## **Supporting Information**

## Pd(II)-Catalyzed Regionselective Ring Opening/[3+2] Annulation Reaction of Enaminones with Cyclopropenones: Divergent Synthesis of γ-Butenolides and γ-Lactams

Zhilai Zhang,<sup>§,a</sup> Yu Xu,<sup>§,a</sup> Menglin Peng,<sup>a</sup> Siyu Song,<sup>a</sup> Yuanzheng Wei,<sup>a</sup> Huimin Hu,<sup>a</sup> Xiuju Wang,<sup>\*,b</sup> and Fuchao Yu<sup>\*,a</sup>

<sup>a</sup>Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
E-mail: <u>yufuchao05@126.com</u>; <u>yufc@kust.edu.cn</u>
<sup>b</sup>School of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
E-mail: <u>wangxiuju0205@163.com</u>

<sup>§</sup>Z. Zhang and Y. Xu contributed equally.

### **Table of Contents**

| 1. General information.                                                      | 2   |
|------------------------------------------------------------------------------|-----|
| 2. Optimization of reaction conditions                                       | 3   |
| 3. General procedure.                                                        | 5   |
| 4. Spectroscopic data.                                                       | 13  |
| 5. X-ray Structure and Data.                                                 | 42  |
| 6. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra for spectroscopic data | 45  |
| 7. References and notes                                                      | 201 |

### 1. General information.

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a DRX600 (<sup>1</sup>H: 500 MHz and 600 MHz, <sup>13</sup>C: 125 MHz and 150 MHz), chemical shifts ( $\delta$ ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl<sub>3</sub> and DMSO-*d*<sub>6</sub> were used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF<sub>254</sub>. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/MS TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

Enaminones 1 were prepared according to the literature<sup>1</sup>, cyclopropenones 2 were prepared according to the literature<sup>2</sup>, other reagents were purchased from Energy Chemical and Adamas-beta $\mathbb{R}$ .



Figure S1. Representative natural *y*-butenolides and *y*-lactams.

## 2. Optimization of reaction conditions.

**Table S1**. Optimization of the reaction conditions for the  $\gamma$ -butenolides synthesis.<sup>*a,b*</sup>

|       |                           | 0                        | 0                            | Ph, F             | 'n             |          |            |
|-------|---------------------------|--------------------------|------------------------------|-------------------|----------------|----------|------------|
|       |                           | Ph                       | Ĵ                            | $\rightarrow$     |                |          |            |
|       |                           | Me _                     | A                            | 0=/               | ≈0             |          |            |
|       |                           | N <sup>rma</sup> Phi     | ´ `Ph                        | Ph C              |                |          |            |
|       | <u> </u>                  | la Me                    | 2a                           | Ja                | <b>T</b> (0.0) |          |            |
| entry | Catalyst (eq.)            | Additive (eq.)           | Co-catalyst (eq.)            | Solvent           | T (°C)         | Time (h) | Y 1eld (%) |
| 1     | $PdCl_2(0.5)$             | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | 47         |
| 2     | $Pd(OAc)_2(0.5)$          | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 3     | $PdCl_2(PPh_3)_2(0.5)$    | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 4     | PdIFA(0.5)                | /                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 5     | PdO (0.5)                 | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 6     | $FeCl_3(0.5)$             | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.r.       |
| /     | $FeCl_2(0.5)$             | 1                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 8     | $FeBr_2(0.5)$             | 1                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 9     | $N_1Cl_2(0.5)$            | 1                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.r.       |
| 10    | $C_0C_{12}(0.5)$          | 1                        | /                            | $MeNO_2$          | 50             | 12       | 20         |
| 11    | $CuCl_2(0.5)$             | 1                        | /                            | MeNO <sub>2</sub> | 50             | 12       | 26         |
| 12    | CuCI(0.5)                 | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 13    | $\operatorname{Cul}(0.5)$ | 1                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 14    | $Cu(OAc)_2(0.5)$          | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 15    | $Cu(OII)_2(0.5)$          | /                        | /                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 16    | $B_1(OTf)_3(0.5)$         | 1                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | trace      |
| 17    | $PPh_3(0.5)$              | /                        | 1                            | MeNO <sub>2</sub> | 50             | 12       | n.d.       |
| 18    | $PdCl_2(0.5)$             | AcOH (1)                 | 1                            | MeNO <sub>2</sub> | 50             | 12       | 38         |
| 19    | $PdCl_2(0.5)$             | p-TSA (1)                | 1                            | MeNO <sub>2</sub> | 50             | 12       | 34         |
| 20    | $PdCl_2(0.5)$             | $MeSO_3H(1)$             | 1                            | MeNO <sub>2</sub> | 50             | 12       | 30         |
| 21    | $PdCl_2(0.5)$             | $Ac_2O(1)$               | /                            | MeNO <sub>2</sub> | 50             | 12       | 59         |
| 22    | $PdCl_2(0.5)$             | Adipic acid (1)          | /                            | MeNO <sub>2</sub> | 50             | 12       | 41         |
| 23    | $PdCl_2(0.5)$             | Benzoic anhydride (1)    | /                            | MeNO <sub>2</sub> | 50             | 12       | 43         |
| 24    | $PdCl_2(0.5)$             | TFAA(1)                  | /                            | MeNO <sub>2</sub> | 50             | 12       | 30         |
| 25    | $PdCl_2(0.5)$             | Succinic anhydride (1)   | /                            | MeNO <sub>2</sub> | 50             | 12       | 49         |
| 26    | $PdCl_2(0.5)$             | Pivalic anhydride (1)    | /                            | MeNO <sub>2</sub> | 50             | 12       | 46         |
| 27    | $PdCl_2(0.5)$             | Isobutyric anhydride (1) | /                            | MeNO <sub>2</sub> | 50             | 12       | 42         |
| 28    | $PdCl_2(0.5)$             | $Ac_2O(2)$               | /                            | MeNO <sub>2</sub> | 50             | 12       | 73         |
| 29    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 50             | 12       | 82         |
| 30    | $PdCl_2(0.5)$             | $Ac_2O(4)$               | /                            | MeNO <sub>2</sub> | 50             | 12       | 81         |
| 31    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | DCM               | 50             | 12       | 67         |
| 32    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | DCE               | 50             | 12       | 53         |
| 33    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | THF               | 50             | 12       | n.d.       |
| 34    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | CHCl <sub>3</sub> | 50             | 12       | 35         |
| 35    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeOH              | 50             | 12       | n.d.       |
| 36    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | DMF               | 50             | 12       | n.d.       |
| 37    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | 1,4-Dioxane       | 50             | 12       | 31         |
| 38    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeCN              | 50             | 12       | 28         |
| 39    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 60             | 12       | 92         |
| 40    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 70             | 12       | 91         |
| 41    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 60             | 6        | 92         |
| 42    | $PdCl_2(0.5)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 60             | 4        | 85         |
| 43    | $PdCl_2(0.1)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 60             | 6        | 58         |
| 44    | $PdCl_2(0.3)$             | $Ac_2O(3)$               | /                            | MeNO <sub>2</sub> | 60             | 6        | 70         |
| 45    | $PdCl_2(0.1)$             | $Ac_2O(3)$               | $CuCl_2(0.5)$                | MeNO <sub>2</sub> | 60             | 6        | 73         |
| 46    | $PdCl_2(0.1)$             | $Ac_{2}O(3)$             | AgCl (0.5)                   | MeNO <sub>2</sub> | 60             | 6        | 40         |
| 47    | $PdCl_2(0.1)$             | $Ac_{2}O(3)$             | CuCl (0.5)                   | MeNO <sub>2</sub> | 60             | 6        | 90         |
| 48    | $PdCl_2(0.1)$             | $Ac_{2}O(3)$             | $\operatorname{CoCl}_2(0.5)$ | MeNO <sub>2</sub> | 60             | 6        | 63         |
| 49    | $PdCl_{2}(0.1)$           | $Ac_2O(3)$               | $NiCl_{2}(0.5)$              | MeNO <sub>2</sub> | 60             | 6        | 65         |
| 50    | PdCl <sub>2</sub> (0.1)   | $Ac_2O(3)$               | CuCl (0.25)                  | MeNO <sub>2</sub> | 60             | 6        | 92         |
| 51    | $PdCl_{2}(0.1)$           | $Ac_{2}O(3)$             | CuCl (0.1)                   | MeNO <sub>2</sub> | 60             | 6        | 80         |
| 52    | PdCl <sub>2</sub> (0.05)  | $Ac_2O(3)$               | CuCl (0.25)                  | MeNO <sub>2</sub> | 60             | 6        | 82         |
| 53    | $PdCl_{2}(0.1)$           | $Ac_2O(2)$               | CuCl (0.25)                  | MeNO <sub>2</sub> | 60             | 6        | 86         |
| 54    | $PdCl_{2}(0.1)$           | $Ac_2O(4)$               | CuCl (0.25)                  | MeNO <sub>2</sub> | 60             | 6        | 92         |

<sup>a</sup>Rseaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol) and catalyst in 1.0 mL solvent for 6.0 h-12.0 h. <sup>b</sup>Isolated yields.

|          | ç                            | ) Me c                        | )                  | Ph<br>O | )=0      |            |
|----------|------------------------------|-------------------------------|--------------------|---------|----------|------------|
|          |                              |                               |                    |         |          |            |
|          |                              | ··· Ph                        | Pn                 |         | <u> </u> |            |
| <u> </u> | C + 1 + ( )                  | 4b 2a                         |                    | 50      | Me       | X7: 11(0/) |
| Entry    | Catalyst (eq.)               | Additive (eq.)                | Solvent            | 1 (°C)  | lime (h) | Y ield (%) |
| 1        | $PdCl_2(1)$                  | /                             | MeNO <sub>2</sub>  | 50      | 12       | 45         |
| 2        | $PdCl_2(1)$                  | 1                             | DCM<br>1.4 Diavana | 50      | 12       | n.d.       |
| 3        | $PdCl_2(1)$                  | /                             | T,4-Dioxane        | 50      | 12       | n.u.       |
| 4        | $PdCl_2(1)$<br>$PdCl_2(1)$   | /                             | IFE<br>MaCN        | 50      | 12       | n.u.       |
| 5        | $PdCl_2(1)$                  | /                             | HECH               | 50      | 12       | n.u.       |
| 07       | $PdCl_2(1)$<br>$PdCl_2(1)$   | /                             | DCE                | 50      | 12       | n.u.       |
| 0        | $PdCl_2(1)$                  | /                             | DUCL               | 50      | 12       | n.u.       |
| 8        | $PdCl_2(1)$                  | 1                             | CHCI3              | 50      | 12       | n.d.       |
| 9        | $PdCl_2(1)$                  | 1                             | DMSU               | 50      | 12       | n.d.       |
| 10       | $PdCl_2(1)$                  | 1                             | PhCI               | 50      | 12       | n.d.       |
| 11       | $PdCl_2(1)$                  |                               | DMF                | 50      | 12       | n.d.       |
| 12       | $PdCl_2(1)$                  | 1                             | 1 oluene           | 50      | 12       | n.a.       |
| 13       | $PdCl_2(0.5)$                | /                             | MeNO <sub>2</sub>  | 50      | 12       | 44         |
| 14       | $PdCl_2(0.25)$               | /                             | MeNO <sub>2</sub>  | 50      | 12       | 27         |
| 15       | $FeCl_3(0.5)$                | /                             | MeNO <sub>2</sub>  | 50      | 12       | n.r.       |
| 16       | $FeCl_2(0.5)$                | /                             | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 17       | $\operatorname{CuCl}_2(0.5)$ | /                             | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 18       | $ZnCl_2(0.5)$                | /                             | $MeNO_2$           | 50      | 12       | n.r.       |
| 19       | $BiCl_3(0.5)$                | /                             | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 20       | $PdCl_{2}(0.5)$              | NaOAc (1)                     | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 21       | $PdCl_{2}(0.5)$              | $Cs_2CO_3(1)$                 | MeNO <sub>2</sub>  | 50      | 12       | n.r.       |
| 22       | $PdCl_{2}(0.5)$              | $NaBF_{4}(1)$                 | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 23       | $PdCl_{2}(0.5)$              | $BiCl_3(1)$                   | MeNO <sub>2</sub>  | 50      | 12       | 30         |
| 24       | PdCl <sub>2</sub> (0.5)      | AgCl (1)                      | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 25       | $PdCl_{2}(0.5)$              | $CuCl_2(1)$                   | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 26       | $PdCl_{2}(0.5)$              | $\operatorname{FeCl}_{2}(1)$  | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 27       | PdCl <sub>2</sub> (0.5)      | $NiCl_2(1)$                   | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 28       | $PdCl_{2}(0.5)$              | $\operatorname{CoCl}_2(1)$    | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 29       | PdCl <sub>2</sub> (0.5)      | $ZnCl_2(1)$                   | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 30       | PdCl <sub>2</sub> (0.5)      | TMSCl(1)                      | MeNO <sub>2</sub>  | 50      | 12       | 24         |
| 31       | PdCl <sub>2</sub> (0.5)      | TBPB (1)                      | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 32       | PdCl <sub>2</sub> (0.5)      | PIDA (1)                      | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 33       | PdCl <sub>2</sub> (0.5)      | HCl(1)                        | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 34       | PdCl <sub>2</sub> (0.5)      | $MeSO_{3}H(1)$                | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 35       | PdCl <sub>2</sub> (0.5)      | $Ac_2O(1)$                    | MeNO <sub>2</sub>  | 50      | 12       | 50         |
| 36       | $PdCl_2(0.5)$                | Benzoic anhydride (1)         | MeNO <sub>2</sub>  | 50      | 12       | n.d.       |
| 37       | PdCl <sub>2</sub> (0.5)      | TFAA(1)                       | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 38       | $PdCl_2(0.5)$                | Succinic anhydride (1)        | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 39       | $PdCl_2(0.5)$                | Hexanoic anhydride (1)        | MeNO <sub>2</sub>  | 50      | 12       | trace      |
| 40       | $PdCl_2(0.5)$                | Trimethylacetic anhydride (1) | MeNO <sub>2</sub>  | 50      | 12       | 41         |
| 41       | $PdCl_2(0.5)$                | Isobutyric anhydride (1)      | MeNO <sub>2</sub>  | 50      | 12       | 26         |
| 42       | $PdCl_{2}(0.5)$              | $Ac_2O(2)$                    | MeNO <sub>2</sub>  | 50      | 12       | 57         |
| 43       | PdCl <sub>2</sub> (0.5)      | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 50      | 12       | 65         |
| 44       | $PdCl_2(0.5)$                | $Ac_2O(4)$                    | MeNO <sub>2</sub>  | 50      | 12       | 65         |
| 45       | $PdCl_{2}(0.5)$              | AcOH (3)                      | MeNO <sub>2</sub>  | 50      | 12       | 23         |
| 46       | $PdCl_{2}(0.5)$              | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 50      | 6        | 36         |
| 47       | $PdCl_{2}(0.5)$              | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 50      | 9        | 48         |
| 48       | $PdCl_{2}(0.5)$              | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 50      | 15       | 64         |
| 49       | /                            | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 50      | 12       | n.r.       |
| 50       | $PdCl_{2}(0.5)$              | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 40      | 12       | 45         |
| 51       | $PdCl_2(0.5)$                | $Ac_2O(3)$                    | MeNO <sub>2</sub>  | 60      | 12       | 53         |
|          |                              | 20 (0)                        |                    |         |          |            |

