, 1.5 Hz, 1H), 4.69 – 4.58 (m, 2H), 4.53 (dd, *J* = 11.3, 6.2 Hz, 1H), 1.50 (s, 3H), 1.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.21, 133.46, 129.97, 129.66, 128.60, 113.89, 98.27, 89.68, 87.62, 81.70, 64.04, 26.71, 25.48.

HRMS (ESI-TOF): calc'd for C₁₅H₂₁ClNO₅⁺ [M+NH₄⁺] 330.1103, found 330.1098.

General procedure for the synthesis of $2n-2q^{1,3}$.

To a 0 °C cooled solution of S-1 (0.8 mmol) in DCM, was slowly added boron trichloride (1.1–1.5 eq., 1M in DCM). After the complete consumption of starting

material monitored by TLC analysis, the reaction mixture was diluted with DCM (20 mL) and washed with saturated NaHCO₃ (aq.), water and brine. The resulting residue was purified by silica gel flash chromatography to give corresponding compound.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.12 (m, 30H), 6.02 (d, *J* = 2.2 Hz, 1H), 4.96 – 4.83 (m, 3H), 4.81 – 4.73 (m, 2H), 4.69 (d, *J* = 11.5 Hz, 1H), 4.60 – 4.47 (m, 6H), 4.47 – 4.40 (m, 2H), 4.09 (t, *J* = 9.1 Hz, 1H), 3.96 – 3.85 (m, 2H), 3.82 – 3.73 (m, 2H), 3.68 – 3.55 (m, 4H), 3.47 – 3.41 (m, 1H), 3.41 – 3.34 (m, 1H), 0.85 (s, 9H), 0.01 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.96, 138.67, 138.62, 138.46, 138.33, 137.79, 128.55, 128.50, 128.43, 128.38, 128.36, 128.07, 127.99, 127.97, 127.89, 127.85, 127.82, 127.80, 127.73, 127.61, 127.58, 127.51, 100.67, 92.05, 85.02, 82.49, 78.13, 75.84, 75.67, 75.45, 75.38, 75.11, 74.80, 74.70, 73.58, 73.49, 72.79, 68.96, 61.98, 26.04, 18.46, -5.02, -5.16.

HRMS (ESI-TOF): calc'd for $C_{60}H_{75}CINO_{10}Si^+$ [M+NH₄⁺] 1032.4843, found 1032.4841.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 14H), 7.26 – 7.12 (m, 16H), 6.03 (d, *J* = 2.0 Hz, 1H), 4.99 (dd, *J* = 10.9, 2.8 Hz, 2H), 4.93 – 4.80 (m, 2H), 4.78 – 4.69 (m, 2H), 4.67 – 4.49 (m, 6H), 4.40 (d, *J* = 11.7 Hz, 1H), 4.31 (d, *J* = 11.6 Hz, 1H), 4.14 (t, *J* = 9.4 Hz, 1H), 3.97 (dt, *J* = 8.0, 4.0 Hz, 2H), 3.94 – 3.86 (m, 2H), 3.83 (d, *J* = 2.6 Hz, 1H), 3.82 – 3.77 (m, 1H), 3.64 (t, *J* = 8.3 Hz, 1H), 3.60 – 3.52 (m, 2H), 3.45 (dd, *J* = 8.8, 5.0 Hz, 1H), 0.91 (s, 9H), 0.07 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 139.11, 138.98, 138.87, 138.51, 138.10, 138.06, 128.54, 128.49, 128.40, 128.33, 128.30, 128.24, 128.08, 127.97, 127.88, 127.70, 127.67, 127.61, 127.52, 127.44, 127.30, 101.65, 92.19, 82.75, 79.57, 78.81, 76.19, 75.78, 74.98, 74.85, 73.75, 73.68, 73.58, 73.08, 72.94, 72.85, 68.52, 61.89, 26.04, 18.44, -5.02, -5.17.

HRMS (ESI-TOF): calc'd for $C_{60}H_{75}CINO_{10}Si^+$ [M+NH₄⁺] 1032.4843, found 1032.4845.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (dd, J = 6.8, 2.9 Hz, 2H), 7.29 – 7.12 (m, 43H), 6.03 (d, J = 2.1 Hz, 1H), 5.09 (d, J = 11.3 Hz, 1H), 4.94 (d, J = 11.1 Hz, 1H), 4.85 (dd, J = 11.3, 3.2 Hz, 2H), 4.82 – 4.69 (m, 6H), 4.62 – 4.46 (m, 8H), 4.41 – 4.34 (m, 3H), 4.09 (dt, J = 15.7, 9.3 Hz, 2H), 3.95 – 3.88 (m, 2H), 3.84 – 3.73 (m, 3H), 3.69 – 3.57 (m, 4H), 3.56 – 3.49 (m, 2H), 3.43 (dd, J = 9.0, 7.6 Hz, 1H), 3.37 (t, J = 8.4 Hz, 1H), 3.32 – 3.24 (m, 2H), 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.36, 138.95, 138.74, 138.63, 138.58, 138.42, 137.86, 128.50, 128.46, 128.37, 128.35, 128.23, 128.14, 127.96, 127.94, 127.91, 127.79, 127.74, 127.72, 127.66, 127.63, 127.57, 127.54, 127.47, 127.36, 127.27, 102.59, 100.75, 92.07, 85.03, 83.28, 82.94, 81.81, 78.17, 76.61, 75.79, 75.72, 75.64, 75.18, 75.09, 74.97, 74.86, 74.76, 73.42, 73.28, 72.84, 69.06, 68.05, 61.96, 26.03, 18.45, -5.02, -5.16.

HRMS (ESI-TOF): calc'd for $C_{87}H_{103}CINO_{15}Si^+$ [M+NH₄⁺] 1464.6780, found 1464.6772.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 8H), 7.26 – 7.05 (m, 51H), 6.09 (d, J = 2.2 Hz, 1H), 5.64 (d, J = 3.6 Hz, 1H), 5.54 (d, J = 3.6 Hz, 1H), 4.97 – 4.81 (m, 6H), 4.81 – 4.73 (m, 3H), 4.68 – 4.61 (m, 3H), 4.61 – 4.56 (m, 3H), 4.55 – 4.47 (m, 4H), 4.45 (s, 3H), 4.43 – 4.38 (m, 3H), 4.28 (d, J = 12.1 Hz, 1H), 4.16 – 4.07 (m, 2H), 4.07 – 3.98 (m, 3H), 3.97 – 3.89 (m, 3H), 3.88 – 3.77 (m, 4H), 3.76 – 3.70 (m, 3H), 3.70 – 3.63 (m, 1H), 3.58 – 3.46 (m, 6H), 3.39 (dd, J = 10.7, 1.9 Hz, 1H), 0.91 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.02, 138.91, 138.88, 138.64, 138.53, 138.46, 138.30, 138.08, 137.98, 137.71, 128.52, 128.44, 128.42, 128.37, 128.35, 128.31, 128.27, 128.16, 127.98, 127.95, 127.92, 127.90, 127.87, 127.78, 127.73, 127.68, 127.66, 127.59, 127.57, 127.51, 127.50, 127.44, 127.24, 127.10, 126.89, 126.71, 100.10, 97.10, 96.73, 91.99, 84.85, 82.21, 82.17, 81.74, 79.67, 79.53, 77.98, 77.77, 75.67, 75.61, 75.33, 75.10, 74.96, 74.82, 74.52, 74.21, 74.08, 73.61, 73.54, 73.39,

73.37, 73.11, 73.09, 72.79, 71.10, 70.99, 69.05, 68.96, 68.32, 62.00, 26.03, 18.45, -5.02, -5.16.

HRMS (ESI-TOF): calc'd for $C_{114}H_{131}CINO_{20}Si^+$ [M+NH₄⁺] 1896.8717, found 1896.8721.

4. Preparation of arylboronic ester 1r

Figure S3. The synthesis of arylboronic ester 1r.

Compound 1r-4 was synthesized according to the literature⁴.

To a solution of **1r-4** (372 mg, 1.0 mmol, 1.0 equiv.) in anhydrous THF (10 mL) was added *n*BuLi (2.5 M, 0.48 mL, 1.2 mmol, 1.2 equiv.) slowly under Ar atmosphere at -78 °C. After stirring at -78 °C for 1 h, *i*PrOBpin (279 mg, 1.5 mmol, 1.5 equiv.) was added slowly under Ar atmosphere at -78 °C. The mixture was warmed to rt, stirred at rt for 5 h. The reaction mixture was quenched with saturated NH₄Cl solution (10 mL), extracted with EtOAc (3×15 mL). The combined organic layers were then washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:DCM = 15:1 to 8:1) to afford **1r** (249 mg, 67%) as a white solid.

2-(3-Chloro-2-(4-ethoxybenzyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1r)

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.4 Hz, 1H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 8.6 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.48 (s, 2H), 3.99 (q, *J* = 7.0 Hz, 2H), 1.39 (t, *J* = 7.0 Hz, 3H), 1.28 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 157.02, 144.54, 135.62, 134.68, 132.94, 132.44, 129.73, 127.10, 114.14, 84.03, 63.47, 36.58, 24.89, 15.05.
HRMS (ESI-TOF): calc'd for C₂₁H₂₇BClO₃⁺ [M+H⁺] 373.1736, found 373.1739.

5. Optimization of reaction conditions

4.1. Optimization of reaction conditions of *ortho*-C–H glycosylation/*ipso*-protonation of arylboronic esters

Table S1. Screening of the [NBE] mediator^a

^{*a*}All reactions were performed on a 0.1 mmol scale. ^{*b*}Yield determined by ¹⁹F NMR analysis of the crude products using 2-fluoropyridine as an internal standard.

Bpin Me		PdCl ₂ (10 mol%) AsPh ₃ (11 mol%) NBE¹ (1.5 eq.)		Me H H E OBn
F	BnO ⁽⁾ OBn	base (3.0 eq.) Solvent (0.2 M)		BnO ^W <u>i</u> OBn
1a (1.5 eq.)	2a (1.0 eq.)	aii, ou C, 15 ii		3a α only
Entry	Solvent		Base	Yield[%] ^b
1	DMA		K ₂ CO ₃	36
2	DMF		K ₂ CO ₃	16
3	NMP		K ₂ CO ₃	31
4	DMSO		K ₂ CO ₃	trace
5	DME		K ₂ CO ₃	27
6	1,4-dioxane		K ₂ CO ₃	33
7	PhMe		K ₂ CO ₃	21
8	mesitylene		K ₂ CO ₃	23
9°	DMA		K ₂ CO ₃	31
10 ^d	DMA		K ₂ CO ₃	40
11 ^d	DMA: $DME = 1$:	2	K_2CO_3	56
11 ^d	DMA: $DME = 1$:	2	KHCO ₃	27
12 ^d	DMA: $DME = 1$:	2	K ₃ PO ₄	31
13 ^d	DMA: $DME = 1$:	2	Cs_2CO_3	trace
14 ^{d,e}	DMA: DME = 1:	2	K ₂ CO ₃	61 (58) ^f
15 ^{d,e}	DMA: mesitylene =	1:1	K_2CO_3	55
16 ^{d,e}	DMA: mesitylene =	1:2	K_2CO_3	67
17 ^{d,e}	DMA: mesitylene =	1:3	K_2CO_3	68 (64) ^f
18 ^{d,e,g}	DMA: mesitylene =	1:3	K_2CO_3	65

Table S2. Screening of the solvent and base^a

^{*a*}All reactions were performed on a 0.1 mmol scale. ^{*b*}Yield determined by ¹⁹F NMR analysis of the crude products using 2-fluoropyridine as an internal standard. ^{*c*}The reaction was carried out under argon atomsphere. ^{*d*} The reaction was carried out under O₂ atomsphere. ^{*e*}**1a** (2.0 eq.) and K₂CO₃ (4.0 eq.) were applied. ^{*f*}Isolated yield. ^{*g*}NBE¹ (1.0 eq.) was applied.

Bpin Me F F 1a (1.5 eq.)	$\begin{array}{c} \textbf{BnO}^{(10 \text{ mol}\%)} \\ \textbf{BnO}^{(10 $	H BnO ⁽¹⁾ BnO ⁽¹⁾
Entry	[Pd]	Yield[%] ^b
1	PdCl ₂	56
2	$Pd(OAc)_2$	52
3	$Pd(TFA)_2$	45
4	$Pd[P(o-Tol)_3]_2Cl_2$	38
5	$Pd(MeCN)_2Cl_2$	55
6	Pd(PhCN) ₂ Cl ₂	50
7	$Pd(dppf)Cl_2$	46
8	$Pd(PPh_3)_2Cl_2$	47
9	Pd ₂ (dba) ₃ ·CHCl ₃	43
10	$Pd(PPh_3)_4$	43

Table S3. Screening of the [Pd] catalyst^a

^{*a*}All reactions were performed on a 0.1 mmol scale. ^{*b*}Yield determined by ¹⁹F NMR analysis of the crude products using 2-fluoropyridine as an internal standard.

Table S4. Screening of the additive^a

Bpin Me	OBn CI OBn AsPh ₃ (11 mol% NBE ¹ (1.0 eq.), add	b) Me b) H OBn Hitive
F 1a (2.0eq.)	BnO'' OBn K ₂ CO ₃ (4.0 eq.) OBn DMA:mesitylene = 1:3 2a O ₂ , 80 °C, 15 h (1.0 eq.) O	(0.2 M) $BnO'' \qquad BnO'' \qquad OBn$ $3a$ $a \text{ only}$
Entry	Additive	Yield[%] ^b
1	-	65
2	Pyridine (7 mol%)	68
3	DMAP (7 mol%)	78
4	DMAP (10 mol%)	82 (79) ^c
5	DMAP (15 mol%)	75
6	DBU (10 mol%)	69
7	DBU (6 mol%)	79
8	DBN (7 mol%)	84
9	DABCO (5 mol%)	24
10	DIPEA (5 mol%)	60
11	Et ₃ N (5 mol%)	60
12	TMSOTf (10 mol%)	60

^{*a*}All reactions were performed on a 0.1 mmol scale. ^{*b*}Yield determined by ¹⁹F NMR analysis of the crude products using 2-fluoropyridine as an internal standard. ^{*c*}Isolated yield. DMAP: *N*,*N*-4-dimethylaminopyridine; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; DBN: 1,5-diazabicyclo[4.3.0]non-5-ene; DABCO: 1,4-diazabicyclo[2.2.2]octane; DIPEA: *N*,*N*-

diisopropylethylamine.

4.2. Optimization of reaction conditions of *ortho*-C–H glycosylation/*ipso* -olefination of arylboronic esters

Entry	Solvent	Yield[%] ^b
1°	DMA:mesitylene = 1:3	65
2	DMA:mesitylene = 1:3	72
3	DMA	40
4	mesitylene	21
5	DME	22
6	DMA:DME = 1:1	66
7	DMA:DME = 1:2	77
8	DMA:DME = 1:3	74
9 ^d	DMA:DME = 1:2	72
10 ^e	DMA:DME = 1:2	81
11 ^{e,f}	DMA:DME = 1:2	80 (76) ^g
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

^{*a*}All reactions were performed on a 0.1 mmol scale. ^{*b*}Yield determined by ¹⁹F NMR analysis of the crude products using 2-fluoropyridine as an internal standard. ^{*c*}DMAP (10 mol%) was added. ^{*d*}NBE³ was used instead of NBE¹. ^{*e*}NBE² was used instead of NBE¹. ^{*f*}2a (1.2 eq.) and K₂CO₃ (3.0 eq.) were applied. ^{*g*}Isolated yield in parenthesis.

6. Reaction Scope of three-component Borono-Catellani reaction

Table S6. Reaction scope with respect to arylboronic ester and the olefin terminating reagent^a

^aAll reactions were performed on a 0.1 mmol scale, and isolated yields were reported.

7. General procedure for redox-neutral synthesis of C-aryl

glycosides 3

To a 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with aryl boron compound 1 (0.2 mmol, 2.0 equiv), glycosyl chloride 2 (0.1 mmol, 1.0 equiv), PdCl₂ (1.8 mg, 0.01 mmol, 0.1 equiv), AsPh₃ (3.4 mg, 0.011 mmol, 0.11 equiv), DMAP (1.2 mg, 0.01 mmol, 0.1 equiv), NBE¹ (34.7 mg, 0.1 mmol, 1.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 4.0 equiv) and DMA:mesitylene = 1:3 (0.5 mL) under O₂. The reaction was stirred at 80 °C for 11-20 h until the completion of the reaction (monitored by TLC). Then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na₂SO₄. After concentrated in vacuo, the residue was purified by column chromatography on silica gel to give the desired product.

