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1. General

Unless otherwise specified, all chemicals and solvents were obtained from
commercial companies and used without further purification. Deuterated solvents were
purchased from Admas and Cambridge Isotope Labs. 1D and 2D-NMR spectra were
acquired using Bruker Biospin Avance III (400 MHz), JEOL ECZ400S (400 MHz),
and JEOL ECZ600S (600 MHz) spectrometers. Chemical shifts in '"H-NMR were
referenced to TMS or the residual signals of the deuterated solvents used. ESI-TOF-
MS was conducted on a Bruker Impact Il UHR-TOF mass spectrometry, with a tuning
mix serving as the internal standard. Data analysis was conducted with Bruker Data
Analysis software (Version 4.3), and simulations were executed using Bruker Isotope
Pattern software. UV-vis spectra were recorded with a SHIMADZU UV-2700
spectrophotometer. Luminescence spectra were measured using an FS5
spectrofluorometer from Edinburgh Photonics, with spectra corrected for experimental
functions. SEM images were obtained with Thermofisher Scientific Apreo 2S HiVac.
AFM images were obtained with Bruker Dimension Icon. The thickness of film was
measured with Bruker Dektak-XT. X-ray crystal data were collected on Rigaku
Synergy-S (Cu - Ka radiation: A = 1.54184 A) and micro-focus metaljet diffractometer
(Ga Ko radiation A = 1.3405 A)



2. Experimental Details
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Scheme S1. Synthetic route of compound 6.
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Scheme S2. Synthetic route of the ligand L.
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Scheme S3. Synthetic route of the ligand L.” and Eu(L’),.

Compounds 1-6 and 7-14 were synthesized according to established literature
procedures. [51-53]
Synthesis of compound 15

To a solution of THF/H20 (3:1, 210 mL), compound 14 (591 mg, 1.06 mmol, 1.0
equiv) was added, along with 3-aminophenylboronic acid pinacol ester (929 mg, 4.24
mmol, 4.0 equiv), Pd(PPhs)s (244 mg, 0.21 mmol, 0.2 equiv), and Cs.COs (1.04 g, 3.18
mmol, 3.0 equiv). The mixture was degassed under nitrogen for 30 minutes and then
heated at 85 °C for 72 hours under a nitrogen atmosphere. After cooling to room
temperature, the reaction mixture was extracted three times with 120 mL of
dichloromethane. The combined organic layers were washed with brine, dried over
Na,SO,, and concentrated under reduced pressure. The crude product was purified by
column chromatography (Si10,, DCM/MeOH = 100/1) to afford compound 15 as a pale
yellow solid (585 mg, 93%). 'H NMR (400 MHz, DMSO-dg) 6 = 7.66 (d, ] = 8.6 Hz),
7.40 (dd, J =8.5,4.7 Hz), 7.17 (t, ] = 7.8 Hz), 6.84 (s), 6.74 (d, ] = 7.6 Hz), 6.65 (d, J
= 8.0 Hz), 5.28 (s). 3C NMR (101 MHz, DMSO-dg) & = 158.2, 155.4, 149.0, 135.3,
129.7,129.4,116.8,115.9,114.6, 113.9, 110.9, 109.8. 3P NMR (243 MHz, DMSO-ds)
0 =46.77 (s). ESI-TOF-MS for C54H4N304P [M + Na]*: caled, m/z=616.1397; found
616.1399.

Synthesis of ligand L
Compound 6 (155 mg, 0.502 mmol, 3.3 equiv), compound 15 (90 mg, 0.152 mmol,
1.0 equiv), and DMF (50 mL) were added into a 100 mL one-necked flask. After

