SUPPORTING INFORMATION

Doubly σ - and π -Aromatic Planar Pentacoordinate Boron Polyanions

Williams García-Argote,^{ab}† Dumer S. Sacanamboy,^{ab}† Alejandro Vasquez-Espinal^c, Diego Inostroza,^d Luis Leyva-Parra,^{*e} Osvaldo Yañez,^{*f} and William Tiznado^{*a}

^{*a*} Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Ouímicas, Universidad Andrés Bello, Avenida República 275, Santiago 837014, Chile. wtiznado@unab.cl

^b Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago 837014, Chile.

^cQuímica y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile

^d Departamento de Física, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago 7800024, Chile

^e Facultad de Ingeniería y Arquitectura, Universidad Central de Chile (UCEN), Santa Isabel 1186, Santiago 8370146, Chile. luis.leyva@ucentral.cl

^f Núcleo de Investigación en Data Science (NIDS), Facultad de Ingeniería y Negocios, Universidad de Las Américas, Santiago 7500975, Chile. <u>oyanez@udla.cl</u>

Computational Details

We systematically explored the potential energy surface using AUTOMATON,¹ which employs probabilistic cellular automata to generate initial structures and genetic algorithms to evolve them towards the global minimum. Calculations for singlet and triplet states were performed at the PBE0² -D3³ /SDDAll⁴⁻⁸ level. The lowest energy structures (Figure S1) were minimized at the PBE0-D3/def2-TZVP⁹ level. For accurate energy comparisons, we conducted single-point energy calculations at the DLPNO-CCSD(T)¹⁰⁻¹²/CBS^{13,14}//PBE0-D3/def2-TZVP level via Gaussian 16 software.¹⁵ Chemical bonding was analyzed using the Adaptive Natural Density Partitioning¹⁶⁻¹⁸ (AdNDP) technique via Multiwfn software.¹⁹ Structure and AdNDP orbitals were visualized using CYLview 2.0²⁰ and VMD 1.9.3.²¹

The Interacting Quantum Atoms (IQA) method²²⁻²⁵ was employed to decompose the interaction energy. The IQA analysis, which balances atomic deformation against additive interatomic interaction energies, was conducted at the PBE0-D3/def2-TZVP level using the AIMAll program.²⁶ The interaction energy, V_{IQA}^{int} , is the sum of the Coulombic, V_C^{int} , and exchange-correlation, V_{XC}^{int} , terms. V_C^{int} represents the exact electrostatic interaction between electrons and nuclei in a pair of basins, including nuclear repulsion, electron-nucleus attraction, and the Coulomb part of electron-electron repulsion. V_{XC}^{int} is purely quantum mechanical, depending on the exchange-correlation part of electron-electron interaction. Typically, V_C^{int} is associated with ionic-type interactions, while V_{XC}^{int} relates to covalent-type interactions.

The magnetically induced current density (J^{ind}) was calculated using the SYSMOIC program.²⁷ The external magnetic field was aligned parallel to the z-axis and perpendicular to the molecular plane using the CTOCD-DZ method to ensure origin-independent results. The Gaussian16 program was employed to obtain the perturbed molecular orbital with the CSGT keyword, which was then used to perform the actual calculation of density current.

Figure S1. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BSi₅^{3–}. Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S2. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BGe₅³⁻ Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S3. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BSn₅^{3–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S4. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of CSi₅²⁻ Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**) and PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections levels. Point groups and spectroscopic states are also reported.

Figure S5. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of CSi_5^{2-} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**) and PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections levels. Point groups and spectroscopic states are also reported.

Figure S6. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BPSi₄²⁻ Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S7. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BPGe₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**) and PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S8. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BAsSi₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S9. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BAsGe₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB/PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S10. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BSbSi₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S11. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BSbGe₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S12. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BBiSi₄^{2–}.Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Figure S13. PBE0-D3/def2-TZVP geometries of the low-lying energy isomer of BBiGe₄^{2–} Relative energies in kcal·mol⁻¹ computed at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**bold**), PBE0-D3/def2-TZVP including zero-point energy (ZPE) corrections and PBE0-PCM-D3/def2-TZVP (**blue**) levels. Point groups and spectroscopic states are also reported.

