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Experimental Section

Catalyst synthesis

Catalyst Synthesis: The Ni/La,Zr,0O; was prepared by sol-gel method. La(NOs3);-6H,0,
Z1(NO;)4-5H,0, citric acid and urea were dissolved in 30 ml of deionized water to form a precursor
solution. The molar ratio of citric acid, urea and metal ions was 2:2:1. The solution was
homogeneously mixed and dried at 100°C until a gel was formed. The gel was then calcined at
800°C for 3 h to obtain La,Zr,07. Ni(NOj3) solution and La,Zr,0; (Ni/(La+Zr)=0.1) were mixed and
dried at 180°C. The powder was then calcined at 500°C for 4 h and reduced by 5 vol% H,/Ar (30
ml min!') at 700 °C for 1 h to obtain 10% Ni/La,Zr,O-. Samples of Ni nanoparticles loaded on La,O;
and ZrO; (10% Ni/La,0; and 10% Ni/ZrO,) were prepared using the same method. Ni nanoparticles
loaded on TiO; (10%Ni/Ti0;) and SiO, (10%Ni/Si0,) were prepared by impregnation method

Characterization:

The X-ray diffraction (XRD) patterns of the samples were obtained using a RigakuDmax X-
ray diffractometer. A JEM-ARM200F electron microscope equipped with energy dispersive X-ray
spectroscopy (EDX) was used to obtain transmission electron microscopy (TEM) and elemental
mapping images. An inductively coupled plasma/optical emission spectroscopy (ICP-OES, Optima
4300DV) was used to determine elemental compositions. Diffuse absorption spectra were measured
using a uv-3600i plus spectrophotometer. XPS spectra were measured using an X-ray photoelectron
spectrometer (ESCALAB 250Xi). Thermogravimetric analysis was performed using an STA449F3
thermal analyzer. Raman spectra were obtained on a Renishaw in Via Raman microscope using
514.5 nm excitation. Electron paramagnetic resonance (EPR) measurements were performed by a
Bruker ELEXSYS-II E500. Temperature programmed reactions were conducted on a
multifunctional adsorption apparatus (TP-5080) by using a quartz tubular reactor that was linked
with a quartz window.

Temperature programmed reduction of H, (H,—TPR). 50 mg samples were placed in a
reaction tube and treated with He gas (50 ml min-!) at 300 °C for 1 h to remove adsorbed water and
gases. The sample was cooled to 50 °C and then heated to 900 °C with a 10% H,/He gas mixture at
10 °C min'!. The effluent was detected using TCD.

Temperature programmed desorption of CO, (CO,—TPD). CO,-TPD was performed in a
multifunctional adsorption apparatus connected to an online mass spectrometer. 50 mg of sample
was added to the reaction tube and treated with He gas (50 ml min'!) at 300 °C for 1 h to remove
adsorbed water and gas. After cooling to ambient temperature, the gas flow rate was changed to 10%
COy/He (50 ml min-!), and the sample was pre-adsorbed for 1 h. The gas flow was switched to He
gas (50 ml min!) for 30 min to remove the weakly adsorbed CO; on the surface. The sample was
heated up to 800 °C with a He gas stream (50 ml min-') at 10 °C min’!. Simultaneously, the outflow
gas was recorded by an on-line mass spectrometer.

Temperature programmed disproportionation reaction (CO —TPD). 8 mg sample was reduced
in situ at 700°C with a flow of 5% H,/Ar. After cooling to ambient temperature, the reactor was
cleaned with a stream of 5% CO/He (30 ml min -!). The reactor was then heated to 700 °C at 10°C
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min!,

Temperature programmed desorption of CH4 (CH4-TPD). 8 mg of sample was added to the
reaction tube and treated with He gas (50 ml min!") at 300 °C for 1 h to remove adsorbed water and
gas. After cooling to ambient temperature, the gas flow rate was changed to 10% CH4/He (50 ml
min), and the sample was pre-adsorbed for 1 h. The gas flow was switched to He gas (50 ml min-
1 for 30 min to remove the weakly adsorbed CH, on the surface. The sample was heated up to 800
°C with a He gas stream (50 ml min') at 10 °C min!' under dark and light illuminated.
Simultaneously, the outflow gas was recorded by an on-line mass spectrometer.

Temperature programmed desorption of H, (H,-TPD). 8 mg of sample was added to the
reaction tube and treated with He gas (50 ml min!") at 300 °C for 1 h to remove adsorbed water and
gas. After cooling to ambient temperature, the gas flow rate was changed to 10% H,/He (50 ml min-
1, and the sample was pre-adsorbed for 1 h. The gas flow was switched to He gas (50 ml min-!) for
30 min to remove the weakly adsorbed H; on the surface. The sample was heated up to 800 °C with
a He gas stream (50 ml min™") at 10 °C min™! under dark and light illuminated. Simultaneously, the
outflow gas was recorded by an on-line mass spectrometer.