cooling the mixture in an ice bath, HATU/2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-
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tetramethyluronium (347 mg, 0.912 mmol, 6.0 equiv) and Et;N (1 mL) were added, and
the reaction mixture was stirred for 16 hours. The solvent was then removed under
reduced pressure, and the crude product was extracted three times with
dichloromethane and water. The combined organic phases were dried over Na,SQO,, and
the solvent was removed under reduced pressure. The crude product was purified by
column chromatography (SiO,, DCM/MeOH = 50/1), yielding ligand L as a white
solid. (181 mg, 81%). 'H NMR (400 MHz, CDCl3) 6 = 10.80 (s, 1H), 8.71 (d, J=8.2
Hz, 1H), 8.62 (d, J = 8.2 Hz, 1H), 8.52 (d, J = 8.3 Hz, 1H), 8.46 (d, J = 8.2 Hz, 2H),
8.39 (s, 1H), 7.96 (s, 2H), 7.81 (d, J= 7.8 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.58 (t, J
=7.8 Hz, 1H), 7.43 (t, J = 8.7 Hz, 2H), 4.41 (dd, J = 13.8, 6.8 Hz, 1H), 1.40 (dd, J =
15.4, 6.5 Hz, 5H). 3C NMR (101 MHz, CDCl;) 6 = 163.3, 162.0, 159.4, 156.1, 150.2,
149.4, 144.0, 138.2, 138.1, 137.9, 136.6, 134.8, 130.8, 130.6, 129.2, 128.2, 127.6,
125.8, 121.8, 121.5, 120.4, 119.1, 115.7, 41.8, 23.0. 3'P NMR (162 MHz, CDCl3) 6 =
47.42 (s). ESI-TOF-MS for Cg7Hg3N1,010P [M + H]*: caled, m/z = 1468.4632; found
1468.4549.

Synthesis of EuyL4(OTf),,

To a suspension of L (2.00 mg, 1.36 pmol) in 600 puL of a mixed acetonitrile and
methanol solvent (v/v = 2/1), Eu(OTf); (0.82 mg, 1.36 umol) was added. The mixture
was stirred at 50 °C for approximately one hour, during which the turbid suspension
gradually transformed into a homogenous yellow solution. 3'P NMR (162 MHz,
CD;3;CN/CD;0D v/v =2/1) 8 =-160.41 (s). ESI-TOF-MS for EuyL4(OTf);,: caled for
[EuyL4(OTh)o-4(HOTH)]®¥* 809.1837, found 809.1628; caled for [EusL4(OTf)y-
5(HOTT)]7* 924.7808, found 924.7561; caled for [EuyLy(OTf)-4(HOTT)]7" 946.2036,
found 946.1788; calcd for [EuyL4(OTH)-6(HOTY)]®" 1078.5758, found 1078.5477,
caled for [EuyL4(OTf);-5(HOTT)]®* 1103.5691, found 1103.5402; caled for
[EuyL4(OTH),-4(HOT)]®" 1128.5623, found 1128.5333; calecd for [Euyl4(OTHf);-
3(HOTH)]®* 1153.5556, found 1153.5262; calcd for [EuyL4(OTf),-7(HOT)]>*
1294.2892, found 1294.2555; calcd for [EuyL4(OTf)-6(HOTH)]>" 1324.2827, found
1324.2477, caled for [EugLy(OTH),-5(HOTS)]>" 1354.2737, found 1354.2342; calcd for

5



[EuyL4(OTH)3-4(HOTH) Y 1354.2651, found 1354.2297; caled for [Euyl4(OTf),-
3(HOTH)]P" 1414.2575, found 1414.2208; calcd for [Euyl4(OTH),-8(HOT)]*
1617.3597, found 1617.3178; calcd for [Euyl,(OTf),-7(HOTH)]*" 1654.8500 found
1654.8046; caled for [EuyL4(OTH),-6(HOTH)]* 1692.3386 found 1692.2949; caled for
[EuyL4(OTH)3-5(HOTH)]* 1729.8298 found 1729.7842; calcd for [EuyL4(OTf),-
4(HOTH]* 17673197 found 1767.2756; caled for [Eusl,(OTf)s-3(HOTH)]*
1804.8090  found  1804.7627. Elemental analyses caled (%) for
Ci60H250EusN43O76F36P4S10: C, 52.3; H, 3.1; N, 8.1; S, 4.7; Found: C, 52.0; H, 3.2; N,
7.5; S, 4.4.

