Electronic Supplementary Information (ESI) for Chemical Communications. This journal is (c) The Royal Society of Chemistry 2024. Electronic Supplementary Information (ESI)

Graphene quantum dots-modified Co₃O₄/NiCo₂O₄ yolk-shell polyhedrons as polysulfides-adsorptive sulfur host for lithium-sulfur batteries

Jing Xu^a, Kehao Tao^b, Yajun Zhu^{a,c}, Ting Zhou^a, Xiaofei Huang^a, Jinjin Li^{b,*}, Jinyun Liu^{a,*}

Experimental

Materials

In this work, $Co(NO_3)_2 \cdot 6H_2O$, 2-methylimidazole and sulfur powders were purchased from Aladdin Reagent (Shanghai) Co., Ltd. Methanol and Ni(NO₃)₂ · 6H₂O were purchased from Sinopharm Chemical Reagent Co., Ltd. Graphene quantum dots (GQDs) aqueous solution (1 mg mL⁻¹) was purchased from Suzhou Hengqiu Technology Co., Ltd. All reagents were analytical-grade pure and were used as received without further purification. *Synthesis of ZIF-67*

First, 1 mmol Co(NO₃)₂·6H₂O and 4 mmol 2-methylimidazole were dissolved in 25 mL methanol to form two solutions. The methanol solution containing 2-methylimidazole was poured into a methanol solution containing Co(NO₃)₂·6H₂O under stirring. After aging at room temperature for 24 h, the purple precipitate was collected by centrifugation, washed with deionized water and ethanol two times, and dried at 70 °C for 6 h.

Synthesis of Co₃O₄/NiCo₂O₄

The 40 mg ZIF-67 was ultrasonically dispersed in 25 mL ethanol solution containing 80 mg Ni(NO₃)₂·6H₂O. After stirring for 30 min, ZIF-67/Ni-Co layered double hydroxide (ZIF-67/Ni-Co LDH) formed, which was collected by centrifugation and washed with deionized water and ethanol, dried at 70 °C overnight, and then the resulting yolk-shell

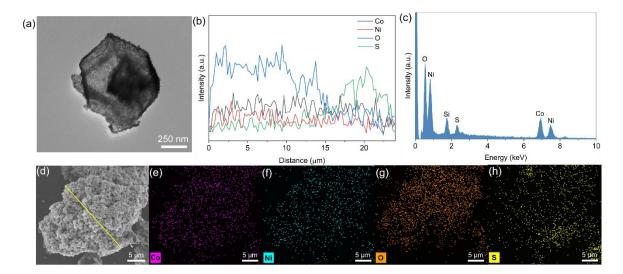
samples were annealed at 350 °C for 2 h in air at a heating rate of 1 °C min⁻¹. For control experiment, pure Co₃O₄ was also prepared by directly-heating ZIF-67 in air through the same approach.

Synthesis of Co₃O₄/NiCo₂O₄/GQDs@S

The Co₃O₄/NiCo₂O₄ polyhedrons (0.1 g) were mixed with 20 mL of GQDs solution and ultrasonicated for 5 min, then the mixture was collected and heated in an oven at 160 °C for 2 h. At last, Co₃O₄/NiCo₂O₄/GQDs was mixed with sulfur powders at a typical mass ratio of 3:7, sealed in argon gas, and placed in a reactor at 155 °C for 20 h. For comparison, Co₃O₄/NiCo₂O₄@S without GQDs, and Co₃O₄@S were also prepared by the similar method. *Characterization*

The samples were characterized on transmission electron microscopy (TEM, Hitachi HT-7700), scanning electron microscopy (SEM, Hitachi S4800), high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2010), X-ray diffraction (XRD, Rigaku SmartLab) through a Cu Kα radiation source, X-ray photoelectron spectroscopy (XPS, Thermo Scientific), and UV-visible spectroscopy (HITACHI, U-2910). Inductively coupled plasma optical emission spectrometer (ICP-OES, Thermo Scientific iCAP PRO) was used to measure the metal content of the sample.

