Electronic Supplementary Information (ESI)

MgV₃O₈ Anode Exhibiting Enhanced Rate Capability and Stability for Lithium Storage Applications

Qi Wan,[‡]^a Jie Zhao,[‡]^a Xun Xu,^a Hechao Xu,^a Yu Liu,^a Wenshu Li,^a Qingchun Zhang,^a Zhiqin Cao, ^{*b} Xijun Wei,^{*a} and Yingze Song^{*a}

^a State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

^b College of Vanadium and Titanium, Panzhihua University, Panzhihua, Sichuan 617000, P. R China.

Corresponding authors: cao_zhi_qing@163.com (Z. Cao), xijunwei1992@swust.edu.cn (X. Wei) and yzsong@swust.edu.cn (Y. Song).

Keywords: high-rate electrode materials, lithium-ion battery, solution combustion synthesis, MgV_3O_8

1. Experimental Section

1.1 Synthesis of MgV₃O₈.

In a typical route, 0.03 mol ammonium vanadate (NH₄VO₃) and 0.01 mol magnesium nitrate hexahydrate ($6H_2O\cdotMg(NO_3)_2$) were dissolved in 40 mL deionized water using the stoichiometric ratio of Mg/V=1:3. Then, critic acid monohydrate (CAS) was added into this solution, with CAS : Mg : V=4:1:3 in mole ratio. The above solution vigorously stirred at 60 °C for 30 min. Stop stirring when the solution changed from orange-yellow to dark blue, the polybasic chelate solution was directly transferred to a resistance furnace in an air atmosphere at 450 °C. It took about 5 min to form gelatinous mass. Upon further heating, the resultant mass swelled suddenly accompanied by the release of a lot of gases, which resulted in large volume expansion of the precursor and

formation of bubble-like bulks. The black product after cooling with the furnace was MgV_3O_8 .

1.2 Materials characterizations.

The crystal structures of sample were detected by X-ray diffractometer (XRD, Bruker D Advance) and XRD patterns were obtained at a scan rate of 1 ° min⁻¹ with Cu-Ka radiation. The morphological characterizations of all samples were carried out by field emission scanning electron microscope (FESEM, ZEISS Sigma 300), and highresolution transmission electron microscopy (HRTEM, JEOL JEM-2100F) with the selected area electron diffraction pattern (SAED) function as well as an energy dispersive spectroscopy detector. The surface valence states and elemental compositions were analyzed using X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha). The Raman signals of samples were identified on a Raman Spectrometer (Renishaw inVia) with an excitation laser wavelength of 514.5 nm. The Mg/V mole ratios in the entire MgV_3O_8 were determined by inductively coupled plasma optical emission spectrometer (ICP-OES, Agilent 5110). N2 adsorption-desorption isotherms were obtained by using a Micromeritics 3Flex analyzer at the testing temperature of 77 K. The Brunauer-Emmett-Teller method was utilized to calculate the surface areas. The pore size distributions were retrieved by using the Barrett-Joyner-Halanda (BJH) method from the adsorption branch of the isotherms. The thermogravimetry analyses (TGA, Rigaku Thermo plus TG 8120) were carried out from RT to 800 °C with a heating rate of 10 °C min⁻¹ in air.

1.3 Electrochemical measurements.

Half-cell tests were carried out in a 28 °C. The working electrodes were made by mixing the below active materials, poly (vinylidene fluoride) (PVDF) and Super P at a weight ratio of 7:2:1, followed by coating on a piece of Cu foil and drying at 60 °C for 12 h under vacuum condition. The CR2032 coin-type cells were assembled in a glovebox filled with high purity argon (H₂O < 0.01 ppm, O₂ < 0.01 ppm). The lithium foil was used as the counter electrode, and the polypropylene film (Celgard-2300) served as the separator. 1 mol LiPF₆ in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC), and ethylene methyl carbonate (EMC) with the volume ratio of 1:1:1 was used as the electrolyte. Cyclic voltammetry (CV) test was conducted using the CT2001A battery instrument at a scan rate of 0.2–1.0 mV s⁻¹. The galvanostatic charge/discharge curves, cycling and rate performances were tested on a NEWARE Automatic Battery Test System in a voltage range of 0.01–3.0 V. The galvanostatic intermittent titration technique (GITT) was used with a current density of 0.1 A g⁻¹ for 10 min followed by 30 min of relaxation time to achieve equilibrium potential on an Ivium Vertex.One Electrochemical Workstation.