Synthesis of Gd L4(OTY),,

To a suspension of L (2.00 mg, 1.36 pmol) in 600 puL of a mixed acetonitrile and
methanol solvent (v/v = 2/1), Gd(OTf); (0.82 mg, 1.36 umol) was added. The mixture
was stirred at 50 °C for approximately one hour, during which the turbid suspension
gradually transformed into a homogenous yellow solution. ESI-TOF-MS for
Gd4L4(OTf),: caled for [Gd4L,(OTH),-4(HOTH)]3 811.9356, found 811.9338; caled
for [Gd4L4(OTf);-3(HOT]®¥* 830.4302, found 830.4284; calcd for [Gd4L4(OTH),-
5(HOTH)]™ 927.6394, found 927.6369; calcd for [Gd4L4(OTf);-4(HOTH)]"* 949.0622,
found 949.0595; calcd for [Gd4L4(OT),-3(HOTT)]’* 970.4850, found 970.4807; calcd
for [Gd4L4(OTf)y-6(HOTI)] 1082.0781, found 1082.0744; calcd for [Gd4L4(OTH),-
5(HOTH]®* 1107.0714, found 1107.0677; calcd for [GdsL4(OTf),-4(HOT)]®*
1132.2315, found 1132.2273; caled for [Gd4L4(OTf)-7(HOTH]>* 1298.2923, found
1298.2829; calcd for [Gd4L4(OTf);-6(HOTN)]>" 1328.2842, found 1328.2791; calcd for
[Gd4L4(OTH),-5(HOTH]>" 1358.2761, found 1358.2718; caled for [GdiL4(OTHf);-
4(HOTH)]P" 1388.2680, found 1388.2641; caled for [Gd4L4(OTf)s-3(HOTH)]>*
1418.2608, found 1418.2578; caled for [Gd4L4(OTf)-8(HOTH]* 1622.6135, found
1622.6006; calcd for [Gd4L4(OTH),-6(HOTH]* 1696.5933, found 16967.5860; calcd
for [Gd4L4(OTh);-5(HOTH]*" 1735.3336, found 1735.3283; calcd for [Gd4L4(OTH),-
4(HOTN]* 1772.3228, found 1772.3171.



Synthesis of compound L’

Compound 2 (2.4 g, 8.96 mmol, 1.0 equiv), isopropylamine (1.6 g, 26.7 mmol, 3.0
equiv), and DMF (300 mL) were added into a 500 mL one-necked flask. After cooling
the mixture in an ice bath, HATU/2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-
tetramethyluronium (13.6 g, 35.8 mmol, 4.0 equiv) and Et;N (3 mL) were added, and
the reaction mixture was stirred for 16 hours. The solvent was then removed under
reduced pressure, and the crude product was washed with cyclohexane before
extracting three times with dichloromethane and water. The combined organic phases
were dried over Na,SO,, and the solvent was removed under reduced pressure. The
crude product was purified by column chromatography (SiO,, DCM/MeOH = 100/1),
yielding compound L’ as a white solid. (1.5 g, 47%). '"H NMR (600 MHz, CDCl3) 6 =
8.60 (d, /J=8.2 Hz), 8.48 (d, J= 7.8 Hz), 8.45 (d, /= 8.2 Hz), 7.93 (s), 4.42 (dhept, J =
19.8, 6.6 Hz), 1.43 (d, J= 6.6 Hz). 3C NMR (151 MHz, CDCl;) 6 = 163.48 (s), 150.08
(s), 144.14 (s), 137.93 (s), 130.56 (s), 127.82 (s), 121.60 (s), 41.79 (s), 23.12 (s).

Synthesis of mononuclear complex Eu(L’),(OTf);

To a solution of L’ (3.5 mg, 1.0 pmol) in 600 pL of a mixed acetonitrile and methanol
solvent (v/v = 2/1), Eu(OTf); (3.0 mg, 0.5 umol) was added, then the mixture was
stirred at 50 °C for approximately one hour. 'H NMR (600 MHz, CD;CN/CD;0D v/v
=2/1)6=6.78 (d, J= 8.5 Hz), 6.67 (s), 6.22 — 5.97 (m), 3.53 (s), 1.10 (d, J= 6.1 Hz).
IBC NMR (151 MHz, CD;CN/CD;0D v/v =2/1) 6 = 149.05 (s), 124.81 (s), 109.03 (s),
92.45 (s), 44.36 (s), 23.10 (s), 20.46 (s). ESI-TOF-MS for Eu(L’),(OTf);: caled for
[Eu(L’),(OTf);]*" 501.1105, found 501.1104; calcd for [Eu(L’),(OTf),]* 1151.1734,
found 1151.1731.

