Supporting Information for

Sensitive Detection of Formaldehyde via a Luminescent

Distorted Eu₄L₄ Tetrahedral Cage

Ran Li,^{ab} Xuan Deng,^{ab} Fan Yin,^b Xiao-Fang Duan,^b Li-Peng Zhou,^b Yang Zhou,^b Xiao-Qing Guo^{*b} and Qing-Fu Sun^{*ab}

a. College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.

b. Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.

*Correspondence to: guoxiaoqing@fjirsm.ac.cn, qfsun@fjirsm.ac.cn.

Contents

1. General	2
2. Experimental Details	3
3. Single Crystal X-ray Diffraction Studies	8
4. ESI-TOF-MS Spectra	17
5. NMR Spectra	26
6. Film Preparation	
7. Photophysical Properties	
8. Film Responses and Luminescence Enhancement	43
9. Supplementary References	48

1. General

Unless otherwise specified, all chemicals and solvents were obtained from commercial companies and used without further purification. Deuterated solvents were purchased from Admas and Cambridge Isotope Labs. 1D and 2D-NMR spectra were acquired using Bruker Biospin Avance III (400 MHz), JEOL ECZ400S (400 MHz), and JEOL ECZ600S (600 MHz) spectrometers. Chemical shifts in ¹H-NMR were referenced to TMS or the residual signals of the deuterated solvents used. ESI-TOF-MS was conducted on a Bruker Impact II UHR-TOF mass spectrometry, with a tuning mix serving as the internal standard. Data analysis was conducted with Bruker Data Analysis software (Version 4.3), and simulations were executed using Bruker Isotope Pattern software. UV-vis spectra were recorded with a SHIMADZU UV-2700 spectrophotometer. Luminescence spectra were measured using FS5 an spectrofluorometer from Edinburgh Photonics, with spectra corrected for experimental functions. SEM images were obtained with Thermofisher Scientific Apreo 2S HiVac. AFM images were obtained with Bruker Dimension Icon. The thickness of film was measured with Bruker Dektak-XT. X-ray crystal data were collected on Rigaku Synergy-S (Cu - K α radiation: $\lambda = 1.54184$ Å) and micro-focus metaljet diffractometer (Ga K α radiation $\lambda = 1.3405$ Å)

2. Experimental Details

Scheme S1. Synthetic route of compound 6.

Scheme S2. Synthetic route of the ligand L.

Scheme S3. Synthetic route of the ligand L' and Eu(L')₂.

Compounds 1-6 and 7-14 were synthesized according to established literature procedures. [S1-S3]

Synthesis of compound 15

To a solution of THF/H₂O (3:1, 210 mL), compound **14** (591 mg, 1.06 mmol, 1.0 equiv) was added, along with 3-aminophenylboronic acid pinacol ester (929 mg, 4.24 mmol, 4.0 equiv), Pd(PPh₃)₄ (244 mg, 0.21 mmol, 0.2 equiv), and Cs₂CO₃ (1.04 g, 3.18 mmol, 3.0 equiv). The mixture was degassed under nitrogen for 30 minutes and then heated at 85 °C for 72 hours under a nitrogen atmosphere. After cooling to room temperature, the reaction mixture was extracted three times with 120 mL of dichloromethane. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, DCM/MeOH = 100/1) to afford compound **15** as a pale yellow solid (585 mg, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.66 (d, J = 8.6 Hz), 7.40 (dd, J = 8.5, 4.7 Hz), 7.17 (t, J = 7.8 Hz), 6.84 (s), 6.74 (d, J = 7.6 Hz), 6.65 (d, J = 8.0 Hz), 5.28 (s). ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 158.2, 155.4, 149.0, 135.3, 129.7, 129.4, 116.8, 115.9, 114.6, 113.9, 110.9, 109.8. ³¹P NMR (243 MHz, DMSO-*d*₆) δ = 46.77 (s). ESI-TOF-MS for C₃₆H₂₄N₃O₄P [M + Na]⁺: calcd, m/z = 616.1397; found 616.1399.