**Table S2**. Optimization of the reaction conditions for the  $\gamma$ -lactams synthesis.<sup>*a,b*</sup>

<sup>a</sup>Reaction conditions: **4b** (0.1 mmol), **2a** (0.12 mmol) and catalyst in 1.0 mL solvent for 6.0-12.0 h. <sup>b</sup>Isolated yields.

#### **3.** General procedure.

#### **3.1** Synthesis of γ-butenolides **3**.



*N*,*N*-Dimethyl enaminones **1** (0.2 mmol), cyclopropenone **2** (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (10 mol%), CuCl (25 mol%), Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C (metal bath) for 6.0 h until **1** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL  $\times$  2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford *y*-butenolides **3**.

#### **3.2** Synthesis of *γ*-lactams **5**.



Enaminones 4 (0.2 mmol), cyclopropenone 2 (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (0.5 eq.), Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 12.0 h until 4 were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL  $\times$  2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford 2*H*-pyrrol-2-ones **5**.

#### **3.3** Synthesis of butenolide 7.



 $\alpha$ -Chlorinated enaminones **6** (0.2 mmol), cyclopropenone **2** (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (0.5 eq.), Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 12.0 h until **6** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL),

dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford 2*H*-pyrrol-2-ones **7**.

#### 3.4 Gram-scale synthesis of butenolide 3a.



*N*,*N*-Dimethyl enaminones **1a** (3.0 mmol), cyclopropenone **2a** (3.6 mmol, 1.2 eq.), PdCl<sub>2</sub> (10 mol%), CuCl (25 mol%), Ac<sub>2</sub>O (9.0 mmol, 3.0 eq.), and MeNO<sub>2</sub> (15 mL) were charged into a 75 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C (metal bath) for 6.0 h until **1a** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (30 mL  $\times$  2) were added. The organic phase was washed with water (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford *y*-butenolide **3a** in 82% yield (0.87 g).

#### 3.5 Gram-scale synthesis of butenolide 5b.



Enaminones **4b** (3.0 mmol), cyclopropenone **2a** (3.6 mmol, 1.2 eq.), PdCl<sub>2</sub> (0.5 eq.), Ac<sub>2</sub>O (9.0 mmol, 3.0 eq.), and MeNO<sub>2</sub> (15 mL) were charged into a 75 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 12.0 h until **4b** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (30 mL  $\times$  2) were added. The organic phase was washed with water (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford 2*H*-pyrrol-2-ones **5b** in 42% yield (0.56 g).

#### 3.6 The Synthetic Applications.



 $\gamma$ -Butenolide **3a** (0.2 mmol), NaBH<sub>4</sub> (0.4 mmol, 2.0 eq.), and THF (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 1.0 h until **3a** were completely consumed. The mixture was cooled to room

temperature, and then EtOAc (10 mL  $\times$  2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford **8**.



 $\gamma$ -Butenolide **3a** (0.2 mmol), NBS (0.2 mmol, 1.0 eq.), L-Pro (0.1 mmol, 0.5 eq.), and DCM (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at room temperature for 4.0 h until **3a** were completely consumed. And then EtOAc (10 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford **9**.



 $\gamma$ -Butenolide **3a** (0.2 mmol), NH<sub>2</sub>OH•HCl (0.3 mmol, 1.5 eq.), K<sub>2</sub>CO<sub>3</sub> (0.3 mmol, 1.5 eq.), and MeOH (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at room temperature for 0.5 h until **3a** were completely consumed. And then EtOAc (10 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford **10**.



 $\gamma$ -Butenolide **3a** (0.2 mmol), 4-methylbenzenesulfonhydrazide (0.24 mmol, 1.2 eq.), and MeOH (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at room temperature for 0.5 h until **3a** were completely consumed. And then EtOAc (10 mL  $\times$  2) were added. The organic phase was washed with water (10 mL),

dried over  $Na_2SO_4$ , concentrated and purified by flash column chromatography to afford 11.



2*H*-Pyrrol-2-ones **5b** (0.2 mmol), NaBH<sub>4</sub> (0.4 mmol, 2.0 eq.), and THF (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 1.0 h until **5b** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (10 mL  $\times$  2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford **12**.

#### 3.7 H/D Exchange experiment.



*N*,*N*-Dimethyl enaminones **1a** (0.2 mmol), cyclopropenone **2a** (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (10 mol%), CuCl (25 mol%), D<sub>2</sub>O, (0.6 mmol, 3.0 eq.), Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C (metal bath) for 6.0 h until **1a** were completely consumed, and then EtOAc (10 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford  $\gamma$ -butenolide **3a-D**. The deuterium content in the structure was identified by <sup>1</sup>H NMR.



Enaminones **4b** (0.2 mmol), cyclopropenone **2a** (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (0.5 eq.), D<sub>2</sub>O, (0.6 mmol, 3.0 eq.), Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 50 °C (metal bath) for 12.0 h until **4b** were completely consumed, and then EtOAc (10 mL  $\times$  2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated

and purified by flash column chromatography to afford 2H-pyrrol-2-ones **5b-D**. The deuterium content in the structure was identified by <sup>1</sup>H NMR.



#### 3.8<sup>18</sup>O Iabeling experiment.



*N*,*N*-dimethyl enaminones **1a** (0.2 mmol), cyclopropenone **2a** (0.24 mmol, 1.2 eq.), PdCl<sub>2</sub> (10 mol%), CuCl (25 mol%), H<sub>2</sub><sup>18</sup>O, (0.6 mmol, 3.0 eq.)Ac<sub>2</sub>O (0.6 mmol, 3.0 eq.), and MeNO<sub>2</sub> (2 mL) were charged into a 15 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C (metal bath) for 6.0 h until **1a** were completely consumed, and then EtOAc (10 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by flash column chromatography to afford  $\gamma$ -butenolide **3a-O**. The <sup>18</sup>O content in the structure was identified by HRMS.

HRMS (TOF ES+): m/z calcd for  $C_{24}H_{18}NaO_2^{18}O$  [(M+Na)<sup>+</sup>], 379.1191, found, 379.1195.



#### 3.9 Proposed reaction mechanism

Based on the above experimental results and previous reports,<sup>3</sup> we proposed a possible mechanism for this Pd(II)-catalyzed [3+2] annulation process between *N*,*N*-dimethyl enaminone **1a** and cyclopropenone **2a**. Initially, cyclopropenone **2a** is complexed with CuCl to generate copper complex species **I**, which is attacked by enaminone **1a** through nucleophilic addition to generate intermediate **II**. Subsequently, PdCl<sub>2</sub> is coordinated with the C=C bond of intermediate **II** to form intermediate **III**. Then the ring opening of **III** *via* C-C bond activation generates intermediates **IV** along with regeneration of the co-catalyst CuCl. **VI** undergoes an intramolecular Heck reaction to give intermediate **V**, which is easily converted to intermediate **VI** *via* protonation and the

released  $PdCl_2$  is regenerated for the next catalytic cycle. Finally, product **3a** is formed through the hydrolysis of **VI**.



Scheme S1. Proposed reaction mechanism of *y*-butenolides construction.

Based on the above experimental results and literature reports,<sup>4</sup> we proposed a possible mechanism to describe this Pd(II)-catalyzed [3+2] annulation process between *NH*-substituted enaminone **4a** and cyclopropenone **2a**. Firstly, cyclopropenone **2a** is complexed with PdCl<sub>2</sub> to generate intermediate **I**, which subsequently reacts with *NH*-substituted enaminone **4a** to form intermediate **II**. The intermediate **II** undergoes intramolecular ring-opening/cyclization process to give intermediate **III** and leave a molecule of PdCl<sub>2</sub>. Finally, a keto-enol tautomerism occurr to produce the desire product **5a**.



Scheme S2. Proposed reaction mechanism of *y*-lactams construction.

### 4. Spectroscopic data.

2-(5-Oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3a)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 65 mg (92%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.70 (s, 1H), 7.45–7.43 (m, 3H), 7.36–7.30 (m, 7H), 7.29–7.27 (m, 3H), 6.75 (d, *J* = 7.5 Hz, 2H), 3.70 (dd, *J* = 17.0, 1.9 Hz, 1H), 3.46 (dd, *J* = 17.1, 1.9 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.4, 163.9, 136.5, 131.3, 130.0, 129.8, 129.5, 129.5, 129.5, 129.5, 129.2, 129.2, 129.2, 128.7, 128.7, 128.5, 126.9, 126.4, 126.4, 87.5, 46.7; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>19</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 355.1329, found, 355.1338.

2-(5-Oxo-3,4-diphenyl-2-(p-tolyl)-2,5-dihydrofuran-2-yl)acetaldehyde (3b)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 70 mg (89%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.68 (s, 1H), 7.36–7.33 (m, 1H), 7.32–7.22 (m, 11H), 6.76 (d, *J* = 7.0 Hz, 2H), 3.66 (dd, *J* = 17.0, 2.0 Hz, 1H), 3.41 (dd, *J* = 17.2, 2.0 Hz, 1H), 2.33 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.4, 163.9, 139.0, 133.5, 131.3, 130.0, 130.0, 129.9, 129.5, 129.5, 129.2, 129.2, 129.2, 128.7, 128.7, 128.6, 128.6, 126.8, 126.3, 126.3, 87.5, 46.8, 21.1; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>20</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 391.1305, found, 391.1310.

#### 2-(5-Oxo-3,4-diphenyl-2-(o-tolyl)-2,5-dihydrofuran-2-yl)acetaldehyde (3c)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 51 mg (65%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.73 (s, 1H), 7.37–7.31 (m, 8H), 7.26–7.22 (m, 4H), 6.70–6.66 (m, 2H), 3.73 (dd, *J* = 17.0, 2.3 Hz, 1H), 3.32 (dd, *J* = 17.0, 1.9 Hz, 1H), 2.33 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.9, 171.6, 161.7, 137.2, 133.8, 132.7, 131.2, 130.0, 129.9, 129.6, 129.4, 129.4, 129.3, 129.3, 129.2, 129.2, 128.8, 128.4, 128.4, 128.4, 128.4, 127.0, 89.3, 49.7, 21.1; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>20</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 391.1305, found, 391.1306.