Eu(6),(0OTf); and Lu(6),(OTf); were synthesized in the same procedure as above.



3. Single Crystal X-ray Diffraction Studies

Figure S1. Crystal structure of L.

Figure S2. Crystal structure of EugLy.



Figure S4. Visualization of the internal cavity volume (50.9 A3, cyan surface) within
the EuyL4 crystal structure, calculated using the MoloVol program. [54]



Figure SS. Ortep-3 drawing of the asymmetric unit (up) and the full molecule (down)
in the crystal structure of L at 30% probability level. [3
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Figure S6. Ortep-3 drawing of the asymmetric unit (up) and the full cage (down) in the
crystal structure of EuyL4 at 30% probability level. [5°]
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Figure S7. Ortep-3 drawing of the full complex in the crystal structure of Lu(6) at 30%
probability level. [55]
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Figure S8. (a-c) Stacking diagrams of the Lu(6), crystal viewed along the a-, b-, and

c-axes, respectively. (d) Stacking diagram of the Euyl4 crystal viewed along the a- or
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Eu,L; exhibited secondary channels along the a and b axes, facilitating
interactions with aldehyde gas molecules, whereas the mononuclear Lu(6), complex
featured a closely packed structure that hindered such interactions (Figure R15).
PLATON calculations confirmed that Euyl4 has significantly higher porosity (57.9%)

compared to Lu(6), (33.6%), enabling better aldehyde access to the complex.
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Table S1. Crystal data and structure refinement for L. (CCDC- 2389302)

Identification code
Empirical formula
Formula weight
Temperature/K

Crystal system

Space group

a/A

b/A

c/A

o/°

pre

v/

Volume/A3

Z

Peateg/cm’

wmm-!

F(000)

Crystal size/mm3
Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3

L
Cg7HgoN12010P
1464.44

150

trigonal

P3cl
27.6432(9)
27.6432(9)
15.0008(6)

90

90

120

9927.1(7)

4

1.248

0.879

3945.0

0.53 x 0.36 x 0.22

CuKo (A= 1.54184)

3.69 to 133.196

-30<h<32,-25<k<32,-17<1<15

33955

5839 [Rip = 0.1231, Rgigma = 0.0655]

5839/644/331
1.435

Ry =0.1270, wR, = 0.3731
Ry =0.1488, wR, = 0.3955

0.79/-0.59
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Table S2. Crystal data and structure refinement for EuyLy4. (CCDC- 2389303)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

o

o/
pr°

V/°

Volume/A3

Z

Pearcg/cm’

wmm-!

F(000)

Crystal size/mm?

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3

EuyL,
C348H260Eu4N48044P4
6549.74

100(2)

tetragonal

14/a

30.1287(5)
30.1287(5)
64.0464(16)

90

90

90

58137(2)

4

0.748

2.514

13392.0
0.35x0.21 x0.2
Ga Ka (A = 1.3405)
4.332 to 67.904

-21<h<19,-25<k<19,-40<1<53

30314

8638 [Rin = 0.0717, Rgigma = 0.0652]

8638/2686/916
1.249

R; =0.1135, wR, = 0.2998
R; =0.1445, wR, = 0.3246

0.96/-0.46
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Table S3. Crystal data and structure refinement for Lu(6),. (CCDC- 2389298)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

o

o/
pr°

V/°

Volume/A3

Z

Pearcg/cm’

wmm-!

F(000)

Crystal size/mm?