Electrochemical measurements


The active materials, carbon black and polyvinylidene fluoride binder were uniformly mixed in N-methylpyrrolidone at a ratio of 7:2:1 to prepare a mixed slurry, then the slurry was coated on aluminum foil. The cathode had a typical sulfur loading of about 1.0 mg cm⁻². The lithium metal was used as the anode with the electrolyte of 1.0 M LiTFSI in a 1:1 (v/v) 1,3-dioxolane/dimethyl ether mixture with 1.0 wt% LiNO₃. The electrolyte to sulfur ratio used in each battery was about 20 μ L mg⁻¹. Celgard-2400 film was used as separator. Type-2032 coin cells were assembled in a glove box (Mikrona Super 1220/750/900) filled with argon gas. The charge and discharge tests were carried out on a NEWARE battery testing system. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed on an electrochemical working station (ChenHua CHI660e).

Adsorption towards polysulfides

In order to study the adsorption of $Co_3O_4/NiCo_2O_4/GQDs$ towards polysulfides, A Li_2S_6 solution was prepared by using S and Li_2S (molar ratio=5:1) in 1, 2-dimethoxy-ethane (50 mL) under stirring for 72 h. $Co_3O_4/NiCo_2O_4/GQDs$ or Co_3O_4 was put into 3 mL Li_2S_6 solution for adsorption. After overnight, the adsorbed solution was measured by using UV-vis spectroscopy (LAMBDA 850). All adsorption processes were carried out in glove box. In addition, initial Li_2S_6 solution was measured on UV-vis spectroscopy for comparison.

Theoretical calculations

First-principle calculations were performed in a Materials Studio software, setting 500 eV as the cutoff energy. The adsorption energies towards the polysulfide (Li₂S₄, Li₂S₆, Li₂S₈) on hosts were obtained by the following relation: $E_{ads} = E_{sub+s} - E_s - E_{sub}$, where the E_{sub+s} , where E_s and E_{sub} were the calculated energies of polysulfide–host, polysulfide, and host, respectively.

Fig. S1 (a) TEM image of Co₃O₄/NiCo₂O₄/GQDs. (b) Line-scanning curves and (c) EDS spectrum of Co₃O₄/NiCo₂O₄/GQDs@S. (d) SEM and (e-h) elemental mapping images of Co₃O₄/NiCo₂O₄/GQDs@S.

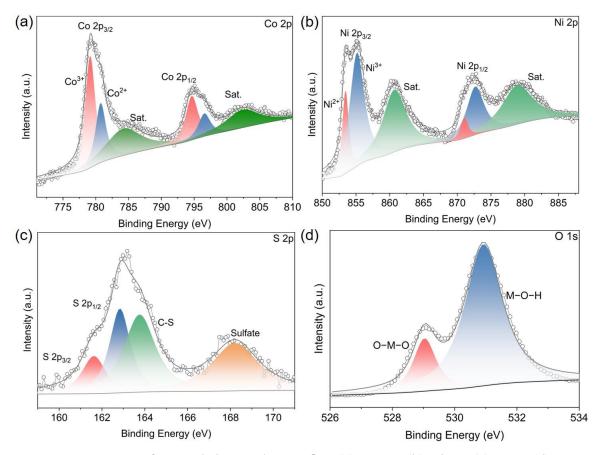


Fig. S2 XPS spectra of Co₃O₄/NiCo₂O₄/GQDs@S: (a) Co 2p, (b) Ni 2p, (c) S 2p, (d) O 1s.

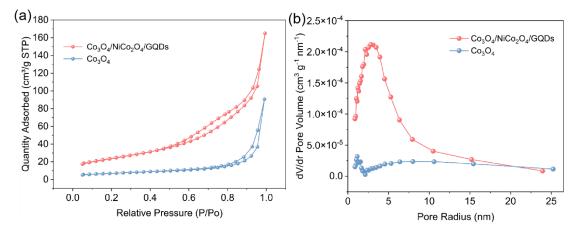
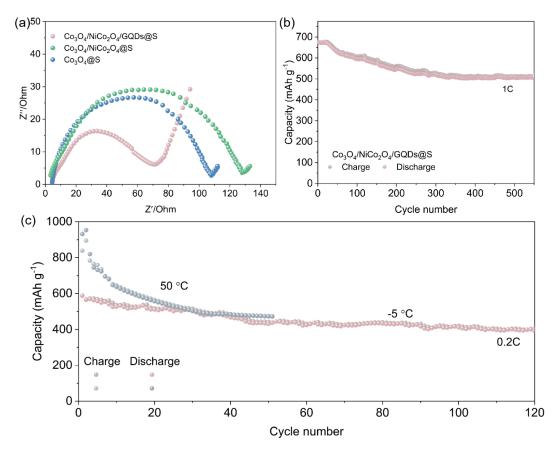



Fig. S3 (a) N₂ adsorption-desorption isotherms. (b) Pore-size distribution.