8. Characterization data for C-aryl glycosides 3

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-fluoro-5-methylphenyl)tetrahydro-2*H*-pyran (3a)

Physical state: colorless oil; Yield: 79%; $\mathbf{R_f} = 0.4$ (silica gel, PE:EtOAc = 10:1); $[\alpha]$ 25 D: -61.3 (c = 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 16H), 7.24 – 7.18 (m, 4H), 6.87 (s, 1H), 6.82 – 6.72 (m, 2H), 4.92 (d, J = 5.7 Hz, 1H), 4.67 – 4.58 (m, 4H), 4.57 – 4.50 (m, 2H), 4.49 – 4.41 (m, 2H), 3.95 (dd, *J* = 5.7, 3.0 Hz, 1H), 3.93 – 3.88 (m, 2H), 3.84 (dd, *J* = 10.3, 5.6 Hz, 1H), 3.77 (dd, *J* = 10.3, 3.6 Hz, 1H), 3.70 (dd, *J* = 6.3, 2.9 Hz, 1H), 2.27 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.06 (d, J = 245.1 Hz), 141.05 (d, J = 7.5 Hz), 140.40 (d, J = 7.9 Hz), 138.50, 138.34, 138.29, 138.14, 128.56, 128.53, 128.45, 128.44, 128.14, 128.12, 127.99, 127.94, 127.85, 127.81, 127.79, 127.64, 123.25 (d, J = 2.5 Hz), 115.14 (d, J = 20.8 Hz), 110.98 (d, J = 22.5 Hz), 76.49, 75.19, 74.48, 73.52, 73.34, 73.15, 73.13, 72.82, 72.14, 68.93, 21.52 (d, J = 1.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.1.

HRMS (ESI-TOF): calc'd for C₄₁H₄₁FNaO₅⁺ [M+Na⁺] 655.2830, found 655.2828.

(2R,3R,4R,5R,6R)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-

(mtolyl)tetrahydro-2H-pyran (3b)

Physical state: colorless oil;

Yield: 79%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D:** -17.4 (c = 0.19, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 18H), 7.19 (dd, *J* = 7.5, 2.1 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.10 (s, 1H), 7.02 (dd, *J* = 15.8, 7.7 Hz, 2H), 5.01 (d, *J* = 5.0 Hz, 1H), 4.72 – 4.58 (m, 4H), 4.58 – 4.48 (m, 4H), 4.08 (dd, *J* = 5.1, 2.9 Hz, 1H), 3.95 (t, *J* = 6.5 Hz, 1H), 3.90 – 3.86 (m, 1H), 3.86 – 3.75 (m, 2H), 3.71 (dd, *J* = 7.0, 2.9 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ138.60, 138.50, 138.41, 138.38, 138.17, 128.52, 128.50, 128.45, 128.44, 128.42, 128.35, 128.13, 128.02, 127.86, 127.80, 127.71, 127.60, 127.49, 123.82, 76.28, 75.43, 74.19, 73.81, 73.79, 73.34, 72.69, 72.08, 69.23, 21.63.
HRMS (ESI-TOF): calc'd for C₄₁H₄₆NO₅⁺ [M+NH₄⁺] 637.2924, found 637.2931.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-isopropylphenyl)tetrahydro-2*H*-pyran (3c)

(Note: Compound 3c adopts a ${}^{4}C_{1}$ conformation based on 2D-NMR analysis.)

Physical state: colorless oil;

Yield: 50%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -28.1 (c = 0.32, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 19H), 7.22 – 7.15 (m, 3H), 7.10 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 5.06 (d, J = 4.7 Hz, 1H), 4.71 (d, J = 11.2 Hz, 1H), 4.67 – 4.57 (m, 4H), 4.56 – 4.50 (m, 3H), 4.15 (dd, J = 4.8, 2.9 Hz, 1H), 3.99 – 3.92 (m, 1H), 3.90 – 3.78 (m, 3H), 3.71 (dd, J = 7.1, 2.9 Hz, 1H), 2.83 (hept, J = 6.8 Hz, 1H), 1.21 (d, J = 2.5 Hz, 3H), 1.19 (d, J = 2.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.25, 138.58, 138.49, 138.39, 138.35, 138.28, 128.56, 128.52, 128.50, 128.42, 128.10, 128.08, 127.84, 127.81, 127.71, 127.59, 125.62, 125.19, 123.91, 77.77, 76.09, 75.48, 74.09, 73.98, 73.95, 73.37, 72.60, 72.04, 69.30, 34.29, 24.24, 24.04.

HRMS (ESI-TOF): calc'd for $C_{43}H_{50}NO_5^+$ [M+NH₄⁺] 660.3684, found 660.3690.

(2*R*,3*R*,4*R*,5*R*,6*R*)-2-([1,1'-Biphenyl]-3-yl)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2*H*-pyran (3d)

Physical state: colorless oil;

Yield: 44%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +37.1 (c = 0.35, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.55 – 7.45 (m, 4H), 7.43 – 7.26 (m, 21H), 7.23 – 7.15 (m, 3H), 5.09 (d, *J* = 5.2 Hz, 1H), 4.69 (d, *J* = 11.3 Hz, 1H), 4.66 – 4.57 (m, 4H), 4.56 – 4.50 (m, 3H), 4.12 (dd, *J* = 5.3, 2.9 Hz, 1H), 3.99 – 3.92 (m, 2H), 3.89 – 3.79 (m, 2H), 3.75 (dd, *J* = 6.5, 2.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.55, 141.20, 139.14, 138.55, 138.40, 138.35, 138.27, 128.98, 128.83, 128.53, 128.47, 128.45, 128.15, 128.13, 128.02, 127.88, 127.84, 127.82, 127.76, 127.62, 127.39, 127.38, 126.47, 125.86, 125.50, 77.30, 76.41, 75.44, 74.33, 73.77, 73.75, 73.44, 72.74, 72.15, 69.28.

HRMS (ESI-TOF): calc'd for C₄₆H₄₈NO₅⁺ [M+NH₄⁺] 694.3527, found 694.3520.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-methoxyphenyl)tetrahydro-2*H*-pyran (3e)

Physical state: colorless oil;

Yield: 79%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +37.3 (c = 0.11, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) 7.36 – 7.26 (m, 18H), 7.21 – 7.14 (m, 3H), 6.94 (s, 1H), 6.78 (dd, *J* = 8.2, 2.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 5.03 (d, *J* = 4.7 Hz, 1H), 4.71 (d, *J* = 11.2 Hz, 1H), 4.64 – 4.50 (m, 7H), 4.10 (dd, *J* = 4.8, 2.9 Hz, 1H), 3.94 (t, *J* = 6.9 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.85 – 3.76 (m, 2H), 3.73 – 3.67 (m, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.00, 140.05, 138.52, 138.44, 138.39, 138.33, 129.57, 128.53, 128.50, 128.45, 128.44, 128.14, 128.00, 127.91, 127.85, 127.79, 127.75, 127.64, 118.69, 113.60, 112.16, 77.87, 76.11, 75.41, 74.24, 73.95, 73.92, 73.47, 72.68, 72.11, 69.41, 55.31.

HRMS (ESI-TOF): calc'd for $C_{41}H_{42}NaO_6^+$ [M+Na⁺] 653.2874, found 653.2882.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-(benzyloxy)-phenyl)tetrahydro-2*H*-pyran (3f)

Physical state: colorless oil;

Yield: 76%;

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +35.8 (c = 0.45, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.23 (m, 23H), 7.21 – 7.15 (m, 3H), 7.02 (s, 1H), 6.86 (dd, J = 8.2, 2.5 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 5.04 (d, J = 4.7 Hz, 1H), 4.98 (s, 2H), 4.71 (d, J = 11.2 Hz, 1H), 4.65 – 4.58 (m, 3H), 4.58 – 4.50 (m, 4H), 4.09 (dd, J = 4.8, 2.9 Hz, 1H), 3.95 (t, J = 6.9 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.85 – 3.80 (m, 1H), 3.80 – 3.73 (m, 1H), 3.70 (dd, J = 7.1, 2.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.20, 140.08, 138.50, 138.42, 138.38, 138.33, 137.11, 129.60, 128.65, 128.51, 128.48, 128.43, 128.12, 128.01, 127.99, 127.84, 127.78, 127.73, 127.65, 127.61, 119.02, 114.40, 113.07, 77.82, 76.13, 75.38, 74.22, 73.94, 73.88, 73.45, 72.67, 72.10, 70.02, 69.33.

HRMS (ESI-TOF): calc'd for $C_{47}H_{50}NO_6^+$ [M+NH₄⁺]724.3633, found 724.3631.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-(trifluorometh-oxy)phenyl)tetrahydro-2*H*-pyran (3g)

Physical state: colorless oil;

Yield: 45%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +29.4 (c = 0.12, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 18H), 7.22 – 7.16 (m, 5H), 7.11 (d, J = 8.3 Hz, 1H), 4.94 (d, J = 6.2 Hz, 1H), 4.64 – 4.57 (m, 4H), 4.57 – 4.49 (m, 2H), 4.39 (s, 2H), 3.97 – 3.91 (m, 2H), 3.91 – 3.87 (m, 1H), 3.87 – 3.80 (m, 1H), 3.75 (dd, J = 10.2, 4.3 Hz, 1H), 3.70 (dd, J = 6.1, 2.9 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 149.51, 141.55, 138.41, 138.25, 138.18, 137.97, 129.78, 128.58, 128.57, 128.48, 128.46, 128.17, 128.10, 128.01, 127.98, 127.91, 127.85, 127.83, 127.70, 125.33, 120.60 (q, *J* = 257.2 Hz), 120.09, 119.75, 76.54, 76.36, 75.08, 74.61, 73.35, 72.91, 72.77, 72.13, 68.71.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.6.

HRMS (ESI-TOF): calc'd for $C_{41}H_{43}F_3NO_6^+$ [M+NH₄⁺] 702.3037, found 702.3031.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-(trifluoro-methyl)phenyl)tetrahydro-2*H*-pyran (3h)

Physical state: colorless oil;

Yield: 34%;

 $\mathbf{R_f} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +32.5 (c = 0.4, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.36 – 7.17 (m, 18H), 7.13 – 7.08 (m, 2H), 4.94 (d, J = 7.0 Hz, 1H), 4.64 – 4.50 (m, 6H), 4.37 – 4.25 (m, 2H), 4.04 (dt, J = 6.8, 4.6 Hz, 1H), 3.94 – 3.83 (m, 3H), 3.79 – 3.71 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.43, 138.38, 138.20, 138.14, 137.82, 130.66 (q, J = 32.3 Hz), 130.5, 128.79, 128.57, 128.48, 128.43, 128.12, 128.06, 127.96, 127.92, 127.83, 127.80, 127.71, 125.31 (q, J = 272.2 Hz), 124.53 (q, J = 3.7 Hz), 124.22 (q, J = 3.8 Hz), 76.81, 75.60, 74.95, 74.75, 73.28, 72.94, 72.92, 72.44, 72.04, 68.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4.

HRMS (ESI-TOF): calc'd for $C_{41}H_{39}F_3NaO_5^+$ [M+Na⁺] 691.2642, found 691.2648.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3,4-dimethyl-phenyl)tetrahydro-2*H*-pyran (3i)

Physical state: colorless oil;

Yield: 90%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +33.1 (c = 0.35, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.24 (m, 18H), 7.20 – 7.16 (m, 2H), 7.06 – 6.99 (m, 2H), 6.91 (d, *J* = 7.1 Hz, 1H), 5.01 (d, *J* = 4.6 Hz, 1H), 4.71 (d, *J* = 11.2 Hz, 1H), 4.67 – 4.59 (m, 3H), 4.58 – 4.49 (m, 4H), 4.10 (dd, *J* = 4.7, 2.9 Hz, 1H), 3.95 (t, *J* = 6.7

Hz, 1H), 3.87 - 3.77 (m, 3H), 3.70 (dd, J = 7.3, 2.9 Hz, 1H), 2.21 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.62, 138.54, 138.47, 138.44, 136.73, 135.84, 135.66, 129.77, 128.51, 128.46, 128.42, 128.41, 128.14, 128.13, 127.98, 127.96, 127.83, 127.80, 127.73, 127.68, 127.57, 124.07, 77.83, 76.09, 75.52, 74.00, 73.94, 73.81, 73.33, 72.63, 72.05, 69.35, 19.96, 19.51.

HRMS (ESI-TOF): calc'd for C₄₂H₄₈NO₅⁺ [M+NH₄⁺] 646.3527, found 646.3525.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4-methoxy-3-methylphenyl)tetrahydro-2*H*-pyran (3j)

Physical state: colorless oil;

Yield: 69%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +30.5 (c = 0.43, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.24 (m, 18H), 7.22 – 7.18 (m, 2H), 7.07 – 6.98 (m, 2H), 6.71 (d, *J* = 8.4 Hz, 1H), 4.98 (d, *J* = 5.0 Hz, 1H), 4.73 – 4.60 (m, 4H), 4.59 – 4.49 (m, 4H), 4.07 (dd, *J* = 5.1, 2.9 Hz, 1H), 3.95 (t, *J* = 6.5 Hz, 1H), 3.88 (dd, *J* = 10.9, 5.3 Hz, 1H), 3.85 – 3.76 (m, 5H), 3.74 (dd, *J* = 6.9, 2.9 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.22, 138.62, 138.53, 138.44, 130.01, 129.15, 128.49, 128.46, 128.41, 128.37, 128.11, 127.96, 127.81, 127.77, 127.74, 127.65, 127.56, 126.68, 125.29, 109.85, 77.48, 76.19, 75.46, 74.03, 73.72, 73.44, 73.30, 72.64, 72.02, 69.24, 55.49, 16.40.

HRMS (ESI-TOF): calc'd for $C_{42}H_{48}NO_6^+$ [M+NH₄⁺] 662.3476, found 662.3471.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4-fluoro-3-methyl-phenyl)tetrahydro-2*H*-pyran (3k)

Physical state: colorless oil;

Yield: 74%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +26.1 (c = 0.28, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 16H), 7.23 – 7.17 (m, 4H), 7.12 (dd, *J* = 7.5, 2.3 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.90 (t, *J* = 8.9 Hz, 1H), 4.91 (d, *J* = 6.0 Hz, 1H), 4.67 – 4.58 (m, 4H), 4.57 – 4.52 (m, 2H), 4.46 – 4.38 (m, 2H), 3.99 – 3.92 (m, 2H), 3.90 (t, *J* = 5.7 Hz, 1H), 3.88 – 3.83 (m, 1H), 3.78 (dd, *J* = 10.2, 4.5 Hz, 1H), 3.74 (dd, *J* = 6.1, 2.9 Hz, 1H), 2.21 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.84 (d, J = 244.5 Hz), 138.52, 138.39, 138.30, 138.19, 134.27 (d, J = 3.4 Hz), 130.15 (d, J = 5.1 Hz), 128.54, 128.46, 128.41, 128.14, 128.11, 127.98, 127.90, 127.85, 127.78, 127.75, 127.65, 125.93 (d, J = 8.1 Hz), 124.76 (d, J = 17.3 Hz), 114.85 (d, J = 22.3 Hz), 76.58, 76.50, 75.24, 74.41, 73.35, 73.32, 72.86, 72.81, 72.06, 68.91, 14.70 (d, J = 3.5 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -119.4.

HRMS (ESI-TOF): calc'd for $C_{41}H_{45}FNO_5^+$ [M+NH₄⁺] 650.3276, found 650.3273.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4-chloro-3-methyl-phenyl)tetrahydro-2*H*-pyran (3l)

Physical state: colorless oil;

Yield: 60%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +29 (c = 0.4, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 16H), 7.23 – 7.12 (m, 6H), 6.98 (dd, *J* = 8.3, 2.2 Hz, 1H), 4.90 (d, *J* = 6.0 Hz, 1H), 4.67 – 4.56 (m, 4H), 4.56 – 4.50 (m, 2H), 4.47 – 4.37 (m, 2H), 4.01 – 3.91 (m, 2H), 3.89 (t, *J* = 5.8 Hz, 1H), 3.87 – 3.81 (m, 1H), 3.77 (dd, *J* = 10.2, 4.3 Hz, 1H), 3.71 (dd, *J* = 6.1, 2.9 Hz, 1H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.49, 138.35, 138.27, 138.11, 137.42, 136.02, 133.54, 129.59, 128.98, 128.54, 128.54, 128.46, 128.42, 128.14, 128.12, 127.96, 127.92, 127.86, 127.78, 127.66, 125.75, 76.53, 76.47, 75.20, 74.49, 73.35, 73.32, 72.84, 72.08, 68.88, 20.20.