Table S1. Relative energies in kcal·mol⁻¹ of $\text{ETr}_n Pn_m^q$ (E=B-Tl, Tr = Si-Pb, Pn =P-Bi n=5-0, m=0-5 and q= -2, -1, 0, 1, 2) and their lowest harmonic vibrational frequency in cm⁻¹ computed at the PBE0-D3/def2-TZVP level. Point groups also reported.

System	ΔE	<i>v</i> _{min}	Point group	System	ΔE	<i>v</i> _{min}	Point group	System	ΔE	<i>v</i> _{min}	Point group
BSi ₄ P ²⁻	0.0	177.1	C_{2v}	BSn ₂ P ₃	14.9	73.3	C_{2v}	BPb_2Bi_3	14.6	33.7	C_{2v}
BSi ₃ P ₂ ⁻	8.7	153.1	C_{2v}	$BSnP_4^+$	15.7	57.2	C_{2v}	$BPbBi_4^+$	18.0	31.6	C_{2v}
BSi ₂ P ₃	7.7	105.3	C_{2v}	BSn ₄ As ²⁻	6.1	59.0	C_{2v}	BP5 ²⁺	4.8	193.6	C_{5v}
BSiP ₄ ⁺	9.4	92.3	C_s	$BSn_3As_2^-$	15.9	65.2	C_{2v}	BAs52+	8.5	63.0	D_{5h}
BSi ₄ As ^{2–}	0.0	154.1	C_{2v}	BSn ₂ As ₃	14.3	58.8	C_{2v}	BSb5 ²⁺	15.4	51.8	D_{5h}
BSi ₃ As ₂ -	5.9	146.2	C_{2v}	$BSnAs_4^+$	15.3	59.4	C_{2v}	BBi5 ²⁺	19.4	32.9	D_{5h}
BSi ₂ As ₃	3.1	123.5	C_{2v}	BSn ₄ Sb ²⁻	2.3	55.3	C_{2v}	AlSi5 ³⁻	32.0	175.0	C_{5v}
BSiAs4 ⁺	6.2	105.0	C_{2v}	$BSn_3Sb_2^-$	11.2	52.3	C_{2v}	AlGe5 ³⁻	11.6	97.2	C_{5v}
BSi ₄ Sb ^{2–}	0.0	136.3	C_{2v}	$BGeBi_4^+$	14.3	40.9	C_{2v}	AlSn ₅ ³⁻	5.5	59.0	C_{5v}
BSi ₃ Sb ₂ -	1.6	118.2	C_{2v}	BSn ₄ P ²⁻	8.2	61.0	C_{2v}	AlPb ₅ ³⁻	1.2	36.9	C_{5v}
BSi ₂ Sb ₃	5.2	80.1	C_{2v}	$BSn_{3}P_{2}^{-}$	9.4	9.2	C_{2v}	GaSi ₅ ³⁻	-	-	-
BSiSb ₄ ⁺	9.4	62.3	C_{2v}	BSn ₂ Sb ₃	12.0	51.9	C_{2v}	GaGe ₅ ³⁻	16.7	94.0	C_{5v}