2-(2-(4-Hydroxyphenyl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3d)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow oil: 71 mg (93%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>) δ = 9.69 (s, 1H), 7.37–7.31 (m, 6H), 7.30–7.27 (m, 4H), 7.00 (d, *J* = 8.5 Hz, 2H), 6.76 (d, *J* = 7.6 Hz, 2H), 3.78 (s, 3H), 3.67–3.62 (m, 1H), 3.41–3.39 (m, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) δ = 199.9, 171.4, 163.8, 160.0, 131.3, 130.0, 129.9, 129.5, 129.5, 129.2, 128.7, 128.7, 128.7, 128.6, 128.6, 128.1, 127.9, 127.9, 126.7, 114.8, 114.8, 87.4, 55.7, 46.8; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>21</sub>O<sub>4</sub> [(M+H)<sup>+</sup>], 385.1434, found, 385.1444.

2-(5-Oxo-3,4-diphenyl-2-(3,4,5-trimethoxyphenyl)-2,5-dihydrofuran-2-yl)acetaldehyde (3e)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 2:1, R<sub>f</sub> = 0.3; Yellow oil: 80 mg (90%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.68 (s, 1H), 7.40–7.37 (m, 1H), 7.36–7.30 (m, 7H), 6.86 (d, *J* = 7.5 Hz, 2H), 6.52 (s, 2H), 3.72 (d, *J* = 17.1 Hz, 1H), 3.68 (s, 3H), 3.67 (s, 6H), 3.43 (d, *J* = 17.3 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.6, 170.7, 163.3, 153.0, 153.0, 137.8, 131.7, 131.0, 129.6, 129.5, 129.2, 129.2, 128.8, 128.7, 128.7, 128.4, 128.4, 128.3, 128.3, 126.4, 103.4, 103.4, 87.2, 60.2, 56.0, 56.0, 47.1; HRMS (TOF ES+): m/z calcd for C<sub>27</sub>H<sub>24</sub>NaO<sub>6</sub> [(M+Na)<sup>+</sup>], 467.1465, found, 467.1474.

# *N*-(4-(5-Oxo-2-(2-oxoethyl)-3,4-diphenyl-2,5-dihydrofuran-2-yl)phenyl)acetamide (3f)



 $V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.3$ ; Yellow oil: 63 mg (73%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta = 10.14$  (s, 1H), 9.69 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.34–7.28 (m, 10H),

6.76 (d, J = 7.2 Hz, 2H), 3.64 (d, J = 17.0 Hz, 1H), 3.38–3.37 (m, 1H), 2.06 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta = 199.9$ , 171.4, 169.1, 163.7, 140.4, 131.3, 130.4, 130.0, 129.9, 129.6, 129.5, 129.5, 129.4, 129.2, 129.2, 128.9, 128.7, 128.7, 128.6, 128.6, 127.1, 126.8, 119.5, 87.4, 46.6, 24.5; HRMS (TOF ES+): m/z calcd for C<sub>26</sub>H<sub>21</sub>NNaO<sub>4</sub> [(M+Na)<sup>+</sup>], 434.1363, found, 434.1370.

# 2-(2-(4-Bromophenyl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3g)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; colorless oil: 77 mg (89%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.67 (s, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.33–7.27 (m, 9H), 6.79 (d, *J* = 7.2 Hz, 2H), 3.72 (d, *J* = 17.4 Hz, 1H), 3.49 (d, *J* = 17.3 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.1, 170.8, 163.2, 135.7, 131.9, 131.9, 130.7, 129.6, 129.3, 129.1, 129.1, 129.1, 128.9, 128.9, 128.9, 128.3, 128.2, 128.2, 128.2, 128.2, 126.6, 122.4, 86.7, 46.3; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>18</sub>BrO<sub>3</sub> [(M+H)<sup>+</sup>], 433.0434, found, 433.0441.

2-(5-Oxo-3,4-diphenyl-2-(4-(trifluoromethyl)phenyl)-2,5-dihydrofuran-2-yl)acetaldehyde (3h)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow oil: 73 mg (87%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.68 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.33–7.30 (m, 7H), 6.78 (d, *J* = 7.6 Hz, 2H), 3.81 (d, *J* = 18.0 Hz, 1H), 3.62–3.57 (m, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.4, 171.2, 163.5, 141.4, 131.0, 130.1, 129.6, 129.6, 129.5, 129.5, 129.3, 129.3, 129.3 (d, *J* = 34.5 Hz), 128.7, 128.7, 128.7, 128.6, 128.6, 127.3, 127.3, 126.3 (q, *J* = 3.0 Hz), 124.4 (d, *J* = 270 Hz), 87.1, 46.9; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = -61.13; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>17</sub>F<sub>3</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 445.1022, found, 445.1029.

4-(5-Oxo-2-(2-oxoethyl)-3,4-diphenyl-2,5-dihydrofuran-2-yl)benzonitrile (3i)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow oil: 67 mg (88%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.66 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.33–7.29 (m, 7H), 6.77 (d, *J* = 7.1 Hz, 2H), 3.81 (d, *J* = d, *J* = 17.6 Hz, 1H), 3.59 (dd, *J* = 17.6 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 198.8, 170.7, 163.0, 141.7, 132.8, 132.8, 130.5, 129.7, 129.1, 129.1, 129.1, 128.9, 128.9, 128.9, 128.3, 128.3, 128.2, 128.2, 127.0, 127.0, 126.9, 118.4, 111.7, 86.7, 46.3; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>18</sub>NO<sub>3</sub> [(M+H)<sup>+</sup>], 380.1281, found, 380.1286.

# 2-(2-(4-(Methylsulfonyl)phenyl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3j)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 1:1, R<sub>f</sub> = 0.1; Yellow oil: 74 mg (86%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.68 (s, 1H), 7.96 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.33–7.30 (m, 7H), 6.78 (d, *J* = 7.1 Hz, 2H), 3.82 (d, *J* = 16.2 Hz, 1H), 3.60 (d, *J* = 17.6 Hz, 1H), 3.26 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 198.9, 170.8, 163.0, 142.0, 141.1, 130.5, 129.7, 129.2, 129.2, 129.2, 128.9, 128.9, 128.9, 128.3, 128.3, 128.2, 128.2, 127.6, 127.6, 127.0, 127.0, 127.0, 86.7, 46.5, 43.4; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>21</sub>O<sub>5</sub>S [(M+H)<sup>+</sup>], 433.1104, found, 433.1112.

#### 2-(2-(4-Nitrophenyl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3k)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 2:1, R<sub>f</sub> = 0.2; Yellow oil: 66 mg (83%); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.78 (s, 1H), 8.22 (d, *J* = 8.4 Hz, 2H), 7.43–7.35 (m, 4H), 7.29 (d, *J* = 26.8 Hz, 6H), 6.83–6.71 (m, 2H), 3.49 (d, *J* = 16.2 Hz, 1H), 3.19 (d, *J* = 16.3 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.0, 170.5, 162.3, 148.2, 143.4, 130.6, 130.0, 129.4, 129.3, 129.3, 129.1, 129.1, 128.4, 128.4, 128.4, 128.2, 128.2, 127.6, 126.9, 126.9, 124.1,

124.1, 86.4, 48.1; HRMS (TOF ES+): m/z calcd for  $C_{24}H_{18}NO_5$  [(M+H)<sup>+</sup>], 400.1179, found, 400.1184.

#### 2-(2-(3-Nitrophenyl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (31)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 75 mg (94%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.67 (s, 1H), 8.27–8.25 (m, 1H), 8.05 (s, 1H), 7.73–7.68 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.34–7.29 (m, 7H), 6.82 (d, *J* = 7.2 Hz, 2H), 3.87 (d, *J* = 17.7 Hz, 1H); 3.66 (d, *J* = 17.7 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.3, 171.1, 163.4, 148.5, 139.0, 132.9, 130.9, 130.9, 130.1, 129.5, 129.5, 129.5, 129.4, 129.3, 129.3, 128.7, 128.7, 128.7, 128.7, 127.3, 124.3, 120.8, 86.9, 47.0; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>18</sub>NO<sub>5</sub> [(M+H)<sup>+</sup>], 400.1179, found, 400.1187.

2-(2-([1,1'-Biphenyl]-4-yl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3m)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 80 mg (93%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.73 (s, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 7.9 Hz, 2H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.41–7.38 (m, 2H), 7.35 (d, *J* = 7.1 Hz, 2H), 7.33–7.31 (m, 3H), 7.29 (d, *J* = 7.4 Hz, 2H), 6.82 (d, *J* = 7.6 Hz, 2H), 3.75 (d, *J* = 17.6 Hz, 1H), 3.50 (d, *J* = 17.0 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.4, 163.7, 141.0, 139.4, 135.7, 131.3, 130.0, 129.8, 129.6, 129.5, 129.5, 129.5, 129.4, 129.2, 129.2, 128.7, 128.7, 128.6, 128.4, 127.6, 127.5, 127.4, 127.2, 127.0, 127.0, 127.0, 87.4, 46.8; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>23</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 431.1642, found, 431.1650.

2-(2-(Naphthalen-2-yl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3n)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 65 mg (81%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.76 (s, 1H), 8.01–7.98 (m, 2H), 7.97–7.94 (m, 2H), 7.61–7.56 (m, 2H), 7.41–7.39 (m, 1H), 7.37–7.36 (m, 2H), 7.33–7.31 (m, 4H), 7.25–7.23 (m, 2H), 6.75 (d, *J* = 7.3 Hz, 2H), 3.85 (dd, *J* = 17.1, 1.9 Hz, 1H), 3.56 (dd, *J* = 17.1, 2.1 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.4, 163.7, 133.8, 133.2, 133.0, 131.3, 130.0, 129.8, 129.6, 129.6, 129.5, 129.3, 129.2, 129.2, 128.9, 128.7, 128.7, 128.5, 128.5, 128.0, 127.6, 127.3, 126.1, 123.5, 87.7, 46.8; HRMS (TOF ES+): m/z calcd for C<sub>28</sub>H<sub>21</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 405.1485, found, 405.1492.

#### 2-(5-Oxo-3,4-diphenyl-2-styryl-2,5-dihydrofuran-2-yl)acetaldehyde (30)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 62 mg (82%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.71 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.41–7.36 (m, 5H), 7.34–7.30 (m, 6H), 7.25 (dd, *J* = 6.5, 2.8 Hz, 2H), 6.79 (d, *J* = 16.3 Hz, 1H), 6.59 (d, *J* = 16.2 Hz, 1H), 3.35–3.32 (m, 1H), 3.15 (dd, *J* = 16.8, 2.3 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 200.0, 171.0, 162.8, 135.9, 132.6, 131.5, 130.0, 130.0, 129.6, 129.6, 129.3, 129.3, 129.2, 129.2, 129.1, 129.0, 128.8, 128.8, 128.7, 128.7, 127.5, 127.5, 127.2, 126.5, 86.8, 46.8; HRMS (TOF ES+): m/z calcd for C<sub>26</sub>H<sub>20</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 403.1305, found, 403.1312.

# 2-(2-(Benzo[*d*][1,3]dioxol-5-yl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3p)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow oil: 68 mg (86%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.67 (s, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.33–7.29 (m, 7H), 6.97 (d, *J* = 8.2 Hz, 1H), 6.91 (s, 1H), 6.85–6.80 (m, 3H), 6.08 (d, *J* = 10.8 Hz, 2H), 3.65 (d, *J* = 17.0 Hz, 1H), 3.37–3.34 (m, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.3, 163.7, 148.4, 148.2, 131.3, 130.1, 130.0, 129.9, 129.6, 129.6, 129.2, 129.2, 128.7, 128.7, 128.6, 128.6, 126.8, 120.5, 108.9, 106.8, 102.1, 87.5, 47.0; HRMS (TOF ES+): m/z calcd for C<sub>25</sub>H<sub>18</sub>NaO<sub>5</sub> [(M+Na)<sup>+</sup>], 421.1046, found, 421.1053.

### 2-(5-Oxo-3,4-diphenyl-2-(thiophen-2-yl)-2,5-dihydrofuran-2-yl)acetaldehyde (3q)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 54 mg (75%); <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  = 9.69 (s, 1H), 7.74 (d, J = 5.1 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.35–7.30 (m, 7H), 7.23 (d, J = 3.6 Hz, 1H), 7.13–7.09 (m, 1H), 6.85 (d, J = 7.6 Hz, 2H), 3.72 (d, J = 17.2 Hz, 1H), 3.46 (d, J = 17.3 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  = 199.3, 170.6, 162.6, 141.1, 130.9, 130.3, 129.8, 129.5, 129.4, 129.3, 129.3, 128.9, 128.9, 128.8, 128.6, 128.6, 128.2, 128.2, 126.6, 85.5, 47.2; HRMS (TOF ES+): m/z calcd for C<sub>22</sub>H<sub>16</sub>NaO<sub>3</sub>S [(M+Na)<sup>+</sup>], 383.0712, found, 383.0722.