HRMS (ESI-TOF): calc'd for $C_{41}H_{45}CINO_5^+$ [M+NH₄⁺] 666.2981, found 666.2979.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-methyl-4-(trifluoromethyl)phenyl)tetrahydro-2*H*-pyran (3m)

Physical state: colorless oil;

Yield: 40%;

 $\mathbf{R_f} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +28.4 (c = 0.31, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, J = 8.1 Hz, 1H), 7.34 – 7.24 (m, 16H), 7.23 – 7.19 (m, 3H), 7.17 – 7.11 (m, 3H), 4.93 (d, J = 6.3 Hz, 1H), 4.65 – 4.57 (m, 4H), 4.56 – 4.51 (m, 2H), 4.46 – 4.34 (m, 2H), 4.00 – 3.95 (m, 1H), 3.93 (dd, J = 6.3, 2.9 Hz, 1H), 3.91 – 3.82 (m, 2H), 3.77 (dd, J = 10.2, 4.5 Hz, 1H), 3.71 (dd, J = 6.0, 2.9 Hz, 1H), 2.40 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.84, 138.45, 138.29, 138.21, 137.94, 136.79, 130.49, 128.58, 128.49, 128.44, 128.16, 128.13, 127.98, 127.92, 127.86, 127.80, 127.71, 127.19 (q, *J* = 228.2 Hz), 125.86 (q, *J* = 5.6 Hz), 124.36, 76.56, 76.09, 75.11, 74.70, 73.35, 73.27, 72.91, 72.74, 72.02, 68.78, 19.46.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -61.5.

HRMS (ESI-TOF): calc'd for $C_{42}H_{45}F_3NO_5^+$ [M+NH₄⁺] 700.3244, found 700.3243.

Methyl 2-methyl-4-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)benzoate (3n)

Physical state: colorless oil;

Yield: 56%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 7:1);

 $[\alpha]$ **25 D**: +28.9 (c = 0.36, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 1H), 7.37 – 7.25 (m, 16H), 7.24 – 7.18 (m, 5H), 7.14 (d, *J* = 8.2 Hz, 1H), 4.97 (d, *J* = 6.0 Hz, 1H), 4.68 – 4.52 (m, 6H),

4.47 – 4.39 (m, 2H), 4.02 – 3.94 (m, 2H), 3.94 – 3.83 (m, 5H), 3.79 (dd, *J* = 10.3, 4.3 Hz, 1H), 3.71 (dd, *J* = 6.2, 2.9 Hz, 1H), 2.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.95, 143.04, 140.48, 138.47, 138.32, 138.25, 138.06, 130.83, 130.24, 128.73, 128.54, 128.52, 128.45, 128.42, 128.12, 127.95, 127.93, 127.85, 127.79, 127.78, 127.65, 124.27, 76.56, 75.14, 74.62, 73.35, 73.31, 73.04, 72.86, 72.13, 68.86, 51.91, 21.96.

HRMS (ESI-TOF): calc'd for C₄₃H₄₈NO₇⁺ [M+NH₄⁺] 690.3425, found 690.3424.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3,5-dimethyl-phenyl)tetrahydro-2*H*-pyran (30)

Physical state: colorless oil;

Yield: 60%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +3.9 (c = 1.00, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 18H), 7.20 (dd, J = 7.2, 1.9 Hz, 2H), 6.92 – 6.84 (m, 3H), 4.99 (d, J = 5.0 Hz, 1H), 4.72 – 4.61 (m, 4H), 4.59 – 4.50 (m, 4H), 4.09 (dd, J = 5.2, 3.0 Hz, 1H), 3.97 – 3.87 (m, 2H), 3.87 – 3.79 (m, 2H), 3.73 (dd, J = 6.9, 2.9 Hz, 1H), 2.24 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.63, 138.56, 138.44, 138.42, 138.34, 138.02, 129.22, 128.52, 128.50, 128.42, 128.41, 128.14, 128.08, 128.01, 127.85, 127.77, 127.70, 127.58, 124.56, 76.32, 75.46, 74.15, 73.79, 73.31, 72.61, 72.09, 69.27, 21.50. **HRMS** (ESI-TOF): calc'd for C₄₂H₄₈NO₅⁺ [M+NH₄⁺] 646.3527, found 646.3524.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-methoxy-5-methylphenyl)tetrahydro-2*H*-pyran (3p)

Physical state: colorless oil;

Yield: 83%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +25.6 (c = 0.25, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 18H), 7.19 (dd, J = 7.3, 2.1 Hz, 2H), 6.73 (s, 1H), 6.60 (s, 2H), 5.00 (d, J = 4.8 Hz, 1H), 4.71 (d, J = 11.3 Hz, 1H), 4.64 – 4.59 (m, 3H), 4.58 – 4.51 (m, 4H), 4.10 (dd, J = 4.8, 2.9 Hz, 1H), 3.96 – 3.85 (m, 2H), 3.84 – 3.75 (m, 2H), 3.72 (dd, J = 6.9, 2.9 Hz, 1H), 3.69 (s, 3H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.98, 139.82, 139.58, 138.56, 138.50, 138.42, 138.37, 128.53, 128.50, 128.43, 128.14, 128.05, 127.99, 127.87, 127.85, 127.78, 127.73, 127.62, 119.63, 114.31, 109.26, 77.79, 76.18, 75.43, 74.21, 73.91, 73.90, 73.42, 72.59, 72.12, 69.40, 55.30, 21.75.

HRMS (ESI-TOF): calc'd for $C_{42}H_{48}NO_6^+$ [M+NH₄⁺] 662.3476, found 662.3473.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3-chloro-5-methylphenyl)tetrahydro-2*H*-pyran (3q)

Physical state: colorless oil;

Yield: 70%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -55.0 (c = 0.39, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 16H), 7.24 – 7.18 (m, 4H), 7.13 (s, 1H), 7.07 (s, 1H), 7.00 (s, 1H), 4.89 (d, *J* = 6.1 Hz, 1H), 4.67 – 4.51 (m, 6H), 4.47 – 4.36 (m, 2H), 4.01 – 3.95 (m, 1H), 3.93 (dd, *J* = 6.2, 2.8 Hz, 1H), 3.91 – 3.83 (m, 2H), 3.77 (dd, *J* = 10.2, 4.4 Hz, 1H), 3.73 (dd, *J* = 6.1, 2.9 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.79, 139.86, 138.46, 138.31, 138.24, 138.05, 134.15, 128.58, 128.54, 128.46, 128.44, 128.14, 128.10, 127.98, 127.96, 127.87, 127.81, 127.79, 127.66, 125.99, 124.27, 76.84, 76.61, 76.42, 75.11, 74.56, 73.30, 72.88, 72.83, 72.17, 68.79, 21.35.

HRMS (ESI-TOF): calc'd for $C_{41}H_{45}CINO_5^+$ [M+NH₄⁺] 666.2981, found 666.2978.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4-chloro-3-(4-ethoxybenzyl)phenyl)tetrahydro-2*H*-pyran (3r)

Physical state: colorless oil;

Yield: 41%; run with AsPh₃ (50 mol%), and HCO₂K (1.0 eq.) as an additive.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 8:1);

 $[\alpha]$ **25 D**: 30.1 (c = 0.50, MeOH);

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 17H), 7.21 – 7.15 (m, 4H), 7.13 (d, J = 2.1 Hz, 1H), 7.06 – 7.00 (m, 3H), 6.78 – 6.73 (m, 2H), 4.91 (d, J = 5.6 Hz, 1H), 4.60 (dd, J = 11.8, 9.7 Hz, 2H), 4.54 – 4.45 (m, 4H), 4.41 (s, 2H), 4.00 – 3.92 (m, 4H), 3.91 – 3.86 (m, 2H), 3.88 – 3.75 (m, 3H), 3.70 (dd, J = 9.5, 3.2 Hz, 1H), 3.63 (dd, J = 6.4, 2.9 Hz, 1H), 1.36 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.52, 139.20, 138.47, 138.33, 138.27, 138.13, 137.55, 133.38, 131.46, 130.00, 129.67, 129.64, 128.56, 128.50, 128.47, 128.16, 128.12, 128.04, 127.93, 127.89, 127.84, 127.80, 127.70, 126.08, 114.53, 77.04, 76.01, 75.12, 74.35, 73.59, 73.35, 72.99, 72.72, 72.07, 68.85, 63.43, 38.48, 15.03.

HRMS (ESI-TOF): calc'd for C₄₉H₄₉ClNaO₆⁺ [M+Na⁺] 791.3110, found 791.3107.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(3,5-dimethoxy-phenyl)tetrahydro-2*H*-pyran (3s)

Physical state: colorless oil;

Yield: 53%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +29.4 (c = 0.34, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 18H), 7.19 (dd, *J* = 7.3, 2.2 Hz, 2H), 6.49 (d, *J* = 2.3 Hz, 2H), 6.34 (t, *J* = 2.3 Hz, 1H), 5.01 (d, *J* = 4.5 Hz, 1H), 4.73 (d, *J* = 11.3 Hz, 1H), 4.64 – 4.54 (m, 6H), 4.52 (d, *J* = 11.3 Hz, 1H), 4.11 (dd, *J* = 4.7, 3.0 Hz, 1H), 3.94 – 3.88 (m, 2H), 3.85 – 3.79 (m, 2H), 3.72 (dd, *J* = 7.0, 3.0 Hz, 1H), 3.69 (s,

6H).

¹³C NMR (101 MHz, CDCl₃) δ 161.07, 140.85, 138.49, 138.41, 138.38, 138.29, 128.53, 128.48, 128.45, 128.42, 128.15, 127.98, 127.96, 127.94, 127.82, 127.77, 127.65, 104.62, 99.73, 78.16, 75.95, 75.35, 74.29, 74.08, 73.95, 73.51, 72.56, 72.15, 69.56, 55.43.

HRMS (ESI-TOF): calc'd for C₄₂H₄₈NO₇⁺ [M+NH₄⁺] 678.3425, found 678.3431.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(naphtha-alen-2-yl)tetrahydro-2*H*-pyran (3t)

Physical state: colorless oil;

Yield: 83%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +24.6 (c = 0.46, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 2H), 7.78 (d, J = 8.6 Hz, 2H), 7.74 – 7.66 (m, 1H), 7.66 (s, 1H), 7.50 – 7.42 (m, 3H), 7.38 – 7.25 (m, 16H), 7.27 – 7.16 (m, 10H), 5.17 (d, J = 5.4 Hz, 1H), 4.73 – 4.61 (m, 4H), 4.61 – 4.46 (m, 4H), 4.18 (dd, J = 5.4, 2.9 Hz, 1H), 4.01 – 3.91 (m, 2H), 3.94 – 3.84 (m, 1H), 3.82 (dd, J = 10.1, 3.1 Hz, 1H), 3.78 (dd, J = 6.8, 3.2 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.59, 138.51, 138.39, 138.27, 136.23, 133.32, 132.96, 128.59, 128.51, 128.47, 128.42, 128.25, 128.18, 128.15, 127.96, 127.92, 127.84, 127.79, 127.74, 127.68, 127.64, 126.13, 126.07, 125.95, 124.89, 76.51, 75.44, 74.50, 73.79, 73.60, 73.35, 72.85, 72.19, 69.11.

HRMS (ESI-TOF): calc'd for C₄₄H₄₆NO₅⁺ [M+NH₄⁺] 673.2924, found 673.2927.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4methylnaphthal-en-2-yl)tetrahydro-2*H*-pyran (3u)

Physical state: colorless oil;

Yield: 80%;

 $\mathbf{R_f} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +24.5 (c = 0.42, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.53 – 7.42 (m, 3H), 7.36 – 7.18 (m, 21H), 5.14 (d, *J* = 5.3 Hz, 1H), 4.73 – 4.60 (m, 4H), 4.60 – 4.46 (m, 4H), 4.18 (dd, *J* = 5.4, 2.9 Hz, 1H), 4.01 – 3.92 (m, 2H), 3.91 – 3.76 (m, 3H), 2.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.60, 138.52, 138.41, 138.27, 135.74, 134.71, 133.44, 132.17, 128.77, 128.56, 128.48, 128.44, 128.38, 128.17, 128.13, 127.92, 127.89, 127.78, 127.76, 127.71, 127.60, 125.92, 125.80, 125.47, 124.34, 123.99, 77.21, 76.40, 75.45, 74.46, 73.79, 73.59, 73.31, 72.78, 72.16, 69.18, 19.55.

HRMS (ESI-TOF): calc'd for C₄₅H₄₈NO₅⁺ [M+NH₄⁺] 682.3527, found 682.3521.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(4bromonaphthal-en-2-yl)tetrahydro-2*H*-pyran (3v)

Physical state: pink oil;

Yield: 60%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +31.2 (c = 0.25, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.3 Hz, 1H), 7.86 (d, *J* = 1.6 Hz, 1H), 7.77 – 7.64 (m, 2H), 7.62 – 7.56 (m, 1H), 7.55 – 7.49 (m, 1H), 7.36 – 7.19 (m, 18H), 7.17 – 7.12 (m, 2H), 5.06 (d, *J* = 6.5 Hz, 1H), 4.69 – 4.52 (m, 6H), 4.45 – 4.32 (m, 2H), 4.11 – 3.99 (m, 2H), 3.95 – 3.87 (m, 2H), 3.84 – 3.75 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.47, 138.34, 138.24, 137.89, 137.44, 134.32, 131.57, 129.09, 128.61, 128.59, 128.56, 128.49, 128.41, 128.20, 128.15, 127.99, 127.94, 127.88, 127.83, 127.68, 127.44, 127.01, 126.92, 126.06, 123.08, 76.73, 75.16, 74.82, 73.31, 73.12, 72.95, 72.70, 72.21, 68.71.

HRMS (ESI-TOF): calc'd for C₄₄H₄₅BrNO₅⁺ [M+NH₄⁺] 746.2476, found 746.2485.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(pyren-2-yl)tetrahydro-2*H*-pyran (3w)

Physical state: colorless oil;

Yield: 48%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 12:1);

 $[\alpha]$ **25 D**: +27.9 (c = 0.19, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 7.6 Hz, 2H), 8.12 (s, 2H), 8.06 (d, J = 9.0 Hz, 2H), 8.02 – 7.94 (m, 3H), 7.39 – 7.27 (m, 12H), 7.26 – 7.10 (m, 8H), 5.42 (d, J = 6.0 Hz, 1H), 4.73 – 4.63 (m, 4H), 4.60 (dd, J = 11.9, 8.2 Hz, 2H), 4.40 (q, J = 12.1 Hz, 2H), 4.28 (dd, J = 6.0, 3.0 Hz, 1H), 4.16 (q, J = 5.4 Hz, 1H), 4.03 – 3.94 (m, 2H), 3.90 (dd, J = 10.2, 4.4 Hz, 1H), 3.86 (dd, J = 6.2, 2.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 138.58, 138.48, 138.33, 138.10, 136.66, 131.24, 128.60, 128.52, 128.49, 128.35, 128.19, 127.95, 127.83, 127.73, 127.66, 127.65, 127.61, 125.99, 125.09, 124.61, 124.24, 123.53, 77.16, 76.74, 75.41, 74.80, 73.88, 73.35, 72.94, 72.25, 69.05.

HRMS (ESI-TOF): calc'd for C₅₀H₄₈NO₅⁺ [M+NH₄⁺] 742.3527, found 742.3525.

3-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*pyran-2-yl)dibenzo[*b*,*d*]furan (3x)

Physical state: colorless oil;

Yield: 30%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +50.8 (c = 0.13, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.40 – 7.18 (m, 22H), 5.14 (d, J = 5.8 Hz, 1H), 4.69 – 4.60 (m, 4H), 4.60 – 4.52 (m, 2H), 4.44 (s, 2H), 4.09 (dd, J = 5.9, 2.8 Hz, 1H), 4.02 (q, J = 5.4 Hz, 1H), 3.95 (t, J = 6.0 Hz, 1H), 3.90 (dd, J = 10.4, 6.1 Hz, 1H), 3.82 (dd, J = 10.2, 4.2 Hz, 1H), 3.77 (dd, J = 6.4, 2.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.65, 156.60, 138.65, 138.53, 138.39, 138.34, 138.19, 128.58, 128.52, 128.49, 128.42, 128.20, 128.13, 127.95, 127.86, 127.81, 127.74, 127.67, 127.23, 124.14, 123.73, 122.83, 121.67, 120.79, 120.51, 111.84, 110.35, 77.00, 76.79, 75.25, 74.58, 73.74, 73.43, 73.38, 72.93, 72.21, 68.95.