BSi ₄ Bi ^{2–}	0.0	127.6	C_{2v}	$BSnSb_4^+$	14.5	48.3	C_{2v}	GaSn ₅ ³⁻	11.0	49.2	C_{5v}
BSi ₃ Bi ₂ -	4.8	104.9	C_{2v}	BSn ₄ Bi ²⁻	1.0	51.0	C_{2v}	GaPb ₅ ³⁻	6.6	27.1	C_{5v}
BSi ₂ Bi ₃	8.1	62.9	C_{2v}	$BSn_{3}Bi_{2}^{-}$	9.4	46.4	C_{2v}	InSi ₅ ³⁻	-	-	-
BSiBi4 ⁺	14.8	43.0	C_{2v}	BSn ₂ Bi ₃	10.4	40.3	C_{2v}	InGe5 ³⁻	-	-	-
BGe ₄ P ²⁻	0.0	99.0	C_{2v}	$BSnBi_{4}{}^{+}$	15.7	37.6	C_{2v}	InSn ₅ ³⁻	27.7	58.6	C_{5v}
BGe ₃ P ₂ ⁻	10.5	120.8	C_{2v}	BPb_4P^{2-}	11.0	43.2	C_{2v}	InPb ₅ ³⁻	21.0	40.0	C_{5v}
BGe ₂ P ₃	10.7	88.6	C_{2v}	$BPb_{3}P_{2}^{-}$	23.5	67.9	C_{2v}	TlSi ₅ ³⁻	-	-	-
BGeP ₄ ⁺	13.0	43.9	C_s	BPb ₂ P ₃	16.5	65.9	C_{2v}	TlGe5 ³⁻	-	-	-
BGe ₄ As ²⁻	0.0	96.3	C_{2v}	$BPbP_4^+$	17.2	57.8	C_{2v}	TlSn ₅ ³⁻	-	-	-
BGe ₃ As ₂ ⁻	7.4	93.1	C_{2v}	BPb ₄ As ²⁻	9.2	41.9	C_{2v}	TlPb5 ³⁻	29.7	39.3	C_{5v}
BGe ₂ As ₃	7.7	87.6	C_{2v}	$BPb_3As_2^-$	20.3	51.0	C_{2v}				
BGeAs4 ⁺	10.5	81.1	C_{2v}	BPb ₂ As ₃	17.0	47.7	C_{2v}				
BGe ₄ Sb ²⁻	0.0	85.7	C_{2v}	BPbAs4 ⁺	17.8	50.4	C_{2v}				
BGe ₃ Sb ₂ -	1.5	75.2	C_{2v}	BPb ₄ Sb ²⁻	5.6	39.1	C_{2v}				
BGe ₂ Sb ₃	5.7	67.8	C_{2v}	$BPb_3Sb_2^-$	14.7	41.4	C_{2v}				
BGeSb ₄ ⁺	10.9	59.7	C_{2v}	BPb ₂ Sb ₃	15.6	41.1	C_{2v}				
BGe ₄ Bi ²⁻	0.0	78.1	C_{2v}	$BPbSb_4^+$	17.6	41.0	C_{5v}				
BGe ₃ Bi ₂ -	1.6	63.1	C_{2v}	BPb ₄ Bi ²⁻	3.6	37.9	C_{2v}				
BGe ₂ Bi ₃	7.0	50.7	C_{2v}	$BPb_{3}Bi_{2}^{-}$	12.7	35.1	C_{2v}				