#### 2-(2-(1H-Indol-3-yl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3r)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 1:1, R<sub>f</sub> = 0.2; Yellow solid: 25 mg (32%); mp = 222–223 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.96 (s, 1H), 8.37 (d, *J* = 7.6 Hz, 1H), 7.75 (s, 1H), 7.45–7.41 (m, 2H), 7.39–7.33 (m, 9H), 7.29–7.28 (m, 2H), 6.27 (d, *J* = 9.0 Hz, 1H), 3.14 (dd, *J* = 15.9, 9.1 Hz, 1H), 3.04 (dd, *J* = 16.1, 2.7 Hz, 1H);<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.7, 172.6, 160.6, 136.5, 132.4, 130.7, 130.5, 129.9, 129.5, 129.5, 129.3, 129.3, 128.9, 128.7, 128.7, 128.4, 128.4, 126.8, 125.5, 124.1, 123.1, 122.4, 117.9, 111.7, 78.3, 43.0; HRMS (TOF ES+): m/z calcd for C<sub>26</sub>H<sub>20</sub>NO<sub>3</sub> [(M+H)<sup>+</sup>], 394.1438, found, 394.1439.

# 2-(2-((3r,5r,7r)-Adamantan-1-yl)-5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3s)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.4; Yellow oil: 59 mg (71%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 7.42–7.35 (m, 6H), 7.31–7.28 (m, 4H), 6.07 (dd, *J* = 8.8, 2.9 Hz, 1H), 2.99 (dd, *J* = 17.8, 8.8 Hz, 1H), 2.63 (dd, *J* = 17.8, 3.0 Hz, 1H), 1.94–1.90 (m, 3H), 1.68–1.57 (m, 12H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 211.0, 172.1, 161.5, 131.0, 130.6, 130.5, 129.5, 129.4, 129.4, 129.0, 128.9, 128.9, 128.7, 128.7, 126.1, 78.1, 46.3, 38.8, 37.3, 37.3, 37.3, 36.3, 36.3, 27.6, 27.6, 27.6, 27.6; HRMS (TOF ES+): m/z calcd for C<sub>28</sub>H<sub>28</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 435.1931, found, 435.1939.



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 53 mg (57%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.83 (s, 1H), 7.36–7.32 (m, 1H), 7.30–7.27 (m, 5H), 7.25–7.24 (m, 2H), 6.81 (d, *J* = 7.0 Hz, 2H), 4.38–4.37 (m, 1H), 4.28 (s, 6H), 4.25–4.22 (m, 1H), 4.13–4.09 (m, 1H), 3.60 (d, *J* = 16.8 Hz, 1H), 3.24 (d, *J* = 15.1 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 200.2, 171.1, 163.6, 131.6, 130.0, 129.9, 129.5, 129.5, 129.1, 129.1, 129.0, 128.7, 128.7, 128.5, 128.5, 126.2, 88.5, 86.2, 69.7, 69.6, 69.6, 69.6, 69.6, 68.7, 68.6, 64.8, 47.4; HRMS (TOF ES+): m/z calcd for C<sub>28</sub>H<sub>23</sub>FeO<sub>3</sub> [(M+H)<sup>+</sup>], 463.0991, found, 463.0967.

#### 2-(5-Oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-yl)-2-phenylacetaldehyde (3u)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 8:1, R<sub>f</sub> = 0.3; White solid: 43 mg (50%); mp = 200–201 °C; <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 7.89 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.43–7.40 (m, 2H), 7.35–7.31 (m, 3H), 7.28–7.23 (m, 4H), 7.14–7.11 (m, 1H), 7.06– 7.01 (m, 7H), 6.47 (d, *J* = 7.8 Hz, 1H), 5.21 (d, *J* = 7.8 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 196.2, 171.5, 161.0, 135.6, 133.7, 133.4, 131.1, 130.0, 129.6, 129.6, 129.2, 129.2, 129.2, 128.9, 128.9, 128.6, 128.6, 128.5, 128.4, 128.4, 128.4, 128.4, 128.3, 128.3, 128.1, 128.1, 127.5, 127.0, 82.2, 54.7; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>23</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 431.1642, found, 431.1646.

#### 5-(2-Oxopropyl)-3,4,5-triphenylfuran-2(5H)-one (3v)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 42 mg (54%); mp = 155–156 °C; <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  = 7.43–7.39 (m, 3H), 7.34–7.25 (m, 10H), 6.73–6.66 (m, 2H), 3.75 (d, J = 17.1 Hz, 1H), 3.55 (d, J = 17.2 Hz, 1H), 2.15 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  = 204.6, 171.9, 164.1, 137.4, 131.6, 130.1, 129.8, 129.4, 129.4, 129.2, 129.2, 129.1, 129.1, 129.0, 129.0, 128.7, 128.7, 128.6, 128.6, 126.7, 126.1, 126.1,

87.7, 45.8, 31.9; HRMS (TOF ES+): m/z calcd for  $C_{25}H_{20}NaO_3$  [(M+H)<sup>+</sup>], 391.1305, found, 391.1312.

#### 2-(5-Oxo-2-phenyl-3,4-di-p-tolyl-2,5-dihydrofuran-2-yl)acetaldehyde (3w)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 68 mg (89%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.68 (s, 1H), 7.46–7.42 (m, 3H), 7.34 (d, *J* = 6.7 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.64 (d, *J* = 7.9 Hz, 2H), 3.68 (dd, *J* = 17.0, 2.0 Hz, 1H), 3.41 (dd, *J* = 17.3, 2.1 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.6, 163.3, 139.6, 138.7, 136.8, 129.8, 129.8, 129.5, 129.5, 129.4, 129.4, 129.4, 129.4, 129.3, 129.3, 128.5, 128.4, 127.1, 126.5, 126.3, 126.3, 87.4, 46.8, 21.3, 21.3; HRMS (TOF ES+): m/z calcd for C<sub>26</sub>H<sub>22</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 405.1461, found, 405.1465.

2-(3,4-Bis(4-fluorophenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3x)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 60 mg (77%); <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.69 (s, 1H), 7.46–7.44 (m, 3H), 7.39–7.35 (m, 4H), 7.21–7.15 (m, 4H), 6.82–6.77 (m, 2H), 3.71 (dd, *J* = 17.1, 1.9 Hz, 1H), 3.47 (dd, *J* = 17.1, 2.0 Hz, 1H); <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 171.2, 163.0 (d, *J* = 246.3 Hz), 162.8, 162.6 (d, *J* = 246.3 Hz), 136.3, 131.8 (d, *J* = 8.4 Hz), 131.8 (d, *J* = 8.4 Hz), 131.0 (d, *J* = 8.6 Hz), 131.0 (d, *J* = 8.6 Hz), 129.6, 129.6, 129.5, 127.4 (d, *J* = 3.3 Hz), 126.4, 126.4, 126.4, 126.1 (d, *J* = 3.3 Hz), 116.5 (d, *J* = 21.9 Hz), 116.5 (d, *J* = 21.9 Hz), 115.9 (d, *J* = 21.6 Hz), 87.6, 46.6; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = -111.01, -111.87; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>17</sub>F<sub>2</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 391.1140, found, 391.1146.

# 2-(3,4-Bis(4-chlorophenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3y)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 63 mg (75%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>) δ = 9.68 (s, 1H), 7.45–7.42 (m, 5H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.36–7.33 (m, 4H), 6.75 (d, *J* = 8.2 Hz, 2H), 3.72 (d, *J* = 17.7 Hz, 1H), 3.49 (d, *J* = 17.5 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>) δ = 199.8, 171.0, 163.0, 136.1, 135.0, 134.2, 131.4, 131.4, 130.4, 130.4, 129.8, 129.7, 129.5, 129.5, 129.5, 129.5, 129.0, 129.0, 129.0, 128.4, 126.4, 126.4, 87.6, 46.5; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>17</sub>Cl<sub>2</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 423.0549, found, 423.0556.

# 2-(3,4-Bis(3-chlorophenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3z)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 62 mg (74%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.69 (s, 1H), 7.47–7.45 (m, 4H), 7.42 (dd, *J* = 8.1, 2.2 Hz, 1H), 7.38–7.33 (m, 5H), 7.20 (d, *J* = 7.8 Hz, 1H), 6.75 (s, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 3.72 (d, *J* = 1.9 Hz, 1H), 3.50 (d, *J* = 17.3 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 199.8, 170.8, 163.2, 135.7, 133.8, 133.4, 132.8, 131.5, 131.2, 130.7, 130.1, 129.7, 129.5, 129.5, 129.3, 129.3, 128.2, 128.1, 127.4, 126.5, 126.5, 126.5, 87.8, 46.5; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>17</sub>Cl<sub>2</sub>O<sub>3</sub> [(M+Na)<sup>+</sup>], 423.0549, found, 423.0556.

# 2-(3,4-Bis(4-bromophenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3a')



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 63 mg (62%); <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  = 9.67 (s, 1H), 7.56 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.46–7.44 (m, 3H), 7.35 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 3.72 (d, J = 17.2 Hz, 1H), 3.48 (d, J = 16.2 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  = 199.8, 170.9, 163.1, 136.1, 132.4, 132.4, 131.9, 131.9, 131.6, 131.6, 130.6, 130.6,

130.2, 129.7, 129.5, 129.5, 128.8, 126.5, 126.4, 126.4, 123.9, 123.0, 87.6, 46.5; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>17</sub>Br<sub>2</sub>O<sub>3</sub> [(M+H)<sup>+</sup>], 510.9539, found, 510.9542.

#### 2-(4-Ethyl-5-oxo-2,3-diphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (3b')



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 50 mg (82%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.65 (s, 1H), 7.51–4.46 (m, 8H), 7.44–7.41 (m, 2H), 3.84 (dd, *J* = 16.9, 2.4 Hz, 1H), 3.45 (dd, *J* = 16.9, 1.9 Hz, 1H), 2.44–2.36 (m, 2H), 0.60 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 200.1, 172.0, 169.2, 137.3, 130.4, 129.5, 129.5, 129.3, 129.2, 129.2, 129.1, 128.9, 128.9, 126.0, 126.0, 125.8, 87.7, 46.9, 19.5, 12.3; HRMS (TOF ES+): m/z calcd for C<sub>20</sub>H<sub>18</sub>NaO<sub>3</sub> [(M+Na)<sup>+</sup>], 329.1148, found, 329.1153.

#### 5-(2-Oxo-2-phenylethyl)-1,3,4-triphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5a)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 55 mg (64%); mp = 196–197 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.65 (d, *J* = 7.9 Hz, 2H), 7.55–7.51 (m, 2H), 7.47– 7.41 (m, 3H), 7.36–7.26 (m, 9H), 7.24–7.19 (m, 3H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.12 (t, *J* = 4.9 Hz, 1H), 3.20–3.14 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.2, 168.6, 153.1, 137.0, 136.6, 133.3, 132.5, 132.0, 131.3, 130.0, 130.0, 129.4, 129.2, 129.2, 129.1, 129.1, 128.9, 128.9, 128.5, 128.5, 128.4, 128.4, 128.3, 127.9, 127.9, 125.3, 122.9, 122.9, 58.6, 40.1; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>23</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 452.1621, found, 452.1626.

# 5-(2-Oxo-2-phenylethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5b)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 58 mg (65%); mp = 200–201 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.47–7.42 (m, 3H), 7.32–7.30 (m, 3H), 7.29–7.26 (m, 4H), 7.24–7.20 (m, 3H), 7.13 (d, J = 8.0 Hz, 2H), 6.08 (t, J = 4.9 Hz, 1H), 3.16 (d, J = 5.0 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.1, 168.4, 152.8, 136.5, 135.0, 134.1, 133.1, 132.4, 131.9, 131.2, 129.8, 129.8, 129.7, 129.7, 129.2, 128.9, 128.9, 128.7, 128.7, 128.3, 128.2, 128.2, 128.1, 127.8, 127.8, 123.0, 123.0, 58.6, 40.0, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>25</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 466.1778, found, 466.1782.