HRMS (ESI-TOF): calc'd for $C_{46}H_{46}NO_6^+$ [M+NH₄⁺] 708.3320, found 708.3310.

2-Methoxy-6-methyl-4-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2*H*-pyran-2-yl)pyridine (3y)

Physical state: colorless oil;

Yield: 43%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +38.5 (c = 0.2, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 18H), 7.21 – 7.16 (m, 2H), 6.62 (s, 1H), 6.46 (s, 1H), 4.89 (d, J = 5.2 Hz, 1H), 4.70 – 4.58 (m, 4H), 4.57 – 4.48 (m, 4H), 3.96 (dd, J = 5.2, 2.9 Hz, 1H), 3.93 – 3.87 (m, 2H), 3.87 (s, 3H), 3.84 – 3.79 (m, 1H), 3.75 (dd, J = 10.2, 3.4 Hz, 1H), 3.63 (dd, J = 6.5, 2.9 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.27, 156.64, 150.86, 138.45, 138.27, 138.01, 128.57, 128.53, 128.50, 128.46, 128.16, 128.12, 127.97, 127.88, 127.84, 127.67, 114.03, 104.97, 76.09, 75.10, 74.64, 73.77, 73.40, 72.97, 72.80, 72.19, 69.06, 53.62, 24.35.

HRMS (ESI-TOF): calc'd for $C_{41}H_{44}NO_6^+$ [M+H⁺] 646.3163, found 646.3164.

tert-Butyldiphenyl(((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-(3,4-dimethylphenyl)-tetrahydro-2*H*-pyran-2-yl)methoxy)silane (3A)

Physical state: colorless oil;

Yield: 80%;

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica gel, PE:EtOAc = 20:1);

 $[\alpha]$ **25 D**: +40.0 (c = 0.15, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 4H), 7.45 – 7.37 (m, 2H), 7.36 – 7.23 (m, 17H), 7.17 (dd, J = 6.7, 2.9 Hz, 2H), 7.06 (s, 1H), 7.01 (d, J = 7.8 Hz, 1H), 6.96 (dd, J = 7.8, 1.8 Hz, 1H), 4.97 (d, J = 5.0 Hz, 1H), 4.72 – 4.59 (m, 3H), 4.57 – 4.46 (m, 3H), 4.13 – 4.05 (m, 2H), 4.03 (t, J = 6.7 Hz, 1H), 3.92 (dd, J = 10.4, 6.0 Hz, 1H), 3.82 (q, J = 5.9 Hz, 1H), 3.75 (dd, J = 7.0, 2.9 Hz, 1H), 2.22 (s, 3H), 2.18 (s, 3H), 1.07 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 138.59, 138.55, 138.51, 136.62, 136.11, 135.89, 135.78, 133.81, 133.68, 129.69, 129.65, 128.51, 128.47, 128.37, 128.17, 128.04, 128.02, 127.96, 127.81, 127.79, 127.73, 127.70, 127.61, 124.27, 76.51, 75.63, 75.03, 73.73, 73.53, 72.61, 72.08, 63.42, 26.99, 19.95, 19.54, 19.42.

HRMS (ESI-TOF): calc'd for $C_{51}H_{60}NO_5Si^+$ [M+NH₄⁺] 794.4235, found 794.4234.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Trimethoxy-2-(methoxymethyl)-6-(m-tolyl)tetrahydro-2*H*-pyran (3B)

Physical state: colorless oil;

Yield: 67%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: +30.5 (c = 0.40, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 3H), 7.08 (d, *J* = 6.3 Hz, 1H), 4.99 (d, *J* = 5.0 Hz, 1H), 3.94 (dd, *J* = 5.0, 3.0 Hz, 1H), 3.77 (td, *J* = 6.0, 4.3 Hz, 1H), 3.72 – 3.64 (m, 2H), 3.57 (t, *J* = 6.7 Hz, 1H), 3.53 (s, 3H), 3.52 – 3.49 (m, 1H), 3.48 (s, 3H),

3.42 (s, 3H), 3.36 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.36, 138.25, 128.51, 128.40, 127.36, 123.75, 79.63, 78.31, 76.71, 73.33, 73.06, 71.61, 59.50, 59.27, 58.21, 58.18, 21.64. HRMS (ESI-TOF): calc'd for C₁₇H₃₀NO₅⁺ [M+NH₄⁺] 328.2118, found 328.2120.

(4a*S*,5*S*,6*S*,7*S*,8a*S*,*Z*)-10-Bromo-5,6-bis(((*E*)-prop-1-en-1-yl)oxy)-7-((((*E*)-prop-1-en-1-yl)oxy)methyl)-3,4a,5,6,7,8a-hexahydronaphtho[2,1-*d*]pyrano[3,2-*b*]oxocine (3C)

Yield: 31%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 20:1);

 $[\alpha]$ **25 D**: +56.8 (c = 0.22, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.5 Hz, 2H), 8.13 (d, J = 8.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 6.11 – 5.76 (m, 4H), 5.43 – 5.10 (m, 8H), 4.66 (d, J = 11.7 Hz, 1H), 4.36 – 3.70 (m, 12H), 3.60 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.27, 134.91, 134.48, 132.44, 131.84, 127.48, 126.94, 126.69, 126.23, 122.82, 117.70, 117.29, 117.12, 74.61, 72.57, 72.08, 70.79. HRMS (ESI-TOF): calc'd for C₂₈H₂₅BrNO₅⁺ [M+NH₄⁺] 544.1693, found 544.1691.

(2*R*,3*R*,4*S*,5*R*)-3,4,5-Tris(benzyloxy)-2-(naphthalen-2-yl)tetrahydro-2*H*-pyran (3D)

Physical state: white solid;

Melting point: 89–91 °C;

Yield: 74%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]^{25}_{D}$: -17.5 (c = 0.10, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 1H), 7.90 – 7.76 (m, 3H), 7.62 (dt, J =

8.5, 2.2 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.38 – 7.25 (m, 10H), 7.20 – 7.07 (m, 3H), 6.95 – 6.84 (m, 2H), 4.87 (dd, *J* = 9.6, 2.9 Hz, 1H), 4.83 (dd, *J* = 12.3, 3.0 Hz, 1H), 4.67 – 4.59 (m, 2H), 4.48 (dd, *J* = 12.3, 3.0 Hz, 1H), 4.09 – 3.92 (m, 5H), 3.87 (dt, *J* = 9.6, 2.9 Hz, 1H), 3.61 (t, *J* = 3.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 138.72, 138.34, 138.08, 137.69, 133.37, 128.60, 128.52, 128.27, 128.20, 128.03, 127.95, 127.90, 127.83, 127.79, 127.76, 127.71, 127.57, 126.88, 125.92, 125.84, 125.68, 78.38, 77.54, 75.42, 73.80, 73.29, 72.33, 71.06, 65.23.

HRMS (ESI-TOF): calc'd for C₃₆H₃₈NO₄⁺ [M+NH₄⁺] 548.2795, found 548.2789.

(2*S*,3*S*,4*R*,5*S*,6*S*)-3,4,5-Tris(benzyloxy)-2-methyl-6-(*m*-tolyl)tetrahydro-2*H*-pyran (3E)

Physical state: colorless oil;

Yield: 72%;

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -40.6 (c = 0.34, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 15H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.7 Hz, 2H), 6.94 (d, *J* = 7.7 Hz, 1H), 5.01 (d, *J* = 4.2 Hz, 1H), 4.78 (d, *J* = 11.2 Hz, 1H), 4.68 – 4.55 (m, 5H), 4.13 (d, *J* = 2.6 Hz, 1H), 3.73 – 3.61 (m, 3H), 2.28 (s, 3H), 1.40 (d, *J* = 5.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.61, 138.58, 138.44, 138.43, 138.21, 128.52, 128.52, 128.46, 128.23, 128.19, 128.15, 128.00, 127.85, 127.79, 127.76, 127.14, 123.55, 80.46, 78.09, 76.18, 74.39, 73.90, 72.69, 72.22, 70.62, 21.66, 17.96. **HRMS** (ESI-TOF): calc'd for C₃₄H₄₀NO₄⁺ [M+NH₄⁺] 526.2952, found 526.2945.

(2*S*,3*S*,4*R*,5*S*,6*S*)-2-(3-Fluoro-5-methylphenyl)-3,4,5-trimethoxy-6methyltetrahydro-2*H*-pyran (3F)

Physical state: colorless oil;

Yield: 56%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -12.5 (c = 0.12, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 6.98 (s, 1H), 6.92 (d, *J* = 9.9 Hz, 1H), 6.79 (d, *J* = 9.5 Hz, 1H), 4.93 (d, *J* = 5.1 Hz, 1H), 3.86 (dd, *J* = 5.2, 3.1 Hz, 1H), 3.71 (p, *J* = 6.5 Hz, 1H), 3.52 (s, 3H), 3.49 (s, 3H), 3.46 (dd, *J* = 6.8, 3.1 Hz, 1H), 3.37 (s, 3H), 3.31 (t, *J* = 6.5 Hz, 1H), 2.34 (s, 3H), 1.38 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.19 (d, *J* = 245.0 Hz), 141.22 (d, *J* = 7.4 Hz), 140.64 (d, *J* = 8.0 Hz), 122.94 (d, *J* = 2.5 Hz), 115.19 (d, *J* = 21.1 Hz), 110.82 (d, *J* = 22.4 Hz), 81.19, 79.55, 78.58, 72.20 (d, *J* = 2.0 Hz), 70.48, 59.67, 58.31, 58.26, 21.60 (d, *J* = 2.0 Hz), 17.48.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.0.

HRMS (ESI-TOF): calc'd for $C_{18}H_{27}FNO_4^+$ [M+NH₄⁺] 316.1919, found 316.1918.

(2*S*,3*S*,4*R*,5*S*,6*S*)-3,4,5-Trimethoxy-2-methyl-6-(naphthalen-2-yl)tetrahydro-2*H*-pyran (3G)

Physical state: colorless oil;

Yield: 58%;

 $\mathbf{R_f} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -32.7(c = 0.30, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.77 (m, 4H), 7.57 (dd, J = 8.6, 1.8 Hz, 1H), 7.52 – 7.44 (m, 2H), 5.18 (d, J = 4.8 Hz, 1H), 4.09 (dd, J = 4.9, 3.1 Hz, 1H), 3.75 (p, J = 6.4 Hz, 1H), 3.56 (s, 4H), 3.55 – 3.52 (m, 1H), 3.51 (s, 3H), 3.40 (s, 3H), 3.36 (t, J = 6.7 Hz, 1H), 1.43 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.38, 133.38, 132.92, 128.41, 128.10, 127.72, 126.27, 126.13, 125.60, 124.67, 81.47, 79.88, 78.65, 72.83, 70.49, 59.76, 58.42, 58.27, 17.60.

HRMS (ESI-TOF): calc'd for C₁₉H₂₈NO₄⁺ [M+NH₄⁺] 334.2013, found 334.2011.

(2*S*,3*S*,4*R*,5*S*,6*S*)-2-([1,1'-Binaphthalen]-2-yl)-3,4,5-trimethoxy-6methyltetrahydro-2*H*-pyran (3G')

Physical state: colorless oil;

Yield: 16.6% (major diastereoisomer);

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (major diastereoisomer, silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: +65.6 (c = 0.34, CHCl₃) (major diastereoisomer);

¹**H** NMR (400 MHz, CDCl₃) (major diastereoisomer) δ 8.02 – 7.87 (m, 4H), 7.83 (d, *J* = 8.8 Hz, 1H), 7.59 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.29 – 7.26 (m, 2H), 7.24 – 7.18 (m, 1H), 7.10 (d, *J* = 8.6 Hz, 1H), 4.96 (d, *J* = 6.0 Hz, 1H), 4.09 – 3.96 (m, 1H), 3.60 (dd, *J* = 6.0, 2.9 Hz, 1H), 3.49 (dd, *J* = 6.2, 2.9 Hz, 1H), 3.43 (s, 3H), 3.16 (dd, *J* = 6.2, 4.8 Hz, 1H), 2.95 (s, 3H), 2.79 (s, 3H), 1.16 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) (major diastereoisomer) δ 137.48, 136.40, 135.58, 133.69, 133.45, 133.43, 132.96, 128.28, 128.25, 128.11, 127.88, 127.23, 127.18, 126.16, 126.12, 126.04, 125.94, 125.65, 124.72, 81.11, 78.61, 78.26, 71.76, 70.74, 59.10, 57.70, 57.27, 17.37.

Yield: 3.4% (minor diastereoisomer);

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (minor diastereoisomer, silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: +62.8 (c = 0.10, CHCl₃) (minor diastereoisomer);

¹**H NMR** (400 MHz, CDCl₃) (minor diastereoisomer) δ 8.00 (d, J = 8.6 Hz, 1H), 7.98 – 7.87 (m, 3H), 7.84 (d, J = 8.7 Hz, 1H), 7.62 (dd, J = 8.3, 7.0 Hz, 1H), 7.49 (dd, J =7.0, 1.3 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.25 – 7.22 (m, 3H), 4.68 (d, J = 8.5 Hz, 1H), 3.93 – 3.86 (m, 1H), 3.75 (dd, J = 8.5, 3.1 Hz, 1H), 3.68 (t, J = 3.8 Hz, 1H), 3.38 (s, 3H), 3.28 (s, 3H), 3.15 (dd, J = 4.5, 2.4 Hz, 1H), 3.02 (s, 3H), 0.54 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) (minor diastereoisomer) δ 137.79, 136.18, 135.75, 133.61, 133.41, 133.22, 133.11, 133.08, 129.17, 128.34, 127.98, 127.93, 127.81, 127.20, 126.82, 126.10, 126.03, 125.92, 125.88, 125.52, 124.49, 79.73, 78.96, 77.73, 70.93, 68.02, 58.26, 58.12, 57.95, 15.49.

HRMS (ESI-TOF): calc'd for $C_{29}H_{34}NO_4^+$ [M+NH₄⁺] 460.2482, found 460.2476.

(3a*R*,4*R*,6*S*,6a*S*)-4-((Benzyloxy)methyl)-2,2-dimethyl-6-(naphthalen-2-yl)tetrahydro-furo[3,4-*d*][1,3]dioxole (3H)

Physical state: colorless oil;

Yield: 28%; standard conditions.

Yield: 32%; run with HCO₂Na (1.0 eq.) as an additive.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -47.1 (c = 0.17, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.85 – 7.76 (m, 3H), 7.51 (dd, J = 8.5, 1.7 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.39 – 7.27 (m, 5H), 5.08 (d, J = 5.0 Hz, 1H), 4.75 (dd, J = 6.8, 4.2 Hz, 1H), 4.67 – 4.60 (m, 3H), 4.34 (q, J = 4.3 Hz, 1H), 3.81 – 3.72 (m, 2H), 1.66 (s, 3H), 1.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.18, 137.47, 133.36, 133.19, 128.55, 128.41, 128.16, 127.86, 127.83, 127.80, 126.24, 125.99, 124.73, 123.94, 114.97, 87.13, 86.25, 83.59, 82.36, 73.76, 70.47, 27.76, 25.73.

HRMS (ESI-TOF): calc'd for $C_{25}H_{30}NO_4^+$ [M+NH₄⁺] 408.2169, found 408.2168.

