Efficient photothermal catalytic methane dry reforming over rich oxygen vacancy catalysts

Lingxin Meng, Yuteng Jia, Shaowen Wu*

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Email: <u>swwu@sdust.edu.cn</u>

Experimental Section

Catalyst synthesis

Catalyst Synthesis: The Ni/La₂Zr₂O₇ was prepared by sol-gel method. La(NO₃)₃·6H₂O, Zr(NO₃)₄·5H₂O, citric acid and urea were dissolved in 30 ml of deionized water to form a precursor solution. The molar ratio of citric acid, urea and metal ions was 2:2:1. The solution was homogeneously mixed and dried at 100°C until a gel was formed. The gel was then calcined at 800°C for 3 h to obtain La₂Zr₂O₇. Ni(NO₃) solution and La₂Zr₂O₇ (Ni/(La+Zr)=0.1) were mixed and dried at 180°C. The powder was then calcined at 500°C for 4 h and reduced by 5 vol% H₂/Ar (30 ml min⁻¹) at 700 °C for 1 h to obtain 10% Ni/La₂Zr₂O₇. Samples of Ni nanoparticles loaded on La₂O₃ and ZrO₂ (10% Ni/La₂O₃ and 10% Ni/ZrO₂) were prepared using the same method. Ni nanoparticles loaded on TiO₂ (10%Ni/TiO₂) and SiO₂ (10%Ni/SiO₂) were prepared by impregnation method

Characterization:

The X-ray diffraction (XRD) patterns of the samples were obtained using a RigakuDmax Xray diffractometer. A JEM-ARM200F electron microscope equipped with energy dispersive X-ray spectroscopy (EDX) was used to obtain transmission electron microscopy (TEM) and elemental mapping images. An inductively coupled plasma/optical emission spectroscopy (ICP-OES, Optima 4300DV) was used to determine elemental compositions. Diffuse absorption spectra were measured using a uv-3600i plus spectrophotometer. XPS spectra were measured using an X-ray photoelectron spectrometer (ESCALAB 250Xi). Thermogravimetric analysis was performed using an STA449F3 thermal analyzer. Raman spectra were obtained on a Renishaw in Via Raman microscope using 514.5 nm excitation. Electron paramagnetic resonance (EPR) measurements were performed by a Bruker ELEXSYS-II E500. Temperature programmed reactions were conducted on a multifunctional adsorption apparatus (TP-5080) by using a quartz tubular reactor that was linked with a quartz window.

Temperature programmed reduction of H₂ (H₂—TPR). 50 mg samples were placed in a reaction tube and treated with He gas (50 ml min⁻¹) at 300 °C for 1 h to remove adsorbed water and gases. The sample was cooled to 50 °C and then heated to 900 °C with a 10% H₂/He gas mixture at 10 °C min⁻¹. The effluent was detected using TCD.

Temperature programmed desorption of CO_2 (CO_2 —TPD). CO_2 -TPD was performed in a multifunctional adsorption apparatus connected to an online mass spectrometer. 50 mg of sample was added to the reaction tube and treated with He gas (50 ml min⁻¹) at 300 °C for 1 h to remove adsorbed water and gas. After cooling to ambient temperature, the gas flow rate was changed to 10% CO_2 /He (50 ml min⁻¹), and the sample was pre-adsorbed for 1 h. The gas flow was switched to He gas (50 ml min⁻¹) for 30 min to remove the weakly adsorbed CO_2 on the surface. The sample was heated up to 800 °C with a He gas stream (50 ml min⁻¹) at 10 °C min⁻¹. Simultaneously, the outflow gas was recorded by an on-line mass spectrometer.

Temperature programmed disproportionation reaction (CO —TPD). 8 mg sample was reduced in situ at 700°C with a flow of 5% H₂/Ar. After cooling to ambient temperature, the reactor was cleaned with a stream of 5% CO/He (30 ml min ⁻¹). The reactor was then heated to 700 °C at 10°C min⁻¹.

Temperature programmed desorption of CH₄ (CH₄-TPD). 8 mg of sample was added to the reaction tube and treated with He gas (50 ml min⁻¹) at 300 °C for 1 h to remove adsorbed water and gas. After cooling to ambient temperature, the gas flow rate was changed to 10% CH₄/He (50 ml min⁻¹), and the sample was pre-adsorbed for 1 h. The gas flow was switched to He gas (50 ml min⁻¹) for 30 min to remove the weakly adsorbed CH₄ on the surface. The sample was heated up to 800 °C with a He gas stream (50 ml min⁻¹) at 10 °C min⁻¹ under dark and light illuminated. Simultaneously, the outflow gas was recorded by an on-line mass spectrometer.