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3

Lu(6),
C34Ho3LuNOg
791.59

101(2)
monoclinic
P2/n
11.9192(4)
25.0115(5)
15.2944(5)

90

112.505(4)

90

4212.3(2)

4

1.248

3.183

1572.0

0.53 x 0.33 x 0.25

micro-focus metaljet (A = 1.3405)

6.144 to 105.854

-14<h<12,-28<k<29,-18<1<18

15520

6966 [Rin = 0.0294, Rgigma = 0.0362]

6966/66/436
1.054

R; =0.0654, wR, =0.1985
R;=0.0746, wR, = 0.2043

1.70/-0.74
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4. ESI-TOF-MS Spectra
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Figure S9. ESI-TOF-MS spectra of 15 in CHCl;.
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Figure S10. ESI-TOF-MS spectra of L in CHCl;.
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Figure S11 ESI-TOF-MS spectra of EuylL4(OTf); in a CH;CN/CH;0H (v/v = 2/1)
mixture. The trifluoromethanesulfonate (CF3;SOj57) anions and protons on amide groups

are easily lost, resulting in various isotopic patterns.
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Table S4. Comparison of the observed and simulated signals in the ESI-MS spectrum
of EuyL4(OTf);, in a CH;CN/CH;0H (v/v = 2/1) mixture.

Valence Molecular Formula Observed Simulated
+8 [Euy(Cg7Hg3N 1,010P)4(OTH)-4(HOTH)]3* 809.16 809.18
7 [Euy(Cg7Hg3N ,010P)4(OTH)-5(HOTH)]™* 924.76 924.78

[Euy(Cg7Hg3N1,010P)4(OTH),-4(HOTH)]"* 946.18 946.20
[Euy(Cg7Hg3N1,019P)4(OTH)-6(HOTT)]o* 1078.55 1078.58
6 [Euy(Cg7Hg3N1,010P)4(OTH);-5(HOTH)]6* 1103.54 1103.57
[Eus(Cs7Hg3N1,019P)4(OTH),-4(HOTH)]o* 1128.53 1128.56
[Euy(Cg7Hg3N1,019P)4(OTH);-3(HOTL)]o* 1153.53 1153.56
[Euy(Cg7Hg3N 1,010P)4(OTH)-7(HOTH) > 1294.26 1294.29
[Euy(Cg7Hg3N 1,040P)4(OTH),-6(HOTL)]>* 1324.25 1324.28
+5 [Euy(Cg7Hg3N 1,010P)4(OTH),-5(HOTH) ] 1354.24 1354.27
[Euy(Cg7Hg3N 1,010P)4(OTH)3-4(HOTH)]>* 1384.23 1324.27
[Euy(Cg7Hg3N1,010P)4(OTH)-3(HOTH) ] 1414.22 1414.26
[Euy(Cg7Hg3N12,010P)4(OTH)-8(HOTH) ]+ 1617.32 1617.36
[Eus(Cg7HgzN1,010P)4(OTH),-7(HOTH)]** 1654.80 1654.85
4 [Euy(Cs7Hg3N 1,019P)4(OTH),-6(HOTL)]** 1692.30 1692.34
[Euy(Cg7Hg3N 1,010P)4(OTH)5-5(HOTH) ]+ 1729.78 1729.83
[Euy(Cg7Hg3N 1,010P)4(OTH)4-4(HOTH)]** 1767.27 1767.32
[Euy(Cg7Hg3N 1,010P)4(OTH)s-3(HOTH) ]+ 1804.76 1804.81
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Figure S12. ESI-TOF-MS spectra of Gdy4L4(OTf)y, in a CH;CN/CH;0H (v/v = 2/1)
mixture. The trifluoromethanesulfonate (CF;SO3°) anions and protons on the amide
groups are readily lost, resulting in various isotopic patterns.
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Table S5. Comparison of the observed and simulated signals in the ESI-MS spectrum
of Gd4L4(OTf);; in a CH3;CN/CH;0H (v/v = 2/1) mixture.