Synthesis of ligand L

Compound 6 (155 mg, 0.502 mmol, 3.3 equiv), compound 15 (90 mg, 0.152 mmol, 1.0 equiv), and DMF (50 mL) were added into a 100 mL one-necked flask. After cooling the mixture in an ice bath, HATU/2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium (347 mg, 0.912 mmol, 6.0 equiv) and Et₃N (1 mL) were added, and the reaction mixture was stirred for 16 hours. The solvent was then removed under reduced pressure, and the crude product was extracted three times with dichloromethane and water. The combined organic phases were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, DCM/MeOH = 50/1), yielding ligand L as a white solid. (181 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ = 10.80 (s, 1H), 8.71 (d, *J* = 8.2 Hz, 1H), 8.62 (d, *J* = 8.2 Hz, 1H), 8.52 (d, *J* = 8.3 Hz, 1H), 8.46 (d, *J* = 8.2 Hz, 2H), 8.39 (s, 1H), 7.96 (s, 2H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 8.7 Hz, 2H), 4.41 (dd, *J* = 13.8, 6.8 Hz, 1H), 1.40 (dd, *J* = 15.4, 6.5 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 163.3, 162.0, 159.4, 156.1, 150.2, 149.4, 144.0, 138.2, 138.1, 137.9, 136.6, 134.8, 130.8, 130.6, 129.2, 128.2, 127.6, 125.8, 121.8, 121.5, 120.4, 119.1, 115.7, 41.8, 23.0. ³¹P NMR (162 MHz, CDCl₃) δ = 47.42 (s). ESI-TOF-MS for C₈₇H₆₃N₁₂O₁₀P [M + H]⁺: calcd, m/z = 1468.4632; found 1468.4549.

Synthesis of Eu₄L₄(OTf)₁₂

To a suspension of L (2.00 mg, 1.36 µmol) in 600 µL of a mixed acetonitrile and methanol solvent (v/v = 2/1), Eu(OTf)₃ (0.82 mg, 1.36 µmol) was added. The mixture was stirred at 50 °C for approximately one hour, during which the turbid suspension gradually transformed into a homogenous yellow solution. ³¹P NMR (162 MHz, CD₃CN/CD₃OD v/v = 2/1) δ = -160.41 (s). ESI-TOF-MS for Eu₄L₄(OTf)₁₂: calcd for [Eu₄L₄(OTf)₀-4(HOTf)]⁸⁺ 809.1837, found 809.1628; calcd for [Eu₄L₄(OTf)₀-5(HOTf)]⁷⁺ 924.7808, found 924.7561; calcd for [Eu₄L₄(OTf)₁-4(HOTf)]⁷⁺ 946.2036, found 946.1788; calcd for [Eu₄L₄(OTf)₀-6(HOTf)]⁶⁺ 1078.5758, found 1078.5477; calcd for [Eu₄L₄(OTf)₁-5(HOTf)]⁶⁺ 1103.5691, found 1103.5402; calcd for [Eu₄L₄(OTf)₂-4(HOTf)]⁶⁺ 1128.5623, found 1128.5333; calcd for [Eu₄L₄(OTf)₃-3(HOTf)]⁶⁺ 1153.5556, found 1153.5262; calcd for [Eu₄L₄(OTf)₀-7(HOTf)]⁵⁺ 1294.2892, found 1294.2555; calcd for [Eu₄L₄(OTf)₁-6(HOTf)]⁵⁺ 1324.2827, found 1324.2477; calcd for [Eu₄L₄(OTf)₂-5(HOTf)]⁵⁺ 1354.2737, found 1354.2342; calcd for [Eu₄L₄(OTf)₃-4(HOTf)]⁵⁺ 1354.2651, found 1354.2297; calcd for [Eu₄L₄(OTf)₄- $3(HOTf)^{5+}$ 1414.2575, found 1414.2208; calcd for $[Eu_4L_4(OTf)_0-8(HOTf)]^{4+}$ 1617.3597, found 1617.3178; calcd for [Eu₄L₄(OTf)₁-7(HOTf)]⁴⁺ 1654.8500 found 1654.8046; calcd for [Eu₄L₄(OTf)₂-6(HOTf)]⁴⁺ 1692.3386 found 1692.2949; calcd for [Eu₄L₄(OTf)₃-5(HOTf)]⁴⁺ 1729.8298 found 1729.7842; calcd for [Eu₄L₄(OTf)₄-1767.3197 found 1767.2756; calcd for [Eu₄L₄(OTf)₅-3(HOTf)]⁴⁺ $4(HOTf)^{4+}$ 1804.8090 found 1804.7627. Elemental analyses calcd (%) for C₃₆₀H₂₅₂Eu₄N₄₈O₇₆F₃₆P₄S₁₂: C, 52.3; H, 3.1; N, 8.1; S, 4.7; Found: C, 52.0; H, 3.2; N, 7.5; S, 4.4.