Fig. S4 (a) EIS spectra of Co₃O₄/NiCo₂O₄/GQDs@S, Co₃O₄/NiCo₂O₄@S and Co₃O₄@S after 100 cycles at 0.2 C. (b) Long-term cycle performance of Co₃O₄/NiCo₂O₄/GQDs@S

at 1C. (c) Cycling properties under -5 °C and 50 °C.

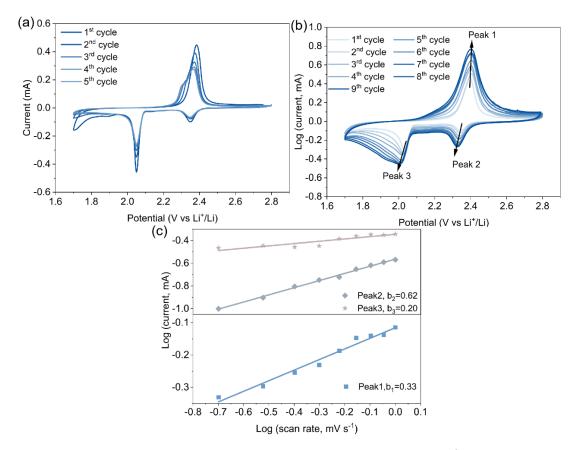


Fig. S5 (a) CV plots of Co₃O₄@S in the initial five cycles at 0.1 mV s⁻¹. (b) CV curves of Co₃O₄@S in the range of 0.1-1 mV s⁻¹. (c) Relationships between log(*i*) and log(*v*).

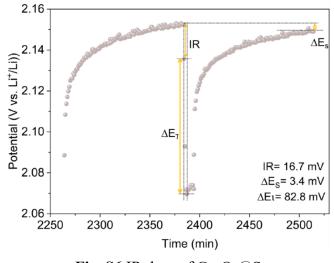
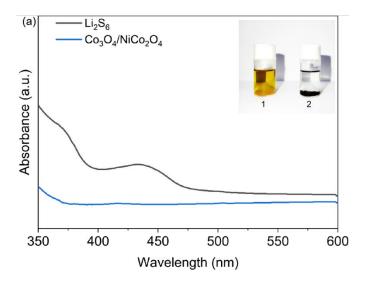



Fig. S6 IR drop of Co₃O₄@S.

Fig. S7 UV-vis spectra of the Li₂S₆ solution before and after adsorption by Co₃O₄/NiCo₂O₄/GQDs. Inset shows the photos: Li₂S₆ solution (1) before and (2) after adsorption.

Cathode	Cycling rate	Cycle number	Capacity (mAh g ⁻¹)	References
NiO-NiCo ₂ O ₄ @PPy hollow polyhedrons	1 C	200	411	[1]
MnO2@carbon hollow nanoboxes	2 A/g	200	~200	[2]
CoO/SnO2@NC/S	0.2 C	100	327	[3]
NiCo ₂ O ₄ hollow nanoflowers	0.5 C	100	610	[4]
Co ₃ O ₄ /S/carbon nanotubes	0.5 C	550	496	[5]
Co3O4/NiCo2O4/GQDs@S	0.2 C 1 C	100 600	727 508	This work

 Table S1. Comparison on electrochemical performance of some hollow host-based sulfur cathodes.

References

- [1] F. B. Xu, B. Jin, H. Li, W. T. Ju, Z. Wen and Q. Jiang, New J. Chem., 2019, 43, 18294.
- [2] S. Rehman, T. Y. Tang, Z. Ali, X. X. Huang and Y. L. Hou, *Small*, 2017, 13, 1700087.
- [3] M. T. Duan, M. R. Wu, K. Xue, Z. X. Bian, J. Shi, X. M. Guo, F. Cao, J. H. Zhang, Q. H. Kong and F. Zhang, Int. J. Min. Met. Mater., 2021, 28, 1647-1655.
- [4] Z. Cui, S. A. He, Q. Liu and R. J. Zou, Dalton, 2020, 49, 6876-6883.
- [5] J. X. Wang, C. Wang and M. M. Zhen, Chem. Eng. J., 2019, 356, 1-10.