# 1-(3,5-Dimethylphenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5c)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 44 mg (48%); mp = 158–159 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53 (d, *J* = 7.2 Hz, 2H), 7.47–7.41 (m, 3H), 7.33– 7.28 (m, 7H), 7.25–7.20 (m, 5H), 6.73 (s, 1H), 6.04 (t, *J* = 5.0 Hz, 1H), 3.17 (dd, *J* = 16.8, 4.7 Hz, 1H), 3.12 (dd, *J* = 16.8, 5.3 Hz, 1H), 2.25 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.3, 168.6, 152.9, 138.8, 138.8, 136.7, 133.2, 133.2, 132.6, 132.2, 131.4, 130.0, 130.0, 129.3, 129.1, 129.1, 128.9, 128.9, 128.4, 128.4, 128.3, 128.3, 128.2, 127.9, 127.9, 127.3, 121.2, 121.2, 59.2, 40.1, 21.5, 21.5; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 480.1934, found, 480.1940.

# 1-(4-Methoxyphenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5d)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 61 mg (66%); mp = 177–178 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.54 (d, *J* = 7.8 Hz, 2H), 7.48–7.42 (m, 5H), 7.33– 7.23 (m, 7H), 7.25–7.22 (m, 3H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.04 (t, *J* = 5.0 Hz, 1H), 3.75 (s, 3H), 3.18–3.08 (m, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.1, 168.5, 157.3, 152.6, 136.5, 133.2, 132.4, 132.0, 131.3, 129.8, 129.8, 129.6, 129.2, 128.9, 128.9, 128.8, 128.8, 128.4, 128.4, 128.3, 128.3, 128.1, 127.8, 127.8, 125.2, 125.2, 114.3, 114.3, 59.1, 55.4, 40.1; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>25</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 482.1727, found, 482.1727.

5-(2-Oxo-2-phenylethyl)-3,4-diphenyl-1-(4-(trifluoromethoxy)phenyl)-1,5dihydro-2*H*-pyrrol-2-one (5e)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 64 mg (62%); mp = 172–173 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.68 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.47–7.44 (m, 3H), 7.35–7.32 (m, 3H), 7.30–7.27 (m, 4H), 7.25–7.22 (m, 3H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.10 (t, *J* = 5.0 Hz, 1H), 3.22–3.12 (m, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.1, 168.6, 153.2, 146.0, 136.3, 135.4, 133.5, 133.5, 132.2, 131.6, 130.9, 129.8, 129.8, 129.5, 128.9, 128.9, 128.9, 128.9, 128.5, 128.5, 128.3, 128.3, 128.3, 127.8, 127.8, 123.9, 123.9, 121.8, 121.8, 58.5, 40.0; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  = -57.99; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>22</sub>F<sub>3</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 536.1444, found, 536.1453.

# 1-(4-Ethylphenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5f)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 65 mg (71%); mp = 195–196 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ = 7.53–7.50 (m, 4H), 7.47–7.41 (m, 3H), 7.33–7.31 (m, 3H), 7.29–7.27 (m, 3H), 7.26–7.21 (m, 4H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.08 (t, *J* = 5.0 Hz, 1H), 3.19–3.11 (m, 2H), 2.57 (q, *J* = 7.6 Hz, 2H), 1.17 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ = 197.3, 168.5, 152.9, 141.5, 136.6, 134.4, 133.3, 132.5, 132.1, 131.3, 129.9, 129.9, 129.3, 129.0, 129.0, 128.8, 128.8, 128.6, 128.6, 128.4, 128.4, 128.3, 128.3, 128.2, 127.9, 127.9, 123.2, 123.2, 58.9, 40.1, 28.4, 15.6; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 480.1934, found, 480.1934.

# 1-(4-Isopropylphenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5g)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 63 mg (67%); mp = 194–195 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53–7.48 (m, 4H), 7.48–7.45 (m, 2H), 7.44–7.40 (m, 1H), 7.33–7.27 (m, 6H), 7.25–7.21 (m, 4H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.07 (t, *J* = 5.0 Hz, 1H), 3.19–3.10 (m, 2H), 2.86–2.80 (m, 1H), 1.2 (d, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta = 197.4$ , 168.5, 152.9, 146.1, 136.8, 134.5, 133.2, 132.6, 132.2, 131.4, 130.0, 130.0, 129.3, 129.1, 129.1, 128.9, 128.9, 128.4, 128.4, 128.3, 128.3, 128.2, 127.9, 127.9, 127.2, 127.2, 123.3, 123.3, 59.2, 40.2, 33.8, 24.1, 24.0; HRMS (TOF ES+): m/z calcd for C<sub>33</sub>H<sub>29</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 494.2091, found, 494.2097.

# 1-(4-Fluorophenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5h)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 51 mg (57%); mp = 173–174 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.59–7.53 (m, 4H), 7.48–7.44 (m, 3H), 7.33–7.30 (m, 3H), 7.29–7.27 (m, 3H), 7.26–7.23 (m, 4H), 7.05–6.98 (m, 2H), 6.07 (t, *J* = 5.0 Hz, 1H), 3.15 (d, *J* = 5.0 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.0, 168.5, 160.1 (*J* = 243.8 Hz), 152.9, 136.4, 133.4, 132.8 (d, *J* = 2.5 Hz), 132.3, 131.8, 131.0, 129.8, 129.8, 129.4, 128.8, 128.8, 128.8, 128.4, 128.4, 128.3, 128.3, 128.3, 128.3, 127.8, 125.1 (d, *J* = 8.8 Hz), 125.1 (d, *J* = 8.8 Hz), 115.8 (d, *J* = 22.5 Hz), 115.8 (d, *J* = 22.5 Hz), 58.8, 40.0; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  = -116.6; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>22</sub>FNNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 470.1527, found, 470.1530.

# 1-([1,1'-Biphenyl]-4-yl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5i)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 56 mg (55%); mp = 179–180 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.73 (d, *J* = 8.2 Hz, 2H), 7.59–7.52 (m, 6H), 7.47 (d, *J* = 5.4 Hz, 2H), 7.44–7.40 (m, 3H), 7.35–7.28 (m, 8H), 7.25–7.24 (m, 3H), 6.15 (t, *J* = 4.9 Hz, 1H), 3.22 (d, *J* = 4.9 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.3, 168.7, 153.2, 140.6, 138.0, 136.6, 136.2, 133.4, 132.5, 132.0, 131.3, 130.0, 130.0, 129.4, 129.1, 129.1, 128.9, 128.9, 128.9, 128.9, 128.5, 128.4, 128.4, 128.3, 127.9, 127.9, 127.9, 127.9, 127.3, 127.1, 127.1, 123.1, 123.1, 58.7, 40.2; HRMS (TOF ES+): m/z calcd for C<sub>36</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 528.1934, found, 528.1942.

1-(4-Hydroxyphenyl)-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5j)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 1:1, R<sub>f</sub> = 0.2; Yellow solid: 42 mg (47%); mp = 206–207 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ = 7.53–7.49 (m, 2H), 7.47–7.44 (m, 2H), 7.43–7.41 (m, 1H), 7.35–7.30 (m, 3H), 7.28–7.26 (m, 3H), 7.25–7.24 (m, 5H), 7.17 (d, *J* = 8.6 Hz, 2H), 6.58 (d, *J* = 8.7 Hz, 2H), 5.94 (t, *J* = 5.1 Hz, 1H), 3.21–3.03 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ = 196.9, 169.4, 154.8, 153.1, 136.5, 133.2, 132.3, 132.0, 131.1, 129.8, 129.8, 129.2, 128.8, 128.8, 128.8, 128.8, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 127.7, 127.7, 126.5, 126.5, 116.4, 116.4, 60.2, 39.8; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>23</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 468.1570, found, 468.1577.

# 4,7,7-Trimethyl-3-oxo-*N*-(4-(2-oxo-5-(2-oxo-2-(*p*-tolyl)ethyl)-3,4-diphenyl-2,5-dihydro-1*H*-pyrrol-1-yl)phenyl)-2-oxabicyclo[2.2.1]heptane-1-carboxamide (5k)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow oil: 82 mg (64%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.86 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.54 (dd, *J* = 9.0, 2.6 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.35–7.32 (m, 3H), 7.31–7.26 (m, 7H), 7.09 (d, *J* = 7.9 Hz, 2H), 6.15 (t, *J* = 4.7 Hz, 1H), 3.28–3.24 (m, 1H), 3.14 (dd, *J* = 17.2, 4.1 Hz, 1H), 2.49–2.47 (m, 1H), 2.26 (s, 3H), 2.03–2.00 (m, 1H), 1.93–1.88 (m, 1H), 1.61–1.59 (m, 1H), 1.05 (s, 6H), 0.91 (s, 3H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 196.6, 178.5, 168.4, 165.7, 153.7, 144.0, 135.3, 135.2, 134.5, 133.4, 132.5, 131.9, 131.9, 129.9, 129.9, 129.5, 129.4, 129.4, 129.1, 129.0, 129.0, 128.6, 128.6, 128.4, 128.2, 128.2, 123.5, 123.5, 121.8, 121.7, 92.3, 59.1, 55.0, 54.1, 38.1, 30.5, 28.9, 21.5, 17.0, 16.8, 10.1; HRMS (TOF ES+): m/z calcd for C<sub>41</sub>H<sub>38</sub>N<sub>2</sub>NaO<sub>5</sub> [(M+Na)<sup>+</sup>], 661.2673, found, 661.2681.

#### 1-Butyl-5-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (5l)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.4; White solid: 30 mg (37%); mp = 142–143 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.8 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45– 7.39 (m, 4H), 7.30–7.27 (m, 6H), 7.24–7.21 (m, 2H), 5.50 (dd, *J* = 7.9, 2.8 Hz, 1H), 3.90–3.85 (m, 1H), 3.21–3.16 (m, 1H), 3.05–2.93 (m, 2H), 1.70–1.61 (m, 1H), 1.57– 1.49 (m, 1H), 1.35–1.24 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.4, 170.0, 152.2, 136.5, 133.8, 132.6, 131.7, 129.9, 129.9, 129.2, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 128.3, 128.3, 128.2, 128.2, 128.1, 57.3, 41.3, 41.1, 30.6, 20.3, 20.3, 13.9; HRMS (TOF ES+): m/z calcd for C<sub>28</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 432.1934, found, 432.1938.

5-(2-Oxo-2-(*o*-tolyl)ethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5m)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 39 mg (43%); mp = 159–160 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.52 (d, *J* = 8.5 Hz, 2H), 7.47–7.42 (m, 2H), 7.34– 7.27 (m, 8H), 7.24–7.22 (m, 1H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.02–6.99 (m, 1H), 6.97–6.95 (m, 1H), 6.07 (t, *J* = 4.8 Hz, 1H), 3.11 (dd, *J* = 4.8, 2.9 Hz, 2H), 2.32 (s, 3H), 2.22 (s, 3H; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 200.5, 168.6, 152.9, 138.1, 137.4, 135.2, 134.4, 132.6, 132.3, 131.8, 131.6, 131.4, 130.0, 130.0, 129.9, 129.9, 129.4, 129.0, 129.0, 128.9, 128.9, 128.4, 128.4, 128.3, 128.2, 125.6, 123.1, 123.1, 58.3, 43.1, 21.1, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 480.1934, found, 480.1934.

5-(2-(4-Methoxyphenyl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5n)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; White solid: 57 mg (60%); mp = 180–181 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.55–7.49 (m, 4H), 7.48–7.44 (m, 2H), 7.34–7.27 (m, 5H), 7.23–7.20 (m, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.07 (t, *J* = 5.0 Hz, 1H), 3.79 (s, 3H), 3.10 (d, *J* = 5.0 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 195.5, 168.6, 163.7, 153.2, 135.0, 134.4, 132.5, 132.2, 131.5, 130.3, 130.3, 130.0, 130.0, 129.8, 129.8, 129.8, 129.3, 129.1, 129.1, 128.8, 128.8, 128.3, 128.3, 128.2, 123.1, 123.1, 113.6, 113.6, 58.9, 55.6, 39.8, 21.0; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>27</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 496.1883, found, 496.1887.

# 5-(2-Oxo-2-(4-(trifluoromethoxy)phenyl)ethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (50)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 64 mg (61%); mp = 140−141 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.55 (d, *J* = 8.9 Hz, 2H), 7.47−7.44 (m, 4H), 7.33− 7.29 (m, 3H), 7.27−7.26 (m, 2H), 7.24−7.20 (m, 3H), 7.12 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.01 (t, *J* = 5.1 Hz, 1H), 3.12 (d, *J* = 4.9 Hz, 2H), 2.27 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 195.7, 168.3, 152.4, 135.2, 134.7, 134.1, 132.6, 132.0, 131.1, 129.8, 129.8, 129.8, 129.8, 129.8, 129.8, 129.7, 129.3, 128.9, 128.9, 128.9, 128.8, 128.8, 128.2, 128.2, 128.2, 123.2, 123.2, 120.0, 120.0, 59.1, 39.8, 20.9; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  = -57.67; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>24</sub>F<sub>3</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 550.1600, found, 550.1608.