Synthesis of Gd₄L₄(OTf)₁₂

To a suspension of L (2.00 mg, 1.36 µmol) in 600 µL of a mixed acetonitrile and methanol solvent (v/v = 2/1), Gd(OTf)₃ (0.82 mg, 1.36 µmol) was added. The mixture was stirred at 50 °C for approximately one hour, during which the turbid suspension gradually transformed into a homogenous yellow solution. ESI-TOF-MS for Gd₄L₄(OTf)₁₂: calcd for [Gd₄L₄(OTf)₀-4(HOTf)]⁸⁺ 811.9356, found 811.9338; calcd for $[Gd_4L_4(OTf)_1-3(HOTf)]^{8+}$ 830.4302, found 830.4284; calcd for $[Gd_4L_4(OTf)_0-$ 5(HOTf)]⁷⁺ 927.6394, found 927.6369; calcd for [Gd₄L₄(OTf)₁-4(HOTf)]⁷⁺ 949.0622, found 949.0595; calcd for [Gd₄L₄(OTf)₂-3(HOTf)]⁷⁺ 970.4850, found 970.4807; calcd for $[Gd_4L_4(OTf)_0-6(HOTf)]^{6+}$ 1082.0781, found 1082.0744; calcd for $[Gd_4L_4(OTf)_1-$ 5(HOTf)]⁶⁺ 1107.0714, found 1107.0677; calcd for [Gd₄L₄(OTf)₂-4(HOTf)]⁶⁺ 1132.2315, found 1132.2273; calcd for [Gd₄L₄(OTf)₀-7(HOTf)]⁵⁺ 1298.2923, found 1298.2829; calcd for [Gd₄L₄(OTf)₁-6(HOTf)]⁵⁺ 1328.2842, found 1328.2791; calcd for $[Gd_4L_4(OTf)_2-5(HOTf)]^{5+}$ 1358.2761, found 1358.2718; calcd for $[Gd_4L_4(OTf)_3 4(HOTf)^{5+}$ 1388.2680, found 1388.2641; calcd for $[Gd_4L_4(OTf)_4-3(HOTf)]^{5+}$ 1418.2608, found 1418.2578; calcd for [Gd₄L₄(OTf)₀-8(HOTf)]⁴⁺ 1622.6135, found 1622.6006; calcd for [Gd₄L₄(OTf)₂-6(HOTf)]⁴⁺ 1696.5933, found 16967.5860; calcd for [Gd₄L₄(OTf)₃-5(HOTf)]⁴⁺ 1735.3336, found 1735.3283; calcd for [Gd₄L₄(OTf)₄-4(HOTf)]⁴⁺ 1772.3228, found 1772.3171.

Synthesis of compound L'

Compound **2** (2.4 g, 8.96 mmol, 1.0 equiv), isopropylamine (1.6 g, 26.7 mmol, 3.0 equiv), and DMF (300 mL) were added into a 500 mL one-necked flask. After cooling the mixture in an ice bath, HATU/2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium (13.6 g, 35.8 mmol, 4.0 equiv) and Et₃N (3 mL) were added, and the reaction mixture was stirred for 16 hours. The solvent was then removed under reduced pressure, and the crude product was washed with cyclohexane before extracting three times with dichloromethane and water. The combined organic phases were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, DCM/MeOH = 100/1), yielding compound L' as a white solid. (1.5 g, 47%). ¹H NMR (600 MHz, CDCl₃) δ = 8.60 (d, *J* = 8.2 Hz), 8.48 (d, *J* = 7.8 Hz), 8.45 (d, *J* = 8.2 Hz), 7.93 (s), 4.42 (dhept, *J* = 19.8, 6.6 Hz), 1.43 (d, *J* = 6.6 Hz). ¹³C NMR (151 MHz, CDCl₃) δ = 163.48 (s), 150.08 (s), 144.14 (s), 137.93 (s), 130.56 (s), 127.82 (s), 121.60 (s), 41.79 (s), 23.12 (s).