(3a*S*,4*S*,6*R*,6a*R*)-4-([1,1'-Binaphthalen]-2-yl)-6-((benzyloxy)methyl)-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxole (3H')

Physical state: colorless oil;
Yield: 31.4% (major diastereoisomer);

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (major diastereoisomer, silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ 25 D: -63.8 (c = 0.13, CHCl₃) (major diastereoisomer);

¹**H NMR** (400 MHz, CDCl₃) (major diastereoisomer) δ 8.00 – 7.90 (m, 3H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.56 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.50 – 7.35 (m, 7H), 7.33 (dt, *J* = 7.1, 3.0 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.13 (dd, *J* = 8.5, 1.1 Hz, 1H), 4.71 – 4.55 (m, 5H), 3.99 (q, *J* = 3.6 Hz, 1H), 3.73 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.67 (dd, *J* = 10.4, 4.0 Hz, 1H), 1.24 (s, 3H), 1.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) (major diastereoisomer) δ 138.27, 136.39, 136.21, 135.28, 133.49, 133.18, 133.11, 132.84, 130.56, 128.72, 128.58, 128.18, 128.03, 127.95, 127.88, 127.85, 127.29, 126.58, 126.42, 126.19, 125.95, 125.27, 124.17, 114.26, 87.43, 83.01, 82.53, 82.43, 73.76, 70.51, 27.60, 25.97.

Yield: 13.6% (minor diastereoisomer);

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (minor diastereoisomer, silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -54.2 (c = 0.21, CHCl₃) (minor diastereoisomer);

¹**H NMR** (400 MHz, CDCl₃) (minor diastereoisomer) δ 7.97 – 7.86 (m, 4H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.59 (dd, *J* = 8.3, 6.9 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.40 – 7.27 (m, 5H), 7.26 – 7.17 (m, 3H), 7.14 (dd, *J* = 8.5, 1.1 Hz, 1H), 4.67 – 4.58 (m, 3H), 4.55 – 4.47 (m, 2H), 4.06 – 4.00 (m, 1H), 3.68 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.59 (dd, *J* = 10.4, 4.3 Hz, 1H), 0.95 (s, 3H), 0.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) (minor diastereoisomer) δ 138.28, 137.11, 136.26, 135.68, 134.07, 133.69, 133.22, 133.14, 128.57, 128.10, 127.94, 127.88, 127.85, 127.83, 127.59, 127.47, 127.31, 126.22, 126.00, 125.88, 125.83, 125.55, 124.23, 113.69, 86.51, 82.84, 82.63, 82.21, 73.73, 70.54, 26.64, 25.74.

HRMS (ESI-TOF): calc'd for C₃₅H₃₆NO₄⁺ [M+NH₄⁺] 534.2639, found 534.2634.

((3a*R*,4*R*,6*S*,6a*S*)-2,2-Dimethyl-6-(naphthalen-2-yl)tetrahydrofuro[3,4*d*][1,3]dioxol-4-yl)methyl benzoate (3I)

Physical state: colorless oil;

Yield: 30%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: -84.7 (c = 0.17, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 – 7.93 (m, 2H), 7.87 (s, 1H), 7.84 – 7.77 (m, 2H), 7.77 – 7.71 (m, 1H), 7.57 – 7.42 (m, 4H), 7.41 – 7.33 (m, 2H), 5.17 (d, *J* = 4.8 Hz, 1H), 4.81 (dd, *J* = 6.7, 4.1 Hz, 1H), 4.74 – 4.66 (m, 2H), 4.59 (dd, *J* = 11.9, 4.4 Hz, 1H), 4.52 (q, *J* = 4.0 Hz, 1H), 1.69 (s, 3H), 1.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.48, 137.20, 133.35, 133.28, 133.17, 129.86, 129.80, 128.53, 128.13, 127.79, 126.33, 126.07, 124.46, 123.64, 115.15, 87.30, 86.28, 82.33, 82.15, 64.72, 27.76, 25.75.

HRMS (ESI-TOF): calc'd for $C_{25}H_{28}NO_5^+$ [M+NH₄⁺] 422.1962, found 422.1956.

(3a*R*,4*R*,6*S*,6a*S*)-4-(Methoxymethyl)-2,2-dimethyl-6-(naphthalen-2-yl)tetrahydro-furo[3,4-*d*][1,3]dioxole (3J)

Physical state: colorless oil;

Yield: 30%; run with HCOONa (1.0 eq.) as an additive.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: 27.7 (c = 0.13, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.74 (m, 4H), 7.57 – 7.41 (m, 3H), 5.06 (d, J = 4.9 Hz, 1H), 4.70 (dd, J = 6.9, 4.3 Hz, 1H), 4.63 (t, J = 6.0 Hz, 1H), 4.28 (q, J = 4.7 Hz, 1H), 3.68 (d, J = 4.8 Hz, 2H), 3.46 (s, 3H), 1.66 (s, 3H), 1.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.27, 133.35, 133.20, 128.45, 128.17, 127.81, 126.26, 126.02, 124.76, 123.91, 115.19, 87.05, 86.22, 83.39, 82.35, 73.07, 59.71, 27.70, 25.69.

HRMS (ESI-TOF): calc'd for $C_{19}H_{23}O_4^+$ [M+H⁺] 315.1591, found315.1588.

tert-Butyl(((3a*R*,4*R*,6*S*,6a*S*)-2,2-dimethyl-6-(*m*-tolyl)tetrahydrofuro[3,4*d*][1,3]dioxol-4-yl)methoxy)diphenylsilane (3K)

Physical state: colorless oil;

Yield: 38%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 20:1);

 $[\alpha]$ **25 D**: +8.0 (c = 0.10, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.65 (m, 4H), 7.47 – 7.32 (m, 6H), 7.26 (d, J = 2.3 Hz, 2H), 7.26 – 7.17 (m, 3H), 7.12 – 7.04 (m, 1H), 4.86 (d, J = 5.4 Hz, 1H), 4.81 (dd, J = 6.7, 3.9 Hz, 1H), 4.53 (dd, J = 6.7, 5.4 Hz, 1H), 4.19 (q, J = 3.7 Hz, 1H), 3.95 (dd, J = 11.3, 3.5 Hz, 1H), 3.88 (dd, J = 11.3, 3.8 Hz, 1H), 2.31 (s, 3H), 1.62 (s, 3H), 1.36 (s, 3H), 1.07 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 140.07, 138.19, 135.81, 133.43, 133.37, 129.89, 129.84, 128.58, 128.43, 127.88, 127.84, 126.49, 123.08, 114.65, 87.23, 85.91, 84.44, 81.75, 64.09, 27.81, 26.97, 25.76, 21.54, 19.43.

HRMS (ESI-TOF): calc'd for C₃₁H₄₂NO₄Si⁺ [M+NH₄⁺] 520.2878, found 520.2875.

(6*R*,6a*R*,9a*S*,10*S*,*Z*)-8,8-Dimethyl-1,5,6,6a,9a,10-hexahydro-6,10-epoxy[1,3]dioxolo[4,5-*d*]naphtho[2,1-*g*][1]oxacycloundecine (3L)

Physical state: colorless oil;

Yield: 32%;

 $\mathbf{R_f} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +65.0 (c = 0.14, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 6.19 (dd, *J* = 5.4, 2.0 Hz, 1H), 5.57 (dd, *J* = 7.4, 4.9 Hz, 1H), 5.22 (dd, *J* = 7.4, 4.0 Hz, 1H), 5.19 – 5.12 (m, 2H), 4.29 (dd, *J* = 4.9, 2.0 Hz, 1H), 4.16 (d, *J* = 12.8 Hz, 1H), 4.06 (dd, *J* = 14.2, 11.4 Hz, 1H), 3.83 (dd, *J* = 12.8, 2.2 Hz, 1H), 3.65 (dt, *J* = 14.2, 2.8

Hz, 1H), 1.65 (s, 3H), 1.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.43, 135.21, 134.93, 134.08, 133.17, 128.85, 127.02, 126.52, 125.91, 123.83, 116.22, 115.35, 92.13, 87.55, 87.18, 82.32, 69.17, 27.36, 25.57, 25.33.

HRMS (ESI-TOF): calc'd for $C_{21}H_{23}O_4^+$ [M+H⁺] 339.1591, found 339.1585.

Note: The configuration of Compound **3J** was determined by 2D-HSQC and 2D-NOESY spectrum analysis.

(3a*S*,4*R*,6*R*,6a*R*)-4-((*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-6-(naphthalen-2-yl)tetrahydrofuro[3,4-*d*][1,3]dioxole (3M)

Physical state: colorless oil;

Yield: 65%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 10:1);

 $[\alpha]$ **25 D**: +23.8 (c = 0.39, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 3H), 7.76 (s, 1H), 7.54 – 7.46 (m, 2H), 7.45 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.35 (s, 1H), 5.09 (dd, *J* = 6.1, 1.2 Hz, 1H), 4.80 (dd, *J* = 6.0, 3.8 Hz, 1H), 4.57 – 4.51 (m, 1H), 4.30 – 4.21 (m, 2H), 3.98 (dd, *J* = 7.5, 3.7 Hz, 1H), 1.61 (s, 3H), 1.45 (s, 3H), 1.41 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 136.00, 133.28, 132.83, 128.76, 128.14, 127.80, 126.55, 126.27, 124.22, 123.72, 113.13, 109.41, 87.48, 85.37, 81.72, 81.32, 73.70, 67.24, 27.05, 26.42, 25.36, 25.00.

HRMS (ESI-TOF): calc'd for $C_{22}H_{26}O_5^+$ [M+NH₄⁺] 393.1672, found 393.1672.

(((2*R*,3*R*,4*R*,5*R*,6*R*)-3,5-Bis(benzyloxy)-6-(naphthalen-2-yl)-4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl)methoxy)(*tert*-butyl)dimethylsilane (3N)

Physical state: colorless oil;

Yield: 55%;

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: +27.9 (c = 0.34, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 2H), 7.75 (d, J = 8.6 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.53 (dd, J = 8.5, 1.7 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.42 – 7.38 (m, 2H), 7.32 – 7.22 (m, 21H), 7.21 – 7.17 (m, 2H), 7.17 – 7.13 (m, 1H), 7.12 – 7.07 (m, 2H), 7.03 – 6.94 (m, 2H), 5.25 (d, J = 10.7 Hz, 1H), 5.01 (d, J = 8.5 Hz, 1H), 4.95 (d, J = 10.9 Hz, 1H), 4.86 – 4.73 (m, 3H), 4.62 – 4.51 (m, 4H), 4.50 – 4.41 (m, 2H), 4.23 – 4.12 (m, 3H), 4.10 – 4.03 (m, 2H), 4.03 – 3.97 (m, 2H), 3.93 (q, J = 7.9 Hz, 1H), 3.69 – 3.55 (m, 4H), 3.53 – 3.46 (m, 1H), 3.45 – 3.38 (m, 1H), 0.87 (s, 9H), 0.04 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.78, 138.75, 138.74, 138.26, 138.21, 138.16, 137.43, 133.33, 133.20, 128.56, 128.52, 128.49, 128.46, 128.43, 128.24, 128.20, 128.15, 128.10, 127.96, 127.93, 127.79, 127.76, 127.74, 127.71, 127.68, 127.54, 126.50, 125.90, 125.80, 125.50, 104.38, 84.77, 82.75, 77.99, 77.60, 76.92, 76.87, 75.95, 75.93, 75.16, 74.89, 74.81, 73.56, 72.42, 72.24, 72.11, 69.35, 62.20, 26.14, 18.51, -4.93, -4.99.

HRMS (ESI-TOF): calc'd for $C_{70}H_{82}NO_{10}Si^+$ [M+NH₄⁺] 1124.5703, found 1124.5707.

(((2*R*,3*R*,4*R*,5*R*,6*R*)-3,5-Bis(benzyloxy)-6-(naphthalen-2-yl)-4-(((2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)oxy)tetrahydro-2*H*-pyran-2-yl)methoxy)(*tert*-butyl)dimethylsilane (3O)

Physical state: colorless oil;

Yield: 60%;

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: +19.7 (c = 0.29, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 7.63 (m, 4H), 7.51 (dd, J = 8.5, 1.7 Hz, 1H), 7.48 – 7.38 (m, 4H), 7.37 – 7.18 (m, 23H), 7.13 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.3 Hz, 2H), 6.99 (d, J = 7.2 Hz, 2H), 5.19 (d, J = 10.8 Hz, 1H), 5.04 (d, J = 8.1 Hz, 1H), 4.96 (d, J = 11.4 Hz, 1H), 4.84 – 4.70 (m, 3H), 4.63 – 4.50 (m, 4H), 4.43 – 4.33 (m, 2H), 4.25 – 4.12 (m, 3H), 4.07 – 3.92 (m, 5H), 3.89 (d, J = 2.9 Hz, 1H), 3.84 (dd, J = 9.7, 7.6 Hz,

1H), 3.60 - 3.44 (m, 3H), 3.40 (dd, J = 8.3, 5.0 Hz, 1H), 0.82 (s, 9H), -0.02 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.09, 138.98, 138.72, 138.30, 137.97, 137.37, 133.33, 133.16, 128.59, 128.48, 128.41, 128.34, 128.31, 128.27, 128.18, 128.00, 127.98, 127.86, 127.81, 127.78, 127.74, 127.70, 127.67, 127.63, 127.59, 127.51, 127.42, 126.46, 125.88, 125.78, 125.47, 104.58, 82.29, 79.83, 77.36, 77.02, 76.52, 75.88, 75.11, 74.86, 74.00, 73.65, 73.35, 73.30, 72.62, 72.23, 71.95, 68.79, 62.24, 26.11, 18.43, -5.06, -5.12.

HRMS (ESI-TOF): calc'd for $C_{70}H_{82}NO_{10}Si^+$ [M+NH₄⁺] 1124.5703, found 1124.5711.

(((2R,3R,4R,5R,6R)-3,5-Bis(benzyloxy)-4-(((2S,3R,4S,5R,6R)-3,4-bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-6-((naphthalen-2-yl)tetrahydro-2H-pyran-2-yl)methoxy)(*tert*-butyl)dimethylsilane (3P)

Physical state: colorless oil;

Yield: 78%;

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: +33.2 (c = 0.25, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 1H), 7.79 – 7.71 (m, 2H), 7.72 – 7.66 (m, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.40 – 7.34 (m, 4H), 7.32 – 7.26 (m, 12H), 7.26 – 7.15 (m, 23H), 7.14 – 7.05 (m, 4H), 7.00 (d, J = 7.4 Hz, 2H), 5.17 (d, J = 10.7 Hz, 1H), 5.08 (d, J = 11.3 Hz, 1H), 5.03 (d, J = 8.2 Hz, 1H), 4.89 (d, J = 10.9 Hz, 1H), 4.85 – 4.72 (m, 6H), 4.61 – 4.49 (m, 5H), 4.46 – 4.38 (m, 3H), 4.32 (d, J = 12.0 Hz, 1H), 4.24 – 4.12 (m, 3H), 4.10 – 3.97 (m, 4H), 3.94 (t, J = 3.6 Hz, 1H), 3.89 (q, J = 7.9 Hz, 1H), 3.78 (dd, J = 11.1, 4.1 Hz, 1H), 3.73 – 3.64 (m, 2H), 3.63 – 3.53 (m, 3H), 3.52 – 3.43 (m, 2H), 3.40 (t, J = 8.5 Hz, 1H), 3.35 – 3.30 (m, 1H), 3.26 (dd, J = 10.3, 3.8 Hz, 1H), 0.84 (s, 9H), 0.01 (s, 3H), -0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.45, 138.83, 138.71, 138.66, 138.57, 138.38, 138.22, 138.18, 137.34, 133.31, 133.17, 128.51, 128.50, 128.47, 128.47, 128.44, 128.38, 128.34, 128.22, 128.17, 128.15, 128.08, 127.97, 127.93, 127.90, 127.80, 127.71, 127.70, 127.66, 127.57, 127.49, 127.25, 126.45, 125.90, 125.80, 125.46, 104.14, 102.62, 85.09, 82.95, 82.89, 82.13, 78.13, 77.52, 76.90, 76.74, 75.79, 75.28,

75.18, 75.01, 74.90, 73.42, 73.32, 72.39, 72.17, 72.07, 69.02, 68.33, 62.21, 26.10, 18.47, -4.94, -5.01.

HRMS (ESI-TOF): calc'd for $C_{97}H_{106}NaO_{15}Si^+$ [M+Na⁺] 1561.7193, found 1561.7190.