### 5-(2-(4-(Dimethylamino)phenyl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5p)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow solid: 41 mg (42%); mp = 242–243 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.54 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 9.1 Hz, 2H), 7.48–7.44 (m, 2H), 7.33–7.28 (m, 5H), 7.21–7.20 (m, 3H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.46 (d, *J* = 9.1 Hz, 2H), 6.14 (t, *J* = 4.9 Hz, 1H), 3.08 (d, *J* = 4.9 Hz, 2H), 2.98 (s, 6H), 2.27 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 194.2, 168.5, 153.5, 153.3, 134.6, 134.4, 132.1, 132.1, 131.5, 130.1, 130.1, 129.9, 129.9, 129.6, 129.6, 129.0, 129.0, 129.0, 128.6, 128.6, 128.2, 128.2, 128.0, 124.5, 122.8, 122.8, 110.3, 110.3, 58.4, 40.0, 40.0, 39.3, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>33</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>2</sub> [(M+Na)<sup>+</sup>], 509.2199, found, 509.2205.

# 5-(2-(4-Bromophenyl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5q)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 60 mg (58%); mp = 184–185 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.49–7.43 (m, 4H), 7.41–7.35 (m, 4H), 7.33–7.29 (m, 3H), 7.26–7.21 (m, 5H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.01 (t, *J* = 5.1 Hz, 1H), 3.10 (d, *J* = 4.3 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.2, 168.3, 152.5, 135.3, 135.2, 134.1, 132.6, 132.0, 131.6, 131.6, 131.6, 131.1, 129.8, 129.8, 129.7, 129.7, 129.3, 129.3, 129.3, 128.9, 128.9, 128.8, 128.8, 128.4, 128.2, 128.2, 128.2, 123.1, 123.1, 59.0, 39.8, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>24</sub>BrNNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 544.0883, found, 544.0887.

# 5-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5r)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow solid: 63 mg (62%); mp = 148–149 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.58 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 4H), 7.33–7.26 (m, 5H), 7.25–7.21 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.01 (t, *J* = 5.1 Hz, 1H), 3.15 (dd, *J* = 5.1, 1.7 Hz, 2H), 2.27 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.6, 168.4, 152.4, 139.3, 135.4, 134.2, 132.8, 134.5 (d, *J* = 31.3 Hz), 132.1, 131.2, 129.9, 129.9, 129.9, 129.9, 129.4, 129.4, 129.0, 129.0, 129.0, 129.0, 128.7 (d, *J* = 2.5 Hz), 128.4, 128.4, 128.2, 128.2,125.5 (q, *J* = 3.8 Hz), 123.6 (d, *J* = 270.0 Hz), 123.3, 123.3, 59.3, 40.2, 21.0; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  = -63.23; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>24</sub>F<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 534.1651, found, 534.1653.

# 5-(2-(4-Nitrophenyl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5s)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Yellow solid: 50 mg (51%); mp = 188–189 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.09 (d, J = 8.9 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H),

7.46–7.44 (m, 4H), 7.31–7.30 (m, 3H), 7.26–7.23 (m, 5H), 7.13 (d, J = 8.1 Hz, 2H), 5.98 (t, J = 5.1 Hz, 1H), 3.17 (d, J = 5.1 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta = 196.1$ , 168.2, 152.0, 150.1, 140.9, 135.4, 134.0, 132.8, 131.9, 130.9, 129.8, 129.8, 129.8, 129.4, 128.9, 128.9, 128.9, 128.9, 128.7, 128.7, 128.3, 128.3, 123.5, 123.5, 123.2, 123.2, 59.2, 40.2, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>4</sub> [(M+Na)<sup>+</sup>], 511.1628, found, 511.1635.

# 5-(2-(3-Nitrophenyl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5t)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.1; White solid: 73 mg (75%); mp = 190–191 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.27 (d, *J* = 8.0 Hz, 1H), 8.21 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.50–7.43 (m, 5H), 7.33–7.27 (m, 5H), 7.24–7.22 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.98 (t, *J* = 5.2 Hz, 1H), 3.22–3.15 (m, 2H), 2.26 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 195.4, 168.2, 152.0, 148.0, 137.8, 135.4, 134.0, 133.1, 132.9, 131.9, 130.9, 129.8, 129.8, 129.8, 129.8, 129.5, 129.3, 128.9, 128.9, 128.9, 128.3, 128.3, 128.3, 127.3, 123.3, 123.3, 122.7, 59.4, 39.9, 20.8; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>4</sub> [(M+Na)<sup>+</sup>], 511.1628, found, 511.1630.

5-(2-([1,1'-Biphenyl]-4-yl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5u)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 34 mg (33%); mp = 210–211 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.61 (d, *J* = 8.1 Hz, 2H), 7.56–7.52 (m, 3H), 7.50 (d, *J* = 4.6 Hz, 2H), 7.49–7.47 (m, 2H), 7.47–7.42 (m, 3H), 7.39–7.38 (m, 1H), 7.32–7.29 (m, 5H), 7.24–7.23 (m, 3H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.09 (t, *J* = 4.9 Hz, 1H), 3.19 (dd, *J* = 5.0, 2.0 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.7, 168.6, 153.0, 146.0, 139.8, 135.3, 135.2, 134.3, 132.6, 132.2, 131.4, 130.0, 130.0, 129.8, 129.8, 129.3, 129.1, 129.1, 129.1, 129.1, 128.9, 128.9, 128.5, 128.5, 128.4, 128.4, 128.4, 128.3, 127.3, 127.3, 127.0, 127.0, 123.2, 123.2, 58.9, 40.1, 21.1; HRMS (TOF ES+): m/z calcd for C<sub>37</sub>H<sub>29</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 542.2091, found, 542.2096.

5-(2-Oxo-2-(thiophen-2-yl)ethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5v)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 42 mg (47%); mp = 148–149 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.52–7.43 (m, 5H), 7.33–7.26 (m, 5H), 7.24–7.18 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.90–6.88 (m, 1H), 5.98 (t, *J* = 5.1 Hz, 1H), 3.08 (d, *J* = 5.1 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 189.6, 168.5, 152.7, 143.8, 135.2, 134.3, 134.2, 132.6, 132.2, 132.1, 131.3, 130.0, 130.0, 129.8, 129.8, 129.3, 129.1, 129.1, 128.9, 128.9, 128.4, 128.4, 128.3, 127.9, 123.2, 123.2, 59.1, 40.8, 21.0; HRMS (TOF ES+): m/z calcd for C<sub>29</sub>H<sub>23</sub>NNaO<sub>2</sub>S [(M+Na)<sup>+</sup>], 472.1342, found, 472.1346.

### 5-(2-(Benzo[*d*][1,3]dioxol-5-yl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5w)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.1 White solid: 40 mg (41%); mp = 195–196 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.49 (d, *J* = 8.2 Hz, 2H), 7.47–7.43 (m, 2H), 7.32– 7.30 (m, 3H), 7.29–7.27 (m, 2H), 7.25–7.21 (m, 3H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.10 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.05 (d, *J* = 1.7 Hz, 1H), 6.63 (d, *J* = 8.2 Hz, 1H), 6.04 (t, *J* = 5.0 Hz, 1H), 5.97 (s, 2H), 3.07 (d, *J* = 5.0 Hz, 2H), 2.29 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 194.9, 168.4, 152.9, 151.8, 147.9, 135.0, 134.2, 132.4, 132.0, 131.4, 131.2, 129.8, 129.8, 129.6, 129.6, 129.1, 128.9, 128.9, 128.7, 128.7, 128.2, 128.2, 128.1, 124.2, 123.0, 123.0, 107.6, 107.5, 101.8, 58.8, 39.8, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>25</sub>NNaO<sub>4</sub> [(M+Na)<sup>+</sup>], 510.1676, found, 510.1680.

# 5-(2-((3r,5r,7r)-Adamantan-1-yl)-2-oxoethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5x)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.4; White solid: 49 mg (49%); mp = 222–223 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.51 (d, J = 8.5 Hz, 2H), 7.45–7.40 (m, 2H), 7.34–

7.27 (m, 6H), 7.25–7.17 (m, 4H), 6.01 (t, J = 4.8 Hz, 1H), 2.69–2.61 (m, 2H), 2.34 (s, 3H), 1.87–1.80 (m, 3H), 1.61–1.56 (m, 3H), 1.47–1.45 (m, 3H), 1.29 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta = 212.1$ , 168.5, 153.4, 134.8, 134.4, 132.3, 132.1, 131.4, 130.0, 130.0, 129.8, 129.8, 129.3, 129.3, 129.3, 128.8, 128.8, 128.3, 128.3, 128.2, 122.7, 122.7, 57.4, 46.5, 38.3, 37.6, 37.6, 37.6, 36.4, 36.4, 36.4, 27.8, 27.8, 27.8, 21.1; HRMS (TOF ES+): m/z calcd for C<sub>35</sub>H<sub>35</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 524.2560, found, 524.2566.

#### 5-(2-Oxo-2-phenylethyl)-1,3,4-tri-*p*-tolyl-1,5-dihydro-2*H*-pyrrol-2-one (5y)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 64 mg (68%); mp = 116−117 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53 (d, *J* = 7.9 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.7 Hz, 2H), 7.29−7.26 (m, 3H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.14−7.10 (m, 4H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.04 (t, *J* = 5.0 Hz, 1H), 3.17−3.10 (m, 2H), 2.34 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.3, 168.7, 152.3, 139.2, 137.8, 136.5, 134.8, 134.2, 133.1, 131.6, 129.6, 129.6, 129.6, 129.6, 129.4, 129.4, 129.1, 128.9, 128.9, 128.8, 128.8, 128.4, 128.2, 128.2, 127.8, 127.8, 123.0, 123.0, 58.5, 40.3, 21.4, 21.3, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>33</sub>H<sub>29</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 494.2091, found, 494.2100.

3,4-Bis(4-fluorophenyl)-5-(2-oxo-2-phenylethyl)-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5z)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 70 mg (73%); mp = 159–160 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.54 (d, *J* = 7.5 Hz, 2H), 7.49–7.41 (m, 5H), 7.29 (t, *J* = 7.9 Hz, 2H), 7.25–7.24 (m, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.93 (t, *J* = 8.6 Hz, 2H), 6.03 (t, *J* = 5.0 Hz, 1H), 3.15 (d, *J* = 6.2 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 195.1, 166.3, 161.2 (d, *J* = 250.5 Hz), 160.8 (d, *J* = 246.0 Hz), 149.9, 134.5, 133.4, 132.1, 131.6, 129.8 (d, *J* = 9.0 Hz), 129.8 (d, *J* = 9.0 Hz), 129.7, 129.0 (d, *J* = 9.0 Hz), 129.0 (d, *J* = 9.0 Hz), 127.9, 127.9, 126.6, 126.6, 126.0, 126.0, 125.1 (d, *J* = 3.0 Hz), 121.0, 121.0, 114.2 (d, *J* = 21.0 Hz), 114.2 (d, J = 21.0 Hz), 113.6 (d, J = 21.0 Hz), 113.6 (d, J = 21.0 Hz), 56.8, 37.9, 19.1; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta = -110.71$ , -112.80; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>23</sub>F<sub>2</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 502.1589, found, 502.1599.

3,4-Bis(4-chlorophenyl)-5-(2-oxo-2-phenylethyl)-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5a')



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 55 mg (54%); mp = 159–160 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ = 7.54 (d, *J* = 7.2 Hz, 2H), 7.48–7.45 (m, 3H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.31–7.28 (m, 4H), 7.23–7.18 (m, 4H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.01 (t, *J* = 5.0 Hz, 1H), 3.14 (dd, *J* = 4.9, 1.9 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ = 196.8, 167.8, 151.9, 136.3, 135.5, 135.3, 134.4, 133.9, 133.4, 131.8, 131.1, 131.1, 130.2, 130.2, 130.2, 129.8, 129.8, 129.3, 129.2, 129.2, 128.7, 128.7, 128.4, 128.4, 127.8, 127.8, 123.0, 123.0, 58.7, 39.6, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>23</sub>Cl<sub>2</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 534.0998, found, 534.1006.

3,4-Bis(3-chlorophenyl)-5-(2-oxo-2-phenylethyl)-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5b')



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 57 mg (56%); mp = 152–153 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53–7.51 (m, 3H), 7.47–7.45 (m, 3H), 7.31–7.28 (m, 3H), 7.24–7.20 (m, 4H), 7.18–7.12 (m, 4H), 5.99 (t, *J* = 5.1 Hz, 1H), 3.19–3.12 (m, 2H), 2.29 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.6, 167.5, 152.1, 136.3, 135.4, 134.8, 134.3, 133.7, 133.4, 133.4, 132.4, 132.2, 130.2, 129.8, 129.8, 129.7, 129.6, 129.5, 128.7, 128.6, 128.4, 128.4, 127.9, 127.8, 127.8, 127.1, 123.0, 123.0, 58.9, 39.3, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>23</sub>Cl<sub>2</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 534.0998, found, 534.1008.