Synthesis of mononuclear complex Eu(L')₂(OTf)₃

To a solution of **L'** (3.5 mg, 1.0 µmol) in 600 µL of a mixed acetonitrile and methanol solvent (v/v = 2/1), Eu(OTf)₃ (3.0 mg, 0.5 µmol) was added, then the mixture was stirred at 50 °C for approximately one hour. ¹H NMR (600 MHz, CD₃CN/CD₃OD v/v = 2/1) δ = 6.78 (d, *J* = 8.5 Hz), 6.67 (s), 6.22 – 5.97 (m), 3.53 (s), 1.10 (d, *J* = 6.1 Hz). ¹³C NMR (151 MHz, CD₃CN/CD₃OD v/v = 2/1) δ = 149.05 (s), 124.81 (s), 109.03 (s), 92.45 (s), 44.36 (s), 23.10 (s), 20.46 (s). ESI-TOF-MS for Eu(L')₂(OTf)₃: calcd for [Eu(L')₂(OTf)₁]²⁺ 501.1105, found 501.1104; calcd for [Eu(L')₂(OTf)₂]⁺ 1151.1734, found 1151.1731.

Eu(6)₂(OTf)₃ and Lu(6)₂(OTf)₃ were synthesized in the same procedure as above.

3. Single Crystal X-ray Diffraction Studies

Figure S1. Crystal structure of L.

Figure S2. Crystal structure of Eu_4L_4 .

Figure S3. Crystal structure of Lu(6)₂

Figure S4. Visualization of the internal cavity volume (50.9 Å³, cyan surface) within the Eu_4L_4 crystal structure, calculated using the MoloVol program. ^[S4]

Figure S5. Ortep-3 drawing of the asymmetric unit (up) and the full molecule (down) in the crystal structure of L at 30% probability level. [S5]

Figure S6. Ortep-3 drawing of the asymmetric unit (up) and the full cage (down) in the crystal structure of Eu_4L_4 at 30% probability level. ^[S5]

Figure S7. Ortep-3 drawing of the full complex in the crystal structure of **Lu(6)**₂ at 30% probability level. ^[S5]

Figure S8. (a-c) Stacking diagrams of the $Lu(6)_2$ crystal viewed along the *a*-, *b*-, and *c*-axes, respectively. (d) Stacking diagram of the Eu_4L_4 crystal viewed along the *a*- or *b*-axis.

 Eu_4L_4 exhibited secondary channels along the *a* and *b* axes, facilitating interactions with aldehyde gas molecules, whereas the mononuclear $Lu(6)_2$ complex featured a closely packed structure that hindered such interactions (Figure R15). PLATON calculations confirmed that Eu_4L_4 has significantly higher porosity (57.9%) compared to $Lu(6)_2$ (33.6%), enabling better aldehyde access to the complex.

Identification code	L
Empirical formula	$C_{87}H_{60}N_{12}O_{10}P$
Formula weight	1464.44
Temperature/K	150
Crystal system	trigonal
Space group	<i>P</i> 3 <i>c</i> 1
a/Å	27.6432(9)
b/Å	27.6432(9)
c/Å	15.0008(6)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	120
Volume/Å ³	9927.1(7)
Z	4
$\rho_{calc}g/cm^3$	1.248
μ/mm^{-1}	0.879
F(000)	3945.0
Crystal size/mm ³	$0.53 \times 0.36 \times 0.22$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	3.69 to 133.196
Index ranges	$-30 \le h \le 32, -25 \le k \le 32, -17 \le l \le 15$
Reflections collected	33955
Independent reflections	5839 [$R_{int} = 0.1231, R_{sigma} = 0.0655$]
Data/restraints/parameters	5839/644/331
Goodness-of-fit on F^2	1.435
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1270, wR_2 = 0.3731$
Final R indexes [all data]	$R_1 = 0.1488, wR_2 = 0.3955$
Largest diff. peak/hole / e Å-3	0.79/-0.59

 Table S1. Crystal data and structure refinement for L. (CCDC- 2389302)