Valence Molecular Formula Observed Simulated
48 [Gd4(Cg7He3N1,010P)4(OTH)p-4(HOTH) 3" 811.93 811.94
[Gd4(Cg7He3N1,01P)4(OTH)-3(HOTH) ¥ 830.43 830.43
[Gd4(Cg7He3N12,010P)4(OTH)-S(HOTH)]7* 927.64 927.64
+7 [Gd4(Cg7He3N1,01P)4(OTH)-4(HOTH)]™ 949.06 949.06
[Gd4(Cg7He3N12,010P)4(OTH),-3(HOTH) ]+ 970.48 970.49
[Gdy(Cs7Hg3N12010P)4(OTH)-6(HOTH)]* 1082.07 1082.08
+6 [Gd4(Cg7He3N1,010P)4(OTH);-5(HOTH)]6* 1107.07 1107.07
[Gd4(Cg7He3N1,040P)4(OTH),-4(HOTH) ] 1132.23 1132.23
[Gd4(Cg7HezN1,01P)4(OTH)-7(HOTH) > 1298.28 1298.29
[Gd4(Cg7He3N1,01P)4(OTH)-6(HOTH) > 1328.28 1328.28
+5 [Gd4(Cg7He3N1,010P)4(OTH),-5S(HOTH) >+ 1358.27 1358.28
[Gd4(Cg7He3N1,010P)4(OTH);-4(HOTH) > 1388.26 1388.27
[Gd4(Cg7He3N12,010P)4(OTH),-3(HOTHE) >+ 1418.26 1418.26
[Gdy(Cs7Hg3N12010P)4(OTH)-8(HOTH) ]+ 1622.60 1622.61
4 [Gdy(Cs;Hg3N12010P)4(OTH),-6(HOTE)]** 1697.59 1697.59
[Gd4(Cg7He3N1,01P)4(OTH);-5(HOTH) [+ 1735.33 1735.33
[Gd4(Cg7HezN1,01P)4(OTH)4-4(HOTH) [+ 1772.31 1772.32

22



827.93 846, 67
89.18 W W

1L

967. 48

988. 09
246,06 o4

1010.47
v
A

g 925.90 W

- 88416

1

i "

v l
i, ‘A‘. A

[Eu L (0T, -(12-(m+n))LI [+
m=0,1,2,3,4,5

1178. 55
1128.56 1153. 56

1105. 04
A4

1203.54

| L.

300 850 900 950 1000

1050 1100 1150 1200 miz

8279281

828.1787
828.3040

827.6778
827.5524

827.4270
827.3018

-
(=T

A

o o
o o

828.4291

828.5536
§29.0315

8+
827.9286 8+

828.1791

2000

8+
827.6782
8+

827.5530
8+

§4827.4278
827.3026

8+
1500

1000

(53]

o

(=]
|

8284296 g,

(CiF3S03HEua(CarHs7N1z010P)a, , 827.9275

828.5548 8+
828.6801

(=]

826.5 827.0 8275 828.0

8285 829.0 820.5 miz

Intens. ]
X109

1.51

967.4823

967.1960
967.0530

967.9115

966.9096

059 966.7664

00

968.0545

968.1971
968.3396

968.8877  969.1721
AN

7+
967.4830 T+

967.7693 ,,
967.9124
7+

2000 1

7+
967.1969
T+

967.0538
7+

74 966.9107
966.7676

1500 1
1000 1
5001

968.0555 5,

U 1 SN,
(CiF5505)2HE uslCorHsrN12010P)a, , 967.4818

968.1986 7+
968.3418

966.0 966.5 967.0 967.5 968.0

968.5 969.0 miz

Figure S13. ESI-TOF-MS spectra of EuglL4(OTf); in a CH3;CN/CH;0H/AA (v/v/v =

20/10/3) mixture. The trifluoromethanesulfonate (C

F3SO5°) anions and protons on

amide groups are easily lost, resulting in various isotopic patterns.
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Figure S14. ESI-TOF-MS spectra of Eu(L.’),(OTf); in a CH;CN/CH;0H (v/v = 2/1)
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Figure S16. The '"H NMR spectrum of 15 (400 MHz, DMSO-d;, 298 K).
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Figure S17. The 'H-'"H COSY NMR spectrum of 15 (400 MHz, DMSO-d,, 298 K).
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Figure S18. The 3C NMR spectrum of 15 (101 MHz, DMSO-d,, 298 K).
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Figure S19. The 3'P NMR spectrum of 15 (243 MHz, DMSO-d,, 298 K).
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Figure S21. The '"H-'H COSY NMR spectrum of L (400 MHz, CDCl3, 298 K).
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Figure S22. The partial enlargement of 'H-'"H COSY NMR spectrum of L (400 MHz,