System	$\Delta E_{S\text{-}T}$	<i>v</i> _{min}	T ₁ Diagnostic
BSi ₅ ³⁻	32.6	177.1	0.019
BGe5 ³⁻	29.5	98.4	0.012
BSn5 ³⁻	20.8	56.4	0.016
BSi ₄ P ²⁻	22.1	177.1	0.021
BSi ₄ As ²⁻	30.4	154.1	0.018
BGe ₄ As ²⁻	25.7	98.3	0.013
BSi ₄ Sb ²⁻	22.4	136.3	0.019
BGe ₄ Sb ²⁻	22.5	85.7	0.013
BSi ₄ Bi ²⁻	20.5	127.6	0.020
BGe ₄ Bi ²⁻	20.7	78.1	0.013

Table S2. Singlet-triplet energy gap in kcal·mol⁻¹, smallest vibrational frequencies in cm⁻¹ and T₁ diagnostics for the global minimum of BTr₅³⁻ (Tr = Si-Sn) and BTr₄Pn²⁻ (Tr = Si for Pn = P-Bi and Tr = Ge for Pn = As-Bi).

Figure S14. RMSD curves along the trajectories of Born-Oppenheimer molecular dynamics simulations for all global minima of ppB.

Table S3. Bond lengths (r, Å), natural charges (q, |e|) and Wiberg bond indices (WBI) of BTr³⁻ (Tr = Si-Sn) and BTr₄Pn²⁻ (Pn = P-Bi for Tr = Si and Pn = As-Bi for Tr = Ge), at the PBE0-D3/def2-TZVP level

System	r _{Tr-Tr}	r _{Tr-B}	r _{Tr-Pn}	r _{Pn-B}	q(Tr)	q(B)	q(Pn)	WBI _{Tr-Tr}	WBI _{Tr-B}	WBI _{Tr-Pn}	WBI _{Pn-B}
BSi ₅ ³⁻	2.40	2.04	-	-	-0.36	-1.18	-	0.81	0.81	-	-
BGes ³⁻	2.52	2.15	-	-	-0.40	-1.00	-	0.80	0.82	-	-
BSn ₅ ³⁻	2.85	2.42	-	-	-0.38	-1.09	-	0.79	0.80	-	-
BSi ₄ P ²⁻	2.35-2.43	1.99-2.04	2.31	1.92	-0.05-0.16	-1.16	-0.39	0.68-0.89	0.66-0.89	0.70	0.93
BSi ₄ As ²⁻	2.33-2.43	1.99-2.06	2.42	2.05	-0.10-0.15	-1.17	-0.32	0.64-0.93	0.69-0.91	0.70	0.86
BGe ₄ As ²⁻	2.46-2.55	2.10-2.16	2.49	2.07	-0.10-0.15	-1.01	-0.36	0.64-0.90	0.68-0.90	0.68	0.91
BSi ₄ Sb ²⁻	2.3-2.45	1.99-2.09	2.62	2.29	-0.1-0.18	-1.18	-0.21	0.57-0.98	0.74-0.93	0.71	0.69
BGe ₄ Sb ²⁻	2.44-2.57	2.09-2.19	2.67	2.31	-0.14-0.19	-1.07	-0.24	0.56-0.95	0.73-0.94	0.71	0.72
BSi ₄ Bi ²⁻	2.30-2.46	1.99-2.10	2.70	2.39	-0.1-0.20	-1.15	-0.22	0.55-1.02	0.76-0.94	0.70	0.64
BGe4Bi ²⁻	2.43-2.59	2.09-2.20	2.75	2.42	-0.14-0.21	-1.04	-0.24	0.54-0.99	0.75-0.95	0.70	0.67

I	Tr-LPs Pn-LPs	Tr-B-Tr $σ$ -bonds Tr-B-Pn $σ$ -bonds	H	3-Tr ₄ Pn π bonds	

	5 x 1c-2e	5 x 3c-2e	3x 6c-2e
B, Tr=Si, Pn=P	ON = 1.84-1.89 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Si,Pn=As	ON = 1.8-1.91 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Si,Pn=Sb	ON = 1.83-1.93 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Si, Pn=Bi	ON = 1.82 - 1.94 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Ge,Pn=As	ON = 1.87-1.91 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Ge,Pn=Sb	ON = 1.86-1.93 e	ON = 1.99 e	ON = 2.00 e
B,Tr=Ge,Pn=Bi	ON = 1.86-1.94 e	ON = 1.99 e	ON = 2.00 e

Figure S15. Adaptive Natural Density Partitioning bonding pattern for BTr_4Pn^{2-} (Pn = P-Bi for Tr = Si and Pn = As-Bi for Tr = Ge) at the PBE0-D3/def2-TZVP level.

Table S4. Energy components of IQA and delocalization indices (δ) between atom pairs for BTr₄Pn²⁻ (Pn = P-Bi for Tr = Si and Pn = As-Bi for Tr = Ge). ΔE_{IQA} is the total integration error in IQA energies, V_{IQA}^{int} , V_C^{int} , and V_{XC}^{int} are interatomic IQA interaction energy, Coulomb energy component, and exchange-correlation energy component of the interaction energy, respectively, in kcal·mol⁻¹.