Identification code	Eu ₄ L ₄
Empirical formula	$C_{348}H_{260}Eu_4N_{48}O_{44}P_4$
Formula weight	6549.74
Temperature/K	100(2)
Crystal system	tetragonal
Space group	$I4_{1}/a$
a/Å	30.1287(5)
b/Å	30.1287(5)
c/Å	64.0464(16)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	58137(2)
Z	4
$\rho_{calc}g/cm^3$	0.748
μ/mm^{-1}	2.514
F(000)	13392.0
Crystal size/mm ³	$0.35 \times 0.21 \times 0.2$
Radiation	Ga Ka ($\lambda = 1.3405$)
2Θ range for data collection/°	4.332 to 67.904
Index ranges	$-21 \le h \le 19, -25 \le k \le 19, -40 \le 1 \le 53$
Reflections collected	30314
Independent reflections	8638 [$R_{int} = 0.0717, R_{sigma} = 0.0652$]
Data/restraints/parameters	8638/2686/916
Goodness-of-fit on F^2	1.249
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1135, wR_2 = 0.2998$
Final R indexes [all data]	$R_1 = 0.1445, wR_2 = 0.3246$
Largest diff. peak/hole / e Å ⁻³	0.96/-0.46

 Table S2. Crystal data and structure refinement for Eu₄L₄. (CCDC- 2389303)

Identification code	Lu(6) ₂
Empirical formula	$C_{34}H_{28}LuN_6O_6$
Formula weight	791.59
Temperature/K	101(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.9192(4)
b/Å	25.0115(5)
c/Å	15.2944(5)
$\alpha/^{\circ}$	90
β/°	112.505(4)
γ/°	90
Volume/Å ³	4212.3(2)
Z	4
$ ho_{calc}g/cm^3$	1.248
μ/mm^{-1}	3.183
F(000)	1572.0
Crystal size/mm ³	0.53 imes 0.33 imes 0.25
Radiation	micro-focus metaljet ($\lambda = 1.3405$)
2Θ range for data collection/°	6.144 to 105.854
Index ranges	$\text{-14} \le h \le 12, \text{-28} \le k \le 29, \text{-18} \le l \le 18$
Reflections collected	15520
Independent reflections	$6966 [R_{int} = 0.0294, R_{sigma} = 0.0362]$
Data/restraints/parameters	6966/66/436
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0654, wR_2 = 0.1985$
Final R indexes [all data]	$R_1 = 0.0746, wR_2 = 0.2043$
Largest diff. peak/hole / e Å ⁻³	1.70/-0.74

Table S3. Crystal data and structure refinement for Lu(6)2. (CCDC-2389298)

4. ESI-TOF-MS Spectra

Figure S10. ESI-TOF-MS spectra of L in CHCl₃.

Figure S11 ESI-TOF-MS spectra of $Eu_4L_4(OTf)_{12}$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture. The trifluoromethanesulfonate (CF₃SO₃⁻) anions and protons on amide groups are easily lost, resulting in various isotopic patterns.

Valence	Molecular Formula	Observed	Simulated
+8	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_04(HOTf)]^{8+}$	809.16	809.18
+7	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_0\text{-}5(HOTf)]^{7+}$	924.76	924.78
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_1-4(HOTf)]^{7+}$	946.18	946.20
+6	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_0\text{-}6(HOTf)]^{6+}$	1078.55	1078.58
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_15(HOTf)]^{6+}$	1103.54	1103.57
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2-4(HOTf)]^{6+}$	1128.53	1128.56
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_33(HOTf)]^{6+}$	1153.53	1153.56
+5	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_07(HOTf)]^{5+}$	1294.26	1294.29
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_1\text{-}6(HOTf)]^{5+}$	1324.25	1324.28
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\textbf{-}5(HOTf)]^{5+}$	1354.24	1354.27
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_3\text{-}4(HOTf)]^{5+}$	1384.23	1324.27
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_43(HOTf)]^{5+}$	1414.22	1414.26
+4	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_08(HOTf)]^{4+}$	1617.32	1617.36
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_17(HOTf)]^{4+}$	1654.80	1654.85
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\text{-}6(HOTf)]^{4+}$	1692.30	1692.34
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_3\text{-}5(HOTf)]^{4+}$	1729.78	1729.83
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_4\text{-}4(HOTf)]^{4+}$	1767.27	1767.32
	$[Eu_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_5-3(HOTf)]^{4+}$	1804.76	1804.81

Table S4. Comparison of the observed and simulated signals in the ESI-MS spectrum of $Eu_4L_4(OTf)_{12}$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture.

Figure S12. ESI-TOF-MS spectra of $Gd_4L_4(OTf)_{12}$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture. The trifluoromethanesulfonate (CF₃SO₃⁻) anions and protons on the amide groups are readily lost, resulting in various isotopic patterns.