(((2R,3R,4R,5R,6R)-3,5-Bis(benzyloxy)-4-(((2S,3R,4S,5R,6R)-3,4-bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2R,3R,4S,5R,6R)-3,4-bis(benzyloxy)-6-((benzyloxy)methyl)-5-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)methoxy)(*tert*-butyl)dimethylsilane (3Q)

Physical state: colorless oil;

Yield: 77%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: +73.3 (c = 0.12, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 1H), 7.78 (s, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.72 (dd, *J* = 6.8, 2.9 Hz, 1H), 7.53 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.34 – 7.28 (m, 3H), 7.26 – 7.06 (m, 55H), 7.01 – 6.97 (m, 2H), 5.67 (d, *J* = 3.5 Hz, 1H), 5.62 (d, *J* = 3.6 Hz, 1H), 5.24 (d, *J* = 10.6 Hz, 1H), 4.99 (t, *J* = 9.6 Hz, 2H), 4.92 (d, *J* = 11.7 Hz, 1H), 4.87 – 4.80 (m, 2H), 4.80 – 4.73 (m, 3H), 4.67 (d, *J* = 10.6 Hz, 1H), 4.62 (d, *J* = 7.6 Hz, 1H), 4.58 – 4.49 (m, 4H), 4.49 – 4.43 (m, 4H), 4.43 – 4.33 (m, 5H), 4.28 (d, *J* = 12.1 Hz, 1H), 4.19 – 4.12 (m, 3H), 4.11 – 4.04 (m, 4H), 4.04 – 3.98 (m, 2H), 3.97 – 3.88 (m, 4H), 3.84 – 3.78 (m, 2H), 3.77 – 3.72 (m, 2H), 3.68 (d, *J* = 9.2 Hz, 1H), 3.66 – 3.56 (m, 2H), 3.56 – 3.44 (m, 6H), 3.40 (d, *J* = 8.9 Hz, 1H), 0.86 (s, 9H), 0.04 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.97, 138.92, 138.88, 138.72, 138.60, 138.53, 138.46, 138.29, 138.21, 138.12, 138.05, 137.85, 137.37, 133.31, 133.20, 128.48, 128.45, 128.43, 128.41, 128.36, 128.29, 128.27, 128.19, 128.15, 127.99, 127.95, 127.80, 127.77, 127.74, 127.70, 127.66, 127.62, 127.59, 127.50, 127.29, 127.13, 126.90, 126.68, 126.52, 125.90, 125.80, 125.48, 104.21, 97.04, 96.46, 84.75, 82.53, 82.20, 81.76, 79.72, 79.50, 77.77, 77.66, 77.41, 76.97, 75.86, 75.59, 75.12, 74.61, 74.17, 74.11, 73.62, 73.48, 73.38, 73.20, 73.15, 73.09, 72.94, 72.34, 72.22, 72.17,

71.11, 70.99, 69.18, 69.02, 68.31, 62.16, 26.15, 18.52, -4.90, -5.00. **HRMS** (ESI-TOF): calc'd for $C_{124}H_{134}NaO_{20}Si^+$ [M+Na⁺] 1993.9130, found 1993.9126.

9. General procedure for the synthesis of C-aryl glycosides 5

To a 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with aryl boron compound 1 (0.2 mmol, 2.0 equiv), glycosyl chloride 2S-1 (67.1 mg, 0.12 mmol, 1.2 equiv), olefin 4 (0.1 mmol, 1.0 equiv), $PdCl_2$ (1.8 mg, 0.01 mmol, 0.1 equiv), $AsPh_3$ (3.4 mg, 0.011 mmol, 0.11 equiv), NBE^2 (40.0 mg, 0.15 mmol, 1.5 equiv), K_2CO_3 (41.5 mg, 0.3 mmol, 3.0 equiv) and DMA:DME = 1:2 (0.5 mL) under O_2 . The reaction was stirred at 80 °C for 16-20 h until the completion of the reaction (monitored by TLC). Then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na_2SO_4 . After concentrated in vacuo, the residue was purified by column chromatography on silica gel to give the desired product.

10. Characterization data for C-aryl glycosides 5

Methyl (*E*)-3-(2-methyl-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5a)

Physical state: colorless oil; Yield: 85%; $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: -12.5 (c = 0.12, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 16.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.37 – 7.20 (m, 19H), 7.17 (d, J = 7.4 Hz, 1H), 7.03 – 6.94 (m, 2H), 6.24 (d, J = 16.3 Hz, 1H), 5.29 (d, J = 8.8 Hz, 1H), 4.72 (d, J = 12.2 Hz, 1H), 4.62 – 4.54 (m, 2H), 4.53 – 4.41 (m, 3H), 4.23 – 4.10 (m, 3H), 4.01 – 3.96 (m, 1H), 3.94 (t, J = 3.5 Hz, 1H), 3.88 – 3.78 (m, 3H), 3.69 (s, 3H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.11, 143.59, 138.71, 138.54, 138.30, 138.24, 137.88, 136.19, 135.39, 129.74, 128.53, 128.50, 128.40, 128.35, 128.25, 127.85, 127.82, 127.76, 127.69, 127.66, 127.57, 127.52, 125.36, 124.93, 78.24, 75.39, 75.32, 75.21, 73.31, 73.14, 71.97, 71.95, 68.59, 68.54, 51.61, 21.09.

HRMS (ESI-TOF): calc'd for C₄₅H₄₆NaO₇⁺ [M+Na⁺]721.3136, found 721.3126.

Methyl (*E*)-3-(2-methoxy-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5b)

Physical state: colorless oil;

Yield: 81%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -44.4 (c = 0.48, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 16.3 Hz, 1H), 7.33 – 7.18 (m, 20H), 7.04 – 6.98 (m, 2H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.66 (d, *J* = 16.2 Hz, 1H), 5.37 (d, *J* = 8.7 Hz, 1H), 4.72 (d, *J* = 12.3 Hz, 1H), 4.59 – 4.53 (m, 2H), 4.50 – 4.42 (m, 3H), 4.20 – 4.11 (m, 3H), 3.98 – 3.93 (m, 1H), 3.91 (t, *J* = 3.4 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.85 (s, 3H), 3.84 – 3.78 (m, 2H), 3.65 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.94, 158.17, 140.36, 139.34, 138.69, 138.55, 138.30, 138.26, 129.92, 128.53, 128.41, 128.40, 128.23, 127.86, 127.82, 127.73, 127.69, 127.58, 127.56, 127.47, 124.30, 123.89, 120.17, 110.16, 78.19, 75.48, 75.39, 75.21, 73.29, 73.20, 71.94, 68.44, 68.28, 55.80, 51.52.

HRMS (ESI-TOF): calc'd for C₄₅H₄₆NaO₈⁺ [M+Na⁺] 737.3085, found 737.3083.

Methyl (E)-3-(2-(benzyloxy)-6-((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-

((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)phenyl)acrylate (5c)

Physical state: colorless oil;

Yield: 82%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -43.5 (c = 0.54, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 16.3 Hz, 1H), 7.40 – 7.22 (m, 21H), 7.20 – 7.16 (m, 4H), 7.03 – 6.96 (m, 2H), 6.87 (dd, J = 7.9, 1.5 Hz, 1H), 6.68 (d, J = 16.2 Hz, 1H), 5.38 (d, J = 8.7 Hz, 1H), 5.15 (s, 2H), 4.72 (d, J = 12.3 Hz, 1H), 4.60 – 4.53 (m, 2H), 4.51 – 4.42 (m, 3H), 4.21 – 4.11 (m, 3H), 3.95 (dd, J = 8.7, 2.6 Hz, 1H), 3.92 (t, J = 3.4 Hz, 1H), 3.89 – 3.78 (m, 3H), 3.66 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.86, 157.02, 140.44, 139.37, 138.68, 138.54, 138.29, 138.24, 136.96, 129.80, 128.71, 128.53, 128.41, 128.23, 127.94, 127.86, 127.82, 127.74, 127.70, 127.59, 127.56, 127.47, 127.08, 124.93, 124.18, 120.52, 112.10, 78.19, 75.47, 75.32, 75.20, 73.29, 73.19, 71.94, 71.91, 70.63, 68.43, 68.29, 51.51.

HRMS (ESI-TOF): calc'd for $C_{51}H_{54}NO_8^+$ [M+NH₄⁺] 808.3844, found 808.3843.

Methyl (*E*)-3-(2-chloro-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5d)

Physical state: colorless oil;

Yield: 65%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -113.3 (c = 0.10, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 16.2 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.39 – 7.20 (m, 20H), 6.99 – 6.88 (m, 2H), 6.46 (d, *J* = 16.3 Hz, 1H), 5.28 (d, *J* = 9.1 Hz, 1H), 4.69 (d, *J* = 12.2 Hz, 1H), 4.61 – 4.52 (m, 2H), 4.51 – 4.40 (m, 3H), 4.25 – 4.15 (m, 2H), 4.08 (d, *J* = 12.0 Hz, 1H), 3.95 – 3.89 (m, 2H), 3.87 – 3.82 (m, 1H), 3.81 – 3.78 (m, 1H), 3.78 – 3.72 (m, 1H), 3.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.83, 140.87, 140.49, 138.53, 138.41, 138.17, 137.82, 134.40, 133.56, 129.43, 129.03, 128.59, 128.44, 128.35, 127.92, 127.85, 127.82, 127.71, 127.66, 126.49, 126.40, 78.28, 75.64, 75.06, 74.68, 73.30, 73.22, 71.83, 71.82, 68.24, 67.99, 51.74.

HRMS (ESI-TOF): calc'd for C₄₄H₄₃ClNaO₇⁺ [M+Na⁺] 741.2590, found 741.2590.

Methyl (*E*)-3-(2,3-dimethyl-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)-methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5e)

Physical state: colorless oil;

Yield: 62%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -35.6 (c = 0.52, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 16.3 Hz, 1H), 7.35 – 7.27 (m, 9H), 7.26 – 7.19 (m, 10H), 7.10 (d, J = 7.9 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.14 (d, J = 16.3 Hz, 1H), 5.22 (d, J = 8.5 Hz, 1H), 4.69 (d, J = 12.2 Hz, 1H), 4.59 – 4.53 (m, 2H), 4.51 – 4.41 (m, 3H), 4.26 – 4.15 (m, 2H), 4.10 (td, J = 6.6, 2.3 Hz, 1H), 3.97 (dd, J = 8.5, 2.7 Hz, 1H), 3.94 – 3.90 (m, 1H), 3.83 (dd, J = 4.5, 2.3 Hz, 1H), 3.81 (d, J = 6.6 Hz, 2H), 3.68 (s, 3H), 2.30 (s, 3H), 2.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.10, 144.81, 138.75, 138.59, 138.38, 136.46, 135.69, 135.12, 134.35, 129.90, 128.53, 128.41, 128.40, 128.24, 127.87, 127.81, 127.71, 127.69, 127.57, 127.55, 127.50, 124.89, 124.85, 77.97, 75.65, 75.28, 75.20, 73.34, 73.08, 72.07, 72.00, 69.05, 68.70, 51.62, 20.62, 17.08.

HRMS (ESI-TOF): calc'd for C₄₆H₅₂NO₇⁺ [M+NH₄⁺] 730.3738, found 730.3744.

Methyl (*E*)-3-(3-chloro-2-methyl-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5f)

Physical state: colorless oil;

Yield: 66%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 7:1);

 $[\alpha]$ **25 D**: -28.7 (c = 0.54, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 16.3 Hz, 1H), 7.35 – 7.19 (m, 20H), 6.95 (dd, J = 7.2, 2.3 Hz, 2H), 6.16 (d, J = 16.3 Hz, 1H), 5.18 (d, J = 8.7 Hz, 1H), 4.68 (d, J = 12.2 Hz, 1H), 4.61 – 4.52 (m, 2H), 4.51 – 4.39 (m, 3H), 4.22 (d, J = 12.0 Hz, 1H), 4.17 (t, J = 6.7 Hz, 1H), 4.09 (d, J = 12.1 Hz, 1H), 3.93 – 3.87 (m, 2H), 3.85 – 3.78 (m, 2H), 3.75 (dd, J = 10.0, 6.7 Hz, 1H), 3.68 (s, 3H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.73, 143.24, 138.58, 138.45, 138.20, 137.95, 137.39, 136.56, 134.33, 133.58, 129.05, 128.56, 128.43, 128.42, 128.29, 127.88, 127.84, 127.81, 127.69, 127.63, 127.61, 126.26, 125.91, 78.07, 75.44, 75.10, 74.82, 73.31, 73.16, 71.88, 71.82, 68.37, 68.24, 51.72, 17.88.

HRMS (ESI-TOF): calc'd for C₄₅H₄₉ClNaO₇⁺ [M+Na⁺] 750.3192, found 750.3192.

Methyl (*E*)-3-(4-fluoro-2-methyl-6-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)phenyl)acrylate (5g)

Physical state: colorless oil;

Yield: 76%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 7:1);

 $[\alpha]$ **25 D**: -54.4 (c = 0.54, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 16.2 Hz, 1H), 7.37 – 7.20 (m, 18H), 7.15 (dd, J = 9.9, 2.7 Hz, 1H), 7.00 – 6.92 (m, 2H), 6.88 (dd, J = 9.0, 2.7 Hz, 1H), 6.25 (d, J

= 16.3 Hz, 1H), 5.27 (d, J = 9.2 Hz, 1H), 4.71 (d, J = 12.2 Hz, 1H), 4.61 – 4.52 (m, 2H), 4.51 – 4.40 (m, 3H), 4.25 – 4.17 (m, 2H), 4.08 (d, J = 12.0 Hz, 1H), 3.93 (t, J = 3.3 Hz, 1H), 3.90 – 3.82 (m, 2H), 3.80 (dd, J = 4.0, 1.5 Hz, 1H), 3.75 (dd, J = 10.0, 6.8 Hz, 1H), 3.67 (s, 3H), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.05, 162.54 (d, J = 247.4 Hz), 142.53, 140.85 (d, J = 7.8 Hz), 138.86 (d, J = 8.0 Hz), 138.58, 138.43, 138.17, 137.92, 131.25 (d, J = 2.9 Hz), 128.58, 128.42, 128.29, 127.90, 127.83, 127.75, 127.70, 127.65, 127.61, 125.24, 116.65 (d, J = 21.4 Hz), 112.20 (d, J = 21.9 Hz), 78.36, 75.52, 75.08, 74.82, 73.28, 73.21, 71.85, 71.82, 68.27, 67.87, 51.64, 21.18.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.6.

HRMS (ESI-TOF): calc'd for C₄₅H₄₅FNaO₇⁺ [M+Na⁺] 739.3042, found 739.3032.

Methyl (*E*)-3-(2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)acrylate (5h)

Physical state: colorless oil;

Yield: 88%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -35.7 (c = 0.53, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 16.2 Hz, 1H), 8.03 – 7.97 (m, 1H), 7.87 – 7.80 (m, 2H), 7.72 (d, J = 8.6 Hz, 1H), 7.51 (dt, J = 6.4, 3.4 Hz, 2H), 7.36 – 7.23 (m, 15H), 7.15 – 7.11 (m, 1H), 7.08 – 7.02 (m, 2H), 6.88 – 6.80 (m, 2H), 6.45 (d, J = 16.2 Hz, 1H), 5.48 (d, J = 9.4 Hz, 1H), 4.75 (d, J = 12.2 Hz, 1H), 4.58 (dd, J = 15.8, 12.1 Hz, 2H), 4.52 – 4.41 (m, 3H), 4.26 (t, J = 6.9 Hz, 1H), 4.12 – 4.00 (m, 3H), 3.96 (t, J = 3.2 Hz, 1H), 3.89 (dd, J = 9.9, 6.9 Hz, 1H), 3.85 – 3.79 (m, 2H), 3.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.98, 142.43, 138.73, 138.50, 138.27, 138.01, 135.26, 133.06, 132.81, 131.34, 129.00, 128.57, 128.42, 128.37, 128.18, 127.87, 127.84, 127.73, 127.70, 127.61, 127.59, 127.58, 127.49, 126.72, 126.54, 126.22, 125.50, 124.88, 77.87, 75.52, 75.27, 75.09, 73.32, 73.30, 71.94, 71.76, 68.47, 68.38, 51.74.

HRMS (ESI-TOF): calc'd for C₄₈H₄₆NaO₇⁺ [M+Na⁺] 757.3136, found 757.3130.