	BSi ₄ P ²⁻	BSi ₄ As ²⁻	BSi ₄ Sb ²⁻	BSi ₄ Bi ²⁻	BGe ₄ As ²⁻	BGe ₄ Sb ²⁻	BGe4Bi ²⁻
ΔE_{IQA}	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$V_{IQA}^{int}(\text{B-Tr})$	-410.9/-505.1	-393.0/-509.6	-338.8/-509.7	-319.3/-496.2	-114.9/-139.0	-112.4/-145.3	-109.8/-144.8
$V_C^{int}(\text{B-Tr})$	-305.6/-357.9	-280.9/-362.4	-219.5/-364.5	-199.8/-351.5	-22.6/-20.3	-14.2/-23.5	-11.1/-22.7
$V_{XC}^{int}(B-Tr)$	-105.3/-147.2	-112.1/-147.2	-119.3/-145.2	-119.5/-144.7	-92.3/-118.7	-98.2/-121.8	-98.7/-122.1
$V_{IQA}^{int}(B-Pn)$	66.6	-4.3	-110.9	-90.5	-94.6	-101.9	-85.5
$V_C^{int}(B-Pn)$	252.5	157.7	12.9	18.8	41.7	3.6	7.7
$V_{XC}^{int}(B-Pn)$	-185.9	-162.0	-123.8	-109.3	-136.3	-105.5	-93.1
$V_{IQA}^{int}(\text{Tr-Tr})$	22.5/26.4	10.6/28.3	-10.9/33.8	-17.9/33.1	-81.9/-58.6	-85.8/-53.5	-88.3/-51.5
$V_C^{int}(\text{Tr-Tr})$	95.1/84.9	87.7/84.5	74.8/85.0	71.8/82.6	19.4/18.4	19.5/17.3	19.8/16.8
$V_{XC}^{int}(\text{Tr-Tr})$	-72.5/-58.4	-77.1/-56.2	-85.7/-51.2	-89.7/-49.6	-101.3/-77.1	-105.2/-70.8	-108.1/-68.3
$V_{IQA}^{int}(\text{Tr-Pn})$	-194.3	-123.6	-67.5	-66.0	-90.3	-72.8	-69.8
$V_C^{int}(\text{Tr-Pn})$	-101.1	-35.1	17.4	15.0	5.3	16.8	15.2
$V_{XC}^{int}(\text{Tr-Pn})$	-93.2	-88.4	-84.9	-81.0	-95.6	-89.6	-85.0
δ (B-Tr)	0.8/1.1	0.9/1.1	0.9/1.1	0.9/1.1	0.7/0.9	0.8/1.0	0.8/1.0
δ (B-Pn)	1.3	1.2	1.0	0.9	1.0	0.8	0.8
$\delta(\text{Tr-Tr})$	0.7/0.6	0.8/0.5	0.8/0.5	0.8/0.5	1.0/0.7	1.0/0.7	1.0/0.6
$\delta(\text{Tr-Pn})$	0.8	0.8	0.8	0.8	0.9	0.9	0.9

System	BSi ₅ ³⁻	BGe5 ³⁻	BSn5 ³⁻	BSi ₄ P ²⁻	BSi ₄ As ²⁻	BSi ₄ Sb ²⁻	BSi ₄ Bi ²⁻	BGe ₄ As ²⁻	BGe ₄ Sb ²⁻	BGe ₄ Bi ²⁻
Total	32.5	37.5	38.7	31.5	31.6	32.7	32.8	35.7	36.1	35.9
σ	21.0	25.5	26.9	21.3	22.3	23.5	23.9	25.1	26.3	26.7
π	11.5	11.9	11.9	10.4	10.1	8.9	8.2	10.7	9.5	8.7

Figure S16. Vector plots in the molecular plane 0.5 Å above the molecular plane for BTr_4Pn^{2-} (Pn = P-Bi for Tr = Si and Pn = As-Bi for Tr = Ge) system and RCSs (total, σ and π , in nA/T) for each system at the PBE0-D3/def2-TZVP level.