Table S5. Comparison of the observed and simulated signals in the ESI-MS spectrum of $Gd_4L_4(OTf)_{12}$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture.

Valence	Molecular Formula	Observed	Simulated
+8	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_0\text{-}4(HOTf)]^{8+}$	811.93	811.94
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_13(HOTf)]^{8+}$	830.43	830.43
+7	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_0\text{-}5(HOTf)]^{7+}$	927.64	927.64
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_14(HOTf)]^{7+}$	949.06	949.06
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\textbf{-}3(HOTf)]^{7+}$	970.48	970.49
+6	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_0\text{-}6(HOTf)]^{6+}$	1082.07	1082.08
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_15(HOTf)]^{6+}$	1107.07	1107.07
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\text{-}4(HOTf)]^{6+}$	1132.23	1132.23
+5	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_07(HOTf)]^{5+}$	1298.28	1298.29
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_1\text{-}6(HOTf)]^{5+}$	1328.28	1328.28
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\text{-}5(HOTf)]^{5+}$	1358.27	1358.28
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_3\text{-}4(HOTf)]^{5+}$	1388.26	1388.27
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_43(HOTf)]^{5+}$	1418.26	1418.26
+4	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_08(HOTf)]^{4+}$	1622.60	1622.61
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_2\text{-}6(HOTf)]^{4+}$	1697.59	1697.59
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_3\text{-}5(HOTf)]^{4+}$	1735.33	1735.33
	$[Gd_4(C_{87}H_{63}N_{12}O_{10}P)_4(OTf)_4\text{-}4(HOTf)]^{4+}$	1772.31	1772.32

Figure S13. ESI-TOF-MS spectra of $Eu_4L_4(OTf)_{12}$ in a CH₃CN/CH₃OH/AA (v/v/v = 20/10/3) mixture. The trifluoromethanesulfonate (CF₃SO₃⁻) anions and protons on amide groups are easily lost, resulting in various isotopic patterns.

Figure S14. ESI-TOF-MS spectra of $Eu(L')_2(OTf)_3$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture.

Figure S15. ESI-TOF-MS spectra of $Eu(6)_2(OTf)_3$ in a CH₃CN/CH₃OH (v/v = 2/1) mixture.

Figure S16. The ¹H NMR spectrum of **15** (400 MHz, DMSO-*d*₆, 298 K).

Figure S17. The ¹H-¹H COSY NMR spectrum of **15** (400 MHz, DMSO-*d*₆, 298 K).

Figure S18. The ¹³C NMR spectrum of 15 (101 MHz, DMSO-*d*₆, 298 K).

Figure S19. The ³¹P NMR spectrum of 15 (243 MHz, DMSO-*d*₆, 298 K).

Figure S20. The ¹H NMR spectrum of L (400 MHz, CDCl₃, 298 K).

Figure S21. The ¹H-¹H COSY NMR spectrum of L (400 MHz, CDCl₃, 298 K).

Figure S22. The partial enlargement of ¹H-¹H COSY NMR spectrum of L (400 MHz, CDCl₃, 298 K).

Figure S23. The ¹H-¹H NOESY NMR spectrum of L (400 MHz, CDCl₃, 298 K).

Figure S24. The ¹³C NMR spectrum of L (101 MHz, CDCl₃, 298 K).

Figure S25. The ³¹P NMR spectrum of L (243 MHz, CDCl₃, 298 K).

Figure S26. The ¹H NMR spectrum of L' (600 MHz, CDCl₃, 298 K).

Figure S27. The ¹H-¹H COSY NMR spectrum of L' (400 MHz, CDCl₃, 298 K).

Figure S28. The partial enlargement of ¹H-¹H COSY NMR spectrum of L' (600 MHz, CDCl₃, 298 K).

Figure S29. The ¹³C NMR spectrum of L' (151 MHz, CDCl₃, 298 K).

Figure S30. The ¹H NMR spectrum of $Eu(L')_2$ (600 MHz, $CD_3CN/CD_3OD v/v = 2/1$, 298 K).

Figure S31. The ¹H-¹H COSY NMR spectrum of $Eu(L')_2$ (400 MHz, CD₃CN/CD₃OD v/v = 2/1, 298 K).