3,4-Bis(4-bromophenyl)-5-(2-oxo-2-phenylethyl)-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (5c')



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Yellow solid: 46 mg (38%); mp = 161−162 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.54 (d, *J* = 7.8 Hz, 2H), 7.46−7.44 (m, 4H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.34−7.26 (m, 5H), 7.16−7.12 (m, 4H), 6.01 (t, *J* = 5.0 Hz, 1H), 3.14 (t, *J* = 4.6 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.8, 167.7, 151.9, 136.2, 135.4, 133.7, 133.4, 132.2, 132.2, 131.8, 131.6, 131.6, 131.4, 131.4, 130.5, 130.4, 130.4, 129.8, 129.8, 129.7, 128.4, 128.4, 127.8, 127.8, 123.9, 122.9, 122.7, 122.7, 58.6, 39.6, 20.9; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>23</sub>Br<sub>2</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 621.9988, found, 621.9985.

(*Z*)-5-(2-Oxo-2-phenylethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7a)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E > 20/1, Yellow solid: 39 mg (44%); mp = 212–213 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53 (d, J = 7.8 Hz, 2H), 7.48–7.44 (m, 6H), 7.43–7.40 (m, 2H), 7.33–7.30 (m, 2H), 7.27–7.26 (m, 3H), 6.94 (s, 4H), 6.00 (s, 1H), 2.26 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 192.2, 169.4, 146.6, 145.2, 137.8, 137.5, 133.2, 133.1, 131.4, 130.8, 130.1, 130.0, 130.0, 129.9, 129.9, 129.6, 129.6, 129.3, 129.1, 129.1, 128.8, 128.6, 128.6, 128.3, 128.3, 128.3, 128.3, 127.3, 109.1, 21.3; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>23</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 464.1621, found, 464.1623.

### (*Z*)-5-(2-(4-Ethylphenyl)-2-oxoethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7b)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 5/1, Yellow solid: 40 mg (43%); mp = 210–211 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.46–7.44 (m, 6H), 7.41–7.40 (m, 2H), 7.37 (s, 1H), 7.27–7.26 (m, 3H), 7.13 (d, J = 7.8 Hz, 2H), 6.95 (s, 4H), 6.00 (s, 1H),

2.66 (q, J = 7.8 Hz, 2H), 2.26 (s, 3H), 1.24 (t, J = 7.7 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta = 191.6$ , 169.3, 150.1, 146.2, 145.1, 137.2, 135.5, 133.1, 131.3, 130.5, 130.4, 129.8, 129.8, 129.8, 129.4, 129.4, 129.1, 128.9, 128.9, 128.7, 128.7, 128.6, 128.1, 128.1, 127.7, 127.7, 127.2, 127.2, 109.3, 29.0, 21.1, 15.4; HRMS (TOF ES+): m/z calcd for C<sub>33</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 492.1934, found, 492.1942.

### (Z)-5-(2-Oxo-2-(4-(trifluoromethoxy)phenyl)ethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7c)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Z/E = 4/1, Yellow solid: 39 mg (37%); mp = 207–208 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ = 7.53 (d, J = 8.2 Hz, 2H), 7.48–7.47 (m, 2H), 7.45–7.43 (m, 2H), 7.41–7.40 (m, 2H), 7.37 (s, 1H), 7.29–7.27 (s, 3H), 7.12 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 6.89 (d, J = 8.0 Hz, 2H), 5.92 (s, 1H), 2.27 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ = 190.9, 169.1, 152.3, 146.8, 145.0, 137.6, 136.0, 133.0, 131.1, 130.8, 130.5, 130.4, 130.4, 129.8, 129.8, 129.8, 129.8, 129.5, 129.5, 129.3, 129.0, 129.0, 128.8, 128.4, 128.4, 128.2, 128.2, 127.2, 127.2, 120.1, 108.1, 21.1; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>) δ = -57.63; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>22</sub>F<sub>3</sub>NNaO<sub>3</sub> [(M+ Na)<sup>+</sup>], 548.1444, found, 548.1453.

### (*Z*)-5-(2-Oxo-2-(3-(trifluoromethyl)phenyl)ethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7d)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Z/E = 4/1, Yellow solid: 23 mg (23%); mp = 241–242 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.73–7.69 (m, 2H), 7.60 (s, 1H), 7.49–7.47 (m, 3H), 7.46–7.44 (m, 2H), 7.43–7.41 (m, 2H), 7.38 (s, 1H), 7.28-7.26 (m, 3H), 6.92 (d, *J* = 7.7 Hz, 2H), 6.85 (d, *J* = 7.9 Hz, 2H), 5.91 (s, 1H), 2.25 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.5, 169.1, 147.1, 144.9, 138.3, 137.7, 132.9, 131.8, 131.0, 130.8, 130.8 (d, *J* = 33.0 Hz), 130.5, 129.9, 129.9, 129.8, 129.8, 129.5, 129.5, 129.3, 129.1, 129.1, 128.9, 128.7, 128.4 (d, *J* = 3.0 Hz), 128.2, 128.2, 127.2, 127.2, 124.6 (q, *J* = 3.0 Hz), 123.6 (d, *J* = 271.5 Hz), 107.7, 20.9; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  = -62.84; HRMS (TOF ES+): m/z calcd for C<sub>32</sub>H<sub>22</sub>F<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 532.1495, found, 532.1501.
### (*Z*)-5-(2-(3-Nitrophenyl)-2-oxoethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7e)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.2; Z/E = 2/1, Yellow solid: 41 mg (42%); mp = 203–204 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ = 8.31–8.26 (m, 1H), 8.19 (s, 1H), 7.83–7.80 (m, 1H), 7.50–7.48 (m, 3H), 7.46–7.43 (m, 3H), 7.39 (s, 1H), 7.28–7.26 (m, 3H), 7.02 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 7.9 Hz, 2H), 5.93 (s, 1H), 2.25 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ = 190.4, 169.1, 148.0, 147.8, 145.0, 139.3, 138.0, 133.8, 133.0, 131.0, 130.5, 129.9, 129.9, 129.7, 129.7, 129.6, 129.6, 129.4, 129.2, 129.1, 129.1, 128.4, 128.2, 128.2, 128.1, 127.2, 127.2, 126.8, 122.8, 106.9, 21.0; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>4</sub> [(M+ Na)<sup>+</sup>], 509.1472, found, 509.1475.

(Z)-5-(2-([1,1'-Biphenyl]-4-yl)-2-oxoethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5dihydro-2*H*-pyrrol-2-one (7f)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 7/1, Yellow solid: 37 mg (36%); mp = 245–246 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.60–7.58 (m, 4H), 7.53 (d, J = 8.0 Hz, 2H), 7.49–7.46 (m, 6H), 7.44–7.39 (m, 4H), 7.27–7.26 (m, 3H), 6.96 (s, 4H), 6.04 (s, 1H), 2.27 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.6, 169.3, 146.5, 145.7, 145.1, 139.9, 137.4, 136.4, 133.1, 131.3, 130.6, 130.4, 129.9, 129.9, 129.8, 129.8, 129.4, 129.4, 129.2, 129.1, 129.0, 129.0, 129.0, 129.0, 129.0, 129.0, 128.7, 128.3, 128.2, 128.2, 127.2, 127.2, 126.8, 126.8, 109.0, 21.2; HRMS (TOF ES+): m/z calcd for C<sub>37</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+ Na)<sup>+</sup>], 540.1934, found, 540.1942.

(Z)-5-(2-(Naphthalen-2-yl)-2-oxoethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7g)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 6/1 Yellow solid: 32 mg (33%); mp = 240–241 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta = 8.05$  (s, 1H), 7.88 (d, J = 8.2 Hz, 1H),

7.83 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.60–7.53 (m, 3H), 7.49–7.44 (m, 6H), 7.28–7.26 (m, 4H), 6.91 (d, J = 6.5 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 6.12 (s, 1H), 2.18 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta = 192.3$ , 169.4, 146.6, 145.2, 137.6, 135.6, 135.2, 133.2, 132.4, 131.4, 130.8, 130.5, 130.0, 130.0, 130.0, 130.0, 130.0, 129.6, 129.5, 129.5, 129.3, 129.1, 129.1, 128.8, 128.7, 128.3, 128.3, 128.1, 127.9, 127.3, 127.3, 126.8, 124.1, 109.3, 21.2; HRMS (TOF ES+): m/z calcd for C<sub>35</sub>H<sub>25</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 514.1778, found, 514.1787.

(*Z*)-5-(2-Oxo-2-(thiophen-2-yl)ethylidene)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (7h)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 9/1, Yellow solid: 41 mg (46%); mp = 233–234 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.56 (d, J = 4.9 Hz, 1H), 7.47–7.46 (m, 3H), 7.45–7.42 (m, 3H), 7.40–7.38 (m, 2H), 7.27–7.26 (s, 3H), 7.07–7.02 (m, 5H), 6.02 (s, 1H), 2.31 (s, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 183.2, 169.3, 146.6, 145.2, 145.1, 137.4, 134.2, 133.1, 132.7, 131.1, 130.7, 130.3, 129.8, 129.8, 129.7, 129.7, 129.4, 129.4, 129.2, 128.9, 128.9, 128.7, 128.1, 128.1, 127.7, 127.0, 127.0, 108.0, 21.2; HRMS (TOF ES+): m/z calcd for C<sub>29</sub>H<sub>21</sub>NNaO<sub>2</sub>S [(M+ Na)<sup>+</sup>], 470.1185, found, 470.1193.

(Z)-5-(2-Oxo-2-phenylethylidene)-1,3,4-triphenyl-1,5-dihydro-2*H*-pyrrol-2-one (7i)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E > 20/1, Yellow solid: 32 mg (38%); mp = 221–222 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.53 (d, J = 7.7 Hz, 2H), 7.49–7.44 (m, 6H), 7.43–7.41 (m, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.28–7.26 (s, 3H), 7.18–7.17 (d, J = 5.4 Hz, 3H), 7.10–7.06 (m, 2H), 6.04 (s, 1H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.8, 169.1, 146.4, 145.2, 137.5, 135.8, 133.0, 131.1, 130.6, 129.8, 129.8, 129.8, 129.7, 129.7, 129.2, 128.9, 128.7, 128.7, 128.7, 128.4, 128.4, 128.3, 128.3, 128.1, 128.1, 127.4, 127.3, 127.3, 108.9; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>21</sub>NNaO<sub>2</sub> [(M+ Na)<sup>+</sup>], 450.1465, found, 450.1474.

(*Z*)-1-(4-Isopropylphenyl)-5-(2-oxo-2-phenylethylidene)-3,4-diphenyl-1,5dihydro-2*H*-pyrrol-2-one (7j)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 10/1, Yellow solid: 38 mg (41%); mp = 219–220 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.47–7.44 (m, 7H), 7.44–7.39 (m, 3H), 7.29–7.27 (m, 5H), 6.95 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 5.94 (s, 1H), 2.82 –2.78 (m, 1H), 1.18 (d, J = 6.9 Hz, 6H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 192.8, 169.1, 148.1, 146.0, 144.9, 137.6, 133.1, 132.9, 131.3, 130.5, 130.0, 129.8, 129.8, 129.8, 129.8, 129.2, 129.0, 129.0, 128.7, 128.4, 128.4, 128.2, 128.2, 128.1, 128.1, 127.5, 127.5, 126.8, 126.8, 109.3, 33.7, 23.9, 23.9; HRMS (TOF ES+): m/z calcd for C<sub>33</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+ Na)<sup>+</sup>], 492.1934, found, 492.1942.

### (*Z*)-1-(4-Bromophenyl)-5-(2-oxo-2-phenylethylidene)-3,4-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (7k)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.3; Z/E = 5/1, Yellow solid: 40 mg (40%); mp > 250 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.54 (dd, J = 8.2, 1.4 Hz, 2H), 7.49–7.47 (m, 3H), 7.44–7.43 (m, 2H), 7.41–7.39 (m, 2H), 7.37–7.33 (m, 2H), 7.29–7.27 (m, 6H), 6.95 (d, J = 8.6 Hz, 2H), 6.06 (s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.7, 169.0, 146.2, 145.5, 137.6, 134.9, 133.3, 133.0, 131.9, 131.9, 131.1, 130.7, 129.8, 129.8, 129.7, 129.7, 129.4, 129.1, 129.1, 128.9, 128.9, 128.9, 128.4, 128.4, 128.4, 128.4, 128.2, 128.2, 121.4, 109.0; HRMS (TOF ES+): m/z calcd for C<sub>30</sub>H<sub>20</sub>BrNNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 528.0570, found, 528.0579.