Figure S17. Global minimum and low-lying isomers of cluster BLi₃Si₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S18. Global minimum and low-lying isomers of cluster BLi₂Si₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S19. Global minimum and low-lying isomers of cluster BLiSi₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S20. Global minimum and low-lying isomers of cluster BLi₃Ge₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S21. Global minimum and low-lying isomers of cluster BLi₂Ge₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S22. Global minimum and low-lying isomers of cluster BLiGe₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S23. Global minimum and low-lying isomers of cluster BLi₃Sn₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S24. Global minimum and low-lying isomers of cluster BLi₂Sn₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S25. Global minimum and low-lying isomers of cluster BLiSn₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S26. Global minimum and low-lying isomers of cluster BNa₃Si₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S27. Global minimum and low-lying isomers of cluster BNa₂Si₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S28. Global minimum and low-lying isomers of cluster BNaSi₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S29. Global minimum and low-lying isomers of cluster BNa₃Ge₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S30. Global minimum and low-lying isomers of cluster BNa₂Ge₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S31. Global minimum and low-lying isomers of cluster BNaGe₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S32. Global minimum and low-lying isomers of cluster BNa₃Sn₅. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S33. Global minimum and low-lying isomers of cluster BNa₂Sn₅⁻. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Figure S34. Global minimum and low-lying isomers of cluster BNaSn₅^{2–}. Relative energies are shown in kcal·mol⁻¹ at DLPNO-CCSD(T)/CSB//PBE0-D3/def2-TZVP (**in bold**) and PBE0-D3/def2-TZVP levels, including zero-point energy (ZPE) corrections.

Table S5. HOMO-LUMO energy gap in eV of the global minimum of BTr_{5}^{3-} (Tr = Si-Sn) and $BTr_{4}Pn^{2-}$ (Tr = Si, Ge and Pn = P-Bi) in vacuum at PBE0-D3/def2-TZVP level of theory.

System	E _{HOMO}	ELUMO	ΔE_{H-L}
BSi ₅ ³⁻	7.2	10.8	3.6
BGe5 ³⁻	7.5	10.9	3.4
BSn ₅ ³⁻	6.1	8.7	2.5
BSi ₄ P ²⁻	3.2	6.5	3.3
BSi ₄ As ²⁻	3.2	6.6	3.4
BGe ₄ As ²⁻	3.4	6.7	3.3
BSi ₄ Sb ²⁻	3.0	6.6	3.5
BGe ₄ Sb ²⁻	2.9	6.4	3.5
BSi ₄ Bi ²⁻	3.1	6.6	3.6
BGe ₄ Bi ²⁻	3.1	6.3	3.1

Table S6. HOMO-LUMO energy gap in eV of the global minimum of $BTr_{5^{3^{-}}}$ (Tr = Si-Sn) and $BTr_{4}Pn^{2^{-}}$ (Tr = Si, Ge and Pn = P-Bi) in conjunction with the implicit solvent model provided by the Polarizable Continuum Model (PCM) at PBE0-D3/def2-TZVP level of theory.

System	E _{HOMO}	E _{LUMO}	ΔE_{H-L}
BSi ₅ ³⁻	-3.6	0.1	3.7
BGe5 ³⁻	-3.7	-0.1	3.6
BSn ₅ ³⁻	-3.1	-0.1	3.0
BSi ₄ P ²⁻	-4.2	-0.6	3.5
BSi ₄ As ²⁻	-4.2	-0.7	3.5

BGe ₄ As ²⁻	-4.1	-0.8	3.3	
BSi ₄ Sb ²⁻	-4.2	-0.8	3.4	
BGe ₄ Sb ²⁻	-4.2	-0.9	3.3	
BSi ₄ Bi ²⁻	-4.2	-0.8	3.4	
BGe ₄ Bi ²⁻	-4.1	-0.9	3.2	

Table S7. HOMO-LUMO energy gap in eV for the global minimum of Li_3BTr_5 (Tr = Si-Sn), Li_2BSi_4Pn and Li_2BGe_4Pn (Pn = P-Bi) at PBE0-D3/def2-TZVP level of theory.