CDCl,, 298 K).
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Figure S23. The 'H-'H NOESY NMR spectrum of L (400 MHz, CDCl;, 298 K).
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Figure S25. The 3'P NMR spectrum of L (243 MHz, CDCl;, 298 K).
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Figure S26. The "H NMR spectrum of L’ (600 MHz, CDCls, 298 K).
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Figure S27. The 'H-'"H COSY NMR spectrum of L’ (400 MHz, CDCls, 298 K).
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Figure S28. The partial enlargement of 'H-'H COSY NMR spectrum of L.’ (600 MHz,

CDCl;, 298 K).
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Figure S29. The 3C NMR spectrum of L’ (151 MHz, CDCls, 298 K).
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Figure S30. The '"H NMR spectrum of Eu(L’), (600 MHz, CD;CN/CD;OD v/v = 2/1,
298 K).
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Figure S31. The 'H-'"H COSY NMR spectrum of Eu(L’), (400 MHz, CD;CN/CD;0D
v/iv=2/1,298 K).
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Figure S32. The 3C NMR spectrum of Eu(L’); (151 MHz, CD;CN/CD;0D v/v = 2/1,
298 K).
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Figure S33. The '"H NMR spectrum of Eu(6), (600 MHz, CD;CN, 298 K).
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Figure S36. 'H NMR spectra (400 MHz, CD;CN/CD;0D v/v = 2/1, 298 K) of EugLy:
(a) after 1 hour of in-situ assembly, (b) after 14 days, and (c) redissolved crystals.

To further investigate the equilibration process, we conducted additional
experiments where the NMR tube was sealed and heated for 14 days under the same
conditions. As shown in Figure S36, no significant changes in the '"H NMR spectra
were observed between the 1-hour and 14-day assemblies, indicating that the system
reaches equilibrium within the initial 1-hour timeframe. Furthermore, we measured the
1H NMR spectrum of the complex after dissolving the crystals. The spectrum obtained
from dissolved crystals was consistent with that of the assembled complex, further
confirming that the NMR behaviour corresponds to the final, equilibrated structure. The
broadening of the NMR signals observed in the Eu(IIl) complex, in comparison to the
free ligand, is primarily due to the reduction in symmetry (C; — S;) and the

paramagnetic effects of the Eu(III) ion.
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Figure S37 'H NMR titration spectra (400 MHz, CD;CN/CD;0D, v/v = 2/1, 298 K)
for the formation of EuyL4, following the addition of different equivalents of Eu(OTf);
(calculated based on ligand L).
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Figure S38. The 'H-'H DOSY NMR spectrum of EugL4 (600 MHz, CD;CN/CD3;0D
v/iv=2/1,298 K).
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6. Film Preparation

The films are fabricated by spin-coating a solution of EusLy (5 mM in a
CH3NO,/CH30H mixture, v/v =2/1) onto a glass sheet (1.5 cm X 1.5 cm). The spinning
process is conducted for 60 seconds at 3000 rpm.
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Figure S39. (a) Atomic force microscope (AFM) image, (b) the profilometer
characterized result, and (c) scanning electron microscope (SEM) image of the film.
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7. Photophysical Properties
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Figure S40. UV-vis spectra of L in CHCl; and Euy4L4 in CH;CN (298 K).
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Figure S41. Excitation and emission spectra of EuyL4 in CH;CN (298 K, ¢ = 5x10¢
M).
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Figure S42. Luminescent quantum yield of EugL4 in CH;CN (298 K, ¢ = 5%10°6 M, Aoy
=330 nm).
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Figure S43. Luminescent lifetimes of EuyL4 in CH30H (¢ =5%10% M, A, = 330 nm,
Aem = 612 nm).
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Figure S44. Luminescent lifetimes of EuyL4 in CD;0D (¢ = 5%x10° M, A, = 330 nm,
Aem = 612 nm).
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Figure S45. Luminescent lifetime of Euy4l4 in a CD;0OD/AA mixture (v/v =10:1) ata
concentration of 5x10° M (A¢x = 330 nm, A., = 612 nm).
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The following empirical equation is used to determine the number of solvent

molecules q coordinated to Eu?* nodes in EuglLy compounds: [59]
q=A4 (Tsol_vgnt - Tdeutero_—lsolvent -B) (1)

Where empirically coefficients A = 2.1 and B = 0 were determined in CH;0OH and
CD3;0D conditions. The calculated ¢ value is 0.953 for EuyL.,, indicating that the metal
centres of the cage have about one coordinated solvent molecule.