2. Figures and Tables

Fig. S1 The XRD patterns of the products obtained by the solution combustion synthesis with different mole ratio of CAS:Mg:V.

Fig. S2 Cycle stability of MgV_3O_8 electrode at 0.2 A g^{-1} for 200 cycles.

Fig. S3 Cross-sectional SEM images of MgV_3O_8 electrode. (a) Before cycling. (b) After 500 cycles. (c) After 1000 cycles for Li-ion storage.

Fig. S4 Ex situ XRD patterns of MgV₃O₈ at different lithiation/delithiation potentials.

Fig. S5 Schematic representation of the GITT in (a) discharge, and (b) charge process. τ : the relaxation time; ΔE s: voltage change due to the current pulse; $\Delta E \tau$: voltage change during the current pulse (eliminating the voltage changes after relaxation time).

Fig. S6 EIS spectra of full delithiation (to 3.0 V) MgV_3O_8 electrode at different cycles.

Table S1 XRD Rietveld diffraction refined parameters of MgV_3O_8 .							
$a = 10.3796(0)$ Å, $b = 8.5470(0)$ Å, $c = 7.7692(3)$ Å, Volume (V) = 600.001 Å ³ , $\alpha =$							
$\gamma = 90^{\circ}, \beta = 119.481^{\circ}; \text{ Density } (\rho) = 4.72 \text{ g/cm}^3; R_{wp} = 5.63, R_p = 4.3, \chi^2 = 1.68.$							
Atom type	Wyckoff	x	У	Z	Occupancy	U_{iso} (Å ²)	
	site						
Mg1	8j	0.1285(3)	0.1923(7)	0.3013(2)	0.5	0.027	
V1	8j	0.1285(3)	0.1923(7)	0.3013(2)	0.5	0.027	
V2	4i	0.3789(7)	0	0.2232(2)	1	0.015	
V3	4i	0.3149(8)	0.5	0.2882(3)	1	0.016	
01	4g	0	0.1944(7)	0	1	0.044	
O2	8j	0.4726(1)	0.1636(1)	0.2881(8)	1	0.013	
O3	8j	0.2759(0)	0.3366(9)	0.376(2)	1	0.003	
O4	4i	0.1943(6)	0.5	0.0374(6)	1	0.025	
05	4i	0.4990(0)	0.5	0.3051(6)	1	0.032	
06	4i	0.2427(7)	0	0.3007(1)	1	0.022	

able S1 XRD Rietveld diffraction	refined parameters	of MgV ₃ O ₈ .
----------------------------------	--------------------	--------------------------------------

Table S2 The ratio of Mg/V in MgV $_3O_8$ powders was tested by ICP-OES.

Samples	Mg/V mole percentage (a.u.)		
MgV_3O_8	0.338		

Anode	Current	Capacity	Cycles	Fade	Volume	Ref.		
	density	$(mA h g^{-1})$		rate	expansion rate			
	$(mA g^{-1})$							
MgV ₃ O ₈	200	356.8	200	~0%	0.34%	Our		
						work		
SrVO ₃	200	~238	200	~5%	2.30%	[1]		
CaV ₄ O ₉	1000	475.8	500	~4%	>1.34%	[2]		

Table S3 Performance comparison of MgV_3O_8 with the reported M (alkaline earth metals)-V-O materials for LIBs.

References

- [1] X. Li, Z. Lin, N. Jin, X. Yang, Y. Du, L. Lei, P. Rozier, P. Simon, Y. Liu, Adv. Mater., 2022, 34, 2107262.
- [2] P. Wu, X. Xu, Y. Wu, F. Xu, X. Wang, J. Meng, C. Han, X. Liu, Z. Zhu, L. Mai, *Adv. Energy Mater.*, 2021, **11**, 2003612.