Methyl(E)-3-(4-methyl-2-((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)naphthalen-1-yl)acrylate (5i)

Physical state: colorless oil;

Yield: 80%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 6:1);

 $[\alpha]$ **25 D**: -63.5 (c = 0.20, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 16.1 Hz, 1H), 8.08 – 7.97 (m, 2H), 7.60 – 7.50 (m, 3H), 7.39 – 7.23 (m, 15H), 7.16 – 7.11 (m, 1H), 7.05 (t, J = 7.5 Hz, 2H), 6.84 (d, J = 7.1 Hz, 2H), 6.48 (d, J = 16.2 Hz, 1H), 5.49 (d, J = 9.4 Hz, 1H), 4.77 (d, J = 12.2 Hz, 1H), 4.65 – 4.55 (m, 2H), 4.53 – 4.47 (m, 2H), 4.43 (d, J = 12.1 Hz, 1H), 4.28 (t, J = 6.9 Hz, 1H), 4.14 (d, J = 12.1 Hz, 1H), 4.08 – 4.01 (m, 2H), 3.99 (t, J = 3.2 Hz, 1H), 3.92 – 3.82 (m, 3H), 3.73 (s, 3H), 2.68 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.11, 142.59, 138.75, 138.52, 138.28, 137.97, 135.47, 134.77, 132.35, 131.52, 131.17, 128.58, 128.41, 128.10, 127.90, 127.88, 127.80, 127.68, 127.58, 127.56, 127.46, 126.42, 126.18, 126.08, 126.04, 125.40, 124.47, 77.53, 75.56, 75.24, 75.00, 73.32, 73.29, 71.74, 68.48, 68.24, 51.70, 19.82. **HRMS** (ESI-TOF): calc'd for C₄₉H₄₈NaO₇⁺ [M+Na⁺] 771.3292, found 771.3287.

Methyl (*E*)-3-(4-bromo-2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)acrylate (5j)

Physical state: colorless oil;

Yield: 52%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: 31.9 (c = 0.31, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 8.9 Hz, 1H), 8.20 (d, J = 16.2 Hz, 1H), 8.03 – 7.94 (m, 2H), 7.62 (t, J = 7.8 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.39 – 7.21 (m, 15H), 7.12 (t, J = 7.4 Hz, 1H), 7.02 (t, J = 7.5 Hz, 2H), 6.81 (d, J = 7.1 Hz, 2H), 6.46 (d, J = 16.2 Hz, 1H), 5.41 (d, J = 9.7 Hz, 1H), 4.73 (d, J = 12.2 Hz, 1H), 4.64 – 4.53 (m, 2H), 4.51 – 4.40 (m, 3H), 4.28 (t, J = 6.9 Hz, 1H), 4.16 (d, J = 12.1 Hz, 1H), 4.01 (d, J = 12.1 Hz, 1H), 3.98 – 3.93 (m, 2H), 3.88 (dd, J = 9.9, 7.2 Hz, 1H), 3.81 (d, J = 3.4 Hz, 1H), 3.76 (dd, J = 10.0, 6.8 Hz, 1H), 3.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.79, 141.65, 138.60, 138.40, 138.15, 137.57, 136.00, 132.74, 132.42, 131.56, 128.96, 128.63, 128.44, 128.19, 127.96, 127.87, 127.79, 127.70, 127.66, 127.64, 127.57, 127.55, 127.30, 127.24, 125.92, 124.12, 75.60, 75.06, 74.55, 73.32, 73.30, 71.71, 71.68, 68.23, 67.80, 51.81.

HRMS (ESI-TOF): calc'd for $C_{48}H_{45}BrNaO_7^+$ [M+NH₄⁺] 835.2241, found 835.2234.

Methyl (*E*)-3-(10-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-tetrahydro-2*H*-pyran-2-yl)phenanthren-9-yl)acrylate (5k)

Physical state: colorless oil;

Yield: 46%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -58.5 (c = 0.26, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.99 (d, J = 8.5 Hz, 1H), 8.71 (dd, J = 8.4, 3.3 Hz, 2H), 8.32 (d, J = 16.3 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.60 (dt, J= 11.5, 7.5 Hz, 2H), 7.44 – 7.26 (m, 14H), 7.26 – 7.23 (m, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.89 (t, J = 7.5 Hz, 2H), 6.56 (d, J = 7.4 Hz, 2H), 6.36 (d, J = 16.1 Hz, 1H), 5.95 (d, J= 10.3 Hz, 1H), 4.86 (d, J = 12.1 Hz, 1H), 4.72 – 4.64 (m, 2H), 4.58 (dd, J = 12.0, 8.2 Hz, 2H), 4.50 – 4.39 (m, 3H), 4.05 – 3.97 (m, 2H), 3.89 – 3.83 (m, 2H), 3.79 (s, 2H), 3.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.73, 144.66, 138.88, 138.52, 138.37, 137.85, 133.91, 130.93, 130.52, 130.44, 130.40, 130.03, 128.57, 128.44, 128.41, 128.29, 127.94, 127.83, 127.80, 127.71, 127.60, 127.53, 127.50, 127.37, 127.09, 126.76, 126.75, 126.71, 126.61, 122.90, 122.86, 75.65, 75.22, 75.11, 74.75, 73.76, 73.50, 71.93,

71.43, 70.30, 68.26, 51.76. **HRMS** (ESI-TOF): calc'd for C₅₂H₄₈NaO₇⁺ [M+Na⁺] 807.3292, found 807.3287.

Methyl (*E*)-3-(2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)pyren-1-yl)acrylate (5l)

Physical state: pale yellow oil;

Yield: 81%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -21.7 (c = 0.54, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (d, J = 16.3 Hz, 1H), 8.38 (s, 1H), 8.32 (d, J = 9.3 Hz, 1H), 8.23 – 8.17 (m, 2H), 8.13 – 8.06 (m, 2H), 8.05 – 7.98 (m, 2H), 7.41 – 7.23 (m, 15H), 7.05 – 6.98 (m, 1H), 6.92 (t, J = 7.5 Hz, 2H), 6.78 – 6.69 (m, 2H), 6.50 (d, J = 16.3 Hz, 1H), 5.70 (d, J = 9.1 Hz, 1H), 4.80 (d, J = 12.2 Hz, 1H), 4.70 – 4.60 (m, 2H), 4.57 – 4.46 (m, 3H), 4.35 (t, J = 6.8 Hz, 1H), 4.23 – 4.15 (m, 1H), 4.10 (d, J = 12.1 Hz, 1H), 4.05 (t, J = 3.3 Hz, 1H), 4.01 – 3.94 (m, 2H), 3.94 – 3.86 (m, 2H), 3.77 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 166.99, 143.28, 138.71, 138.49, 138.26, 137.75, 135.73, 131.51, 131.36, 130.93, 130.75, 128.88, 128.61, 128.47, 128.43, 128.05, 128.02, 128.01, 127.94, 127.81, 127.76, 127.71, 127.69, 127.65, 127.60, 127.44, 126.91, 126.29, 125.56, 125.35, 124.86, 124.63, 124.41, 124.06, 78.54, 75.86, 75.36, 75.01, 73.34, 73.28, 71.99, 71.79, 69.12, 68.44, 51.78.

HRMS (ESI-TOF): calc'd for C₅₄H₄₈NaO₇⁺ [M+Na⁺] 831.3292, found 831.3282.

tert-Butyl (*E*)-3-(2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)acrylate (5m)

Physical state: colorless oil;

Yield: 80%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: +75.6 (c = 0.70, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 16.1 Hz, 1H), 8.06 – 8.02 (m, 1H), 7.87 – 7.80 (m, 2H), 7.72 (d, J = 8.7 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.37 – 7.23 (m, 17H), 7.17 – 7.12 (m, 1H), 7.10 – 7.05 (m, 2H), 6.89 – 6.84 (m, 2H), 6.36 (d, J = 16.2 Hz, 1H), 5.51 (d, J = 9.3 Hz, 1H), 4.74 (d, J = 12.5 Hz, 1H), 4.60 (d, J = 5.5 Hz, 1H), 4.58 – 4.53 (m, 2H), 4.45 (dd, J = 12.0, 8.1 Hz, 2H), 4.28 (t, J = 6.8 Hz, 1H), 4.10 (d, J = 12.0 Hz, 1H), 4.07 – 4.00 (m, 2H), 3.97 – 3.94 (m, 1H), 3.93 – 3.86 (m, 2H), 3.84 (dd, J = 3.9, 1.5 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 165.85, 141.04, 138.70, 138.51, 138.29, 138.12, 135.15, 133.18, 133.10, 131.40, 128.90, 128.78, 128.56, 128.47, 128.43, 128.32, 128.16, 127.86, 127.79, 127.74, 127.66, 127.64, 127.62, 127.42, 126.43, 126.15, 125.68, 124.82, 80.48, 77.86, 75.53, 75.25, 74.74, 73.42, 73.18, 71.91, 71.75, 68.58, 68.39, 28.36.

HRMS (ESI-TOF): calc'd for C₅₁H₅₂NaO₇⁺ [M+Na⁺] 799.3605, found 799.3015.

Benzyl (*E*)-3-(2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)acrylate (5n)

Physical state: colorless oil;

Yield: 83%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -53.1 (c = 0.60, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 16.2 Hz, 1H), 8.00 (dt, J = 7.0, 3.5 Hz, 1H), 7.88 – 7.79 (m, 2H), 7.72 (d, J = 8.7 Hz, 1H), 7.51 (dt, J = 6.3, 3.4 Hz, 2H), 7.36 – 7.18 (m, 20H), 7.11 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.5 Hz, 2H), 6.82 (d, J = 7.0 Hz, 2H), 6.50 (d, J = 16.2 Hz, 1H), 5.50 (d, J = 9.4 Hz, 1H), 5.25 (d, J = 12.5 Hz, 1H), 5.13 (d, J = 12.5 Hz, 1H), 4.68 (d, J = 12.4 Hz, 1H), 4.61 – 4.50 (m, 2H), 4.48 – 4.41 (m, 2H), 4.38 (d, J = 12.0 Hz, 1H), 4.26 (t, J = 6.9 Hz, 1H), 4.08 (d, J = 12.0 Hz, 1H), 4.05 – 3.96 (m, 2H), 3.94 (t, J = 3.2 Hz, 1H), 3.89 (dd, J = 10.0, 6.9 Hz, 1H), 3.85 – 3.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.35, 142.78, 138.69, 138.51, 138.27, 138.01, 136.26, 135.33, 133.06, 132.80, 131.32, 129.04, 128.63, 128.57, 128.43, 128.41, 128.37, 128.22, 128.20, 128.17, 127.87, 127.86, 127.70, 127.69, 127.62, 127.58, 127.46, 126.79, 126.57, 126.23, 125.52, 124.89, 77.88, 75.56, 75.22, 74.74, 73.29, 73.16, 71.92, 71.74, 68.48, 68.36, 66.33.

HRMS (ESI-TOF): calc'd for C₅₄H₅₀NaO₇⁺ [M+Na⁺] 833.3449, found 833.3456.

(*E*)-*N*,*N*-Dimethyl-3-(2-((2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)acrylamide (50)

Physical state: colorless oil;

Yield: 60%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 1:1);

 $[\alpha]$ **25 D**: -54.1 (c = 0.50, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 15.5 Hz, 1H), 8.10 – 8.04 (m, 1H), 7.89 – 7.81 (m, 3H), 7.56 – 7.50 (m, 2H), 7.40 – 7.26 (m, 10H), 7.25 – 7.20 (m, 4H), 7.16 – 7.11 (m, 1H), 7.08 – 7.01 (m, 2H), 6.92 (d, J = 15.5 Hz, 1H), 6.82 – 6.73 (m, 2H), 5.51 (d, J = 9.7 Hz, 1H), 4.68 (d, J = 12.2 Hz, 1H), 4.57 (s, 2H), 4.53 – 4.46 (m, 2H), 4.42 (d, J = 12.0 Hz, 1H), 4.31 (t, J = 7.2 Hz, 1H), 4.16 (d, J = 11.0 Hz, 1H), 4.12 (dd, J = 9.7, 2.9 Hz, 1H), 4.04 (t, J = 2.9 Hz, 1H), 3.97 – 3.90 (m, 3H), 3.82 (dd, J = 9.6, 6.6 Hz, 1H), 2.88 (s, 3H), 2.49 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.29, 138.45, 138.35, 138.32, 138.26, 137.75, 134.95, 133.99, 132.92, 131.81, 128.64, 128.61, 128.51, 128.43, 128.24, 128.22,

127.93, 127.74, 127.68, 127.66, 127.60, 127.45, 127.34, 126.41, 126.23, 125.78, 124.91, 78.16, 75.51, 74.85, 74.08, 73.30, 72.75, 72.66, 71.72, 68.47, 67.91, 36.71, 35.69.

HRMS (ESI-TOF): calc'd for C₄₉H₄₉NaO₆⁺ [M+Na⁺] 770.3452, found 770.3462.

(E)-4-(2-((2R,3R,4R,5R,6R)-3,4,5-Tris(benzyloxy)-6-

((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)but-3-en-2-one (5p)

Physical state: colorless oil;

Yield: 63%;

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -57.0 (c = 0.50, CHCl₃);

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 16.6 Hz, 1H), 8.01 – 7.94 (m, 1H), 7.90 – 7.80 (m, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.38 – 7.21 (m, 15H), 7.17 – 7.11 (m, 1H), 7.11 – 7.02 (m, 2H), 6.83 (d, J = 6.9 Hz, 2H), 6.51 (d, J = 16.6 Hz, 1H), 5.37 (d, J = 9.4 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 4.62 – 4.55 (m, 2H), 4.52 – 4.43 (m, 3H), 4.28 (t, J = 6.9 Hz, 1H), 4.13 (d, J = 11.8 Hz, 1H), 4.03 (dd, J = 9.4, 2.7 Hz, 1H), 4.01 – 3.93 (m, 2H), 3.91 – 3.78 (m, 3H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.58, 141.41, 138.40, 138.38, 138.14, 137.97, 135.60, 135.24, 133.23, 132.90, 131.16, 128.99, 128.61, 128.53, 128.46, 128.42, 128.22, 127.96, 127.91, 127.82, 127.80, 127.68, 127.61, 126.59, 126.23, 125.55, 125.07, 77.57, 75.41, 75.00, 74.92, 73.27, 73.23, 72.02, 71.91, 68.97, 68.22, 27.46. HRMS (ESI-TOF): calc'd for C₄₈H₄₆NaO₆⁺ [M+Na⁺] 741.3187, found 741.3196.

(2*R*,3*R*,4*R*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(1-((*E*)-4-nitrostyryl)naphthalene-2-yl)tetrahydro-2*H*-pyran (5q)

Physical state: yellow oil;

Yield: 84%;

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -104.7 (c = 0.40, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 – 8.04 (m, 1H), 8.04 – 7.98 (m, 2H), 7.91 – 7.87 (m, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 5.0 Hz, 1H), 7.73 (d, J = 12.9 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.43 – 7.39 (m, 2H), 7.38 – 7.27 (m, 5H), 7.26 – 7.21 (m, 4H), 7.20 – 7.11 (m, 7H), 7.07 (t, J = 7.5 Hz, 2H), 6.92 – 6.82 (m, 3H), 5.52 (d, J = 9.5 Hz, 1H), 4.64 (dd, J = 15.0, 12.0 Hz, 2H), 4.51 (dd, J = 18.6, 12.0 Hz, 2H), 4.40 (s, 2H), 4.31 (t, J = 6.8 Hz, 1H), 4.19 (d, J = 11.7 Hz, 1H), 4.12 (dd, J = 9.5, 2.7 Hz, 1H), 4.03 (d, J = 11.7 Hz, 1H), 4.00 (t, J = 3.3 Hz, 1H), 3.88 (dd, J = 10.1, 7.2 Hz, 1H), 3.82 (dd, J = 3.9, 1.4 Hz, 1H), 3.73 (dd, J = 10.1, 6.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.87, 143.99, 138.38, 138.36, 138.16, 138.11, 135.06, 134.62, 134.53, 133.35, 131.83, 130.38, 128.62, 128.43, 128.41, 128.31, 128.24, 127.96, 127.87, 127.84, 127.71, 127.64, 127.53, 127.33, 127.01, 126.32, 126.10, 125.77, 125.20, 124.12, 77.78, 75.50, 75.40, 75.19, 73.35, 73.19, 72.17, 71.89, 68.77, 68.21.

HRMS (ESI-TOF): calc'd for C₅₂H₄₇NaNO₇⁺ [M+Na⁺] 820.3245, found 820.3248.