Catalytic Performance Evaluation:

Thermal catalytic DRM Tests: The thermal catalytic activities of 10% Ni/La,Zr,07, 10%
Ni/La,05 and 10% Ni/ZrO, were determined on a fixed-bed reactor. A mixture of 50 mg of samples
and 300 mg of quartz sand were placed on a quartz cotton support in the middle of the quartz reactor.
Samples were reduced in situ with 5 vol% Hy/Ar at 700 °C for 1 h at a flow rate of 30.0 ml min’!,
and then switched to a gas mixture of 10.0/10.0/80.0 vol% CH,4/CO,/Ar to determine the thermal
catalytic activity from 700 °C to 400 °C. During the test, the temperature of the reaction was
controlled by a tubular electric furnace. Concentrations of reactants and products were determined
by a GC-9560 gas chromatograph. The DRM activity of 10% Ni/La,Zr,O7 was carried out at
different temperatures under dark or focused irradiation on a stationary reactor with a quartz window
on the top. Here, 10 mg of the sample was reduced in situ with 5 vol% Hy/Ar at 700 °C for 1 h.
After reduction by H,, the gas mixture was switched to 10.0/10.0/ 80.0 vol% CH4/CO,/Ar for DRM
at different temperatures in the dark or under focused irradiation.

Photothermal catalytic DRM tests: Activity tests of 10% Ni/La,Zr,07, 10% Ni/La,O; and 10%
Ni/ZrO, were carried out in a customized quartz-windowed reactor, and the stability of the first
three was determined. 10 mg of the sample was taken in a quartz window reactor, and the surface
of the sample was irradiated with light from a 500W xenon lamp focused by a convex lens. The
samples were reduced in situ with 5 vol% Ha/Ar at 700 °C for 1 h at a flow rate of 90.0 ml min’!,
and then switched to a gas mixture of 20.0/20.0/60.0 vol% CH4/CO,/Ar for photothermal catalytic
DRM.

Photocatalytic DRM tests: The reactor was placed in an ice water to maintain a mild
temperature for testing the photocatalytic activity of the samples.
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Fig. S1 TEM image, HRTEM image and the elemental mapping images of 10Ni/ZrO, (a)
and 10Ni/LaZr,0O7 (b).
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Scheme S1. Schematic illustration of a stainless steel photothermal reactor for conducting DRM.
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Fig. S2 Photothermal activity of La,Zr,0; with different Ni loadings.
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Fig. S3 Time course of Py, and P for photocatalytic DRM on 10Ni/TiO,

Table S1 Comparison of photothermal catalytic performance of DRM reactions

Entry Sample Photothermal Conditions Production Stabil ~ Carbon Ref.
temperature ratesof COand ity  deposition
H, (Pco and rate
Pip)
1 10Ni/La,0; 728°C 385 kW m2; 20.0 vol% Pco =81.035 50h  8.12x10* This work
CH, - 20.0 vol % CO, - mmol g'! min’! g h!
60.0 vol% Ar; Total feed Py, =59.611 Zeatalyst |
flow rate is 90 mL/min mmol g min-!
2 Co/Al,04 665°C 353.9 kW m2; 30.0 vol% Pco=37.97 4h 1.65x10°! Energy
CH4 - 29.3 vol % CO, - mmol g'! min’! g h! Environ. Sci.,
40.7 vol% Ar; Total feed Py, =31.42 Seatalyst | 2019, 12,
flow rate is 89.2 mL/min ~ mmol g"! min’! 2581-2590
3 Co/Co- 697°C 353.9 kW m2; 30.0 vol% Pco =43.46 70h  2.4x102g, Energy
Al O4 CH, - 29.3 vol % CO, - mmol g'! min’! h! Environ. Sci.,
40.7 vol% Ar; Total feed Py, =39.42 Seatalyst | 2019, 12,
flow rate is 89.2 mL/min ~ mmol g"! min’! 2581-2590
4 SCM- 646°C 343.6 kW m 2% 11.7 vol% Pco=19.9 100h / Adv. Energy
Ni/SiO, CHy - 11.5 vol% CO, - mmol g'! min’! Mater., 2018, 8,
76.8 vol% Ar; Total feed Pp=17.1 1702472
flow rate is 118.7 mmol g'! min-!
mL/min
5 Ni/CeO, 807°C 363.4 kW m2; 9.8 vol% Pco =6.27 100h  1.25x102  Appl. Catal. B-
CH, - 10.0 vol% CO, - mmol g'! min’! g h! Environ., 2018,
80.2 vol% Ar; Total feed Py, =6.53 Seatalyst | 239, 555-564
flow rate is 122 mL/min mmol g'! min-!
6 1.0 wt% Pt/ 767°C 371.1 kW m2; 10.2 vol% Pco=5.7 100h / Green Chem.,
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550°C
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CH,4 - 10.2 vol% CO, —
79.6 vol% Ar; Total feed
flow rate is 120. 5
mL/min

1.07 W cm%; Total feed
flow rate is 20.0 mL/min
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0.6 W cm?; Total feed
flow rate is 20.0 mL/min
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20.0 vol% CHjy - 20 vol%
CO,—-60.0 vol% Ar;
Total feed flow rate is 90
mL/min
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mmol g min-!

Pco =130
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mmol g min-!
Py, =31.80
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Py, =61.69
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-1
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Fig. S4 Raman spectra of the used 10Ni/La,Zr,0;.
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Fig. S5 XPS spectra of La 3d (a), Zr 3d (b), Ni 2p (c).
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Fig. S6 Time course of Py, and P for thermal catalytic DRM on 10Ni/SiO,.
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Flg S7 CH4—TPD of 10Ni/L21203, IONI/ZI'OZ and 10Ni/LaZZr207.
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Fig. S8 CO-TPD (a) and H,-TPD (b) of 10Ni/La,0O; in the dark and upon light irradiation.