System	Еномо	E _{LUMO}	ΔE_{H-L}
Li ₃ BSi ₅	-4.9	-1.4	3.5
Li ₃ BGe ₅	-4.9	-1.4	3.5
Li ₃ BSn ₅	-4.6	-1.7	2.9
Li ₂ BSi ₄ As	-5.7	-1.9	3.8
Li ₂ BGe ₄ As	-5.5	-1.7	3.8
Li ₂ BSi ₄ P	-5.7	-1.9	3.8
Li ₂ BSi ₄ Sb	-5.6	-1.8	3.8
Li ₂ BGe ₄ Sb	-5.6	-1.8	3.8
Li ₂ BSi ₄ Bi	-5.5	-1.8	3.7
Li2BGe4Bi	-5.6	-1.8	3.6

Cartesian Coordinates

Cartesian coordinates of the global minima of BSi₅³⁻, BGe₅³⁻, BSn₅³⁻, BSi₄P²⁻, BSi₄As²⁻, BGe₄As²⁻, BGe₄Sb²⁻, BGe₄Sb²⁻, BSi₄Bi²⁻ and BGe₄Bi²⁻ their smallest vibrational frequencies in cm⁻¹ at the PBE0- D3/def2-TZVP level.

BSi ₅	3-			BGe	25 ³⁻		
v_{\min}	= 177.1			v_{\min}	= 98.4		
В	0.000000000	0.000000000	0.000000000	В	0.000000000	0.000000000	0.000000000
Si	0.000000000	2.045634000	0.000000000	Ge	0.000000000	2.152078000	0.000000000
Si	-1.945513000	0.632136000	0.000000000	Ge	-1.264960000	-1.741068000	0.000000000
Si	-1.202393000	-1.654952000	0.000000000	Ge	2.046748000	0.665029000	0.000000000
Si	1.202393000	-1.654952000	0.000000000	Ge	1.264960000	-1.741068000	0.000000000
Si	1.945513000	0.632136000	0.000000000	Ge	-2.046748000	0.665029000	0.000000000
BSn	5 ³⁻			BSi	As^{2-}		
v_{\min}	= 56.4			$v_{\rm min}$	= 154.1		
Sn	0.000000000	2.428257000	0.000000000	Si	0.000000000	1.966302000	0.192493000
Sn	1.427294000	-1.964501000	0.000000000	Si	0.000000000	1.218820000	-2.021441000
Sn	-1.427294000	-1.964501000	0.000000000	Si	0.000000000	-1.218820000	-2.021441000
Sn	-2.309410000	0.750373000	0.000000000	В	0.000000000	0.000000000	-0.439621000
В	0.000000000	0.000000000	0.000000000	Si	0.000000000	-1.966302000	0.192493000