2-Methoxy-5-((E)-2-(2-((2R,3R,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-

((benzyloxy)methyl)-tetrahydro-2*H*-pyran-2-yl)naphthalen-1-yl)vinyl)pyridine (5r)

Physical state: colorless oil;

Yield: 70%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, PE:EtOAc = 5:1);

 $[\alpha]$ **25 D**: -80.7 (c = 0.40, CHCl₃);

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 2.4 Hz, 1H), 8.13 – 8.07 (m, 1H), 7.89 – 7.83 (m, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.75 – 7.68 (m, 2H), 7.52 – 7.43 (m, 3H), 7.38 – 7.30 (m, 3H), 7.29 – 7.20 (m, 7H), 7.19 – 7.12 (m, 6H), 7.10 – 7.05 (m, 2H), 6.90 – 6.83 (m, 2H), 6.75 (d, J = 16.6 Hz, 1H), 6.64 (d, J = 8.6 Hz, 1H), 5.57 (d, J = 9.4 Hz, 1H), 4.67 (d, J = 12.1 Hz, 1H), 4.60 (d, J = 12.2 Hz, 1H), 4.52 (d, J = 12.1 Hz, 1H), 4.47 (d, J = 12.2 Hz, 1H), 4.39 (q, J = 12.1 Hz, 2H), 4.28 (t, J = 6.8 Hz, 1H), 4.16 (d, J = 11.8 Hz, 1H), 4.11 (dd, J = 9.4, 2.7 Hz, 1H), 4.03 (d, J = 11.7 Hz, 1H), 3.97 (d, J = 3.3 Hz, 1H), 3.96 (s, 3H), 3.86 (dd, J = 10.0, 7.0 Hz, 1H), 3.81 (dd, J = 4.0, 1.4 Hz, 1H), 3.76 (dd, J = 10.0, 6.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.73, 145.91, 138.49, 138.43, 138.28, 138.22, 135.63, 134.71, 133.38, 132.82, 132.17, 128.56, 128.38, 128.28, 128.20, 127.86, 127.85, 127.81, 127.66, 127.64, 127.56, 127.52, 127.49, 126.97, 126.11, 126.02, 125.89, 125.14, 124.63, 111.08, 77.82, 75.40, 75.31, 75.21, 73.24, 73.20, 72.20, 71.79, 68.89, 68.37, 53.66.

HRMS (ESI-TOF): calc'd for C₅₂H₄₉NaNO₆⁺ [M+Na⁺] 806.3452, found 806.3459.

11. Synthetic applications

Synthesis of 6.

1,2-ethanedithiol (35 μ L, 0.4 mmol, 8.0 equiv) and boron trifluoride diethyl etherate (43 μ L, 0.35 mmol, 7.0 equiv) were added sequentially to a stirred solution of compound **3M** (19 mg, 0.05 mmol, 1.0 equiv) in CH₂Cl₂ at -78 °C. After the mixture was stirred at -10 °C for 16 h, the volatiles were then removed by rotary evaporation, the resulting residue was directly purified by preparative TLC (CH₂Cl₂/MeOH = 8:1) to give the desired product **6** (11.7 mg, 81%) as a white solid.

(2*R*,3*R*,4*S*,5*R*)-2-((*R*)-1,2-dihydroxyethyl)-5-(naphthalen-2-yl)tetrahydrofuran-3,4-diol (6)

6

Physical state: white solid;

Yield: 81%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, CH₂Cl₂:MeOH = 8:1);

Melting point: 101–103 °C;

 $[\alpha]$ **25 D**: 29.5 (c = 0.32, MeOH);

¹**H NMR** (400 MHz, CD₃OD) δ 7.87 – 7.78 (m, 4H), 7.55 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.49 – 7.40 (m, 2H), 4.93 (d, *J* = 8.6 Hz, 1H), 4.34 (t, *J* = 3.7 Hz, 1H), 4.23 (dd, *J* = 8.3, 3.2 Hz, 1H), 4.11 (dd, *J* = 8.6, 4.1 Hz, 1H), 4.05 (ddd, *J* = 8.5, 5.9, 3.2 Hz, 1H), 3.86 (dd, *J* = 11.5, 3.3 Hz, 1H), 3.71 (dd, *J* = 11.5, 5.9 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 140.38, 134.76, 134.60, 129.07, 128.88, 128.67, 127.07, 126.74, 125.89, 125.03, 83.99, 81.81, 81.01, 73.81, 71.81, 64.92.

HRMS (ESI-TOF): calc'd for $C_{16}H_{18}NaO_5^+$ [M+Na⁺] 313.1046, found 313.1048.

General procedure for the synthesis of 7–9.

BCl₃ (0.3 mmol, 6.0 eq.) was added slowly to a stirred solution of compound **3a** or **3q** or **3r** (0.05 mmol, 1.0 eq.) in CH₂Cl₂ (1 mL) at -78 °C. The reaction was stirred for 0.5-1.0 h until the completion of the reaction (monitored by TLC). Then the residue was directly purified by preparative TLC (CH₂Cl₂/MeOH = 7:1) to give the desired product **7** or **8** or **9** as a white solid.

(2*R*,3*S*,4*R*,5*S*,6*R*)-2-(3-fluoro-5-methylphenyl)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triol (7)

Physical state: white solid;

Yield: 85%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, CH₂Cl₂:MeOH = 6:1);

Melting point: 163–165 °C;

 $[\alpha]$ **25 D**: 121.5 (c = 0.70, MeOH);

¹**H** NMR (400 MHz, CD₃OD) δ 7.11 (s, 1H), 7.03 (d, *J* = 10.1 Hz, 1H), 6.84 (d, *J* = 9.5 Hz, 1H), 4.92 (d, *J* = 3.5 Hz, 1H), 4.38 (t, *J* = 3.2 Hz, 1H), 3.90 – 3.78 (m, 2H), 3.75 (t, *J* = 7.8 Hz, 1H), 3.59 (dd, *J* = 8.0, 2.9 Hz, 1H), 3.48 (dt, *J* = 9.0, 4.5 Hz, 1H), 2.35 (s, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 164.48 (d, *J* = 243.8 Hz), 142.04 (dd, *J* = 7.7, 3.1 Hz), 124.04 (d, *J* = 2.6 Hz), 115.66 (d, *J* = 21.4 Hz), 111.62 (d, *J* = 22.9 Hz) 77.80, 77.75, 72.62, 71.61, 69.50, 62.65, 21.42.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -115.1.

HRMS (ESI-TOF): calc'd for C₁₃H₁₇FNaO₅⁺ [M+Na⁺] 295.0952, found 295.0951.

(2*R*,3*S*,4*R*,5*S*,6*R*)-2-(3-chloro-5-methylphenyl)-6-(hydroxymethyl)tetrahydro-2*H*pyran-3,4,5-triol (8)

Physical state: white solid;

Yield: 82%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, CH₂Cl₂:MeOH = 6:1);

Melting point: 194–196 °C;

 $[\alpha]$ **25 D**: 54.6 (c = 0.51, MeOH);

¹**H NMR** (400 MHz, CD₃OD) δ 7.30 (s, 1H), 7.24 (s, 1H), 7.12 (s, 1H), 4.88 (d, J = 4.4 Hz, 1H), 4.31 (dd, J = 4.4, 3.1 Hz, 1H), 3.87 (dd, J = 11.9, 6.7 Hz, 1H), 3.81 (dd, J = 11.9, 3.2 Hz, 1H), 3.75 (t, J = 7.4 Hz, 1H), 3.60 (dd, J = 7.6, 3.1 Hz, 1H), 3.50 (td, J = 7.0, 3.2 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 142.03, 141.54, 135.33, 129.05, 126.99, 125.06, 78.29, 77.32, 72.67, 71.53, 69.81, 62.66, 21.29.

HRMS (ESI-TOF): calc'd for $C_{13}H_{17}CINaO_5^+$ [M+Na⁺] 311.0657, found 311.0653.

(2*R*,3*S*,4*R*,5*S*,6*R*)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(hydroxymethyl)-tetrahydro-2*H*-pyran-3,4,5-triol (9)

Physical state: white solid;

Yield: 88%;

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica gel, CH₂Cl₂:MeOH = 5:1);

Melting point: 162–164 °C;

 $[\alpha]$ **25 D**: 24.0 (c = 0.34, MeOH);

¹**H NMR** (400 MHz, CD₃OD) δ 7.38 – 7.33 (m, 2H), 7.29 (dd, J = 8.2, 1.9 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.88 (d, J = 3.2 Hz, 1H), 4.31 (t, J = 3.6 Hz, 1H), 4.01 (d, J = 3.3 Hz, 2H), 3.97 (q, J = 7.0 Hz, 2H), 3.82 (dd, J = 11.9, 6.4 Hz, 1H), 3.77 – 3.70 (m, 2H), 3.54 (dd, J = 7.9, 3.1 Hz, 1H), 3.41 (ddd, J = 7.7, 6.4, 2.9 Hz, 1H), 1.34 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 158.87, 140.69, 138.64, 134.07, 132.77, 130.87, 130.69, 130.56, 127.11, 115.48, 77.85, 77.59, 72.66, 71.62, 69.59, 64.41, 62.55, 39.25, 15.21.

HRMS (ESI-TOF): calc'd for C₂₁H₂₅ClNaO₆⁺ [M+Na⁺] 431.1232, found 431.1231.

12. Proposed stereochemical model

Figure S4. Reactive intermediates analysis and the proposed stereochemical model.

To a 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with *a*-mannosyl chloride **2a** (55.9 mg, 0.1 mmol, 1.0 equiv), PdCl₂ (1.8 mg, 0.01 mmol, 0.1 equiv), DMAP (12.2 mg, 0.1 mmol, 1.0 equiv), 4 Å MS (80 mg) and CDCl₃ (2.0mL) under O₂. The reaction was stirred at 80 °C for 24 h. The formation of β -pyridiniumtype salt intermediate and oxocarbenium-ion intermediate in this reaction were demonstrated by using HRMS. MS analysis of the reaction mixture showed a [M]⁺ peak at m/z 645.3325 with a molecular formula of C₄₁H₄₅N₂O₅ which corresponded to β -pyridinium-type salt intermediate. Additionally, it exhibited a [M]⁺ peak at m/z 523.2475 with a molecular formula of C₃₄H₃₅O₅, corresponding to the oxocarbeniumion intermediate.

 Meas.m/z
 # Ion Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule
 Adduct

 645.332501
 1
 C41H45N2O5
 100.00
 645.332299
 -0.2
 -0.3
 3.4
 20.5
 even
 ok
 M

+MS, 0.2-0.8min #12-48

Figure S5. HRMS spectra of β -pyridinium-type salt intermediate and oxocarbeniumion intermediate from 2a.

13. References

1. Wang, Q.; An, S.; Deng, Z.; Zhu, W.; Huang, Z.; He, G.; Chen, G. Palladiumcatalysed C–H glycosylation for synthesis of C-aryl glycosides. *Nat. Catal.* **2019**, *2*, 793–800.

2. An, Y.; Zhang, B.-S.; Ding, Y.-N.; Zhang, Z.; Gou, X.-Y.; Li, X.-S.; Wang, X.; Li, Y.; Liang, Y.-M. Palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction *via* structurally modified norbornadienes (smNBDs). *Chem. Sci.*, **2021**, *12*, 13144-13150.

3. Gouliaras C.; Lee D.; Chan L.; Taylor M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. *J. Am. Chem. Soc.* **2011**, *133*, 13926-13929.

4. Feng, G.-J.; Guo Y.-F.; Tang Y.; Li M.; Jia Y.; Li Z.; Wang S.; Liu H.; Wu, Y.; Dong H. Design, synthesis, and biological evaluation of thioglucoside analogues of Gliflozin as potent new Gliflozin grugs. *J. Med. Chem.* **2023**, *66*, 12536–12543.

14. Copies of NMR spectra

¹H NMR spectrum of **1r**

¹³C NMR spectrum of **1r**

¹H NMR spectrum of **3a**

¹⁹F NMR spectrum of **3a**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectrum of **3b**

¹³C NMR spectrum of **3b**

¹H NMR spectrum of **3c**

¹³C NMR spectrum of **3c**

¹³C NMR (DEPT135) spectrum of **3c**

 $^1\text{H-}{^13}\text{C}$ HSQC NMR spectrum of 3c

¹H NMR spectrum of **3d**

¹³C NMR spectrum of **3d**

¹H NMR spectrum of **3e**

¹³C NMR spectrum of **3e**

¹H NMR spectrum of **3f**

¹³C NMR spectrum of **3f**

¹H NMR spectrum of **3g**

¹³C NMR spectrum of **3g**

¹⁹F NMR spectrum of **3g**

¹H NMR spectrum of **3h**

¹³C NMR spectrum of **3h**

¹⁹F NMR spectrum of **3h**

¹H NMR spectrum of **3i**

¹³C NMR spectrum of **3i**

¹H NMR spectrum of **3**j

¹³C NMR spectrum of **3**j

¹H NMR spectrum of **3**k

¹³C NMR spectrum of **3**k

¹H NMR spectrum of **3**l

¹H NMR spectrum of **3m**

¹⁹F NMR spectrum of **3m**

¹H NMR spectrum of **3n**

¹³C NMR spectrum of **3n**

¹H NMR spectrum of **30**

¹³C NMR spectrum of **30**

¹³C NMR spectrum of **3p**

¹H NMR spectrum of **3**q

¹³C NMR spectrum of **3q**

¹H NMR spectrum of **3r**

77.30 77.28 77.72 77.28 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.72 77.75

¹³C NMR spectrum of **3r**

CI **NR** BnO OBr ŌBn 13C NMR, CDCI3

¹³C NMR spectrum of **3s**

¹H NMR spectrum of **3t**

¹³C NMR spectrum of **3t**

¹H NMR spectrum of **3u**

¹³C NMR spectrum of **3u**

¹H NMR spectrum of **3v**

¹H NMR spectrum of **3w**

¹³C NMR spectrum of **3w**

¹H NMR spectrum of 3x

¹³C NMR spectrum of 3x

¹³C NMR spectrum of **3**y

¹³C NMR spectrum of **3**A

¹H NMR spectrum of **3B**

¹³C NMR spectrum of **3B**

¹³C NMR spectrum of **3**C

¹H NMR spectrum of **3D**

¹³C NMR spectrum of **3D**

¹H NMR spectrum of **3**E

¹³C NMR spectrum of 3E

¹³C NMR spectrum of **3F**

¹⁹F NMR spectrum of 3F

¹³C NMR spectrum of **3G**

¹³C NMR spectrum of **3G'** (major)

¹³C NMR spectrum of **3G'** (minor)

¹H NMR spectrum of **3H'** (major)

¹³C NMR spectrum of **3H'** (major)

¹³C NMR spectrum of **3H'** (minor)

¹³C NMR spectrum of **3J**

¹³C NMR spectrum of **3K**

¹³C NMR spectrum of **3**L

¹H-¹³C HSQC NMR spectrum of 3L

¹H-¹H NOESY NMR spectrum of 3L

¹³C NMR spectrum of 3M

¹³C NMR spectrum of **3N**

¹³C NMR spectrum of **3P**

¹³C NMR spectrum of **3Q**

¹H NMR spectrum of **5a**

¹³C NMR spectrum of **5a**

¹H NMR spectrum of **5b**

¹H NMR spectrum of **5c**

¹³C NMR spectrum of **5**c

¹H NMR spectrum of **5d**

¹H NMR spectrum of **5e**

¹³C NMR spectrum of **5e**

¹H NMR spectrum of **5**f

¹³C NMR spectrum of **5f**

¹³C NMR spectrum of **5g**

¹⁹F NMR spectrum of **5g**

¹H NMR spectrum of **5h**

¹H NMR spectrum of **5**i

¹³C NMR spectrum of **5**i

¹H NMR spectrum of **5**j

¹³C NMR spectrum of **5**j

¹H NMR spectrum of **5**k

¹³C NMR spectrum of **5**k

¹H NMR spectrum of **5**l

¹³C NMR spectrum of **5**I

¹H NMR spectrum of **5m**

¹³C NMR spectrum of **5m**

¹H NMR spectrum of **5n**

¹³C NMR spectrum of **5n**

¹H NMR spectrum of **50**

¹³C NMR spectrum of **50**

¹H NMR spectrum of **5p**

¹³C NMR spectrum of **5**p

¹H NMR spectrum of **5**q

¹³C NMR spectrum of **5**q

¹H NMR spectrum of **5**r

¹³C NMR spectrum of **5**r

¹³C NMR spectrum of **6**

¹H NMR spectrum of 7

¹³C NMR spectrum of 7

¹⁹F NMR spectrum of **7**

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

--115.1

¹H NMR spectrum of 8

¹³C NMR spectrum of 8

¹H NMR spectrum of **9**

¹³C NMR spectrum of **9**