To further evaluate the potential replacement of coordinated solvent molecules by
AA, we measured the luminescence lifetime of EugL4 in CD3;0D with excess AA. The
calculated number of coordinated solvent molecules (q = 1.027) demonstrates that AA
molecules exhibit a negligible ability to replace the solvent molecules coordinated to

the Eu™ centres.
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8. Film Responses and Luminescence Enhancement

Preparation of vapours at varying concentrations

Organic vapours of specific concentration were generated by diluting saturated

vapours with N,. Saturated organic vapours were produced by evaporating the organic

liquid (trioxymethylene for formaldehyde) in a Schlenk round-bottom flask at 20 °C

overnight. Subsequently, the saturated vapours were diluted with N, using syringes to

achieve the desired concentrations.
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Figure S46. Emission spectra of the Eu4L4 films upon exposure to

concentrations of aldehyde vapours (A = 330 nm).
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Figure S47. Emission spectra of the Eu(L.’), (a) and Eu(6), (b) films upon exposure to
varying concentrations of FA vapours (A.x = 336 nm, 338nm respectively).

The overall quantum yield (@,,.,.;;) doesn’t adequately reflect the efficiency of the
ligand sensitization (@) or intrinsic quantum yield of europium (@;,). The
relationship can be expressed by the following equation: [57]

vy

overall

CI)sens =
., (2)

The intrinsic quantum yields of europium cannot be determined by experimentally
due to the weak absorption intensity associated with direct f-f excitation. However, they

can be determined by the following two equations: [57]

© - Apap _ Tobs
= =
" Apap ANk Trag (3)
1 3 Lo
Apap =——=Aypon (1—)
rad MD (4)

Where, Ar4p and Ayg represent the radiative and non-radiative decay rates, while
Tops and 7,,, denote the observed and radiative lifetimes, respectively. The refractive
index of the medium is denoted by n, [, refers to the integrated emission of the
Do—"F; (J = 0 - 4) transition, and I, corresponds to the integrated emission of the
’Dy—7F; transition. The spontaneous emission probability for the magnetic dipole
transition Dy—’F is given as Ayp,o = 14.65 s

Since, Ayp 9 and n are not applicable in the film test, these parameters are

adjusted by comparing with a blank film in the calculation formula (@g,/ D, piunr and
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Figure S48. Luminescence enhancement efficiency (I/Ip-1) of the Euyly4 film as a
function of the vapour concentration for various aldehydes.
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Figure S49. Luminescence enhancement efficiency (I/Ip-1) of the Eu(L’), (a) and
Eu(6), (b) film as a function of the vapour concentration for FA.

Eu,L, films achieved a detection limit of 19.4 ppb, which is only 0.5% of the
detection limit of Eu(L’), and Eu(6), films (19.4 ppb vs. 3.8 ppm and 3.5 ppm). This
highlights the significantly higher sensitivity of Eu4lL4 films compared to their

mononuclear counterparts.

46



—Gd,L, —Gd,L,
— Gd, L tFormaldehyde Gd, L.+ Acetaldehyde
" q
I =
iy z
2 &
2z L
= L=
T T T T
500 600 500 600
Wavelength (nm) Wavelength (nm)
—Gd,L, —Gd,L,
— Gd,yl,+Propionaldehyde — Gd,L,+ Butyraldehyde
3 B
& =2
z z
2 2
g £
T T T T
500 600 500 600
Wavelength (hm) Wavelength (nm)
—Gd,L,
— Gd, L, +Valeraldehyde
e
z
2
3
T ¥ T
500 600

Wavelength (nm)

Figure S50. Phosphorescence emission spectra of Gdg4L,4 in CH;CN (¢ = 1.7x10°¢ M)
upon the addition of various aldehydes.
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