Figure S32. The ¹³C NMR spectrum of Eu(L')₂ (151 MHz, CD₃CN/CD₃OD v/v = 2/1, 298 K).

Figure S33. The ¹H NMR spectrum of Eu(6)₂ (600 MHz, CD₃CN, 298 K).

Figure S34. The 1 H- 1 H COSY NMR spectrum of Eu(6)₂ (600 MHz, CD₃CN, 298 K).

Figure S35. The partial enlargement ¹H-¹H COSY NMR spectrum of $Eu(6)_2$ (600 MHz, CD₃CN, 298 K).

Figure S36. ¹H NMR spectra (400 MHz, CD₃CN/CD₃OD v/v = 2/1, 298 K) of Eu₄L₄: (a) after 1 hour of in-situ assembly, (b) after 14 days, and (c) redissolved crystals.

To further investigate the equilibration process, we conducted additional experiments where the NMR tube was sealed and heated for 14 days under the same conditions. As shown in Figure S36, no significant changes in the ¹H NMR spectra were observed between the 1-hour and 14-day assemblies, indicating that the system reaches equilibrium within the initial 1-hour timeframe. Furthermore, we measured the 1H NMR spectrum of the complex after dissolving the crystals. The spectrum obtained from dissolved crystals was consistent with that of the assembled complex, further confirming that the NMR behaviour corresponds to the final, equilibrated structure. The broadening of the NMR signals observed in the Eu(III) complex, in comparison to the free ligand, is primarily due to the reduction in symmetry ($C_3 \rightarrow S_4$) and the paramagnetic effects of the Eu(III) ion.

Figure S37 ¹H NMR titration spectra (400 MHz, CD₃CN/CD₃OD, v/v = 2/1, 298 K) for the formation of Eu_4L_4 , following the addition of different equivalents of $Eu(OTf)_3$ (calculated based on ligand L).

Figure S38. The ¹H-¹H DOSY NMR spectrum of Eu_4L_4 (600 MHz, CD₃CN/CD₃OD v/v = 2/1, 298 K).

6. Film Preparation

The films are fabricated by spin-coating a solution of Eu_4L_4 (5 mM in a CH₃NO₂/CH₃OH mixture, v/v = 2/1) onto a glass sheet (1.5 cm × 1.5 cm). The spinning process is conducted for 60 seconds at 3000 rpm.

Figure S39. (a) Atomic force microscope (AFM) image, (b) the profilometer characterized result, and (c) scanning electron microscope (SEM) image of the film.

7. Photophysical Properties

Figure S40. UV-vis spectra of L in CHCl₃ and Eu₄L₄ in CH₃CN (298 K).

Figure S41. Excitation and emission spectra of Eu_4L_4 in CH₃CN (298 K, c = 5×10⁻⁶ M).

Figure S42. Luminescent quantum yield of Eu_4L_4 in CH₃CN (298 K, c = 5×10⁻⁶ M, λ_{ex} = 330 nm).

Figure S43. Luminescent lifetimes of Eu₄L₄ in CH₃OH (c = 5×10^{-6} M, $\lambda_{ex} = 330$ nm, $\lambda_{em} = 612$ nm).

Figure S44. Luminescent lifetimes of Eu_4L_4 in CD₃OD (c = 5×10⁻⁶ M, λ_{ex} = 330 nm, λ_{em} = 612 nm).

Figure S45. Luminescent lifetime of Eu_4L_4 in a CD₃OD/AA mixture (v/v = 10:1) at a concentration of 5×10⁻⁶ M (λ_{ex} = 330 nm, λ_{em} = 612 nm).

The following empirical equation is used to determine the number of solvent molecules q coordinated to Eu^{3+} nodes in Eu_4L_4 compounds: ^[S6]

$$q = A \left(\tau_{solvent}^{-1} - \tau_{deutero-solvent}^{-1} - B \right)$$
(1)

Where empirically coefficients A = 2.1 and B = 0 were determined in CH₃OH and CD₃OD conditions. The calculated *q* value is 0.953 for **Eu₄L₄**, indicating that the metal centres of the cage have about one coordinated solvent molecule.

To further evaluate the potential replacement of coordinated solvent molecules by AA, we measured the luminescence lifetime of Eu_4L_4 in CD₃OD with excess AA. The calculated number of coordinated solvent molecules (q = 1.027) demonstrates that AA molecules exhibit a negligible ability to replace the solvent molecules coordinated to the Eu^(III) centres.