Sn	2.309410000	0.750373000	0.000000000	As	0.000000000	0.000000000	1.618444000
BGe ₄ As ²⁻				BSi ₄ P ²⁻			
$v_{\min} = 98.3$				$v_{\min} = 177.1$			
Ge	0.000062000	-0.642360000	2.062346000	Si	0.000000000	1.937472000	0.618039000
Ge	0.000062000	-0.642360000	-2.062346000	Si	0.000000000	1.215563000	-1.622512000
Ge	0.000062000	1.695108000	1.279777000	Si	0.000000000	-1.215563000	-1.622512000
Ge	0.000062000	1.695108000	-1.279777000	В	0.000000000	0.000000000	-0.038767000
As	-0.000266000	-2.045505000	0.000000000	Si	0.000000000	-1.937472000	0.618039000
В	0.000168000	0.025166000	0.000000000	Р	0.000000000	0.000000000	1.887937000
BSi_4Sb^{2-}				BGe ₄ Sb ²⁻			
$v_{\rm min}$	= 136.5			$v_{\rm min}$	= 85.7		
Si	0.000000000	2.005865000	-0.199402000	Ge	0.000000000	2.098571000	0.358620000
Si	0.000000000	1.226649000	-2.375578000	Ge	0.000000000	-1.289780000	-1.946268000
Si	0.000000000	-1.226649000	-2.375578000	Sb	0.000000000	0.000000000	2.021109000
В	0.000000000	0.000000000	-0.799900000	Ge	0.000000000	1.289780000	-1.946268000
Si	0.000000000	-2.005865000	-0.199402000	В	0.000000000	0.000000000	-0.293426000
Sb	0.000000000	0.000000000	1.492136000	Ge	0.000000000	-2.098571000	0.358620000
BSi ₄ Bi ²⁻				BGe ₄ Bi ²⁻			
$v_{\min} = 127.6$				$v_{\min} = 78.1$			
Si	0.000000000	2.016692000	-0.600964000	Ge	0.000000000	2.108049000	0.009694000
Si	0.000000000	1.232850000	-2.763776000	Ge	0.000000000	-1.296269000	-2.280902000
Si	0.000000000	-1.232850000	-2.763776000	Bi	0.000000000	0.000000000	1.789436000
В	0.000000000	0.000000000	-1.191535000	Ge	0.000000000	1.296269000	-2.280902000
Si	0.000000000	-2.016692000	-0.600964000	В	0.000000000	0.000000000	-0.633179000
Bi	0.000000000	0.000000000	1.206872000	Ge	0.000000000	-2.108049000	0.009694000

References

- 1. O. Yanez, R. Baez-Grez, D. Inostroza, W. A. Rabanal-Leon, R. Pino-Rios, J. Garza and W. Tiznado, J. Chem. Theory Comput., 2019, 15, 1463-1475.
- C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170. 2.
- 3. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 4. P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpály, Chem. Phys. Lett., 1982, 89, 418-422.
- P. Fuentealba, L. v. Szentpaly, H. Preuss and H. Stoll, J. Phys. B: Atom. Mol. Phys., 1985, 18, 1287. 5.
- W. Küchle, M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys., 1994, 100, 7535-7542. 6.
- W. Küchle, M. Dolg, H. Stoll and H. Preuss, Mol. Phys., 1991, 74, 1245-1263. 7.
- A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuß, Mol. Phys., 1993, 80, 143-1441. 8.
- 9. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- C. Riplinger and F. Neese, J. Chem. Phys., 2013, 138, 034106. 10.
- C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and F. Neese, J. Chem. Phys., 2016, 144, 024109. 11.
- C. Riplinger, B. Sandhoefer, A. Hansen and F. Neese, J. Chem. Phys., 2013, 139, 134101. 12.
- 13. D. G. Truhlar, Chem. Phys. Lett., 1998, 294, 45-48.
- F. Neese, A. Hansen and D. G. Liakos, J. Chem. Phys., 2009, 131, 064103. 14.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, 15. G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N.

Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016

- 16. E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.
- 17. D. Y. Zubarev and A. I. Boldyrev, *Phys. Chem. Chem. Phys.*, 2008, **10**, 5207-5217.
- 18. D. Y. Zubarev and A. I. Boldyrev, J. Org. Chem., 2008, 73, 925-9258.
- 19. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.
- 20. Legault, C. Y. CYLview20, Université de Sherbrooke: 2020.
- 21. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38, 27-38.
- 22. A. M. n. Pendás, M. A. Blanco and E. Francisco, J. Chem. Phys., 2004, 120, 458-4592.
- 23. A. M. Pendás, E. Francisco and M. A. Blanco, J. Comput. Chem., 2005, 26, 344-351.
- 24. M. A. Blanco, A. Martín Pendás and E. Francisco, J. Chem. Theory Comput., 2005, 1, 1096-1109.
- 25. A. M. Pendás, M. A. Blanco and E. Francisco, J. Comput. Chem., 2007, 28, 16-184.
- 26. T. A. Keith, TK Gristmill Software, Overland Parks, USA, 2019.
- 27. G. Monaco, F. F. Summa, R. Zanasi, J. Chem. Inf. Model. 2020, 61, 270-283.