Temperature programmed desorption of H₂ (H₂-TPD). 8 mg of sample was added to the reaction tube and treated with He gas (50 ml min⁻¹) at 300 °C for 1 h to remove adsorbed water and gas. After cooling to ambient temperature, the gas flow rate was changed to 10% H₂/He (50 ml min⁻¹), and the sample was pre-adsorbed for 1 h. The gas flow was switched to He gas (50 ml min⁻¹) for 30 min to remove the weakly adsorbed H₂ on the surface. The sample was heated up to 800 °C with a He gas stream (50 ml min⁻¹) at 10 °C min⁻¹ under dark and light illuminated. Simultaneously, the outflow gas was recorded by an on-line mass spectrometer.

Catalytic Performance Evaluation:

Thermal catalytic DRM Tests: The thermal catalytic activities of 10% Ni/La₂Zr₂O₇, 10% Ni/La₂O₃ and 10% Ni/ZrO₂ were determined on a fixed-bed reactor. A mixture of 50 mg of samples and 300 mg of quartz sand were placed on a quartz cotton support in the middle of the quartz reactor. Samples were reduced in situ with 5 vol% H₂/Ar at 700 °C for 1 h at a flow rate of 30.0 ml min⁻¹, and then switched to a gas mixture of 10.0/10.0/80.0 vol% CH₄/CO₂/Ar to determine the thermal catalytic activity from 700 °C to 400 °C. During the test, the temperature of the reaction was controlled by a tubular electric furnace. Concentrations of reactants and products were determined by a GC-9560 gas chromatograph. The DRM activity of 10% Ni/La₂Zr₂O7 was carried out at different temperatures under dark or focused irradiation on a stationary reactor with a quartz window on the top. Here, 10 mg of the sample was reduced in situ with 5 vol% H₂/Ar at 700 °C for 1 h. After reduction by H₂, the gas mixture was switched to 10.0/10.0/ 80.0 vol% CH₄/CO₂/Ar for DRM at different temperatures in the dark or under focused irradiation.

Photothermal catalytic DRM tests: Activity tests of 10% Ni/La₂Zr₂O₇, 10% Ni/La₂O₃ and 10% Ni/ZrO₂ were carried out in a customized quartz-windowed reactor, and the stability of the first three was determined. 10 mg of the sample was taken in a quartz window reactor, and the surface of the sample was irradiated with light from a 500W xenon lamp focused by a convex lens. The samples were reduced in situ with 5 vol% H₂/Ar at 700 °C for 1 h at a flow rate of 90.0 ml min⁻¹, and then switched to a gas mixture of 20.0/20.0/60.0 vol% CH₄/CO₂/Ar for photothermal catalytic DRM.

Photocatalytic DRM tests: The reactor was placed in an ice water to maintain a mild temperature for testing the photocatalytic activity of the samples.

Fig. S1 TEM image, HRTEM image and the elemental mapping images of $10Ni/ZrO_2$ (a) and $10Ni/La_2Zr_2O_7$ (b).

Scheme S1. Schematic illustration of a stainless steel photothermal reactor for conducting DRM.

Fig. S2 Photothermal activity of La₂Zr₂O₇ with different Ni loadings.

Fig. S3 Time course of $P_{\rm H2}$ and $P_{\rm CO}$ for photocatalytic DRM on 10Ni/TiO_2