8. Film Responses and Luminescence Enhancement

Preparation of vapours at varying concentrations

Organic vapours of specific concentration were generated by diluting saturated vapours with N_2 . Saturated organic vapours were produced by evaporating the organic liquid (trioxymethylene for formaldehyde) in a Schlenk round-bottom flask at 20 °C overnight. Subsequently, the saturated vapours were diluted with N_2 using syringes to achieve the desired concentrations.

Figure S46. Emission spectra of the Eu_4L_4 films upon exposure to varying concentrations of aldehyde vapours ($\lambda_{ex} = 330$ nm).

Figure S47. Emission spectra of the **Eu(L')**₂ (a) and **Eu(6)**₂ (b) films upon exposure to varying concentrations of FA vapours ($\lambda_{ex} = 336$ nm, 338nm respectively).

The overall quantum yield ($\Phi_{overall}$) doesn't adequately reflect the efficiency of the ligand sensitization (Φ_{sens}) or intrinsic quantum yield of europium (Φ_{Ln}). The relationship can be expressed by the following equation: ^[S7]

$$\Phi_{sens} = \frac{\Phi_{overall}}{\Phi_{Ln}} \tag{2}$$

The intrinsic quantum yields of europium cannot be determined by experimentally due to the weak absorption intensity associated with direct f-f excitation. However, they can be determined by the following two equations: ^[S7]

$$\Phi_{Ln} = \frac{A_{RAD}}{A_{RAD} + A_{NR}} = \frac{\tau_{obs}}{\tau_{rad}}$$
(3)

$$A_{RAD} = \frac{1}{\tau_{rad}} = A_{MD,0} n^3 \left(\frac{I_{tot}}{I_{MD}}\right)$$
(4)

Where, A_{RAD} and A_{NR} represent the radiative and non-radiative decay rates, while τ_{obs} and τ_{rad} denote the observed and radiative lifetimes, respectively. The refractive index of the medium is denoted by n, I_{tot} refers to the integrated emission of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0 - 4) transition, and I_{MD} corresponds to the integrated emission of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition. The spontaneous emission probability for the magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ is given as $A_{MD,0} = 14.65 \text{ s}^{-1}$.

Since, $A_{MD,0}$ and *n* are not applicable in the film test, these parameters are adjusted by comparing with a blank film in the calculation formula ($\Phi_{Eu}/\Phi_{Eu-blank}$ and

Figure S48. Luminescence enhancement efficiency (I/I_0-1) of the Eu₄L₄ film as a function of the vapour concentration for various aldehydes.

Figure S49. Luminescence enhancement efficiency (I/I_0-1) of the $Eu(L')_2$ (a) and $Eu(6)_2$ (b) film as a function of the vapour concentration for FA.

 Eu_4L_4 films achieved a detection limit of 19.4 ppb, which is only 0.5% of the detection limit of $Eu(L')_2$ and $Eu(6)_2$ films (19.4 ppb vs. 3.8 ppm and 3.5 ppm). This highlights the significantly higher sensitivity of Eu_4L_4 films compared to their mononuclear counterparts.

Figure S50. Phosphorescence emission spectra of Gd_4L_4 in CH_3CN (c = 1.7×10^{-6} M) upon the addition of various aldehydes.

9. Supplementary References

[1] M. Yamamura, T. Saito and T. Nabeshima, J. Am. Chem. Soc., 2014, 136, 14299-14306.

[2] Y. Yang, T. K. Ronson, Z. Lu, J. Zheng, N. Vanthuyne, A. Martinez and J. R. Nitschke, *Nat Commun*, **2021**, *12*, 4079.

[3] C. Jiang, S.-J. Hu, L.-P. Zhou, J. Yang and Q.-F. Sun, *Chem. Commun.*, **2022**, *58*, 5494-5497.

[4] J. B. Maglic, R. Lavendomme, J. Appl. Cryst. 2022, 55, 1033–1044.

[5] L. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.

[6] R. C. Holz, C. A. Chang and W. D. Horrocks, Inorg. Chem., 1991, 30, 3270-3275.

[7] X. Q. Guo, L. P. Zhou, L. X. Cai and Q. F. Sun, *Chem.-Eur. J.*, **2018**, *24*, 6936-6940.