### 5-(2-Hydroxyethyl)-3,4,5-triphenylfuran-2(5H)-one (8)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.1; Yellow oil: 53 mg (75%); <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  = 7.43–7.39 (m, 3H), 7.36–7.30 (m, 8H), 7.29–7.25 (m, 2H), 6.84 (d, J = 7.7 Hz, 2H), 4.79–4.76 (m, 1H), 3.61–3.52 (m, 2H), 2.60–2.52 (m, 2H); <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  = 171.7, 164.8, 137.7, 131.7, 130.1, 129.9, 129.6, 129.6, 129.3, 129.3, 129.2, 129.1, 129.0, 129.0, 128.7, 128.7, 128.7, 128.7, 126.3, 126.2, 126.2, 88.9,

56.6, 37.5; HRMS (TOF ES+): m/z calcd for  $C_{24}H_{20}NaO_3$  [(M+Na)<sup>+</sup>], 379.1305, found, 379.1306.

### 2-Bromo-2-(5-oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-yl)acetaldehyde (9)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 5:1, R<sub>f</sub> = 0.3; White solid: 46 mg (53%); mp = 137–138 °C; d/r = 5:1; <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 9.40 (s, 1H), 7.40–7.34 (m, 6H), 7.31– 7.27 (m, 7H), 6.87 (d, *J* = 7.6 Hz, 2H), 6.08 (s, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 191.0, 170.6, 162.5, 133.8, 130.4, 130.3, 129.8, 129.6, 129.5, 129.4, 129.4, 129.4, 129.4, 129.4, 129.4, 129.1, 128.8, 128.8, 128.6, 128.6, 126.5, 126.5, 88.4, 57.9; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>17</sub>BrNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 455.0253, found, 455.0252.

#### 2-(5-Oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-yl)acetaldehyde oxime (10)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 3:1, R<sub>f</sub> = 0.2; Yellow oil: 60 mg (81%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 10.98 (s, 1H), 7.44–7.42 (m, 3H), 7.36–7.33 (m, 3H), 7.32–7.29 (m, 8H), 6.83 (d, *J* = 7.6 Hz, 2H), 3.32 (dd, *J* = 14.9, 5.9 Hz, 1H), 3.26 (dd, *J* = 14.9, 6.6 Hz, 1H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 171.3, 164.2, 144.1, 136.8, 131.4, 130.0, 129.8, 129.5, 129.5, 129.4, 129.4, 129.2, 129.1, 129.1, 128.8, 128.8, 128.6, 128.6, 127.3, 126.5, 126.5, 88.9, 35.1; HRMS (TOF ES+): m/z calcd for C<sub>24</sub>H<sub>19</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>], 392.1257, found, 392.1262.

# 4-Methyl-*N*'-(2-(5-oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-yl)ethylidene)benzenesulfonohydrazide (11)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 2:1,  $R_f$  = 0.2; Yellow oil: 90 mg (86%); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 11.39 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.38–7.28 (m, 7H), 7.28–7.23 (m, 5H), 7.18 (d, *J* = 7.4 Hz, 2H), 7.14 (t, *J* = 7.7 Hz, 2H), 6.49 (d, *J* = 7.7 Hz, 2H), 3.32 (dd, *J* = 15.0, 4.5 Hz, 1H), 3.18 (dd, *J* = 15.0, 6.9 Hz, 1H), 2.26 (s, 3H); <sup>13</sup>C NMR

 $(150 \text{ MHz}, \text{DMSO-}d_6) \delta = 171.1, 163.9, 145.7, 143.7, 136.7, 136.6, 131.0, 130.2, 130.2, 129.7, 129.7, 129.6, 129.6, 129.6, 129.4, 129.3, 129.2, 129.2, 128.9, 128.9, 128.6, 128.6, 128.6, 128.4, 127.5, 127.5, 127.3, 126.3, 126.3, 88.8, 37.5, 21.4; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>4</sub>S [(M+Na)<sup>+</sup>], 545.1505, found, 545.1512.$ 

# 5-(2-Hydroxy-2-phenylethyl)-3,4-diphenyl-1-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one (12)



V<sub>Petroleum ether</sub>/V<sub>Ethyl acetate</sub> = 4:1, R<sub>f</sub> = 0.1; White solid: 74 mg (83%); mp > 250 °C; d/r > 20:1; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.44 (d, *J* = 8.0 Hz, 2H), 7.42–7.40 (m, 2H), 7.39–7.37 (m, 3H), 7.36–7.34 (m, 2H), 7.31–7.28 (m, 3H), 7.24–7.20 (m, 5H), 6.93–6.89 (m, 2H), 5.43–5.41 (m, 1H), 4.33–4.31 (m, 1H), 2.37 (s, 3H), 2.23–2.18 (m, 1H), 2.07–2.03 (m, 1H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 168.4, 153.1, 143.6, 134.7, 134.3, 133.3, 132.5, 131.2, 129.8, 129.8, 129.6, 129.6, 129.1, 128.8, 128.8, 128.8, 128.8, 128.5, 128.5, 128.1, 128.1, 128.0, 127.8, 125.6, 125.6, 122.7, 122.7, 70.2, 59.7, 39.4, 21.0; HRMS (TOF ES+): m/z calcd for C<sub>31</sub>H<sub>27</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>], 468.1934, found, 468.1943.

Failed examples:

## 5. X-ray Structure and Data.

## 5.1 X-ray Structure and Data<sup>5</sup> of 3v (CCDC 2377854).



Figure S2 X-Ray crystal structure of 3v.

| Table S3Crystal                   | data and structure refinement for <b>3v</b> .  |
|-----------------------------------|------------------------------------------------|
| Empirical formula                 | C <sub>25</sub> H <sub>20</sub> O <sub>3</sub> |
| Formula weight                    | 368.41                                         |
| Temperature                       | 300.00 K                                       |
| Crystal system, space group       | Monoclinic, P2 <sub>1</sub> /c                 |
| Unit cell dimensions              | a = 10.2274(4) A alpha = 90 deg.               |
|                                   | b = 13.5230(5) A beta = 90.829(2) deg.         |
|                                   | c = 14.2522(7) A gamma = 90 deg.               |
| Volume                            | 1970.95(14) A^3                                |
| Z, Calculated density             | 4, 1.242 Mg/m^3                                |
| Absorption coefficient            | 0.081 mm^-1                                    |
| F(000)                            | 776.0                                          |
| Theta range for data collection   | 3.982 to 56.604 deg.                           |
| Limiting indices                  | -13<=h<=13, -18<=k<=18, -18<=l<=19             |
| Reflections collected / unique    | 53825                                          |
| Data/restraints/parameters        | 4901 / 0 / 254                                 |
| Goodness-of-fit on F <sup>2</sup> | 1.056                                          |
| Final R indices [I>2sigma(I)]     | R1 = 0.0438, wR2 = 0.1161                      |
| R indices (all data)              | R1 = 0.0612, wR2 = 0.1303                      |
| Largest diff. peak and hole       | 0.18 and -0.20 e.A^-3                          |

## 5.2 X-ray Structure and Data<sup>6</sup> of 5b (CCDC 2391288).



Figure S3 X-Ray crystal structure of 5b.

| Table S4    Crystal             | data and structure refinement for <b>5b</b> .   |
|---------------------------------|-------------------------------------------------|
| Empirical formula               | C <sub>31</sub> H <sub>25</sub> NO <sub>2</sub> |
| Formula weight                  | 443.52                                          |
| Temperature                     | 296.15 K                                        |
| Crystal system, space group     | Monoclinic, C2/c                                |
| Unit cell dimensions            | a = 38.980(3) A alpha = 90 deg.                 |
|                                 | b = 5.8496(5) A beta = 118.940(3) deg.          |
|                                 | c = 25.600(3) A gamma = 90 deg.                 |
| Volume                          | 5108.3(8) A^3                                   |
| Z, Calculated density           | 8, 1.153 Mg/m^3                                 |
| Absorption coefficient          | 0.072 mm^-1                                     |
| F(000)                          | 1872.0                                          |
| Theta range for data collection | 2.388 to 54.994 deg.                            |
| Limiting indices                | -50<=h<=40, -7<=k<=7, -28<=l<=33                |
| Reflections collected / unique  | 14699                                           |
| Data/restraints/parameters      | 5794 / 0 / 308                                  |
| Goodness-of-fit on F^2          | 0.963                                           |
| Final R indices [I>2sigma(I)]   | R1 = 0.0488, wR2 = 0.1145                       |
| R indices (all data)            | R1 = 0.0827, wR2 = 0.1328                       |
| Largest diff. peak and hole     | 0.22 and -0.24 e.A^-3                           |

## 5.3 X-ray Structure and Data<sup>7</sup> of 7a (CCDC 2391289).





| Table 55 Crystal                  | data and structure refinement for /a. |
|-----------------------------------|---------------------------------------|
| Empirical formula                 | $C_{31}H_{23}NO_2$                    |
| Formula weight                    | 441.50                                |
| Temperature                       | 303.00 K                              |
| Crystal system, space group       | Orthorhombic, Pca2 <sub>1</sub>       |
| Unit cell dimensions              | a = 26.0297(16) A alpha = 90 deg.     |
|                                   | b = 5.9625(3) A beta = 90 deg.        |
|                                   | c = 15.3428(9) A gamma = 90 deg.      |
| Volume                            | 2381.2(2) A^3                         |
| Z, Calculated density             | 4, 1.232 Mg/m^3                       |
| Absorption coefficient            | 0.077 mm^-1                           |
| F(000)                            | 928.0                                 |
| Theta range for data collection   | 5.31 to 56.574 deg.                   |
| Limiting indices                  | -34<=h<=34, -7<=k<=7, -20<=1<=20      |
| Reflections collected / unique    | 53825                                 |
| Data/restraints/parameters        | 5846 / 1 / 309                        |
| Goodness-of-fit on F <sup>2</sup> | 1.093                                 |
| Final R indices [I>2sigma(I)]     | R1 = 0.0451, wR2 = 0.0929             |
| R indices (all data)              | R1 = 0.0656, wR2 = 0.1099             |
| Largest diff. peak and hole       | 0.12 and -0.18 e.A^-3                 |

 Table S5
 Crystal data and structure refinement for 7a.

6. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for spectroscopic data.
































































































**Figure S50.** <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ ) spectra of compound **3**w















































































































































































----62.84
















































## 7. References and notes.

- (a) Liu, Y.; Zhou, R..; Wan, J.-P. Synth. Commun., 2013, 43, 2475. (b) Zhou, Z.-Z.; Liu, F.-S.; Shen, D.-S.; Tan, C.; Luo, L.-Y. Inorg. Chem. Commun., 2011, 14, 659. (c) Larina, N. A.; Lokshin, V.; Berthet, J.; Delbaere, S.; Vermeersch, G.; Khodorkovsky, V. Tetrahedron, 2010, 66, 8291. (d) Zhou, P.; Hu, B.; Rao, K.; Li, L.; Yang, J.; Gao, C.; Wang, F.; Yu, F. Synlett, 2018, 29, 519.
- (a) Miao, W.-H.; Gao, W.-X.; Huang, X.-B.; Liu, M.-C.; Zhou, Y.-B.; Wu, H.-Y. Org. Lett., 2021, 23, 9425. (b) Wang, H.; Yan, R. Adv. Synth. Catal., 2022, 364, 715.
- (a) Yuan, W.; Li, X.; Qi, Z.; Li, X. Org. Lett. 2021, 23, 9425–9430. (b) Liu, L.; Wu, H.; Huang, G. Chin. Chem. Lett. 2021, 32, 3015–3018. (c) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 778. (d) Bai, D.; Yu, Y.; Guo, H.; Chang, J.; Li, X. Angew. Chem. Int. Ed. 2020, 59, 2740.
- 4. (a) Ren, J.-T.; Wang, J.-X.; Tian, H.; Xu, J.-L.; Hu, H.; Aslam, M.; Sun, M. Org. Lett. 2018, 20, 6636. (b) Xu, J.-L.; Tian, H.; Kang, J.-H.; Kang, W.-X.; Sun, W.; Sun, R.; Li, Y.-M.; Sun, M. Org. Lett. 2020, 22, 6739. (c) Yuan, W.; Li, X.; Qi, Z.; Li, X. Org. Lett. 2022, 24, 2093.
- CCDC 2377854 contain the supplementary crystallographic data for compound 3v. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data\_request/cif.</u>
- CCDC 2391288 contain the supplementary crystallographic data for compound 5b. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data\_request/cif.</u>
- CCDC 2391289 contain the supplementary crystallographic data for compound 7a. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data\_request/cif.</u>