Entry	Sample	Photothermal	Conditions	Production	Stabil	Carbon	Ref.
		temperature		rates of CO and	ity	deposition	
				H_2 (P_{CO} and		rate	
				P _{H2})			
1	10Ni/La ₂ O ₃	728°C	385 kW m ⁻² ; 20.0 vol%	$P_{\rm CO} = 81.035$	50 h	8.12×10-4	This work
			CH ₄ - 20.0 vol % CO ₂ -	mmol g ⁻¹ min ⁻¹		$g_c \ h^{-1}$	
			60.0 vol% Ar; Total feed	$P_{H2} = 59.611$		$\mathbf{g}_{catalyst}^{-1}$	
			flow rate is 90 mL/min	mmol g ⁻¹ min ⁻¹			
2	Co/Al ₂ O ₃	665°C	353.9 kW m ⁻² ; 30.0 vol%	$P_{\rm CO} = 37.97$	4h	1.65×10 ⁻¹	Energy
			CH ₄ - 29.3 vol % CO ₂ -	mmol g ⁻¹ min ⁻¹		$g_c \ h^{-1}$	Environ. Sci.,
			40.7 vol% Ar; Total feed	$P_{H2} = 31.42$		$\mathbf{g}_{catalyst}^{-1}$	2019, 12,
			flow rate is 89.2 mL/min	mmol g ⁻¹ min ⁻¹			2581-2590
3	Co/Co-	697°C	353.9 kW m ⁻² ; 30.0 vol%	$P_{CO} = 43.46$	70h	$2.4 \times 10^{-2} g_c$	Energy
	Al_2O_3		CH ₄ - 29.3 vol % CO ₂ -	mmol g ⁻¹ min ⁻¹		h^{-1}	Environ. Sci.,
			40.7 vol% Ar; Total feed	$P_{H2} = 39.42$		$\mathbf{g}_{\text{catalyst}}^{-1}$	2019, 12,
			flow rate is 89.2 mL/min	mmol g ⁻¹ min ⁻¹			2581-2590
4	SCM-	646°C	343.6 kW m ⁻² ; 11.7 vol%	$P_{CO} = 19.9$	100h	/	Adv. Energy
	Ni/SiO ₂		CH ₄ - 11.5 vol% CO ₂ -	mmol g ⁻¹ min ⁻¹			Mater., 2018, 8,
			76.8 vol% Ar; Total feed	$P_{H2} = 17.1$			1702472
			flow rate is 118.7	mmol g ⁻¹ min ⁻¹			
			mL/min				
5	Ni/CeO ₂	807°C	363.4 kW m ⁻² ; 9.8 vol%	$P_{CO} = 6.27$	100 h	1.25×10 ⁻²	Appl. Catal. B-
			CH ₄ - 10.0 vol% CO ₂ -	mmol g ⁻¹ min ⁻¹		$g_c \ h^{-1}$	Environ., 2018,
			80.2 vol% Ar; Total feed	$P_{\rm H2} = 6.53$		$\mathbf{g}_{catalyst}^{-1}$	239, 555–564
			flow rate is 122 mL/min	mmol g ⁻¹ min ⁻¹			
6	1.0 wt% Pt/	767°C	371.1 kW m ⁻² ; 10.2 vol%	$P_{CO} = 5.7$	100h	/	Green Chem.,

.1 a C D D A

	CeO ₂ -MNR		$\rm CH_4$ - 10.2 vol% $\rm CO_2-$	mmol g ⁻¹ min ⁻¹			2018, 20,
			79.6 vol% Ar; Total feed	$P_{H2} = 6.0$			2857-2869
			flow rate is 120. 5	mmol g ⁻¹ min ⁻¹			
			mL/min				
7	10Ni/Al ₂ O ₃	550°C	1.07 W cm ⁻² ; Total feed	$P_{CO} = 130$	/	/	Appl. Catal. B-
			flow rate is 20.0 mL/min	umol g ⁻¹ min ⁻¹			Environ., 2017,
			$(CH_4/CO_2 = 1:1)$	$P_{H2} = 120$			209, 183–189
				umol g ⁻¹ min ⁻¹			
8	Pt-Au/SiO ₂	400°C;	0.6 W cm ⁻² ; Total feed	$P_{CO} = 120$	6h	/	ACS Appl.
			flow rate is 20.0 mL/min	umol g ⁻¹ min ⁻¹			Mater. Inter.,
			$(CH_4/CO_2 = 1:1)$	$P_{\rm H2}=90$			2018, 10, 408–
				umol g ⁻¹ min ⁻¹			416
9	Ni5Cu5/Al2	748°C	20.0 vol% CH ₄ - 20 vol%	P _{CO} =40.45	50h	4.70×10-3	Catal Sci
	O ₃		CO ₂ -60.0 vol% Ar;	mmol g ⁻¹ min ⁻¹		$g_c \ h^{-1}$	Technol, 2023,
			Total feed flow rate is 90	$P_{\rm H2} = 31.80$		$\mathbf{g}_{catalyst}^{-1}$	13,2500-2507
			mL/min	mmol g ⁻¹ min ⁻¹			
10	Ni ₅ Cu ₂ /Al ₂	739°C	20.0 vol% CH ₄ - 20 vol%	$P_{CO} = 63.80$	50h	4.56×10-4	Catal Sci
	O ₃		CO ₂ -60.0 vol% Ar;	mmol g ⁻¹ min ⁻¹		$g_c \ h^{-1}$	Technol, 2023,
			Total feed flow rate is 90	$P_{H2} = 61.69$		$g_{catalyst}^{-1}$	13,2500-2507
			mL/min	mmol g ⁻¹ min ⁻¹			

Fig. S5 XPS spectra of La 3d (a), Zr 3d (b), Ni 2p (c).

Fig. S6 Time course of P_{H2} and P_{CO} for thermal catalytic DRM on 10Ni/SiO₂.

Fig. S7 CH₄-TPD of 10Ni/La₂O₃, 10Ni/ZrO₂ and 10Ni/La₂Zr₂O₇.

Fig. S8 CO-TPD (a) and H₂-TPD (b) of 10Ni/La₂O₃ in the dark and upon light irradiation.